code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" a = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
169
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str]=13 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : str=[10, 20, 30, 40] , lowerCAmelCase : Any=[2, 2, 3, 2] , lowerCAmelCase : Any=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Optional[Any]=37 , lowerCAmelCase : int="gelu" , lowerCAmelCase : List[str]=10 , lowerCAmelCase : List[str]=0.02 , lowerCAmelCase : Tuple=["stage2", "stage3", "stage4"] , lowerCAmelCase : str=[2, 3, 4] , lowerCAmelCase : Union[str, Any]=None , ): lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = num_channels lowerCAmelCase = num_stages lowerCAmelCase = hidden_sizes lowerCAmelCase = depths lowerCAmelCase = is_training lowerCAmelCase = use_labels lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = num_labels lowerCAmelCase = initializer_range lowerCAmelCase = out_features lowerCAmelCase = out_indices lowerCAmelCase = scope def __lowercase ( self : str ): lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase = self.get_config() return config, pixel_values, labels def __lowercase ( self : Dict ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __lowercase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : Dict ): lowerCAmelCase = ConvNextVaModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowercase ( self : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : str ): lowerCAmelCase = ConvNextVaForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : str ): lowerCAmelCase = ConvNextVaBackbone(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase = None lowerCAmelCase = ConvNextVaBackbone(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __lowercase ( self : Optional[Any] ): lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict def __lowercase ( self : Tuple ): lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _a , _a , unittest.TestCase ): _a = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _a = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False _a = False def __lowercase ( self : Any ): lowerCAmelCase = ConvNextVaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 ) def __lowercase ( self : Optional[int] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : Dict ): return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def __lowercase ( self : Dict ): pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def __lowercase ( self : Optional[Any] ): pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def __lowercase ( self : Dict ): pass def __lowercase ( self : Union[str, Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase = True if model_class.__name__ in [ *get_values(lowerCAmelCase ), *get_values(lowerCAmelCase ), ]: continue lowerCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.train() lowerCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) lowerCAmelCase = model(**lowerCAmelCase ).loss loss.backward() def __lowercase ( self : Optional[int] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase = False lowerCAmelCase = True if ( model_class.__name__ in [*get_values(lowerCAmelCase ), *get_values(lowerCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() lowerCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) lowerCAmelCase = model(**lowerCAmelCase ).loss loss.backward() def __lowercase ( self : Dict ): lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(lowerCAmelCase ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def __lowercase ( self : str ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def __lowercase ( self : Union[str, Any] ): def check_hidden_states_output(lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ): lowerCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : int ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def __lowercase ( self : Any ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = ConvNextVaModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowercase () -> List[str]: '''simple docstring''' lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def __lowercase ( self : int ): return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def __lowercase ( self : int ): lowerCAmelCase = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(lowerCAmelCase ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = preprocessor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**lowerCAmelCase ) # verify the logits lowerCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) lowerCAmelCase = torch.tensor([0.9996, 0.1966, -0.4386] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
169
1
import math def __UpperCAmelCase ( lowerCamelCase_ : int ) -> list: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [True] * n SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Optional[Any] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): SCREAMING_SNAKE_CASE_ : Optional[int] = i * 2 while index < n: SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : List[str] = index + i SCREAMING_SNAKE_CASE_ : int = [2] for i in range(3 , lowerCamelCase_ , 2 ): if is_prime[i]: primes.append(lowerCamelCase_ ) return primes def __UpperCAmelCase ( lowerCamelCase_ : int = 99_99_66_66_33_33 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = math.floor(math.sqrt(lowerCamelCase_ ) ) + 1_00 SCREAMING_SNAKE_CASE_ : Optional[int] = prime_sieve(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = primes[prime_index] while (last_prime**2) <= limit: SCREAMING_SNAKE_CASE_ : Optional[int] = primes[prime_index + 1] SCREAMING_SNAKE_CASE_ : Optional[Any] = last_prime**2 SCREAMING_SNAKE_CASE_ : str = next_prime**2 # Get numbers divisible by lps(current) SCREAMING_SNAKE_CASE_ : str = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) SCREAMING_SNAKE_CASE_ : List[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps SCREAMING_SNAKE_CASE_ : Any = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair SCREAMING_SNAKE_CASE_ : Union[str, Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
717
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } UpperCamelCase__ : str = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ) -> List[str]: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : List[Any] = collections.OrderedDict() with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = b SCREAMING_SNAKE_CASE_ : Dict = idx for wd in b: SCREAMING_SNAKE_CASE_ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__="<|startoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__=False ,**snake_case__ ,): super().__init__( unk_token=snake_case__ ,pad_token=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,do_clean_text=snake_case__ ,**snake_case__ ,) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) SCREAMING_SNAKE_CASE_ : str = do_clean_text SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = load_vocab_and_emoji(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def snake_case ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case ( self ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.tokenize(snake_case__ ,clean=self.do_clean_text ) def snake_case ( self ,snake_case__ ): return self.vocab.get(snake_case__ ,self.vocab.get(self.unk_token ) ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = ''.join(snake_case__ ).strip() return out_string def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ ,add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: SCREAMING_SNAKE_CASE_ : List[Any] = input_ids[-self.model_max_length :] return input_ids def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 if os.path.isdir(snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: SCREAMING_SNAKE_CASE_ : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Dict = token_index writer.write(','.join(snake_case__ ) + '\n' ) index += 1 with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,snake_case__ ) return vocab_file, emoji_file class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = vocab # same as swe SCREAMING_SNAKE_CASE_ : Optional[int] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE_ : Dict = emoji SCREAMING_SNAKE_CASE_ : int = np.max([len(snake_case__ ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) SCREAMING_SNAKE_CASE_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' SCREAMING_SNAKE_CASE_ : int = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' SCREAMING_SNAKE_CASE_ : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<URL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.content_repattera.sub('<EMAIL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<TEL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<PRICE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE_ : Union[str, Any] = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('\r\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\r' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace('\t' ,'<TAB>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('—' ,'ー' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE_ : int = text.replace(snake_case__ ,snake_case__ ) if clean: SCREAMING_SNAKE_CASE_ : str = self.clean_text(snake_case__ ) def check_simbol(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: SCREAMING_SNAKE_CASE_ : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: SCREAMING_SNAKE_CASE_ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = [] while pos < len(snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = min(len(snake_case__ ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 SCREAMING_SNAKE_CASE_ : List[Any] = [] # (token_id, token, pos) for e in range(snake_case__ ,snake_case__ ,-1 ): SCREAMING_SNAKE_CASE_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: SCREAMING_SNAKE_CASE_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(snake_case__ ,key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = e else: SCREAMING_SNAKE_CASE_ : Any = pos + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = text[pos:end] if check_simbol(snake_case__ ): result.append('<KIGOU>' ) elif checkuae(snake_case__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) SCREAMING_SNAKE_CASE_ : int = end return result def snake_case ( self ,snake_case__ ,snake_case__="\n" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : int = ''.join(snake_case__ ) return text
685
0
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" return "".join(sorted(snake_case__ ) ) def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" return word_by_signature[signature(snake_case__ )] A_ = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') A_ = sorted({word.strip().lower() for word in data.splitlines()}) A_ = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": A_ = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
609
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 0.0 lowercase__ = 1 lowercase__ = 1 lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = jnp.floataa def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : int = [] _snake_case : Tuple = [] for i in range(self.num_layers ): _snake_case : str = self.in_channels if i == 0 else self.out_channels _snake_case : Tuple = FlaxResnetBlockaD( in_channels=a_, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(a_ ) _snake_case : str = FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(a_ ) _snake_case : Optional[int] = resnets _snake_case : Tuple = attentions if self.add_downsample: _snake_case : Optional[int] = FlaxDownsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self: Dict, a_: Any, a_: List[str], a_: Optional[Any], a_: List[str]=True ): '''simple docstring''' _snake_case : List[str] = () for resnet, attn in zip(self.resnets, self.attentions ): _snake_case : Optional[Any] = resnet(a_, a_, deterministic=a_ ) _snake_case : str = attn(a_, a_, deterministic=a_ ) output_states += (hidden_states,) if self.add_downsample: _snake_case : Optional[Any] = self.downsamplers_a(a_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 0.0 lowercase__ = 1 lowercase__ = True lowercase__ = jnp.floataa def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Any = [] for i in range(self.num_layers ): _snake_case : str = self.in_channels if i == 0 else self.out_channels _snake_case : int = FlaxResnetBlockaD( in_channels=a_, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(a_ ) _snake_case : Optional[Any] = resnets if self.add_downsample: _snake_case : Tuple = FlaxDownsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self: Optional[Any], a_: Optional[Any], a_: List[Any], a_: Optional[int]=True ): '''simple docstring''' _snake_case : int = () for resnet in self.resnets: _snake_case : Any = resnet(a_, a_, deterministic=a_ ) output_states += (hidden_states,) if self.add_downsample: _snake_case : Dict = self.downsamplers_a(a_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 0.0 lowercase__ = 1 lowercase__ = 1 lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = jnp.floataa def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Any = [] _snake_case : List[Any] = [] for i in range(self.num_layers ): _snake_case : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _snake_case : Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels _snake_case : Optional[int] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(a_ ) _snake_case : str = FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(a_ ) _snake_case : Any = resnets _snake_case : Union[str, Any] = attentions if self.add_upsample: _snake_case : Dict = FlaxUpsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self: Any, a_: int, a_: List[Any], a_: Union[str, Any], a_: Optional[Any], a_: List[Any]=True ): '''simple docstring''' for resnet, attn in zip(self.resnets, self.attentions ): # pop res hidden states _snake_case : List[str] = res_hidden_states_tuple[-1] _snake_case : Any = res_hidden_states_tuple[:-1] _snake_case : int = jnp.concatenate((hidden_states, res_hidden_states), axis=-1 ) _snake_case : Optional[Any] = resnet(a_, a_, deterministic=a_ ) _snake_case : str = attn(a_, a_, deterministic=a_ ) if self.add_upsample: _snake_case : Dict = self.upsamplers_a(a_ ) return hidden_states class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 0.0 lowercase__ = 1 lowercase__ = True lowercase__ = jnp.floataa def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = [] for i in range(self.num_layers ): _snake_case : Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels _snake_case : int = self.prev_output_channel if i == 0 else self.out_channels _snake_case : List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(a_ ) _snake_case : List[Any] = resnets if self.add_upsample: _snake_case : Optional[Any] = FlaxUpsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self: str, a_: Any, a_: List[Any], a_: str, a_: Union[str, Any]=True ): '''simple docstring''' for resnet in self.resnets: # pop res hidden states _snake_case : int = res_hidden_states_tuple[-1] _snake_case : Dict = res_hidden_states_tuple[:-1] _snake_case : List[Any] = jnp.concatenate((hidden_states, res_hidden_states), axis=-1 ) _snake_case : Any = resnet(a_, a_, deterministic=a_ ) if self.add_upsample: _snake_case : int = self.upsamplers_a(a_ ) return hidden_states class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = 0.0 lowercase__ = 1 lowercase__ = 1 lowercase__ = False lowercase__ = False lowercase__ = jnp.floataa def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) ] _snake_case : int = [] for _ in range(self.num_layers ): _snake_case : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels, n_heads=self.num_attention_heads, d_head=self.in_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(a_ ) _snake_case : Tuple = FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(a_ ) _snake_case : Optional[Any] = resnets _snake_case : List[str] = attentions def __call__( self: Tuple, a_: Optional[int], a_: str, a_: Optional[int], a_: int=True ): '''simple docstring''' _snake_case : Dict = self.resnets[0](a_, a_ ) for attn, resnet in zip(self.attentions, self.resnets[1:] ): _snake_case : str = attn(a_, a_, deterministic=a_ ) _snake_case : Union[str, Any] = resnet(a_, a_, deterministic=a_ ) return hidden_states
609
1
"""simple docstring""" from math import factorial, pi def __UpperCamelCase ( snake_case__ , snake_case__ = 30 ): if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) A_ : List[Any] = float(__SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( snake_case__ , snake_case__ = 30 ): if not isinstance(__SCREAMING_SNAKE_CASE , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) A_ : str = float(__SCREAMING_SNAKE_CASE ) A_ : str = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
701
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
480
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() a__ : Dict = logging.get_logger(__name__) def __lowerCamelCase ( UpperCAmelCase_ ) ->Union[str, Any]: snake_case__ = 'huggingface/label-files' snake_case__ = 'imagenet-1k-id2label.json' snake_case__ = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) snake_case__ = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" snake_case__ = BitConfig( conv_layer=UpperCAmelCase_ , num_labels=10_00 , idalabel=UpperCAmelCase_ , labelaid=UpperCAmelCase_ , ) return config def __lowerCamelCase ( UpperCAmelCase_ ) ->str: if "stem.conv" in name: snake_case__ = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: snake_case__ = name.replace('blocks' , 'layers' ) if "head.fc" in name: snake_case__ = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): snake_case__ = 'bit.' + name if "bit" not in name and "classifier" not in name: snake_case__ = 'bit.encoder.' + name return name def __lowerCamelCase ( ) ->Union[str, Any]: snake_case__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False ) ->int: snake_case__ = get_config(UpperCAmelCase_ ) # load original model from timm snake_case__ = create_model(UpperCAmelCase_ , pretrained=UpperCAmelCase_ ) timm_model.eval() # load state_dict of original model snake_case__ = timm_model.state_dict() for key in state_dict.copy().keys(): snake_case__ = state_dict.pop(UpperCAmelCase_ ) snake_case__ = val.squeeze() if 'head' in key else val # load HuggingFace model snake_case__ = BitForImageClassification(UpperCAmelCase_ ) model.eval() model.load_state_dict(UpperCAmelCase_ ) # create image processor snake_case__ = create_transform(**resolve_data_config({} , model=UpperCAmelCase_ ) ) snake_case__ = transform.transforms snake_case__ = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } snake_case__ = BitImageProcessor( do_resize=UpperCAmelCase_ , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=UpperCAmelCase_ , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=UpperCAmelCase_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case__ = prepare_img() snake_case__ = transform(UpperCAmelCase_ ).unsqueeze(0 ) snake_case__ = processor(UpperCAmelCase_ , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) # verify logits with torch.no_grad(): snake_case__ = model(UpperCAmelCase_ ) snake_case__ = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) snake_case__ = timm_model(UpperCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase_ , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": a__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''resnetv2_50x1_bitm''', type=str, help='''Name of the BiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub.''', ) a__ : int = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
368
'''simple docstring''' import cmath import math def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->complex: snake_case__ = math.radians(UpperCAmelCase_ ) snake_case__ = math.radians(UpperCAmelCase_ ) # Convert voltage and current to rectangular form snake_case__ = cmath.rect(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case__ = cmath.rect(UpperCAmelCase_ , UpperCAmelCase_ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
368
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCAmelCase = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } _lowerCAmelCase = { 'allenai/led-base-16384': 1_6_3_8_4, } class __UpperCAmelCase( A__ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = LEDTokenizer __magic_name__ = ["""input_ids""", """attention_mask"""] def __init__( self , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__="replace" , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="</s>" , __magic_name__="<s>" , __magic_name__="<unk>" , __magic_name__="<pad>" , __magic_name__="<mask>" , __magic_name__=False , __magic_name__=True , **__magic_name__ , ): """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) A_ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __magic_name__ ) != add_prefix_space: A_ : Tuple = getattr(__magic_name__ , pre_tok_state.pop('''type''' ) ) A_ : Any = add_prefix_space A_ : List[str] = pre_tok_class(**__magic_name__ ) A_ : Union[str, Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A_ : int = '''post_processor''' A_ : List[str] = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: A_ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : List[Any] = tuple(state['''sep'''] ) if "cls" in state: A_ : Any = tuple(state['''cls'''] ) A_ : Optional[Any] = False if state.get('''add_prefix_space''' , __magic_name__ ) != add_prefix_space: A_ : Optional[Any] = add_prefix_space A_ : Tuple = True if state.get('''trim_offsets''' , __magic_name__ ) != trim_offsets: A_ : str = trim_offsets A_ : Dict = True if changes_to_apply: A_ : str = getattr(__magic_name__ , state.pop('''type''' ) ) A_ : Optional[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def UpperCAmelCase ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" A_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value A_ : Union[str, Any] = value def UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ): """simple docstring""" A_ : Any = kwargs.get('''is_split_into_words''' , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ): """simple docstring""" A_ : Tuple = kwargs.get('''is_split_into_words''' , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ): """simple docstring""" A_ : Optional[Any] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def UpperCAmelCase ( self , __magic_name__ , __magic_name__=None ): """simple docstring""" A_ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ): """simple docstring""" A_ : Any = [self.sep_token_id] A_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = PaddingStrategy.DO_NOT_PAD , __magic_name__ = None , __magic_name__ = None , ): """simple docstring""" A_ : str = super()._pad( encoded_inputs=__magic_name__ , max_length=__magic_name__ , padding_strategy=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , ) # Load from model defaults if return_attention_mask is None: A_ : Dict = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A_ : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A_ : int = len(encoded_inputs['''global_attention_mask'''] ) != len(__magic_name__ ) if needs_to_be_padded: A_ : int = len(__magic_name__ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A_ : Optional[int] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": A_ : List[str] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
236
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCAmelCase = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _lowerCAmelCase = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _lowerCAmelCase = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } _lowerCAmelCase = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } _lowerCAmelCase = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } _lowerCAmelCase = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } _lowerCAmelCase = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } _lowerCAmelCase = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } _lowerCAmelCase = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __UpperCAmelCase( A__ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCAmelCase( A__ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) _lowerCAmelCase = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) _lowerCAmelCase = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(A__ ) class __UpperCAmelCase: """simple docstring""" def __call__( self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = False , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" if titles is None and texts is None: return super().__call__( __magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , return_tensors=__magic_name__ , return_attention_mask=__magic_name__ , **__magic_name__ , ) elif titles is None or texts is None: A_ : Dict = titles if texts is None else texts return super().__call__( __magic_name__ , __magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , return_tensors=__magic_name__ , return_attention_mask=__magic_name__ , **__magic_name__ , ) A_ : Optional[int] = titles if not isinstance(__magic_name__ , __magic_name__ ) else [titles] A_ : Dict = texts if not isinstance(__magic_name__ , __magic_name__ ) else [texts] A_ : Tuple = len(__magic_name__ ) A_ : Any = questions if not isinstance(__magic_name__ , __magic_name__ ) else [questions] * n_passages if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( f"""There should be as many titles than texts but got {len(__magic_name__ )} titles and {len(__magic_name__ )} texts.""" ) A_ : Optional[int] = super().__call__(__magic_name__ , __magic_name__ , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids'''] A_ : Dict = super().__call__(__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids'''] A_ : Tuple = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__magic_name__ , __magic_name__ ) ] } if return_attention_mask is not False: A_ : Dict = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A_ : Tuple = attention_mask return self.pad(__magic_name__ , padding=__magic_name__ , max_length=__magic_name__ , return_tensors=__magic_name__ ) def UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = 16 , __magic_name__ = 64 , __magic_name__ = 4 , ): """simple docstring""" A_ : Any = reader_input['''input_ids'''] A_ , A_ , A_ : Dict = reader_output[:3] A_ : Tuple = len(__magic_name__ ) A_ : int = sorted(range(__magic_name__ ) , reverse=__magic_name__ , key=relevance_logits.__getitem__ ) A_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: A_ : Any = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A_ : Optional[int] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A_ : List[Any] = sequence_ids.index(self.pad_token_id ) else: A_ : Dict = len(__magic_name__ ) A_ : List[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__magic_name__ , top_spans=__magic_name__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__magic_name__ , start_index=__magic_name__ , end_index=__magic_name__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__magic_name__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): """simple docstring""" A_ : Union[str, Any] = [] for start_index, start_score in enumerate(__magic_name__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A_ : List[str] = sorted(__magic_name__ , key=lambda __magic_name__ : x[1] , reverse=__magic_name__ ) A_ : str = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) A_ : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__magic_name__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A__ ) class __UpperCAmelCase( A__ , A__ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = READER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = READER_PRETRAINED_INIT_CONFIGURATION __magic_name__ = ["""input_ids""", """attention_mask"""]
236
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> Dict: """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) snake_case_ : Union[str, Any] = str(bin(lowerCAmelCase_ ) )[2:] # remove the leading "0b" snake_case_ : List[str] = str(bin(lowerCAmelCase_ ) )[2:] # remove the leading "0b" snake_case_ : Dict = max(len(lowerCAmelCase_ ) ,len(lowerCAmelCase_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase_ ) ,b_binary.zfill(lowerCAmelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
653
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = 42 snake_case__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = 42 snake_case__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
61
0
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = [[] for _ in range(__UpperCamelCase )] SCREAMING_SNAKE_CASE__ = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(__UpperCamelCase ) <= key: return input_string for position, character in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE__ = min(__UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = ["""""".join(__UpperCamelCase ) for row in temp_grid] SCREAMING_SNAKE_CASE__ = """""".join(__UpperCamelCase ) return output_string def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string SCREAMING_SNAKE_CASE__ = [[] for _ in range(__UpperCamelCase )] # generates template for position in range(len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE__ = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE__ = min(__UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) SCREAMING_SNAKE_CASE__ = 0 for row in temp_grid: # fills in the characters SCREAMING_SNAKE_CASE__ = input_string[counter : counter + len(__UpperCamelCase )] grid.append(list(__UpperCamelCase ) ) counter += len(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = """""" # reads as zigzag for position in range(len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE__ = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE__ = min(__UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> dict[int, str]: """simple docstring""" SCREAMING_SNAKE_CASE__ = {} for key_guess in range(1 , len(__UpperCamelCase ) ): # tries every key SCREAMING_SNAKE_CASE__ = decrypt(__UpperCamelCase , __UpperCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
379
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __lowerCamelCase : Tuple = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
379
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowercase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ): '''simple docstring''' _lowercase = parent _lowercase = batch_size _lowercase = image_size _lowercase = num_channels _lowercase = num_stages _lowercase = hidden_sizes _lowercase = depths _lowercase = is_training _lowercase = use_labels _lowercase = intermediate_size _lowercase = hidden_act _lowercase = type_sequence_label_size _lowercase = initializer_range _lowercase = out_features _lowercase = num_labels _lowercase = scope _lowercase = num_stages def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase = None if self.use_labels: _lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _UpperCAmelCase ( self ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowercase = UperNetForSemanticSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) = config_and_inputs _lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase__ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = UperNetModelTester(self ) _lowercase = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def _UpperCAmelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self ): '''simple docstring''' return def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(UpperCAmelCase ) _lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase = [*signature.parameters.keys()] _lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass def _UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _lowercase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _lowercase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowercase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = _config_zero_init(UpperCAmelCase ) _lowercase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _lowercase = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @slow def _UpperCAmelCase ( self ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __lowerCAmelCase ( ): """simple docstring""" _lowercase = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" ,repo_type="""dataset""" ,filename="""ADE_val_00000001.jpg""" ) _lowercase = Image.open(_A ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _lowercase ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _lowercase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase ) _lowercase = prepare_img() _lowercase = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _lowercase = model(**UpperCAmelCase ) _lowercase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _lowercase = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) def _UpperCAmelCase ( self ): '''simple docstring''' _lowercase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _lowercase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase ) _lowercase = prepare_img() _lowercase = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _lowercase = model(**UpperCAmelCase ) _lowercase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _lowercase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
398
from argparse import ArgumentParser from . import BaseTransformersCLICommand def __lowerCAmelCase ( _A ): """simple docstring""" return DownloadCommand(args.model ,args.cache_dir ,args.force ,args.trust_remote_code ) class _lowercase ( _UpperCAmelCase ): """simple docstring""" @staticmethod def _UpperCAmelCase ( UpperCAmelCase ): '''simple docstring''' _lowercase = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=UpperCAmelCase , default=UpperCAmelCase , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=UpperCAmelCase , help="""Name of the model to download""" ) download_parser.set_defaults(func=UpperCAmelCase ) def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' _lowercase = model _lowercase = cache _lowercase = force _lowercase = trust_remote_code def _UpperCAmelCase ( self ): '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
398
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __a( _a ): """simple docstring""" lowerCAmelCase = (DDIMParallelScheduler,) lowerCAmelCase = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ : Optional[int] = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> List[str]: UpperCAmelCase_ : int = self.scheduler_classes[0] UpperCAmelCase_ : Any = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = 10, 0.0 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for t in scheduler.timesteps: UpperCAmelCase_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).prev_sample return sample def a__ ( self ) -> Any: for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Any = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def a__ ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE ,beta_end=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE ,prediction_type=_SCREAMING_SNAKE_CASE ,sample_max_value=_SCREAMING_SNAKE_CASE ,) def a__ ( self ) -> Tuple: for t in [1, 10, 49]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ,num_inference_steps=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Dict: for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ,eta=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config() UpperCAmelCase_ : str = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config() UpperCAmelCase_ : Any = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_ : Dict = 10, 0.0 scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = self.dummy_model() UpperCAmelCase_ : Optional[int] = self.dummy_sample_deter UpperCAmelCase_ : List[Any] = self.dummy_sample_deter + 0.1 UpperCAmelCase_ : Any = self.dummy_sample_deter - 0.1 UpperCAmelCase_ : Optional[Any] = samplea.shape[0] UpperCAmelCase_ : Any = torch.stack([samplea, samplea, samplea] ,dim=0 ) UpperCAmelCase_ : List[Any] = torch.arange(_SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) UpperCAmelCase_ : Dict = scheduler.batch_step_no_noise(_SCREAMING_SNAKE_CASE ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Optional[int] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Any = self.full_loop() UpperCAmelCase_ : int = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Optional[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def a__ ( self ) -> List[str]: UpperCAmelCase_ : Dict = self.full_loop(prediction_type='''v_prediction''' ) UpperCAmelCase_ : Optional[Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def a__ ( self ) -> List[str]: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : List[Any] = self.full_loop(set_alpha_to_one=_SCREAMING_SNAKE_CASE ,beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : List[str] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def a__ ( self ) -> Optional[Any]: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Optional[Any] = self.full_loop(set_alpha_to_one=_SCREAMING_SNAKE_CASE ,beta_start=0.01 ) UpperCAmelCase_ : Optional[int] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : List[str] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
300
from math import factorial, radians def lowerCamelCase__ ( _lowercase , _lowercase = 18 , _lowercase = 10 ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians UpperCAmelCase_ : int = radians(_lowercase ) UpperCAmelCase_ : Tuple = angle_in_radians UpperCAmelCase_ : int = 3 UpperCAmelCase_ : str = -1 for _ in range(_lowercase ): result += (b * (angle_in_radians**a)) / factorial(_lowercase ) UpperCAmelCase_ : Optional[Any] = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_lowercase , _lowercase ) if __name__ == "__main__": __import__('doctest').testmod()
300
1
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" self.assertEqual(len(UpperCamelCase__ ), len(UpperCamelCase__ ) ) for a, b in zip(UpperCamelCase__, UpperCamelCase__ ): self.assertAlmostEqual(UpperCamelCase__, UpperCamelCase__, delta=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(UpperCamelCase__ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step, 3 ) self.assertEqual(len(accumulator.gradients ), 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [-2.0, 5.0], tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step, 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [0.0, 0.0], tol=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = None ops.enable_eager_execution_internal() lowerCAmelCase_ = tf.config.list_physical_devices('''CPU''' ) if len(UpperCamelCase__ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0], [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCAmelCase_ = tf.config.list_logical_devices(device_type='''CPU''' ) lowerCAmelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCAmelCase_ = GradientAccumulator() lowerCAmelCase_ = tf.Variable([4.0, 3.0] ) lowerCAmelCase_ , lowerCAmelCase_ = create_optimizer(5E-5, 10, 5 ) lowerCAmelCase_ = tf.Variable([0.0, 0.0], trainable=UpperCamelCase__ ) def accumulate_on_replica(UpperCamelCase__ ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients, [variable] ) ) ) @tf.function def accumulate(UpperCamelCase__, UpperCamelCase__ ): with strategy.scope(): lowerCAmelCase_ = strategy.experimental_local_results(UpperCamelCase__ ) local_variables[0].assign(UpperCamelCase__ ) local_variables[1].assign(UpperCamelCase__ ) strategy.run(UpperCamelCase__, args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(UpperCamelCase__ ) def _check_local_values(UpperCamelCase__, UpperCamelCase__ ): lowerCAmelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value(), UpperCamelCase__, tol=1E-2 ) self.assertListAlmostEqual(values[1].value(), UpperCamelCase__, tol=1E-2 ) accumulate([1.0, 2.0], [-1.0, 1.0] ) accumulate([3.0, -1.0], [-1.0, -1.0] ) accumulate([-2.0, 2.0], [3.0, -2.0] ) self.assertEqual(accumulator.step, 3 ) _check_local_values([2.0, 3.0], [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value(), [4.0, 3.0], tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step, 0 ) _check_local_values([0.0, 0.0], [0.0, 0.0] )
431
import re def __UpperCamelCase ( _A ): lowerCAmelCase_ = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(_A , _A ) ) if __name__ == "__main__": _A = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
431
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a__ : Any =logging.get_logger(__name__) def lowercase__ ( __lowercase : List[str] , __lowercase : Tuple ) -> int: """simple docstring""" __UpperCamelCase = b.T __UpperCamelCase = np.sum(np.square(__lowercase ) , axis=1 ) __UpperCamelCase = np.sum(np.square(__lowercase ) , axis=0 ) __UpperCamelCase = np.matmul(__lowercase , __lowercase ) __UpperCamelCase = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase__ ( __lowercase : Optional[Any] , __lowercase : Tuple ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = x.reshape(-1 , 3 ) __UpperCamelCase = squared_euclidean_distance(__lowercase , __lowercase ) return np.argmin(__lowercase , axis=1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =["pixel_values"] def __init__( self : Any , __A : Optional[Union[List[List[int]], np.ndarray]] = None , __A : bool = True , __A : Dict[str, int] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : bool = True , **__A : Optional[int] , ): super().__init__(**__A ) __UpperCamelCase = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} __UpperCamelCase = get_size_dict(__A ) __UpperCamelCase = np.array(__A ) if clusters is not None else None __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = resample __UpperCamelCase = do_normalize __UpperCamelCase = do_color_quantize def _lowerCamelCase ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Union[str, Any] , ): __UpperCamelCase = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( __A , size=(size['height'], size['width']) , resample=__A , data_format=__A , **__A ) def _lowerCamelCase ( self : Union[str, Any] , __A : np.ndarray , __A : Optional[Union[str, ChannelDimension]] = None , ): __UpperCamelCase = rescale(image=__A , scale=1 / 127.5 , data_format=__A ) __UpperCamelCase = image - 1 return image def _lowerCamelCase ( self : List[str] , __A : ImageInput , __A : bool = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Optional[bool] = None , __A : Optional[Union[List[List[int]], np.ndarray]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **__A : Optional[Any] , ): __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(__A ) __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __UpperCamelCase = clusters if clusters is not None else self.clusters __UpperCamelCase = np.array(__A ) __UpperCamelCase = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__A ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=__A ) for image in images] if do_color_quantize: __UpperCamelCase = [to_channel_dimension_format(__A , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __UpperCamelCase = np.array(__A ) __UpperCamelCase = color_quantize(__A , __A ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __UpperCamelCase = images.shape[0] __UpperCamelCase = images.reshape(__A , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __UpperCamelCase = list(__A ) else: __UpperCamelCase = [to_channel_dimension_format(__A , __A ) for image in images] __UpperCamelCase = {'input_ids': images} return BatchFeature(data=__A , tensor_type=__A )
434
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class snake_case : """simple docstring""" def __init__( self : str , __A : List[str] , __A : Optional[Any]=1_3 , __A : Any=2 , __A : List[Any]=2_4 , __A : List[str]=1_6 , __A : Tuple=True , __A : int=True , __A : Tuple=3_2 , __A : int=5 , __A : Dict=4 , __A : Any=3_7 , __A : Optional[Any]="gelu" , __A : List[Any]=0.1 , __A : str=0.1 , __A : Dict=1_0 , __A : Any=0.02 , __A : Optional[Any]=None , __A : Dict=2 , __A : Optional[int]=2 , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = patch_size __UpperCamelCase = max_length __UpperCamelCase = num_mel_bins __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = frequency_stride __UpperCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __UpperCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __UpperCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 __UpperCamelCase = frequency_out_dimension * time_out_dimension __UpperCamelCase = num_patches + 2 def _lowerCamelCase ( self : int ): __UpperCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = self.get_config() return config, input_values, labels def _lowerCamelCase ( self : str ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _lowerCamelCase ( self : List[str] , __A : str , __A : Dict , __A : Union[str, Any] ): __UpperCamelCase = ASTModel(config=__A ) model.to(__A ) model.eval() __UpperCamelCase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = {'input_values': input_values} return config, inputs_dict @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] =( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Optional[Any] =( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : List[str] =False SCREAMING_SNAKE_CASE_ : Optional[Any] =False SCREAMING_SNAKE_CASE_ : Dict =False SCREAMING_SNAKE_CASE_ : Dict =False def _lowerCamelCase ( self : Dict , __A : Optional[int] , __A : Optional[int] , __A : Tuple , __A : Optional[int] , __A : Optional[Any] ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = ASTModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def _lowerCamelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def _lowerCamelCase ( self : int ): pass def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__A ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['input_values'] self.assertListEqual(arg_names[:1] , __A ) def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) @slow def _lowerCamelCase ( self : Tuple ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = ASTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowercase__ ( ) -> List[Any]: """simple docstring""" __UpperCamelCase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) __UpperCamelCase , __UpperCamelCase = torchaudio.load(__lowercase ) return audio, sampling_rate @require_torch @require_torchaudio class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCamelCase ( self : Tuple ): return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = self.default_feature_extractor __UpperCamelCase = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(__A ) __UpperCamelCase = self.default_feature_extractor __UpperCamelCase , __UpperCamelCase = prepare_audio() __UpperCamelCase = audio.squeeze().numpy() __UpperCamelCase = feature_extractor(__A , sampling_rate=__A , return_tensors='pt' ).to(__A ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__A ) # verify the logits __UpperCamelCase = torch.Size((1, 5_2_7) ) self.assertEqual(outputs.logits.shape , __A ) __UpperCamelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) )
434
1
"""simple docstring""" import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowercase : Union[str, Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = 'Hello world! cécé herlolip' _lowercase : str = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def lowercase__ ( snake_case_ :Any , snake_case_ :int ): __UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=snake_case_ , large=snake_case_ , share_emb=snake_case_ , use_bert_emb=snake_case_ , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) __UpperCAmelCase = torch.load(snake_case_ , lambda snake_case_ , snake_case_ : storage ) __UpperCAmelCase = AbsSummarizer(snake_case_ , torch.device('''cpu''' ) , snake_case_ ) original.eval() __UpperCAmelCase = BertAbsSummarizer(snake_case_ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) __UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs __UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) __UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(snake_case_ )) ) __UpperCAmelCase = torch.tensor(snake_case_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __UpperCAmelCase = encoder_input_ids __UpperCAmelCase = decoder_input_ids __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = __UpperCAmelCase = None __UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __UpperCAmelCase = original(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = original.generator(snake_case_ ) __UpperCAmelCase = new_model( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )[0] __UpperCAmelCase = new_model.generator(snake_case_ ) __UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(snake_case_ ) ) __UpperCAmelCase = torch.allclose(snake_case_ , snake_case_ , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) _lowercase : List[str] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
49
"""simple docstring""" def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" __snake_case = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> dict[str, str]: """simple docstring""" __snake_case = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __snake_case = remove_duplicates(key.upper() ) __snake_case = len(SCREAMING_SNAKE_CASE ) # First fill cipher with key characters __snake_case = {alphabet[i]: char for i, char in enumerate(SCREAMING_SNAKE_CASE )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(SCREAMING_SNAKE_CASE ) , 26 ): __snake_case = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __snake_case = alphabet[i - offset] __snake_case = char return cipher_alphabet def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return "".join(cipher_map.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for ch in message.upper() ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" __snake_case = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for ch in message.upper() ) def __UpperCamelCase ( ) -> None: """simple docstring""" __snake_case = input("Enter message to encode or decode: " ).strip() __snake_case = input("Enter keyword: " ).strip() __snake_case = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: __snake_case = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) __snake_case = create_cipher_map(SCREAMING_SNAKE_CASE ) print(func(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
163
0
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Any , __A :bool , __A :Optional[int] = None , __A :Optional[int] = None ) -> str: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" SCREAMING_SNAKE_CASE__ = torch.zeros(__A , __A ) else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = torch.nn.Parameter(__A ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 def __init__( self :List[Any] , __A :VQModel , __A :CLIPTextModel , __A :CLIPTokenizer , __A :TransformeraDModel , __A :VQDiffusionScheduler , __A :LearnedClassifierFreeSamplingEmbeddings , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules( vqvae=__A , transformer=__A , text_encoder=__A , tokenizer=__A , scheduler=__A , learned_classifier_free_sampling_embeddings=__A , ) def _snake_case ( self :int , __A :int , __A :Dict , __A :Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = len(__A ) if isinstance(__A , __A ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE__ = self.tokenizer( __A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) SCREAMING_SNAKE_CASE__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE__ = text_input_ids[:, : self.tokenizer.model_max_length] SCREAMING_SNAKE_CASE__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 SCREAMING_SNAKE_CASE__ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__A ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE__ = prompt_embeds.repeat_interleave(__A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: SCREAMING_SNAKE_CASE__ = self.learned_classifier_free_sampling_embeddings.embeddings SCREAMING_SNAKE_CASE__ = negative_prompt_embeds.unsqueeze(0 ).repeat(__A , 1 , 1 ) else: SCREAMING_SNAKE_CASE__ = [""""""] * batch_size SCREAMING_SNAKE_CASE__ = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE__ = self.tokenizer( __A , padding="""max_length""" , max_length=__A , truncation=__A , return_tensors="""pt""" , ) SCREAMING_SNAKE_CASE__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings SCREAMING_SNAKE_CASE__ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE__ = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE__ = negative_prompt_embeds.repeat(1 , __A , 1 ) SCREAMING_SNAKE_CASE__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE__ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self :Tuple , __A :Union[str, List[str]] , __A :int = 100 , __A :float = 5.0 , __A :float = 1.0 , __A :int = 1 , __A :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __A :Optional[torch.FloatTensor] = None , __A :Optional[str] = "pil" , __A :bool = True , __A :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __A :int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = 1 elif isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = len(__A ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__A )}''' ) SCREAMING_SNAKE_CASE__ = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE__ = guidance_scale > 1.0 SCREAMING_SNAKE_CASE__ = self._encode_prompt(__A , __A , __A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__A , __A ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__A )}.''' ) # get the initial completely masked latents unless the user supplied it SCREAMING_SNAKE_CASE__ = (batch_size, self.transformer.num_latent_pixels) if latents is None: SCREAMING_SNAKE_CASE__ = self.transformer.num_vector_embeds - 1 SCREAMING_SNAKE_CASE__ = torch.full(__A , __A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) SCREAMING_SNAKE_CASE__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__A , device=self.device ) SCREAMING_SNAKE_CASE__ = self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE__ = latents for i, t in enumerate(self.progress_bar(__A ) ): # expand the sample if we are doing classifier free guidance SCREAMING_SNAKE_CASE__ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` SCREAMING_SNAKE_CASE__ = self.transformer(__A , encoder_hidden_states=__A , timestep=__A ).sample if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model_output.chunk(2 ) SCREAMING_SNAKE_CASE__ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__A , dim=1 , keepdim=__A ) SCREAMING_SNAKE_CASE__ = self.truncate(__A , __A ) # remove `log(0)`'s (`-inf`s) SCREAMING_SNAKE_CASE__ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step(__A , timestep=__A , sample=__A , generator=__A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__A , __A , __A ) SCREAMING_SNAKE_CASE__ = self.vqvae.config.vq_embed_dim SCREAMING_SNAKE_CASE__ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) SCREAMING_SNAKE_CASE__ = self.vqvae.quantize.get_codebook_entry(__A , shape=__A ) SCREAMING_SNAKE_CASE__ = self.vqvae.decode(__A , force_not_quantize=__A ).sample SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__A ) if not return_dict: return (image,) return ImagePipelineOutput(images=__A ) def _snake_case ( self :Any , __A :torch.FloatTensor , __A :float ) -> torch.FloatTensor: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = torch.sort(__A , 1 , descending=__A ) SCREAMING_SNAKE_CASE__ = torch.exp(__A ) SCREAMING_SNAKE_CASE__ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out SCREAMING_SNAKE_CASE__ = torch.full_like(keep_mask[:, 0:1, :] , __A ) SCREAMING_SNAKE_CASE__ = torch.cat((all_true, keep_mask) , dim=1 ) SCREAMING_SNAKE_CASE__ = keep_mask[:, :-1, :] SCREAMING_SNAKE_CASE__ = keep_mask.gather(1 , indices.argsort(1 ) ) SCREAMING_SNAKE_CASE__ = log_p_x_0.clone() SCREAMING_SNAKE_CASE__ = -torch.inf # -inf = log(0) return rv
59
from math import pow, sqrt def SCREAMING_SNAKE_CASE__ ( *UpperCamelCase__: float ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) > 0 and all(value > 0.0 for value in values ) return result def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ): return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float , UpperCamelCase__: float ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float , UpperCamelCase__: float ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float , UpperCamelCase__: float ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float , UpperCamelCase__: float ): return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
59
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ : int = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : List[str] = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Tuple = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowercase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
572
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def _lowerCAmelCase ( lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[Any] ) -> Any: _SCREAMING_SNAKE_CASE : Optional[int] = XCLIPTextConfig() # derive patch size from model name _SCREAMING_SNAKE_CASE : str = model_name.find("patch" ) _SCREAMING_SNAKE_CASE : int = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) _SCREAMING_SNAKE_CASE : Dict = XCLIPVisionConfig(patch_size=lowerCamelCase__, num_frames=lowerCamelCase__ ) if "large" in model_name: _SCREAMING_SNAKE_CASE : str = 7_6_8 _SCREAMING_SNAKE_CASE : Union[str, Any] = 3_0_7_2 _SCREAMING_SNAKE_CASE : Union[str, Any] = 1_2 _SCREAMING_SNAKE_CASE : int = 1_0_2_4 _SCREAMING_SNAKE_CASE : Union[str, Any] = 4_0_9_6 _SCREAMING_SNAKE_CASE : int = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 2_4 _SCREAMING_SNAKE_CASE : List[str] = 7_6_8 _SCREAMING_SNAKE_CASE : Optional[Any] = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE : Dict = 3_3_6 _SCREAMING_SNAKE_CASE : List[str] = XCLIPConfig.from_text_vision_configs(lowerCamelCase__, lowerCamelCase__ ) if "large" in model_name: _SCREAMING_SNAKE_CASE : str = 7_6_8 return config def _lowerCAmelCase ( lowerCamelCase__ : Any ) -> int: # text encoder if name == "token_embedding.weight": _SCREAMING_SNAKE_CASE : List[Any] = name.replace("token_embedding.weight", "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": _SCREAMING_SNAKE_CASE : List[Any] = name.replace("positional_embedding", "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: _SCREAMING_SNAKE_CASE : Any = name.replace("ln_1", "layer_norm1" ) if "ln_2" in name: _SCREAMING_SNAKE_CASE : int = name.replace("ln_2", "layer_norm2" ) if "c_fc" in name: _SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("c_fc", "fc1" ) if "c_proj" in name: _SCREAMING_SNAKE_CASE : Tuple = name.replace("c_proj", "fc2" ) if name.startswith("transformer.resblocks" ): _SCREAMING_SNAKE_CASE : List[str] = name.replace("transformer.resblocks", "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: _SCREAMING_SNAKE_CASE : Optional[int] = name.replace("attn.out_proj", "self_attn.out_proj" ) if "ln_final" in name: _SCREAMING_SNAKE_CASE : Optional[int] = name.replace("ln_final", "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": _SCREAMING_SNAKE_CASE : List[str] = name.replace("visual.class_embedding", "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": _SCREAMING_SNAKE_CASE : Optional[int] = name.replace("visual.positional_embedding", "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): _SCREAMING_SNAKE_CASE : Any = name.replace("visual.transformer.resblocks", "vision_model.encoder.layers" ) if "visual.conv1" in name: _SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("visual.conv1", "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: _SCREAMING_SNAKE_CASE : Any = name.replace("visual.ln_pre", "vision_model.pre_layernorm" ) if "visual.ln_post" in name: _SCREAMING_SNAKE_CASE : Any = name.replace("visual.ln_post", "vision_model.post_layernorm" ) if "visual.proj" in name: _SCREAMING_SNAKE_CASE : List[str] = name.replace("visual.proj", "visual_projection.weight" ) if "text_projection" in name: _SCREAMING_SNAKE_CASE : List[str] = name.replace("text_projection", "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: _SCREAMING_SNAKE_CASE : str = name.replace("prompts_visual_proj", "prompts_visual_projection" ) if "prompts_visual_ln" in name: _SCREAMING_SNAKE_CASE : Any = name.replace("prompts_visual_ln", "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": _SCREAMING_SNAKE_CASE : int = name.replace("positional", "position" ) if name.startswith("mit.resblocks" ): _SCREAMING_SNAKE_CASE : Any = name.replace("mit.resblocks", "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): _SCREAMING_SNAKE_CASE : int = name.replace("prompts_generator.norm", "prompts_generator.layernorm" ) return name def _lowerCAmelCase ( lowerCamelCase__ : Any, lowerCamelCase__ : Union[str, Any] ) -> str: for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE : Optional[Any] = orig_state_dict.pop(lowerCamelCase__ ) if "attn.in_proj" in key: _SCREAMING_SNAKE_CASE : int = key.split("." ) if key.startswith("visual" ): _SCREAMING_SNAKE_CASE : Tuple = key_split[3] _SCREAMING_SNAKE_CASE : Optional[Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: _SCREAMING_SNAKE_CASE : Union[str, Any] = val[ :dim, : ] _SCREAMING_SNAKE_CASE : Optional[Any] = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE : Optional[Any] = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE : Optional[Any] = val[ :dim ] _SCREAMING_SNAKE_CASE : List[Any] = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE : Any = val[ -dim: ] else: if "weight" in key: _SCREAMING_SNAKE_CASE : Dict = val[ :dim, : ] _SCREAMING_SNAKE_CASE : Union[str, Any] = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE : Tuple = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE : Union[str, Any] = val[:dim] _SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE : Any = val[-dim:] elif key.startswith("mit" ): _SCREAMING_SNAKE_CASE : Union[str, Any] = key_split[2] _SCREAMING_SNAKE_CASE : List[str] = config.vision_config.mit_hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE : int = val[:dim, :] _SCREAMING_SNAKE_CASE : Dict = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE : List[Any] = val[-dim:, :] else: _SCREAMING_SNAKE_CASE : Union[str, Any] = val[:dim] _SCREAMING_SNAKE_CASE : List[Any] = val[dim : dim * 2] _SCREAMING_SNAKE_CASE : Optional[Any] = val[-dim:] else: _SCREAMING_SNAKE_CASE : Tuple = key_split[2] _SCREAMING_SNAKE_CASE : List[str] = config.text_config.hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE : Tuple = val[:dim, :] _SCREAMING_SNAKE_CASE : Optional[int] = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE : int = val[-dim:, :] else: _SCREAMING_SNAKE_CASE : int = val[:dim] _SCREAMING_SNAKE_CASE : Tuple = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE : Any = val[-dim:] else: _SCREAMING_SNAKE_CASE : str = rename_key(lowerCamelCase__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: _SCREAMING_SNAKE_CASE : List[str] = val.T _SCREAMING_SNAKE_CASE : Dict = val return orig_state_dict def _lowerCAmelCase ( lowerCamelCase__ : List[Any] ) -> Dict: if num_frames == 8: _SCREAMING_SNAKE_CASE : Union[str, Any] = "eating_spaghetti_8_frames.npy" elif num_frames == 1_6: _SCREAMING_SNAKE_CASE : Any = "eating_spaghetti.npy" elif num_frames == 3_2: _SCREAMING_SNAKE_CASE : Union[str, Any] = "eating_spaghetti_32_frames.npy" _SCREAMING_SNAKE_CASE : Any = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename=lowerCamelCase__, repo_type="dataset", ) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.load(lowerCamelCase__ ) return list(lowerCamelCase__ ) def _lowerCAmelCase ( lowerCamelCase__ : int, lowerCamelCase__ : Optional[Any]=None, lowerCamelCase__ : Optional[Any]=False ) -> List[str]: _SCREAMING_SNAKE_CASE : Union[str, Any] = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } _SCREAMING_SNAKE_CASE : str = model_to_url[model_name] _SCREAMING_SNAKE_CASE : Optional[int] = 8 if "16-frames" in model_name: _SCREAMING_SNAKE_CASE : Union[str, Any] = 1_6 elif "shot" in model_name: _SCREAMING_SNAKE_CASE : List[Any] = 3_2 _SCREAMING_SNAKE_CASE : Union[str, Any] = get_xclip_config(lowerCamelCase__, lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = XCLIPModel(lowerCamelCase__ ) model.eval() if "drive" in checkpoint_url: _SCREAMING_SNAKE_CASE : Dict = "pytorch_model.bin" gdown.cached_download(lowerCamelCase__, lowerCamelCase__, quiet=lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Tuple = torch.load(lowerCamelCase__, map_location="cpu" )["model"] else: _SCREAMING_SNAKE_CASE : List[str] = torch.hub.load_state_dict_from_url(lowerCamelCase__ )["model"] _SCREAMING_SNAKE_CASE : str = convert_state_dict(lowerCamelCase__, lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Any = XCLIPModel(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = model.load_state_dict(lowerCamelCase__, strict=lowerCamelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() _SCREAMING_SNAKE_CASE : Any = 3_3_6 if model_name == "xclip-large-patch14-16-frames" else 2_2_4 _SCREAMING_SNAKE_CASE : List[Any] = VideoMAEImageProcessor(size=lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) _SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) _SCREAMING_SNAKE_CASE : List[str] = XCLIPProcessor(image_processor=lowerCamelCase__, tokenizer=lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : int = prepare_video(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Optional[int] = processor( text=["playing sports", "eating spaghetti", "go shopping"], videos=lowerCamelCase__, return_tensors="pt", padding=lowerCamelCase__ ) print("Shape of pixel values:", inputs.pixel_values.shape ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : Union[str, Any] = model(**lowerCamelCase__ ) # Verify outputs _SCREAMING_SNAKE_CASE : Any = outputs.logits_per_video _SCREAMING_SNAKE_CASE : Dict = logits_per_video.softmax(dim=1 ) print("Probs:", lowerCamelCase__ ) # kinetics-400 if model_name == "xclip-base-patch32": _SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": _SCREAMING_SNAKE_CASE : Any = torch.tensor([[7.0_999E-04, 9.9_883E-01, 4.5_580E-04]] ) elif model_name == "xclip-base-patch16": _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[7.6_937E-04, 9.9_728E-01, 1.9_473E-03]] ) elif model_name == "xclip-large-patch14": _SCREAMING_SNAKE_CASE : str = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[3.3_877E-04, 9.9_937E-01, 2.8_888E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": _SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": _SCREAMING_SNAKE_CASE : int = torch.tensor([[3.8_554E-04, 9.9_929E-01, 3.2_754E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[7.1_890E-06, 9.9_994E-01, 5.6_559E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": _SCREAMING_SNAKE_CASE : Any = torch.tensor([[1.0_320E-05, 9.9_993E-01, 6.2_435E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[4.1_377E-06, 9.9_990E-01, 9.8_386E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": _SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[4.1_347E-05, 9.9_962E-01, 3.3_411E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": _SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[8.5_857E-05, 9.9_928E-01, 6.3_291E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": _SCREAMING_SNAKE_CASE : str = torch.tensor([[8.5_857E-05, 9.9_928E-01, 6.3_291E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[9.8_219E-04, 9.9_593E-01, 3.0_863E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": _SCREAMING_SNAKE_CASE : Dict = torch.tensor([[3.5_082E-04, 9.9_785E-01, 1.7_966E-03]] ) else: raise ValueError(f'''Model name {model_name} not supported''' ) assert torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase__ ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(lowerCamelCase__, organization="nielsr" ) processor.push_to_hub(lowerCamelCase__, organization="nielsr" ) slow_tokenizer.push_to_hub(lowerCamelCase__, organization="nielsr" ) if __name__ == "__main__": lowercase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : str = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
572
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : List[Any] = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( _snake_case ): '''simple docstring''' UpperCAmelCase__ = 'deta' UpperCAmelCase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple , lowercase__ : List[Any]=None , lowercase__ : Any=900 , lowercase__ : int=2_048 , lowercase__ : Any=6 , lowercase__ : Optional[Any]=2_048 , lowercase__ : str=8 , lowercase__ : Union[str, Any]=6 , lowercase__ : List[str]=1_024 , lowercase__ : int=8 , lowercase__ : Any=0.0 , lowercase__ : Any=True , lowercase__ : Optional[int]="relu" , lowercase__ : int=256 , lowercase__ : Tuple=0.1 , lowercase__ : Optional[Any]=0.0 , lowercase__ : Tuple=0.0 , lowercase__ : List[str]=0.0_2 , lowercase__ : Any=1.0 , lowercase__ : Optional[int]=True , lowercase__ : int=False , lowercase__ : Optional[Any]="sine" , lowercase__ : Dict=5 , lowercase__ : List[Any]=4 , lowercase__ : Optional[Any]=4 , lowercase__ : Any=True , lowercase__ : int=300 , lowercase__ : Any=True , lowercase__ : Tuple=True , lowercase__ : int=1 , lowercase__ : Tuple=5 , lowercase__ : Union[str, Any]=2 , lowercase__ : Tuple=1 , lowercase__ : int=1 , lowercase__ : str=5 , lowercase__ : Optional[Any]=2 , lowercase__ : List[Any]=0.1 , lowercase__ : Union[str, Any]=0.2_5 , **lowercase__ : int , ) ->List[str]: '''simple docstring''' if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _UpperCamelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(lowercase__ , lowercase__ ): _UpperCamelCase : List[Any] = backbone_config.pop("model_type" ) _UpperCamelCase : Dict = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase : Dict = config_class.from_dict(lowercase__ ) _UpperCamelCase : Optional[Any] = backbone_config _UpperCamelCase : Tuple = num_queries _UpperCamelCase : Optional[int] = max_position_embeddings _UpperCamelCase : Tuple = d_model _UpperCamelCase : Optional[int] = encoder_ffn_dim _UpperCamelCase : int = encoder_layers _UpperCamelCase : Optional[Any] = encoder_attention_heads _UpperCamelCase : Union[str, Any] = decoder_ffn_dim _UpperCamelCase : str = decoder_layers _UpperCamelCase : Union[str, Any] = decoder_attention_heads _UpperCamelCase : List[Any] = dropout _UpperCamelCase : Optional[Any] = attention_dropout _UpperCamelCase : Union[str, Any] = activation_dropout _UpperCamelCase : List[Any] = activation_function _UpperCamelCase : Any = init_std _UpperCamelCase : Dict = init_xavier_std _UpperCamelCase : Union[str, Any] = encoder_layerdrop _UpperCamelCase : Tuple = auxiliary_loss _UpperCamelCase : Optional[int] = position_embedding_type # deformable attributes _UpperCamelCase : Dict = num_feature_levels _UpperCamelCase : List[Any] = encoder_n_points _UpperCamelCase : Union[str, Any] = decoder_n_points _UpperCamelCase : str = two_stage _UpperCamelCase : Any = two_stage_num_proposals _UpperCamelCase : List[str] = with_box_refine _UpperCamelCase : Optional[int] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _UpperCamelCase : List[str] = class_cost _UpperCamelCase : str = bbox_cost _UpperCamelCase : List[str] = giou_cost # Loss coefficients _UpperCamelCase : List[str] = mask_loss_coefficient _UpperCamelCase : Optional[int] = dice_loss_coefficient _UpperCamelCase : Union[str, Any] = bbox_loss_coefficient _UpperCamelCase : Any = giou_loss_coefficient _UpperCamelCase : Optional[int] = eos_coefficient _UpperCamelCase : Union[str, Any] = focal_alpha super().__init__(is_encoder_decoder=lowercase__ , **lowercase__ ) @property def snake_case__ ( self : Any ) ->Any: '''simple docstring''' return self.encoder_attention_heads @property def snake_case__ ( self : Union[str, Any] ) ->Dict: '''simple docstring''' return self.d_model def snake_case__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCamelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) _UpperCamelCase : Union[str, Any] = self.backbone_config.to_dict() _UpperCamelCase : Optional[int] = self.__class__.model_type return output
713
'''simple docstring''' from __future__ import annotations lowerCAmelCase_ : Optional[Any] = """Muhammad Umer Farooq""" lowerCAmelCase_ : str = """MIT""" lowerCAmelCase_ : Optional[Any] = """1.0.0""" lowerCAmelCase_ : Union[str, Any] = """Muhammad Umer Farooq""" lowerCAmelCase_ : Any = """[email protected]""" lowerCAmelCase_ : Dict = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , lowercase__ : str ) ->None: '''simple docstring''' super().__init__() _UpperCamelCase : list[str] = [] _UpperCamelCase : int = domain def snake_case__ ( self : str , lowercase__ : str , lowercase__ : list[tuple[str, str | None]] ) ->None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _UpperCamelCase : Optional[Any] = parse.urljoin(self.domain , lowercase__ ) self.urls.append(lowercase__ ) def __A ( UpperCAmelCase ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(UpperCAmelCase ).split("." )[-2:] ) def __A ( UpperCAmelCase ) -> str: '''simple docstring''' return parse.urlparse(UpperCAmelCase ).netloc def __A ( UpperCAmelCase = "https://github.com" ) -> list[str]: '''simple docstring''' _UpperCamelCase : int = get_domain_name(UpperCAmelCase ) # Initialize the parser _UpperCamelCase : Any = Parser(UpperCAmelCase ) try: # Open URL _UpperCamelCase : Union[str, Any] = requests.get(UpperCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _UpperCamelCase : int = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _UpperCamelCase : Dict = requests.get(UpperCAmelCase ) # Get the valid email. _UpperCamelCase : List[str] = re.findall("[a-zA-Z0-9]+@" + domain ,read.text ) # If not in list then append it. for email in emails: valid_emails.add(UpperCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = emails_from_url("""https://github.com""") print(f"""{len(emails)} emails found:""") print("""\n""".join(sorted(emails)))
204
0
"""simple docstring""" a : List[Any] = 8.3_14_45_98 def lowercase__(A , A ) ->float: """simple docstring""" if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example a : Dict = 300 a : Tuple = 28 a : Optional[int] = rms_speed_of_molecule(temperature, molar_mass) print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
218
"""simple docstring""" def lowercase__(A ) ->bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
218
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __lowercase : str = 4 __lowercase : Dict = 3 class _A ( _UpperCamelCase ): '''simple docstring''' pass def lowercase ( __A : Tuple ) -> List[Any]: '''simple docstring''' for shard in shards: for i in range(lowerCamelCase__ ): yield {"i": i, "shard": shard} def lowercase ( ) -> Dict: '''simple docstring''' snake_case : Dict = int(os.environ["""RANK"""] ) snake_case : Optional[Any] = int(os.environ["""WORLD_SIZE"""] ) snake_case : Tuple = ArgumentParser() parser.add_argument("""--streaming""" , type=lowerCamelCase__ ) parser.add_argument("""--local_rank""" , type=lowerCamelCase__ ) parser.add_argument("""--num_workers""" , type=lowerCamelCase__ , default=0 ) snake_case : Union[str, Any] = parser.parse_args() snake_case : Optional[int] = args.streaming snake_case : Union[str, Any] = args.num_workers snake_case : Optional[Any] = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowerCamelCase__ )]} snake_case : Optional[int] = IterableDataset.from_generator(lowerCamelCase__ , gen_kwargs=lowerCamelCase__ ) if not streaming: snake_case : Any = Dataset.from_list(list(lowerCamelCase__ ) ) snake_case : List[Any] = split_dataset_by_node(lowerCamelCase__ , rank=lowerCamelCase__ , world_size=lowerCamelCase__ ) snake_case : Optional[Any] = torch.utils.data.DataLoader(lowerCamelCase__ , num_workers=lowerCamelCase__ ) snake_case : List[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD snake_case : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) snake_case : Optional[int] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
715
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __lowercase : Optional[int] = logging.get_logger(__name__) def lowercase ( __A : str ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = torch.load(__A , map_location="""cpu""" ) if "model" in sd.keys(): snake_case : Any = torch.load(__A , map_location="""cpu""" )["""model"""] # pop unnecessary weights snake_case : Optional[Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(__A ) snake_case : List[Any] = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case : int = sd.pop(__A ) snake_case : Optional[int] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case : List[str] = sd[key] # We split QKV in separate Q,K,V snake_case : Dict = key.replace(""".qkv_proj.""" , """.q_proj.""" ) snake_case : Any = key.replace(""".qkv_proj.""" , """.k_proj.""" ) snake_case : List[str] = key.replace(""".qkv_proj.""" , """.v_proj.""" ) snake_case : List[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case , snake_case , snake_case : str = torch.split(__A , depth // 3 , dim=0 ) snake_case : Tuple = q snake_case : List[Any] = k snake_case : List[Any] = v del sd[key] return sd @torch.no_grad() def lowercase ( __A : Optional[Any] , __A : Tuple , __A : List[str]=None ) -> Optional[int]: '''simple docstring''' snake_case : Any = load_checkpoint(__A ) if config is not None: snake_case : List[Any] = OPTConfig.from_pretrained(__A ) else: snake_case : Any = OPTConfig() snake_case : Union[str, Any] = OPTModel(__A ).half().eval() model.load_state_dict(__A ) # Check results Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __lowercase : Any = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
315
0
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( __A , __A , __A ): lowercase__: Optional[int] = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] = None , __magic_name__ : int = 5_02_57 , __magic_name__ : int = 10_24 , __magic_name__ : int = 7_68 , __magic_name__ : int = 12 , __magic_name__ : int = 12 , __magic_name__ : Optional[int] = None , __magic_name__ : str = "gelu_new" , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : float = 1E-5 , __magic_name__ : float = 0.02 , __magic_name__ : bool = True , __magic_name__ : bool = True , __magic_name__ : bool = False , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__() __snake_case : List[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) __snake_case : Dict = prefix_inner_dim __snake_case : Tuple = prefix_hidden_dim __snake_case : Optional[int] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __snake_case : Any = ( nn.Linear(self.prefix_hidden_dim , _UpperCamelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) __snake_case : int = GPTaConfig( vocab_size=_UpperCamelCase , n_positions=_UpperCamelCase , n_embd=_UpperCamelCase , n_layer=_UpperCamelCase , n_head=_UpperCamelCase , n_inner=_UpperCamelCase , activation_function=_UpperCamelCase , resid_pdrop=_UpperCamelCase , embd_pdrop=_UpperCamelCase , attn_pdrop=_UpperCamelCase , layer_norm_epsilon=_UpperCamelCase , initializer_range=_UpperCamelCase , scale_attn_weights=_UpperCamelCase , use_cache=_UpperCamelCase , scale_attn_by_inverse_layer_idx=_UpperCamelCase , reorder_and_upcast_attn=_UpperCamelCase , ) __snake_case : Tuple = GPTaLMHeadModel(_UpperCamelCase ) def lowercase__ ( self : str , __magic_name__ : torch.Tensor , __magic_name__ : torch.Tensor , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = self.transformer.transformer.wte(_UpperCamelCase ) __snake_case : str = self.encode_prefix(_UpperCamelCase ) __snake_case : List[str] = self.decode_prefix(_UpperCamelCase ) __snake_case : List[Any] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: __snake_case : Optional[int] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) __snake_case : Tuple = torch.cat((dummy_token, input_ids) , dim=1 ) __snake_case : Any = self.transformer(inputs_embeds=_UpperCamelCase , labels=_UpperCamelCase , attention_mask=_UpperCamelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowercase__ ( self : Any , __magic_name__ : int , __magic_name__ : torch.device ) -> torch.Tensor: """simple docstring""" return torch.zeros(_UpperCamelCase , self.prefix_length , dtype=torch.intaa , device=_UpperCamelCase ) def lowercase__ ( self : int , __magic_name__ : List[str] ) -> List[Any]: """simple docstring""" return self.encode_prefix(_UpperCamelCase ) @torch.no_grad() def lowercase__ ( self : List[str] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : str ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = torch.split(_UpperCamelCase , 1 , dim=0 ) __snake_case : List[Any] = [] __snake_case : Optional[int] = [] for feature in features: __snake_case : List[Any] = self.decode_prefix(feature.to(_UpperCamelCase ) ) # back to the clip feature # Only support beam search for now __snake_case , __snake_case : int = self.generate_beam( input_embeds=_UpperCamelCase , device=_UpperCamelCase , eos_token_id=_UpperCamelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __snake_case : Union[str, Any] = torch.stack(_UpperCamelCase ) __snake_case : List[Any] = torch.stack(_UpperCamelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowercase__ ( self : Any , __magic_name__ : List[Any]=None , __magic_name__ : int=None , __magic_name__ : List[str]=None , __magic_name__ : int = 5 , __magic_name__ : int = 67 , __magic_name__ : float = 1.0 , __magic_name__ : Optional[int] = None , ) -> List[str]: """simple docstring""" __snake_case : int = eos_token_id __snake_case : int = None __snake_case : Union[str, Any] = None __snake_case : List[str] = torch.ones(_UpperCamelCase , device=_UpperCamelCase , dtype=torch.int ) __snake_case : Union[str, Any] = torch.zeros(_UpperCamelCase , device=_UpperCamelCase , dtype=torch.bool ) if input_embeds is not None: __snake_case : int = input_embeds else: __snake_case : str = self.transformer.transformer.wte(_UpperCamelCase ) for i in range(_UpperCamelCase ): __snake_case : Tuple = self.transformer(inputs_embeds=_UpperCamelCase ) __snake_case : str = outputs.logits __snake_case : Dict = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __snake_case : Dict = logits.softmax(-1 ).log() if scores is None: __snake_case , __snake_case : Optional[int] = logits.topk(_UpperCamelCase , -1 ) __snake_case : Tuple = generated.expand(_UpperCamelCase , *generated.shape[1:] ) __snake_case , __snake_case : Optional[int] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: __snake_case : List[Any] = next_tokens else: __snake_case : Any = tokens.expand(_UpperCamelCase , *tokens.shape[1:] ) __snake_case : Dict = torch.cat((tokens, next_tokens) , dim=1 ) else: __snake_case : Optional[int] = -float(np.inf ) __snake_case : List[str] = 0 __snake_case : Optional[int] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 __snake_case : List[str] = scores_sum / seq_lengths[:, None] __snake_case , __snake_case : Union[str, Any] = scores_sum_average.view(-1 ).topk(_UpperCamelCase , -1 ) __snake_case : Optional[int] = next_tokens // scores_sum.shape[1] __snake_case : List[str] = seq_lengths[next_tokens_source] __snake_case : Dict = next_tokens % scores_sum.shape[1] __snake_case : int = next_tokens.unsqueeze(1 ) __snake_case : int = tokens[next_tokens_source] __snake_case : int = torch.cat((tokens, next_tokens) , dim=1 ) __snake_case : Optional[int] = generated[next_tokens_source] __snake_case : str = scores_sum_average * seq_lengths __snake_case : Dict = is_stopped[next_tokens_source] __snake_case : Union[str, Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) __snake_case : Optional[int] = torch.cat((generated, next_token_embed) , dim=1 ) __snake_case : Any = is_stopped + next_tokens.eq(_UpperCamelCase ).squeeze() if is_stopped.all(): break __snake_case : List[Any] = scores / seq_lengths __snake_case : Optional[int] = scores.argsort(descending=_UpperCamelCase ) # tokens tensors are already padded to max_seq_length __snake_case : Optional[int] = [tokens[i] for i in order] __snake_case : List[Any] = torch.stack(_UpperCamelCase , dim=0 ) __snake_case : List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
26
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default=__A , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE : Optional[List[str]] = dataclasses.field( default=__A , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE : Optional[bool] = dataclasses.field( default=__A , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE : Optional[int] = dataclasses.field( default=__A , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case_ = dataset.filter(lambda SCREAMING_SNAKE_CASE__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case_ = int(eval_result * len(SCREAMING_SNAKE_CASE__ ) ) print(SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.sort('''probability''' , reverse=SCREAMING_SNAKE_CASE__ ) snake_case_ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = dataset.remove_columns(['''label''', '''probability'''] ) snake_case_ = dataset.rename_column('''prediction''' , '''label''' ) snake_case_ = dataset.map(lambda SCREAMING_SNAKE_CASE__ : {"label": idalabel[example["label"]]} ) snake_case_ = dataset.shuffle(seed=args.seed ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(SCREAMING_SNAKE_CASE__ , index=SCREAMING_SNAKE_CASE__ ) else: dataset.to_json(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case_ = STModelArguments(model_name_or_path=SCREAMING_SNAKE_CASE__ ) snake_case_ = STDataArguments(train_file=SCREAMING_SNAKE_CASE__ , infer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = STTrainingArguments(output_dir=SCREAMING_SNAKE_CASE__ ) snake_case_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(SCREAMING_SNAKE_CASE__ ).items(): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for key, value in kwargs.items(): if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Sanity checks snake_case_ = {} snake_case_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case_ = args.train_file snake_case_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case_ = args.eval_file for key in data_files: snake_case_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: snake_case_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) snake_case_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format snake_case_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = None snake_case_ = None snake_case_ = 0 snake_case_ = False # Show the progress bar snake_case_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case_ = data_dir_format(SCREAMING_SNAKE_CASE__ ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-1''' ) snake_case_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): arguments_dict.update({key: value} ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , SCREAMING_SNAKE_CASE__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''stage-2''' ) # Update arguments_dict snake_case_ = model_path snake_case_ = data_files['''train'''] snake_case_ = current_output_dir snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , SCREAMING_SNAKE_CASE__ ) finetune(**SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() assert os.path.exists(SCREAMING_SNAKE_CASE__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , SCREAMING_SNAKE_CASE__ ) snake_case_ = iteration snake_case_ = data_dir_format(iteration + 1 ) snake_case_ = AutoConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE__ , '''best-checkpoint''' ) ) snake_case_ = config.idalabel snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-checkpoint.json''' ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''r''' ) as f: snake_case_ = float(json.load(SCREAMING_SNAKE_CASE__ )[args.eval_metric] ) snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(SCREAMING_SNAKE_CASE__ ) # Loading the dataset from local csv or json files. snake_case_ = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] snake_case_ = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): shutil.copy(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case_ = eval_result if best_iteration is None: snake_case_ = new_iteration snake_case_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case_ = new_iteration snake_case_ = new_eval_result snake_case_ = 0 else: if new_eval_result == best_eval_result: snake_case_ = new_iteration snake_case_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , SCREAMING_SNAKE_CASE__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , SCREAMING_SNAKE_CASE__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(SCREAMING_SNAKE_CASE__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(SCREAMING_SNAKE_CASE__ , '''eval_results_best-iteration.json''' ) , )
39
0
def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
706
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __snake_case ( unittest.TestCase ): __lowerCAmelCase : Dict = inspect.getfile(accelerate.test_utils ) __lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) __lowerCAmelCase : Tuple = ['accelerate', 'launch'] __lowerCAmelCase : Union[str, Any] = Path.home() / '.cache/huggingface/accelerate' __lowerCAmelCase : List[str] = 'default_config.yaml' __lowerCAmelCase : List[Any] = config_folder / config_file __lowerCAmelCase : str = config_folder / '_default_config.yaml' __lowerCAmelCase : Optional[int] = Path('tests/test_configs' ) @classmethod def lowerCAmelCase__ ( cls): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def lowerCAmelCase__ ( cls): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy()) def lowerCAmelCase__ ( self): for config in sorted(self.test_config_path.glob('**/*.yaml')): with self.subTest(config_file=_A): execute_subprocess_async( self.base_cmd + ['--config_file', str(_A), self.test_file_path] , env=os.environ.copy()) def lowerCAmelCase__ ( self): execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy()) class __snake_case ( unittest.TestCase ): __lowerCAmelCase : Optional[Any] = 'test-tpu' __lowerCAmelCase : str = 'us-central1-a' __lowerCAmelCase : Union[str, Any] = 'ls' __lowerCAmelCase : Union[str, Any] = ['accelerate', 'tpu-config'] __lowerCAmelCase : Union[str, Any] = 'cd /usr/share' __lowerCAmelCase : List[Any] = 'tests/test_samples/test_command_file.sh' __lowerCAmelCase : Dict = 'Running gcloud compute tpus tpu-vm ssh' def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_A) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , ) def lowerCAmelCase__ ( self): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=_A , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _A , )
620
0
from __future__ import annotations import numpy as np def __lowerCamelCase ( _lowercase ) -> tuple[np.ndarray, np.ndarray]: UpperCamelCase = np.shape(__UpperCAmelCase ) if rows != columns: UpperCamelCase = ( """'table' has to be of square shaped array but got a """ F'{rows}x{columns} array:\n{table}' ) raise ValueError(__UpperCAmelCase ) UpperCamelCase = np.zeros((rows, columns) ) UpperCamelCase = np.zeros((rows, columns) ) for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): UpperCamelCase = sum(lower[i][k] * upper[k][j] for k in range(__UpperCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) UpperCamelCase = (table[i][j] - total) / upper[j][j] UpperCamelCase = 1 for j in range(__UpperCAmelCase , __UpperCAmelCase ): UpperCamelCase = sum(lower[i][k] * upper[k][j] for k in range(__UpperCAmelCase ) ) UpperCamelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
282
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser _A = logging.getLogger(__name__) torch.set_grad_enabled(False) _A = """cuda""" if torch.cuda.is_available() else """cpu""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=" " ) -> List[str]: lowerCAmelCase__ : str = text.split(__UpperCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase )] def lowercase_ ( __UpperCAmelCase ) -> dict: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(__UpperCAmelCase ): titles.append(title if title is not None else """""" ) texts.append(__UpperCAmelCase ) return {"title": titles, "text": texts} def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> dict: lowerCAmelCase__ : str = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=__UpperCAmelCase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] lowerCAmelCase__ : Tuple = ctx_encoder(input_ids.to(device=__UpperCAmelCase ) , return_dict=__UpperCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Tuple: ###################################### logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowerCAmelCase__ : Dict = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowerCAmelCase__ : Dict = dataset.map(__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings lowerCAmelCase__ : Any = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__UpperCAmelCase ) lowerCAmelCase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowerCAmelCase__ : List[Any] = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space lowerCAmelCase__ : Optional[Any] = dataset.map( partial(__UpperCAmelCase , ctx_encoder=__UpperCAmelCase , ctx_tokenizer=__UpperCAmelCase ) , batched=__UpperCAmelCase , batch_size=processing_args.batch_size , features=__UpperCAmelCase , ) # And finally save your dataset lowerCAmelCase__ : List[Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(__UpperCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowerCAmelCase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=__UpperCAmelCase ) # And save the index lowerCAmelCase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(__UpperCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _lowerCamelCase : _lowerCamelCase :str = field( default=str(Path(a_ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) _lowerCamelCase :Optional[str] = field( default=a_ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) _lowerCamelCase :str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) _lowerCamelCase :str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) _lowerCamelCase :Optional[str] = field( default=str(Path(a_ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class _lowerCamelCase : _lowerCamelCase :Optional[int] = field( default=a_ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) _lowerCamelCase :int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class _lowerCamelCase : _lowerCamelCase :int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) _lowerCamelCase :int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) _A = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) _A , _A , _A = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: _A = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
299
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a : Tuple = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Any = ["""ConvNextFeatureExtractor"""] __a : int = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[Any] = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[int] = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
715
from __future__ import annotations __a : str = """Muhammad Umer Farooq""" __a : Optional[Any] = """MIT""" __a : int = """1.0.0""" __a : Optional[int] = """Muhammad Umer Farooq""" __a : Dict = """[email protected]""" __a : Optional[Any] = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ ) -> None: '''simple docstring''' super().__init__() __lowercase = [] __lowercase = domain def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __lowercase = parse.urljoin(self.domain , lowerCAmelCase__ ) self.urls.append(lowerCAmelCase__ ) def UpperCAmelCase ( lowercase ): """simple docstring""" return ".".join(get_sub_domain_name(lowercase ).split('''.''' )[-2:] ) def UpperCAmelCase ( lowercase ): """simple docstring""" return parse.urlparse(lowercase ).netloc def UpperCAmelCase ( lowercase = "https://github.com" ): """simple docstring""" __lowercase = get_domain_name(lowercase ) # Initialize the parser __lowercase = Parser(lowercase ) try: # Open URL __lowercase = requests.get(lowercase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __lowercase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __lowercase = requests.get(lowercase ) # Get the valid email. __lowercase = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowercase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowercase ) if __name__ == "__main__": __a : Union[str, Any] = emails_from_url("""https://github.com""") print(F'''{len(emails)} emails found:''') print("""\n""".join(sorted(emails)))
522
0
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor _snake_case : List[str] = logging.get_logger(__name__) class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : List[str] , *lowerCamelCase : str , **lowerCamelCase : Union[str, Any] ) -> None: warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
81
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _A = logging.get_logger(__name__) _A = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off _A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] _A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class A ( __UpperCAmelCase ): __snake_case = 'whisper' __snake_case = ['past_key_values'] __snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self, UpperCamelCase__=5_1865, UpperCamelCase__=80, UpperCamelCase__=6, UpperCamelCase__=4, UpperCamelCase__=6, UpperCamelCase__=4, UpperCamelCase__=1536, UpperCamelCase__=1536, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=5_0257, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__="gelu", UpperCamelCase__=256, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.02, UpperCamelCase__=False, UpperCamelCase__=1500, UpperCamelCase__=448, UpperCamelCase__=5_0256, UpperCamelCase__=5_0256, UpperCamelCase__=5_0256, UpperCamelCase__=None, UpperCamelCase__=[220, 5_0256], UpperCamelCase__=False, UpperCamelCase__=256, UpperCamelCase__=False, UpperCamelCase__=0.05, UpperCamelCase__=10, UpperCamelCase__=2, UpperCamelCase__=0.0, UpperCamelCase__=10, UpperCamelCase__=0, UpperCamelCase__=7, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = vocab_size lowerCAmelCase_ = num_mel_bins lowerCAmelCase_ = d_model lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = encoder_attention_heads lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = decoder_attention_heads lowerCAmelCase_ = decoder_ffn_dim lowerCAmelCase_ = encoder_ffn_dim lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = activation_function lowerCAmelCase_ = init_std lowerCAmelCase_ = encoder_layerdrop lowerCAmelCase_ = decoder_layerdrop lowerCAmelCase_ = use_cache lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase_ = max_source_positions lowerCAmelCase_ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCAmelCase_ = classifier_proj_size lowerCAmelCase_ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ = apply_spec_augment lowerCAmelCase_ = mask_time_prob lowerCAmelCase_ = mask_time_length lowerCAmelCase_ = mask_time_min_masks lowerCAmelCase_ = mask_feature_prob lowerCAmelCase_ = mask_feature_length lowerCAmelCase_ = mask_feature_min_masks lowerCAmelCase_ = median_filter_width super().__init__( pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, is_encoder_decoder=UpperCamelCase__, decoder_start_token_id=UpperCamelCase__, suppress_tokens=UpperCamelCase__, begin_suppress_tokens=UpperCamelCase__, **UpperCamelCase__, ) class A ( __UpperCAmelCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: lowerCAmelCase_ = {0: '''batch'''} else: lowerCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__, direction='''inputs''' ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = -1, UpperCamelCase__ = -1, UpperCamelCase__ = False, UpperCamelCase__ = None, UpperCamelCase__ = 2_2050, UpperCamelCase__ = 5.0, UpperCamelCase__ = 220, ): """simple docstring""" lowerCAmelCase_ = OrderedDict() lowerCAmelCase_ = OnnxConfig.generate_dummy_inputs( self, preprocessor=preprocessor.feature_extractor, batch_size=UpperCamelCase__, framework=UpperCamelCase__, sampling_rate=UpperCamelCase__, time_duration=UpperCamelCase__, frequency=UpperCamelCase__, ) lowerCAmelCase_ = encoder_inputs['''input_features'''].shape[2] lowerCAmelCase_ = encoder_sequence_length // 2 if self.use_past else seq_length lowerCAmelCase_ = super().generate_dummy_inputs( preprocessor.tokenizer, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) lowerCAmelCase_ = encoder_inputs.pop('''input_features''' ) lowerCAmelCase_ = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: lowerCAmelCase_ = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 1E-3
431
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase = logging.get_logger(__name__) class lowerCamelCase__ ( _snake_case ): lowerCamelCase_ : int = 'linear' lowerCamelCase_ : Tuple = 'cosine' lowerCamelCase_ : Tuple = 'cosine_with_restarts' lowerCamelCase_ : List[Any] = 'polynomial' lowerCamelCase_ : Optional[Any] = 'constant' lowerCamelCase_ : Optional[int] = 'constant_with_warmup' lowerCamelCase_ : List[Any] = 'piecewise_constant' def _a ( lowerCamelCase__ , lowerCamelCase__ = -1 ) -> int: return LambdaLR(__UpperCAmelCase , lambda lowerCamelCase__ : 1 , last_epoch=__UpperCAmelCase ) def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = -1 ) -> List[Any]: def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) ) return 1.0 return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = -1 ) -> int: lowerCamelCase_ : str = {} lowerCamelCase_ : Tuple = step_rules.split(',' ) for rule_str in rule_list[:-1]: lowerCamelCase_ , lowerCamelCase_ : Tuple = rule_str.split(':' ) lowerCamelCase_ : List[Any] = int(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = float(__UpperCAmelCase ) lowerCamelCase_ : Dict = value lowerCamelCase_ : List[Any] = float(rule_list[-1] ) def create_rules_function(lowerCamelCase__ , lowerCamelCase__ ): def rule_func(lowerCamelCase__ ) -> float: lowerCamelCase_ : Optional[int] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowerCamelCase_ : Any = create_rules_function(__UpperCAmelCase , __UpperCAmelCase ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=-1 ) -> int: def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 0.5 , lowerCamelCase__ = -1 ) -> Dict: def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) lowerCamelCase_ : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = -1 ) -> Tuple: def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) lowerCamelCase_ : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1e-7 , lowerCamelCase__=1.0 , lowerCamelCase__=-1 ) -> Tuple: lowerCamelCase_ : List[Any] = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(F'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowerCamelCase_ : Any = lr_init - lr_end lowerCamelCase_ : List[Any] = num_training_steps - num_warmup_steps lowerCamelCase_ : Tuple = 1 - (current_step - num_warmup_steps) / decay_steps lowerCamelCase_ : Tuple = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = -1 , ) -> str: lowerCamelCase_ : Union[str, Any] = SchedulerType(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
713
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase ) class lowerCamelCase__ ( UpperCAmelCase ): def __init__(self : List[Any] , **_snake_case : int ) -> Dict: """simple docstring""" super().__init__(**_snake_case ) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , 'vision' ) self.check_model_type(_snake_case ) def __call__(self : int , _snake_case : Union[str, "Image.Image", List[Dict[str, Any]]] , _snake_case : Union[str, List[str]] = None , **_snake_case : Optional[int] , ) -> Dict: """simple docstring""" if "text_queries" in kwargs: lowerCamelCase_ : Tuple = kwargs.pop('text_queries' ) if isinstance(_snake_case , (str, Image.Image) ): lowerCamelCase_ : Union[str, Any] = {'image': image, 'candidate_labels': candidate_labels} else: lowerCamelCase_ : List[str] = image lowerCamelCase_ : List[Any] = super().__call__(_snake_case , **_snake_case ) return results def UpperCAmelCase_ (self : Union[str, Any] , **_snake_case : Any ) -> Dict: """simple docstring""" lowerCamelCase_ : Dict = {} if "threshold" in kwargs: lowerCamelCase_ : int = kwargs['threshold'] if "top_k" in kwargs: lowerCamelCase_ : Any = kwargs['top_k'] return {}, {}, postprocess_params def UpperCAmelCase_ (self : Tuple , _snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ : List[str] = load_image(inputs['image'] ) lowerCamelCase_ : Any = inputs['candidate_labels'] if isinstance(_snake_case , _snake_case ): lowerCamelCase_ : Any = candidate_labels.split(',' ) lowerCamelCase_ : List[Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_snake_case ): lowerCamelCase_ : str = self.tokenizer(_snake_case , return_tensors=self.framework ) lowerCamelCase_ : Union[str, Any] = self.image_processor(_snake_case , return_tensors=self.framework ) yield { "is_last": i == len(_snake_case ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCAmelCase_ (self : List[Any] , _snake_case : int ) -> Tuple: """simple docstring""" lowerCamelCase_ : List[Any] = model_inputs.pop('target_size' ) lowerCamelCase_ : int = model_inputs.pop('candidate_label' ) lowerCamelCase_ : Tuple = model_inputs.pop('is_last' ) lowerCamelCase_ : Optional[Any] = self.model(**_snake_case ) lowerCamelCase_ : Optional[Any] = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCAmelCase_ (self : Optional[int] , _snake_case : Optional[Any] , _snake_case : Any=0.1 , _snake_case : Union[str, Any]=None ) -> Any: """simple docstring""" lowerCamelCase_ : Dict = [] for model_output in model_outputs: lowerCamelCase_ : str = model_output['candidate_label'] lowerCamelCase_ : Optional[int] = BaseModelOutput(_snake_case ) lowerCamelCase_ : List[str] = self.image_processor.post_process_object_detection( outputs=_snake_case , threshold=_snake_case , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): lowerCamelCase_ : Tuple = outputs['scores'][index].item() lowerCamelCase_ : List[Any] = self._get_bounding_box(outputs['boxes'][index][0] ) lowerCamelCase_ : Dict = {'score': score, 'label': label, 'box': box} results.append(_snake_case ) lowerCamelCase_ : int = sorted(_snake_case , key=lambda _snake_case : x["score"] , reverse=_snake_case ) if top_k: lowerCamelCase_ : List[Any] = results[:top_k] return results def UpperCAmelCase_ (self : List[Any] , _snake_case : "torch.Tensor" ) -> Dict[str, int]: """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : List[Any] = box.int().tolist() lowerCamelCase_ : Tuple = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
144
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule _A = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
299
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase : def __init__( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str=13 , UpperCamelCase : Optional[Any]=[30, 30] , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : List[Any]=3 , UpperCamelCase : Any=True , UpperCamelCase : List[Any]=True , UpperCamelCase : str=32 , UpperCamelCase : str=5 , UpperCamelCase : Dict=4 , UpperCamelCase : Tuple=37 , UpperCamelCase : Tuple="gelu" , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : int=10 , UpperCamelCase : Any=0.02 , UpperCamelCase : str=3 , UpperCamelCase : Tuple=None , UpperCamelCase : List[Any]=8 , UpperCamelCase : str=10 , ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Union[str, Any] = image_size lowerCAmelCase__ : Optional[Any] = patch_size lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : int = is_training lowerCAmelCase__ : Dict = use_labels lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : List[str] = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : str = num_labels lowerCAmelCase__ : List[Any] = scope lowerCAmelCase__ : Dict = n_targets lowerCAmelCase__ : Any = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCAmelCase__ : Any = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCAmelCase__ : Optional[int] = num_patches + 1 + self.num_detection_tokens def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCAmelCase__ : Union[str, Any] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCAmelCase__ : Tuple = [] for i in range(self.batch_size ): lowerCAmelCase__ : Optional[Any] = {} lowerCAmelCase__ : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase ) lowerCAmelCase__ : Tuple = torch.rand(self.n_targets , 4 , device=UpperCamelCase ) labels.append(UpperCamelCase ) lowerCAmelCase__ : Any = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ : Dict = YolosModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCAmelCase__ : int = model(UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _lowerCAmelCase ( self : Dict , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : int ) -> int: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = YolosForObjectDetection(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCAmelCase__ : Optional[int] = model(pixel_values=UpperCamelCase ) lowerCAmelCase__ : Dict = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCAmelCase__ : List[str] = model(pixel_values=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = config_and_inputs lowerCAmelCase__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( a_ , a_ , unittest.TestCase ): _lowerCamelCase :str = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCamelCase :Union[str, Any] = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCamelCase :Any = False _lowerCamelCase :Tuple = False _lowerCamelCase :Tuple = False _lowerCamelCase :Union[str, Any] = False def _lowerCAmelCase ( self : Tuple , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : List[str]=False ) -> int: """simple docstring""" lowerCAmelCase__ : Optional[Any] = super()._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCAmelCase__ : str = [] for i in range(self.model_tester.batch_size ): lowerCAmelCase__ : List[Any] = {} lowerCAmelCase__ : Optional[int] = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase , dtype=torch.long ) lowerCAmelCase__ : int = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase , dtype=torch.float ) labels.append(UpperCamelCase ) lowerCAmelCase__ : int = labels return inputs_dict def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = YolosModelTester(self ) lowerCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" # YOLOS does not use inputs_embeds pass def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : str = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) ) def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : str = model_class(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase__ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Dict = True # in YOLOS, the seq_len is different lowerCAmelCase__ : Any = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : str = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Tuple = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCAmelCase__ : int = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCAmelCase__ : int = len(UpperCamelCase ) # Check attention is always last and order is fine lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Dict = True lowerCAmelCase__ : Dict = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Dict = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase ) ) lowerCAmelCase__ : Optional[Any] = outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" def check_hidden_states_output(UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] ): lowerCAmelCase__ : Dict = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = outputs.hidden_states lowerCAmelCase__ : str = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # YOLOS has a different seq_length lowerCAmelCase__ : List[str] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : List[Any] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Optional[Any] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase ) @slow def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def lowercase_ ( ) -> List[Any]: lowerCAmelCase__ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): @cached_property def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Dict = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : List[Any] = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Tuple = model(inputs.pixel_values ) # verify outputs lowerCAmelCase__ : Union[str, Any] = torch.Size((1, 1_00, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCAmelCase__ : Any = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=UpperCamelCase , ) lowerCAmelCase__ : Any = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase , atol=1E-4 ) ) # verify postprocessing lowerCAmelCase__ : Optional[int] = image_processor.post_process_object_detection( UpperCamelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCAmelCase__ : Tuple = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(UpperCamelCase ) lowerCAmelCase__ : Tuple = [75, 75, 17, 63, 17] lowerCAmelCase__ : Tuple = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(UpperCamelCase ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , UpperCamelCase , atol=1E-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , UpperCamelCase ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , UpperCamelCase ) )
299
1
"""simple docstring""" from __future__ import annotations def A__ ( _UpperCAmelCase : list[int | float] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int | float: '''simple docstring''' if len(_UpperCAmelCase ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(_UpperCAmelCase ) or left < -len(_UpperCAmelCase ) or right >= len(_UpperCAmelCase ) or right < -len(_UpperCAmelCase ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] snake_case__ : Tuple = (left + right) >> 1 # the middle snake_case__ : Any = find_max(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # find max in range[left, mid] snake_case__ : List[str] = find_max(_UpperCAmelCase , mid + 1 , _UpperCAmelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
150
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowercase = """\ Text data. Second line of data.""" lowercase = """file""" @pytest.fixture(scope="session" ) def A__ ( _UpperCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' snake_case__ : Any = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") snake_case__ : Optional[int] = bytes(_UpperCAmelCase , "utf-8" ) with zstd.open(_UpperCAmelCase , "wb" ) as f: f.write(_UpperCAmelCase ) return path @pytest.fixture def A__ ( _UpperCAmelCase : Dict ) -> int: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , _UpperCAmelCase ) , "w" ) as f: f.write(_UpperCAmelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def A__ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> List[str]: '''simple docstring''' snake_case__ : str = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} snake_case__ : List[str] = input_paths[compression_format] snake_case__ : List[str] = tmp_path / "cache" snake_case__ : Tuple = DownloadConfig(cache_dir=_UpperCAmelCase , extract_compressed_file=_UpperCAmelCase ) snake_case__ : Any = cached_path(_UpperCAmelCase , download_config=_UpperCAmelCase ) with open(_UpperCAmelCase ) as f: snake_case__ : str = f.read() with open(_UpperCAmelCase ) as f: snake_case__ : List[Any] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def A__ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict: '''simple docstring''' snake_case__ : List[str] = "custom_cache" snake_case__ : Any = "custom_extracted_dir" snake_case__ : List[str] = tmp_path / "custom_extracted_path" if default_extracted: snake_case__ : Tuple = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _UpperCAmelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_UpperCAmelCase ) ) snake_case__ : Optional[int] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) snake_case__ : List[Any] = xz_file snake_case__ : Union[str, Any] = ( DownloadConfig(extract_compressed_file=_UpperCAmelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_UpperCAmelCase ) ) snake_case__ : List[Any] = cached_path(_UpperCAmelCase , download_config=_UpperCAmelCase ) assert Path(_UpperCAmelCase ).parent.parts[-2:] == expected def A__ ( _UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' snake_case__ : List[str] = str(Path(_UpperCAmelCase ).resolve() ) assert cached_path(_UpperCAmelCase ) == text_file # relative path snake_case__ : List[str] = str(Path(_UpperCAmelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_UpperCAmelCase ) == text_file def A__ ( _UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[int] = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_UpperCAmelCase ): cached_path(_UpperCAmelCase ) # relative path snake_case__ : Optional[int] = "./__missing_file__.txt" with pytest.raises(_UpperCAmelCase ): cached_path(_UpperCAmelCase ) def A__ ( _UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' snake_case__ : int = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_UpperCAmelCase ) as f: snake_case__ : List[str] = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _UpperCAmelCase ) def A__ ( ) -> Dict: '''simple docstring''' with pytest.raises(_UpperCAmelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _UpperCAmelCase ) def A__ ( _UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' snake_case__ : int = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_UpperCAmelCase ): http_get("https://huggingface.co" , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _UpperCAmelCase ) def A__ ( _UpperCAmelCase : Optional[int] ) -> Tuple: '''simple docstring''' snake_case__ : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_UpperCAmelCase ): ftp_get("ftp://huggingface.co" , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _UpperCAmelCase ) def A__ ( _UpperCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Dict = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_UpperCAmelCase ): fsspec_get("s3://huggingface.co" , temp_file=_UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): fsspec_head("s3://huggingface.co" )
150
1
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: np.ndarray , lowerCAmelCase: np.ndarray , lowerCAmelCase: np.ndarray , lowerCAmelCase: int , lowerCAmelCase: int ) -> np.ndarray: _UpperCAmelCase : int = cva.getAffineTransform(lowerCAmelCase , lowerCAmelCase ) return cva.warpAffine(lowerCAmelCase , lowerCAmelCase , (rows, cols) ) if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE_ = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value SCREAMING_SNAKE_CASE_ = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = gray_img.shape # set different points to rotate image SCREAMING_SNAKE_CASE_ = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) SCREAMING_SNAKE_CASE_ = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) SCREAMING_SNAKE_CASE_ = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) SCREAMING_SNAKE_CASE_ = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list SCREAMING_SNAKE_CASE_ = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations SCREAMING_SNAKE_CASE_ = plt.figure(1) SCREAMING_SNAKE_CASE_ = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
300
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : Any = 3 _UpperCAmelCase : List[Any] = (32, 32) _UpperCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A_ ) return image @property def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : int = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' def extract(*A_ , **A_ ): class a : def __init__( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = torch.ones([0] ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' self.pixel_values.to(A_ ) return self return Out() return extract def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : List[str] = PNDMScheduler(skip_prk_steps=A_ ) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Any = self.dummy_text_encoder _UpperCAmelCase : Tuple = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _UpperCAmelCase : Dict = 77 _UpperCAmelCase : Optional[int] = self.dummy_image.to(A_ ) _UpperCAmelCase : List[Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _UpperCAmelCase : Tuple = AltDiffusionImgaImgPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase : str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A_ ) _UpperCAmelCase : Dict = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[int] = torch.Generator(device=A_ ).manual_seed(0 ) _UpperCAmelCase : Optional[int] = alt_pipe( [prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=A_ , ) _UpperCAmelCase : str = output.images _UpperCAmelCase : Tuple = torch.Generator(device=A_ ).manual_seed(0 ) _UpperCAmelCase : Dict = alt_pipe( [prompt] , generator=A_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=A_ , return_dict=A_ , )[0] _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase : int = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = self.dummy_cond_unet _UpperCAmelCase : Any = PNDMScheduler(skip_prk_steps=A_ ) _UpperCAmelCase : Optional[Any] = self.dummy_vae _UpperCAmelCase : Any = self.dummy_text_encoder _UpperCAmelCase : Dict = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _UpperCAmelCase : Any = 77 _UpperCAmelCase : List[Any] = self.dummy_image.to(A_ ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : Optional[Any] = vae.half() _UpperCAmelCase : int = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Optional[int] = AltDiffusionImgaImgPipeline( unet=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , safety_checker=A_ , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase : int = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=A_ ) _UpperCAmelCase : List[str] = alt_pipe.to(A_ ) alt_pipe.set_progress_bar_config(disable=A_ ) _UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger" _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : int = alt_pipe( [prompt] , generator=A_ , num_inference_steps=2 , output_type="np" , image=A_ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _UpperCAmelCase : Dict = init_image.resize((760, 504) ) _UpperCAmelCase : str = "BAAI/AltDiffusion" _UpperCAmelCase : str = AltDiffusionImgaImgPipeline.from_pretrained( A_ , safety_checker=A_ , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _UpperCAmelCase : Union[str, Any] = "A fantasy landscape, trending on artstation" _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , generator=A_ , output_type="np" , ) _UpperCAmelCase : Union[str, Any] = output.images[0] _UpperCAmelCase : Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _UpperCAmelCase : Optional[int] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _UpperCAmelCase : Optional[int] = init_image.resize((768, 512) ) _UpperCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _UpperCAmelCase : int = "BAAI/AltDiffusion" _UpperCAmelCase : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( A_ , safety_checker=A_ , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() _UpperCAmelCase : int = "A fantasy landscape, trending on artstation" _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : int = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , generator=A_ , output_type="np" , ) _UpperCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
300
1
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : str = '▁' _UpperCamelCase : str = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _UpperCamelCase : Optional[Any] = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _UpperCamelCase : List[str] = { 'facebook/m2m100_418M': 1024, } # fmt: off _UpperCamelCase : Optional[Any] = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class snake_case ( UpperCAmelCase ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ['''input_ids''', '''attention_mask'''] __magic_name__ = [] __magic_name__ = [] def __init__( self : str , A : Union[str, Any] , A : Any , A : List[str]=None , A : Tuple=None , A : Optional[Any]="<s>" , A : List[str]="</s>" , A : Tuple="</s>" , A : Dict="<pad>" , A : List[str]="<unk>" , A : List[str]="m2m100" , A : Optional[Dict[str, Any]] = None , A : Tuple=8 , **A : Union[str, Any] , ): '''simple docstring''' a : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs a : Any = language_codes a : Optional[int] = FAIRSEQ_LANGUAGE_CODES[language_codes] a : Optional[Any] = {lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} a : Tuple = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A ) for lang_code in fairseq_language_code if self.get_lang_token(A ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A , tgt_lang=A , bos_token=A , eos_token=A , sep_token=A , unk_token=A , pad_token=A , language_codes=A , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A , **A , ) a : Union[str, Any] = vocab_file a : str = load_json(A ) a : Dict = {v: k for k, v in self.encoder.items()} a : Tuple = spm_file a : List[str] = load_spm(A , self.sp_model_kwargs ) a : Optional[Any] = len(self.encoder ) a : Tuple = { self.get_lang_token(A ): self.encoder_size + i for i, lang_code in enumerate(A ) } a : Tuple = {lang_code: self.encoder_size + i for i, lang_code in enumerate(A )} a : Optional[Any] = {v: k for k, v in self.lang_token_to_id.items()} a : Tuple = src_lang if src_lang is not None else 'en' a : Union[str, Any] = tgt_lang a : Optional[int] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) a : Optional[Any] = num_madeup_words @property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowerCamelCase__ ( self : Any ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCamelCase__ ( self : Optional[int] , A : str ): '''simple docstring''' a : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ ( self : Optional[Any] , A : str ): '''simple docstring''' return self.sp_model.encode(A , out_type=A ) def lowerCamelCase__ ( self : Tuple , A : Dict ): '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A , self.encoder[self.unk_token] ) def lowerCamelCase__ ( self : str , A : int ): '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A , self.unk_token ) def lowerCamelCase__ ( self : List[str] , A : Tuple ): '''simple docstring''' a : Optional[Any] = [] a : Dict = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token a : List[Any] = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def lowerCamelCase__ ( self : List[Any] , A : List[int] , A : Optional[List[int]] = None , A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) a : List[str] = [1] * len(self.prefix_tokens ) a : int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A )) + suffix_ones return prefix_ones + ([0] * len(A )) + ([0] * len(A )) + suffix_ones def lowerCamelCase__ ( self : Any , A : List[int] , A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a : List[str] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ): '''simple docstring''' a : Optional[int] = self.__dict__.copy() a : Optional[Any] = None return state def __setstate__( self : Any , A : Dict ): '''simple docstring''' a : Tuple = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): a : str = {} a : Tuple = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCamelCase__ ( self : Optional[Any] , A : str , A : Optional[str] = None ): '''simple docstring''' a : Tuple = Path(A ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) a : List[str] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) a : Dict = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A ) if os.path.abspath(self.spm_file ) != os.path.abspath(A ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A ) elif not os.path.isfile(self.spm_file ): with open(A , 'wb' ) as fi: a : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (str(A ), str(A )) def lowerCamelCase__ ( self : int , A : List[str] , A : str = "en" , A : Optional[List[str]] = None , A : str = "ro" , **A : List[Any] , ): '''simple docstring''' a : Optional[int] = src_lang a : Dict = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A , A , **A ) def lowerCamelCase__ ( self : List[Any] , A : str , A : Optional[str] , A : Optional[str] , **A : Union[str, Any] ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) a : List[str] = src_lang a : str = self(A , add_special_tokens=A , **A ) a : Optional[Any] = self.get_lang_id(A ) a : Optional[Any] = tgt_lang_id return inputs def lowerCamelCase__ ( self : str ): '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self : Optional[Any] , A : str ): '''simple docstring''' a : Dict = self.get_lang_token(A ) a : str = self.lang_token_to_id[lang_token] a : int = [self.cur_lang_id] a : List[str] = [self.eos_token_id] def lowerCamelCase__ ( self : Any , A : str ): '''simple docstring''' a : Optional[int] = self.get_lang_token(A ) a : List[str] = self.lang_token_to_id[lang_token] a : List[Any] = [self.cur_lang_id] a : Union[str, Any] = [self.eos_token_id] def lowerCamelCase__ ( self : int , A : str ): '''simple docstring''' return self.lang_code_to_token[lang] def lowerCamelCase__ ( self : List[Any] , A : str ): '''simple docstring''' a : Optional[Any] = self.get_lang_token(A ) return self.lang_token_to_id[lang_token] def snake_case (A_ :str , A_ :Dict[str, Any] ): '''simple docstring''' a : Optional[int] = sentencepiece.SentencePieceProcessor(**A_ ) spm.Load(str(A_ ) ) return spm def snake_case (A_ :str ): '''simple docstring''' with open(A_ , 'r' ) as f: return json.load(A_ ) def snake_case (A_ :Tuple , A_ :str ): '''simple docstring''' with open(A_ , 'w' ) as f: json.dump(A_ , A_ , indent=2 )
118
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case ( UpperCAmelCase , UpperCAmelCase ): @register_to_config def __init__( self : Dict , *, A : int = 4 , A : int = 7_6_8 , A : int , A : Any , ): '''simple docstring''' super().__init__() a : Optional[Any] = nn.Parameter(torch.zeros(A ) ) # parameters for additional clip time embeddings a : str = nn.Linear(A , A ) a : List[Any] = nn.Linear(A , A ) # parameters for encoder hidden states a : Optional[Any] = clip_extra_context_tokens a : Union[str, Any] = nn.Linear( A , self.clip_extra_context_tokens * cross_attention_dim ) a : Optional[Any] = nn.Linear(A , A ) a : Any = nn.LayerNorm(A ) def lowerCamelCase__ ( self : Dict , *, A : str , A : Optional[Any] , A : int , A : Dict ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings a : Dict = image_embeddings.shape[0] a : Tuple = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) a : List[str] = classifier_free_guidance_embeddings.expand( A , -1 ) a : Union[str, Any] = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] a : Dict = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... a : Optional[int] = self.embedding_proj(A ) a : Optional[int] = self.clip_image_embeddings_project_to_time_embeddings(A ) a : Tuple = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" a : Union[str, Any] = self.clip_extra_context_tokens_proj(A ) a : Dict = clip_extra_context_tokens.reshape(A , -1 , self.clip_extra_context_tokens ) a : Union[str, Any] = clip_extra_context_tokens.permute(0 , 2 , 1 ) a : Tuple = self.encoder_hidden_states_proj(A ) a : Optional[Any] = self.text_encoder_hidden_states_norm(A ) a : Optional[int] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
118
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , ) -> List[str]: __lowerCamelCase : Optional[int] = parent __lowerCamelCase : str = batch_size __lowerCamelCase : List[Any] = image_size __lowerCamelCase : Any = patch_size __lowerCamelCase : Tuple = num_channels __lowerCamelCase : Dict = is_training __lowerCamelCase : List[str] = use_labels __lowerCamelCase : Optional[Any] = hidden_size __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : int = num_attention_heads __lowerCamelCase : str = intermediate_size __lowerCamelCase : Optional[int] = hidden_act __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[Any] = type_sequence_label_size __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Union[str, Any] = scope __lowerCamelCase : Union[str, Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCamelCase : List[Any] = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[int] = num_patches + 2 def lowercase_ ( self ) -> Tuple: __lowerCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[Any] = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Tuple: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Union[str, Any] = TFDeiTModel(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[Any] = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Dict = self.type_sequence_label_size __lowerCamelCase : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : Tuple = 1 __lowerCamelCase : List[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = config_and_inputs __lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase : List[str] = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase : Optional[int] = False lowerCamelCase : List[Any] = False lowerCamelCase : List[str] = False lowerCamelCase : Any = False def lowercase_ ( self ) -> str: __lowerCamelCase : Any = TFDeiTModelTester(self ) __lowerCamelCase : Any = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowercase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> int: __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Any = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __lowerCamelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Dense ) ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Tuple = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Dict: __lowerCamelCase : Optional[int] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowercase_ ( self ) -> Dict: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Tuple = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase__ ( ) -> Optional[int]: __lowerCamelCase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> str: return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Optional[int] = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) __lowerCamelCase : Union[str, Any] = self.default_image_processor __lowerCamelCase : Dict = prepare_img() __lowerCamelCase : Dict = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='tf' ) # forward pass __lowerCamelCase : Dict = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __lowerCamelCase : Union[str, Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
13
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) # TODO Update this A__ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'esm' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Optional[Any] = emb_layer_norm_before __lowerCamelCase : Optional[Any] = token_dropout __lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase : List[str] = get_default_vocab_list() else: __lowerCamelCase : Optional[Any] = vocab_list else: __lowerCamelCase : Dict = None __lowerCamelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Any = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = None lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : float = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : int = 1_2_8 lowerCamelCase : "TrunkConfig" = None def lowercase_ ( self ) -> Any: if self.trunk is None: __lowerCamelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = asdict(self ) __lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 4_8 lowerCamelCase : int = 1_0_2_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : float = 0 lowerCamelCase : float = 0 lowerCamelCase : bool = False lowerCamelCase : int = 4 lowerCamelCase : Optional[int] = 1_2_8 lowerCamelCase : "StructureModuleConfig" = None def lowercase_ ( self ) -> Optional[int]: if self.structure_module is None: __lowerCamelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = asdict(self ) __lowerCamelCase : int = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 3_8_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_6 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_2 lowerCamelCase : int = 4 lowerCamelCase : int = 8 lowerCamelCase : float = 0.1 lowerCamelCase : int = 8 lowerCamelCase : int = 1 lowerCamelCase : int = 2 lowerCamelCase : int = 7 lowerCamelCase : int = 1_0 lowerCamelCase : float = 1e-8 lowerCamelCase : float = 1e5 def lowercase_ ( self ) -> Any: return asdict(self ) def UpperCAmelCase__ ( ) -> Optional[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
13
1
"""simple docstring""" from maths.prime_check import is_prime def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'Input value of [number={number}] must be an integer' raise TypeError(SCREAMING_SNAKE_CASE ) if is_prime(SCREAMING_SNAKE_CASE ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __lowerCamelCase ( _a ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: UpperCamelCase__ = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = model UpperCamelCase__ = cache UpperCamelCase__ = force UpperCamelCase__ = trust_remote_code def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
20
0
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = jnp.floataa UpperCamelCase = True def lowercase__ ( self : Any ) -> Any: '''simple docstring''' super().setup() UpperCAmelCase_ = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Optional[int] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : int ) -> Any: '''simple docstring''' UpperCAmelCase_ = super().__call__(*_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = FlaxBigBirdForNaturalQuestionsModule def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): def cross_entropy(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): UpperCAmelCase_ = logits.shape[-1] UpperCAmelCase_ = (labels[..., None] == jnp.arange(lowerCAmelCase__ )[None]).astype("f4" ) UpperCAmelCase_ = jax.nn.log_softmax(lowerCAmelCase__ , axis=-1 ) UpperCAmelCase_ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: UpperCAmelCase_ = reduction(lowerCAmelCase__ ) return loss UpperCAmelCase_ = partial(lowerCAmelCase__ , reduction=jnp.mean ) UpperCAmelCase_ = cross_entropy(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = cross_entropy(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = cross_entropy(lowerCAmelCase__ , lowerCAmelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = "google/bigbird-roberta-base" UpperCamelCase = 30_00 UpperCamelCase = 1_05_00 UpperCamelCase = 1_28 UpperCamelCase = 3 UpperCamelCase = 1 UpperCamelCase = 5 # tx_args UpperCamelCase = 3E-5 UpperCamelCase = 0.0 UpperCamelCase = 2_00_00 UpperCamelCase = 0.0_0_9_5 UpperCamelCase = "bigbird-roberta-natural-questions" UpperCamelCase = "training-expt" UpperCamelCase = "data/nq-training.jsonl" UpperCamelCase = "data/nq-validation.jsonl" def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' os.makedirs(self.base_dir , exist_ok=_UpperCAmelCase ) UpperCAmelCase_ = os.path.join(self.base_dir , self.save_dir ) UpperCAmelCase_ = self.batch_size_per_device * jax.device_count() @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 40_96 # no dynamic padding on TPUs def __call__( self : str , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.collate_fn(_UpperCAmelCase ) UpperCAmelCase_ = jax.tree_util.tree_map(_UpperCAmelCase , _UpperCAmelCase ) return batch def lowercase__ ( self : str , _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.fetch_inputs(features["input_ids"] ) UpperCAmelCase_ = { "input_ids": jnp.array(_UpperCAmelCase , dtype=jnp.intaa ), "attention_mask": jnp.array(_UpperCAmelCase , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def lowercase__ ( self : str , _UpperCAmelCase : list ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = [self._fetch_inputs(_UpperCAmelCase ) for ids in input_ids] return zip(*_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : list ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = [1 for _ in range(len(_UpperCAmelCase ) )] while len(_UpperCAmelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): if seed is not None: UpperCAmelCase_ = dataset.shuffle(seed=lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) // batch_size ): UpperCAmelCase_ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCAmelCase__ ) @partial(jax.pmap , axis_name="batch" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): def loss_fn(lowerCAmelCase__ ): UpperCAmelCase_ = model_inputs.pop("start_labels" ) UpperCAmelCase_ = model_inputs.pop("end_labels" ) UpperCAmelCase_ = model_inputs.pop("pooled_labels" ) UpperCAmelCase_ = state.apply_fn(**lowerCAmelCase__ , params=lowerCAmelCase__ , dropout_rng=lowerCAmelCase__ , train=lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = outputs return state.loss_fn( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) UpperCAmelCase_ , UpperCAmelCase_ = jax.random.split(lowerCAmelCase__ ) UpperCAmelCase_ = jax.value_and_grad(lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = grad_fn(state.params ) UpperCAmelCase_ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) UpperCAmelCase_ = jax.lax.pmean(lowerCAmelCase__ , "batch" ) UpperCAmelCase_ = state.apply_gradients(grads=lowerCAmelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def a__ ( lowerCAmelCase__ , **lowerCAmelCase__ ): UpperCAmelCase_ = model_inputs.pop("start_labels" ) UpperCAmelCase_ = model_inputs.pop("end_labels" ) UpperCAmelCase_ = model_inputs.pop("pooled_labels" ) UpperCAmelCase_ = state.apply_fn(**lowerCAmelCase__ , params=state.params , train=lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = outputs UpperCAmelCase_ = state.loss_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class lowercase__ ( train_state.TrainState ): '''simple docstring''' UpperCamelCase = struct.field(pytree_node=SCREAMING_SNAKE_CASE ) @dataclass class lowercase__ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = None def lowercase__ ( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : int=None ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = model.params UpperCAmelCase_ = TrainState.create( apply_fn=model.__call__ , params=_UpperCAmelCase , tx=_UpperCAmelCase , loss_fn=_UpperCAmelCase , ) if ckpt_dir is not None: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = restore_checkpoint(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } UpperCAmelCase_ , UpperCAmelCase_ = build_tx(**_UpperCAmelCase ) UpperCAmelCase_ = train_state.TrainState( step=_UpperCAmelCase , apply_fn=model.__call__ , params=_UpperCAmelCase , tx=_UpperCAmelCase , opt_state=_UpperCAmelCase , ) UpperCAmelCase_ = args UpperCAmelCase_ = data_collator UpperCAmelCase_ = lr UpperCAmelCase_ = params UpperCAmelCase_ = jax_utils.replicate(_UpperCAmelCase ) return state def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.args UpperCAmelCase_ = len(_UpperCAmelCase ) // args.batch_size UpperCAmelCase_ = jax.random.PRNGKey(0 ) UpperCAmelCase_ = jax.random.split(_UpperCAmelCase , jax.device_count() ) for epoch in range(args.max_epochs ): UpperCAmelCase_ = jnp.array(0 , dtype=jnp.floataa ) UpperCAmelCase_ = get_batched_dataset(_UpperCAmelCase , args.batch_size , seed=_UpperCAmelCase ) UpperCAmelCase_ = 0 for batch in tqdm(_UpperCAmelCase , total=_UpperCAmelCase , desc=F"""Running EPOCH-{epoch}""" ): UpperCAmelCase_ = self.data_collator(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self.train_step_fn(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: UpperCAmelCase_ = jax_utils.unreplicate(state.step ) UpperCAmelCase_ = running_loss.item() / i UpperCAmelCase_ = self.scheduler_fn(state_step - 1 ) UpperCAmelCase_ = self.evaluate(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase_ = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(_UpperCAmelCase ) ) self.logger.log(_UpperCAmelCase , commit=_UpperCAmelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=_UpperCAmelCase ) def lowercase__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = get_batched_dataset(_UpperCAmelCase , self.args.batch_size ) UpperCAmelCase_ = len(_UpperCAmelCase ) // self.args.batch_size UpperCAmelCase_ = jnp.array(0 , dtype=jnp.floataa ) UpperCAmelCase_ = 0 for batch in tqdm(_UpperCAmelCase , total=_UpperCAmelCase , desc="Evaluating ... " ): UpperCAmelCase_ = self.data_collator(_UpperCAmelCase ) UpperCAmelCase_ = self.val_step_fn(_UpperCAmelCase , **_UpperCAmelCase ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def lowercase__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = jax_utils.unreplicate(_UpperCAmelCase ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... " ) self.model_save_fn(_UpperCAmelCase , params=state.params ) with open(os.path.join(_UpperCAmelCase , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_UpperCAmelCase , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(_UpperCAmelCase , "data_collator.joblib" ) ) with open(os.path.join(_UpperCAmelCase , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , _UpperCAmelCase ) print("DONE" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(lowerCAmelCase__ , "flax_model.msgpack" ) , "rb" ) as f: UpperCAmelCase_ = from_bytes(state.params , f.read() ) with open(os.path.join(lowerCAmelCase__ , "opt_state.msgpack" ) , "rb" ) as f: UpperCAmelCase_ = from_bytes(state.opt_state , f.read() ) UpperCAmelCase_ = joblib.load(os.path.join(lowerCAmelCase__ , "args.joblib" ) ) UpperCAmelCase_ = joblib.load(os.path.join(lowerCAmelCase__ , "data_collator.joblib" ) ) with open(os.path.join(lowerCAmelCase__ , "training_state.json" ) , "r" ) as f: UpperCAmelCase_ = json.load(lowerCAmelCase__ ) UpperCAmelCase_ = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = num_train_steps - warmup_steps UpperCAmelCase_ = optax.linear_schedule(init_value=lowerCAmelCase__ , end_value=lowerCAmelCase__ , transition_steps=lowerCAmelCase__ ) UpperCAmelCase_ = optax.linear_schedule(init_value=lowerCAmelCase__ , end_value=1e-7 , transition_steps=lowerCAmelCase__ ) UpperCAmelCase_ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): def weight_decay_mask(lowerCAmelCase__ ): UpperCAmelCase_ = traverse_util.flatten_dict(lowerCAmelCase__ ) UpperCAmelCase_ = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCAmelCase__ ) UpperCAmelCase_ = scheduler_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = optax.adamw(learning_rate=lowerCAmelCase__ , weight_decay=lowerCAmelCase__ , mask=lowerCAmelCase__ ) return tx, lr
82
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} a_ = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } a_ = { 'gpt-neox-20b': 2_048, } class _lowercase ( snake_case_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self : Dict , snake_case : Union[str, Any]=None , snake_case : int=None , snake_case : Union[str, Any]=None , snake_case : str="<|endoftext|>" , snake_case : Optional[Any]="<|endoftext|>" , snake_case : List[str]="<|endoftext|>" , snake_case : List[Any]=False , **snake_case : str , ) -> Union[str, Any]: """simple docstring""" super().__init__( snake_case , snake_case , tokenizer_file=snake_case , unk_token=snake_case , bos_token=snake_case , eos_token=snake_case , add_prefix_space=snake_case , **snake_case , ) UpperCamelCase_ : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case ) != add_prefix_space: UpperCamelCase_ : Optional[int] = getattr(snake_case , pre_tok_state.pop('type' ) ) UpperCamelCase_ : Optional[Any] = add_prefix_space UpperCamelCase_ : List[Any] = pre_tok_class(**snake_case ) UpperCamelCase_ : Optional[Any] = add_prefix_space def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase_ : Optional[Any] = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : "Conversation" ) -> List[int]: """simple docstring""" UpperCamelCase_ : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case , add_special_tokens=snake_case ) + [self.eos_token_id] ) if len(snake_case ) > self.model_max_length: UpperCamelCase_ : List[Any] = input_ids[-self.model_max_length :] return input_ids
417
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[str] = params snake_case : List[Any] = np.array(SCREAMING_SNAKE_CASE_ ) snake_case : Any = np.array([len(SCREAMING_SNAKE_CASE_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ): '''simple docstring''' return len(self.lengths ) def snake_case_ ( self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = self.params.max_model_input_size snake_case : Optional[Any] = self.lengths > max_len logger.info(F"""Splitting {sum(SCREAMING_SNAKE_CASE_ )} too long sequences.""" ) def divide_chunks(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): return [l[i : i + n] for i in range(0 ,len(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ )] snake_case : List[Any] = [] snake_case : Optional[int] = [] if self.params.mlm: snake_case , snake_case : Optional[int] = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: snake_case , snake_case : int = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids ,self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case : Any = [] for sub_s in divide_chunks(seq_ ,max_len - 2 ): if sub_s[0] != cls_id: snake_case : Tuple = np.insert(SCREAMING_SNAKE_CASE_ ,0 ,SCREAMING_SNAKE_CASE_ ) if sub_s[-1] != sep_id: snake_case : Optional[Any] = np.insert(SCREAMING_SNAKE_CASE_ ,len(SCREAMING_SNAKE_CASE_ ) ,SCREAMING_SNAKE_CASE_ ) assert len(SCREAMING_SNAKE_CASE_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(SCREAMING_SNAKE_CASE_ ) new_tok_ids.extend(SCREAMING_SNAKE_CASE_ ) new_lengths.extend([len(SCREAMING_SNAKE_CASE_ ) for l in sub_seqs] ) snake_case : Dict = np.array(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = np.array(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : str = len(self ) snake_case : Optional[int] = self.lengths > 11 snake_case : Optional[int] = self.token_ids[indices] snake_case : Optional[Any] = self.lengths[indices] snake_case : Optional[int] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def snake_case_ ( self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: snake_case : Optional[int] = self.params.special_tok_ids["""unk_token"""] snake_case : int = len(self ) snake_case : Optional[Any] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case : Optional[Any] = (unk_occs / self.lengths) < 0.5 snake_case : Optional[Any] = self.token_ids[indices] snake_case : Optional[Any] = self.lengths[indices] snake_case : Optional[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def snake_case_ ( self ): '''simple docstring''' if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Optional[Any] = [t[0] for t in batch] snake_case : List[str] = [t[1] for t in batch] assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) # Max for paddings snake_case : Any = max(SCREAMING_SNAKE_CASE_ ) # Pad token ids if self.params.mlm: snake_case : Tuple = self.params.special_tok_ids["""pad_token"""] else: snake_case : Union[str, Any] = self.params.special_tok_ids["""unk_token"""] snake_case : Union[str, Any] = [list(t.astype(SCREAMING_SNAKE_CASE_ ) ) + [pad_idx] * (max_seq_len_ - len(SCREAMING_SNAKE_CASE_ )) for t in token_ids] assert len(tk_ ) == len(SCREAMING_SNAKE_CASE_ ) assert all(len(SCREAMING_SNAKE_CASE_ ) == max_seq_len_ for t in tk_ ) snake_case : Union[str, Any] = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case : Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ ) # (bs) return tk_t, lg_t
315
from collections import namedtuple __lowercase : Tuple = namedtuple('''from_to''', '''from_ to''') __lowercase : Dict = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 1_000), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.00_454, 264.172), '''cubicyard''': from_to(0.76_455, 1.30_795), '''cubicfoot''': from_to(0.028, 35.3_147), '''cup''': from_to(0.000_236_588, 4_226.75), } def lowercase ( __A : float , __A : str , __A : str ) -> float: '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + """, """.join(__A ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + """, """.join(__A ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
315
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( __lowercase , unittest.TestCase ): lowerCamelCase_ = LEDTokenizer lowerCamelCase_ = LEDTokenizerFast lowerCamelCase_ = True def _snake_case ( self :Dict ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] SCREAMING_SNAKE_CASE__ = dict(zip(_A , range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] SCREAMING_SNAKE_CASE__ = {"""unk_token""": """<unk>"""} SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_A ) ) def _snake_case ( self :List[Any] , **__A :Dict ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _snake_case ( self :Any , **__A :Any ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _snake_case ( self :Tuple , __A :str ) -> Tuple: """simple docstring""" return "lower newer", "lower newer" @cached_property def _snake_case ( self :str ) -> str: """simple docstring""" return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def _snake_case ( self :Any ) -> Tuple: """simple docstring""" return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def _snake_case ( self :Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] SCREAMING_SNAKE_CASE__ = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors="""pt""" ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE__ = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) @require_torch def _snake_case ( self :List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ = tokenizer(_A , padding=_A , return_tensors="""pt""" ) self.assertIn("""input_ids""" , _A ) self.assertIn("""attention_mask""" , _A ) self.assertNotIn("""labels""" , _A ) self.assertNotIn("""decoder_attention_mask""" , _A ) @require_torch def _snake_case ( self :List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ = tokenizer(text_target=_A , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def _snake_case ( self :List[Any] ) -> List[str]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=_A , truncation=_A , return_tensors="""pt""" ) self.assertIsInstance(_A , _A ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def _snake_case ( self :Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = ["""A long paragraph for summarization."""] SCREAMING_SNAKE_CASE__ = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ = tokenizer(_A , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = tokenizer(text_target=_A , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = inputs["""input_ids"""] SCREAMING_SNAKE_CASE__ = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _snake_case ( self :str ) -> Tuple: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE__ = ["""Summary of the text.""", """Another summary."""] SCREAMING_SNAKE_CASE__ = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] SCREAMING_SNAKE_CASE__ = tokenizer(_A , padding=_A ) SCREAMING_SNAKE_CASE__ = [[0] * len(_A ) for x in encoded_output["""input_ids"""]] SCREAMING_SNAKE_CASE__ = tokenizer.pad(_A ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , _A ) def _snake_case ( self :Any ) -> int: """simple docstring""" pass def _snake_case ( self :Optional[Any] ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = """A, <mask> AllenNLP sentence.""" SCREAMING_SNAKE_CASE__ = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) SCREAMING_SNAKE_CASE__ = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) SCREAMING_SNAKE_CASE__ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) SCREAMING_SNAKE_CASE__ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( _A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
6
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( __snake_case , __snake_case ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__snake_case , __snake_case ) ) ) def _snake_case ( __snake_case , __snake_case ): if dataset.ndim != value_array.ndim: _UpperCamelCase = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__snake_case ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCamelCase = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: _UpperCamelCase = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__snake_case ) _UpperCamelCase = [] for value in value_array: _UpperCamelCase = euclidean(__snake_case , dataset[0] ) _UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCamelCase = euclidean(__snake_case , __snake_case ) if dist > temp_dist: _UpperCamelCase = temp_dist _UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( __snake_case , __snake_case ): return np.dot(__snake_case , __snake_case ) / (norm(__snake_case ) * norm(__snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
10
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self , lowercase , lowercase ) -> Any: '''simple docstring''' return F'gaussian_noise_s={seed}_shape={"_".join([str(lowercase ) for s in shape] )}.npy' def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() def UpperCamelCase ( self , lowercase=0 , lowercase=(4, 4, 64, 64) , lowercase=False ) -> List[Any]: '''simple docstring''' A__ = jnp.bfloataa if fpaa else jnp.floataa A__ = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return image def UpperCamelCase ( self , lowercase=False , lowercase="CompVis/stable-diffusion-v1-4" ) -> Tuple: '''simple docstring''' A__ = jnp.bfloataa if fpaa else jnp.floataa A__ = "bf16" if fpaa else None A__ , A__ = FlaxUNetaDConditionModel.from_pretrained( lowercase , subfolder="unet" , dtype=lowercase , revision=lowercase ) return model, params def UpperCamelCase ( self , lowercase=0 , lowercase=(4, 77, 768) , lowercase=False ) -> List[Any]: '''simple docstring''' A__ = jnp.bfloataa if fpaa else jnp.floataa A__ = jnp.array(load_hf_numpy(self.get_file_format(lowercase , lowercase ) ) , dtype=lowercase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def UpperCamelCase ( self , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' A__ , A__ = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=lowercase ) A__ = self.get_latents(lowercase , fpaa=lowercase ) A__ = self.get_encoder_hidden_states(lowercase , fpaa=lowercase ) A__ = model.apply( {"params": params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape A__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) A__ = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowercase , lowercase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def UpperCamelCase ( self , lowercase , lowercase , lowercase ) -> str: '''simple docstring''' A__ , A__ = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=lowercase ) A__ = self.get_latents(lowercase , shape=(4, 4, 96, 96) , fpaa=lowercase ) A__ = self.get_encoder_hidden_states(lowercase , shape=(4, 77, 1024) , fpaa=lowercase ) A__ = model.apply( {"params": params} , lowercase , jnp.array(lowercase , dtype=jnp.intaa ) , encoder_hidden_states=lowercase , ).sample assert sample.shape == latents.shape A__ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) A__ = jnp.array(lowercase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowercase , lowercase , atol=1e-2 )
710
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class a__ ( snake_case ): """simple docstring""" def __init__( self , *lowercase , **lowercase ) -> None: '''simple docstring''' warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , lowercase , ) super().__init__(*lowercase , **lowercase )
626
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _a : Tuple = logging.get_logger(__name__) class a_ ( A__ ): A__ : List[Any] = ["""pixel_values"""] def __init__( self : Tuple , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Dict[str, int]] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 255 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase__ : Dict , ): """simple docstring""" super().__init__(**a_ ) snake_case : Union[str, Any] = size if size is not None else {"shortest_edge": 256} snake_case : Dict = get_size_dict(a_ , default_to_square=a_ ) snake_case : Dict = crop_size if crop_size is not None else {"height": 224, "width": 224} snake_case : Union[str, Any] = get_size_dict(a_ , param_name='''crop_size''' ) snake_case : str = do_resize snake_case : List[str] = size snake_case : Any = resample snake_case : Optional[int] = do_center_crop snake_case : int = crop_size snake_case : str = do_rescale snake_case : Union[str, Any] = rescale_factor snake_case : int = do_normalize snake_case : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int] , ): """simple docstring""" snake_case : int = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) snake_case : List[Any] = get_resize_output_image_size(a_ , size=size['''shortest_edge'''] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : int , ): """simple docstring""" snake_case : Dict = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(a_ , size=(size['''height'''], size['''width''']) , data_format=a_ , **a_ ) def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[Any] ): """simple docstring""" return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def lowerCAmelCase( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[Any] , ): """simple docstring""" return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def lowerCAmelCase( self : Tuple , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[float] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase__ : Union[str, Any] , ): """simple docstring""" snake_case : Optional[Any] = do_resize if do_resize is not None else self.do_resize snake_case : List[Any] = size if size is not None else self.size snake_case : Optional[Any] = get_size_dict(a_ , default_to_square=a_ ) snake_case : List[Any] = resample if resample is not None else self.resample snake_case : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : List[str] = crop_size if crop_size is not None else self.crop_size snake_case : List[Any] = get_size_dict(a_ , param_name='''crop_size''' ) snake_case : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale snake_case : Any = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : Optional[int] = image_mean if image_mean is not None else self.image_mean snake_case : Union[str, Any] = image_std if image_std is not None else self.image_std snake_case : List[Any] = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. snake_case : List[Any] = [to_numpy_array(a_ ) for image in images] if do_resize: snake_case : int = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: snake_case : str = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: snake_case : Optional[int] = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: snake_case : Dict = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] snake_case : List[Any] = [to_channel_dimension_format(a_ , a_ ) for image in images] snake_case : int = {"pixel_values": images} return BatchFeature(data=a_ , tensor_type=a_ ) def lowerCAmelCase( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Tuple] = None ): """simple docstring""" snake_case : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a_ ) != len(a_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(a_ ): snake_case : Any = target_sizes.numpy() snake_case : List[str] = [] for idx in range(len(a_ ) ): snake_case : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=a_ ) snake_case : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a_ ) else: snake_case : List[Any] = logits.argmax(dim=1 ) snake_case : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
598
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (volume) ) ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" return round(float((moles * 0.08_21 * temperature) / (pressure) ) ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.08_21 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
610
0
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _A = logging.get_logger(__name__) def lowercase (_snake_case ,_snake_case ,_snake_case ) -> Any: '''simple docstring''' return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def lowercase (_snake_case ,_snake_case ,_snake_case = None ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase = tesseract_config if tesseract_config is not None else "" # apply OCR __UpperCamelCase = to_pil_image(_lowerCamelCase ) __UpperCamelCase , __UpperCamelCase = pil_image.size __UpperCamelCase = pytesseract.image_to_data(_lowerCamelCase ,lang=_lowerCamelCase ,output_type="dict" ,config=_lowerCamelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates __UpperCamelCase = [idx for idx, word in enumerate(_lowerCamelCase ) if not word.strip()] __UpperCamelCase = [word for idx, word in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] __UpperCamelCase = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] __UpperCamelCase = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] __UpperCamelCase = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] __UpperCamelCase = [coord for idx, coord in enumerate(_lowerCamelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __UpperCamelCase = [] for x, y, w, h in zip(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ): __UpperCamelCase = [x, y, x + w, y + h] actual_boxes.append(_lowerCamelCase ) # finally, normalize the bounding boxes __UpperCamelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Optional[Any] = ["pixel_values"] def __init__( self : Union[str, Any] , A_ : str = True , A_ : Union[str, Any] = None , A_ : str = PILImageResampling.BILINEAR , A_ : List[str] = True , A_ : int = None , A_ : Dict = "" , **A_ : Union[str, Any] , )-> None: super().__init__(**UpperCamelCase__ ) __UpperCamelCase = size if size is not None else {"height": 2_24, "width": 2_24} __UpperCamelCase = get_size_dict(UpperCamelCase__ ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = resample __UpperCamelCase = apply_ocr __UpperCamelCase = ocr_lang __UpperCamelCase = tesseract_config def A ( self : Dict , A_ : Optional[Any] , A_ : str , A_ : Any = PILImageResampling.BILINEAR , A_ : str = None , **A_ : str , )-> np.ndarray: __UpperCamelCase = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __UpperCamelCase = (size["height"], size["width"]) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Dict , A_ : List[Any] , A_ : Union[str, Any] = None , A_ : Optional[int] = None , A_ : int = None , A_ : Optional[Any] = None , A_ : int = None , A_ : List[str] = None , A_ : str = None , A_ : Optional[Any] = ChannelDimension.FIRST , **A_ : int , )-> PIL.Image.Image: __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(UpperCamelCase__ ) __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __UpperCamelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __UpperCamelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __UpperCamelCase = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(UpperCamelCase__ ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) __UpperCamelCase = [] __UpperCamelCase = [] for image in images: __UpperCamelCase , __UpperCamelCase = apply_tesseract(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) words_batch.append(UpperCamelCase__ ) boxes_batch.append(UpperCamelCase__ ) if do_resize: __UpperCamelCase = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __UpperCamelCase = [flip_channel_order(UpperCamelCase__ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] __UpperCamelCase = BatchFeature(data={"pixel_values": images} , tensor_type=UpperCamelCase__ ) if apply_ocr: __UpperCamelCase = words_batch __UpperCamelCase = boxes_batch return data
700
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _A = TypeVar("T") class __UpperCAmelCase ( Generic[T] ): """simple docstring""" _snake_case : deque[T] # Cache store of keys _snake_case : set[T] # References of the keys in cache _snake_case : int = 1_0 # Maximum capacity of cache def __init__( self : List[Any] , A_ : int )-> None: __UpperCamelCase = deque() __UpperCamelCase = set() if not n: __UpperCamelCase = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: __UpperCamelCase = n def A ( self : Dict , A_ : T )-> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __UpperCamelCase = self.dq_store.pop() self.key_reference.remove(A_ ) else: self.dq_store.remove(A_ ) self.dq_store.appendleft(A_ ) self.key_reference.add(A_ ) def A ( self : int )-> None: for k in self.dq_store: print(A_ ) def __repr__( self : int )-> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() _A = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
228
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {} class a__ ( UpperCamelCase_ ): snake_case__ = '''llama''' snake_case__ = ['''past_key_values'''] def __init__( self : str ,a__ : Union[str, Any]=3_2000 ,a__ : Any=4096 ,a__ : int=1_1008 ,a__ : int=32 ,a__ : Optional[Any]=32 ,a__ : List[Any]=None ,a__ : List[Any]="silu" ,a__ : Union[str, Any]=2048 ,a__ : Any=0.02 ,a__ : Any=1E-6 ,a__ : int=True ,a__ : Optional[int]=0 ,a__ : Any=1 ,a__ : Any=2 ,a__ : str=1 ,a__ : str=False ,a__ : Union[str, Any]=None ,**a__ : List[Any] ,) -> str: """simple docstring""" _lowerCAmelCase:Tuple = vocab_size _lowerCAmelCase:Optional[int] = max_position_embeddings _lowerCAmelCase:int = hidden_size _lowerCAmelCase:Dict = intermediate_size _lowerCAmelCase:List[Any] = num_hidden_layers _lowerCAmelCase:List[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: _lowerCAmelCase:List[Any] = num_attention_heads _lowerCAmelCase:Any = num_key_value_heads _lowerCAmelCase:Union[str, Any] = hidden_act _lowerCAmelCase:int = initializer_range _lowerCAmelCase:Any = rms_norm_eps _lowerCAmelCase:Optional[Any] = pretraining_tp _lowerCAmelCase:str = use_cache _lowerCAmelCase:Union[str, Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=a__ ,bos_token_id=a__ ,eos_token_id=a__ ,tie_word_embeddings=a__ ,**a__ ,) def __UpperCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,a__) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'got {self.rope_scaling}') _lowerCAmelCase:Optional[Any] = self.rope_scaling.get('''type''' ,a__) _lowerCAmelCase:Any = self.rope_scaling.get('''factor''' ,a__) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}') if rope_scaling_factor is None or not isinstance(a__ ,a__) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}')
227
"""simple docstring""" import argparse import datetime def UpperCAmelCase ( snake_case : str ): _lowerCAmelCase:Dict = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } _lowerCAmelCase:Union[str, Any] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(snake_case ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month _lowerCAmelCase:int = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) _lowerCAmelCase:str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day _lowerCAmelCase:int = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator _lowerCAmelCase:str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year _lowerCAmelCase:int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation _lowerCAmelCase:int = datetime.date(int(snake_case ) , int(snake_case ) , int(snake_case ) ) # Start math if m <= 2: _lowerCAmelCase:Optional[Any] = y - 1 _lowerCAmelCase:str = m + 12 # maths var _lowerCAmelCase:int = int(str(snake_case )[:2] ) _lowerCAmelCase:int = int(str(snake_case )[2:] ) _lowerCAmelCase:int = int(2.6 * m - 5.39 ) _lowerCAmelCase:int = int(c / 4 ) _lowerCAmelCase:int = int(k / 4 ) _lowerCAmelCase:int = int(d + k ) _lowerCAmelCase:int = int(t + u + v + x ) _lowerCAmelCase:int = int(z - (2 * c) ) _lowerCAmelCase:int = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response _lowerCAmelCase:str = F'Your date {date_input}, is a {days[str(snake_case )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase__ = parser.parse_args() zeller(args.date_input)
227
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_xlm_roberta_xl''': [ '''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaXLConfig''', '''XLMRobertaXLOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaXLForCausalLM''', '''XLMRobertaXLForMaskedLM''', '''XLMRobertaXLForMultipleChoice''', '''XLMRobertaXLForQuestionAnswering''', '''XLMRobertaXLForSequenceClassification''', '''XLMRobertaXLForTokenClassification''', '''XLMRobertaXLModel''', '''XLMRobertaXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
714
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): @slow @require_torch def a_ ( self ) -> List[Any]: UpperCAmelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCAmelCase = bertabert.config.encoder.vocab_size UpperCAmelCase = tokenizer.sep_token_id UpperCAmelCase = tokenizer.cls_token_id UpperCAmelCase = 1_2_8 UpperCAmelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCAmelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCAmelCase = train_dataset.select(range(3_2 ) ) UpperCAmelCase = val_dataset.select(range(1_6 ) ) UpperCAmelCase = 4 def _map_to_encoder_decoder_inputs(lowercase_ ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase = tokenizer(batch['article'] , padding='max_length' , truncation=lowercase_ , max_length=5_1_2 ) UpperCAmelCase = tokenizer(batch['highlights'] , padding='max_length' , truncation=lowercase_ , max_length=1_2_8 ) UpperCAmelCase = inputs.input_ids UpperCAmelCase = inputs.attention_mask UpperCAmelCase = outputs.input_ids UpperCAmelCase = outputs.input_ids.copy() UpperCAmelCase = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCAmelCase = outputs.attention_mask assert all(len(lowercase_ ) == 5_1_2 for x in inputs.input_ids ) assert all(len(lowercase_ ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(lowercase_ ): UpperCAmelCase = pred.label_ids UpperCAmelCase = pred.predictions # all unnecessary tokens are removed UpperCAmelCase = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) UpperCAmelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowercase_ ) )] ) / len(lowercase_ ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowercase_ , batch_size=lowercase_ , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCAmelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowercase_ , batch_size=lowercase_ , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = SeqaSeqTrainingArguments( output_dir=lowercase_ , per_device_train_batch_size=lowercase_ , per_device_eval_batch_size=lowercase_ , predict_with_generate=lowercase_ , evaluation_strategy='steps' , do_train=lowercase_ , do_eval=lowercase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase = SeqaSeqTrainer( model=lowercase_ , args=lowercase_ , compute_metrics=_compute_metrics , train_dataset=lowercase_ , eval_dataset=lowercase_ , tokenizer=lowercase_ , ) # start training trainer.train()
183
0
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase = None ) -> Tuple: lowerCAmelCase__ : Dict = value lowerCAmelCase__ : Node | None = None # Added in order to delete a node easier lowerCAmelCase__ : Node | None = None lowerCAmelCase__ : Node | None = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} ,indent=1 ) class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase = None ) -> Optional[Any]: lowerCAmelCase__ : Tuple = root def __str__( self ) -> str: return str(self.root ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: if new_children is not None: # reset its kids lowerCAmelCase__ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(__UpperCAmelCase ): # If it is the right children lowerCAmelCase__ : List[Any] = new_children else: lowerCAmelCase__ : Dict = new_children else: lowerCAmelCase__ : List[Any] = new_children def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self ) -> bool: return self.root is None def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None: lowerCAmelCase__ : Optional[int] = Node(__UpperCAmelCase ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase__ : str = new_node # set its root else: # Tree is not empty lowerCAmelCase__ : Any = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase__ : Any = new_node # We insert the new node in a leaf break else: lowerCAmelCase__ : Dict = parent_node.left else: if parent_node.right is None: lowerCAmelCase__ : Optional[int] = new_node break else: lowerCAmelCase__ : str = parent_node.right lowerCAmelCase__ : List[Any] = parent_node def UpperCAmelCase_ ( self ,*__UpperCAmelCase ) -> None: for value in values: self.__insert(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Node | None: if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: lowerCAmelCase__ : Optional[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase__ : Any = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self ,__UpperCAmelCase = None ) -> Node | None: if node is None: if self.root is None: return None lowerCAmelCase__ : Optional[Any] = self.root if not self.empty(): while node.right is not None: lowerCAmelCase__ : Any = node.right return node def UpperCAmelCase_ ( self ,__UpperCAmelCase = None ) -> Node | None: if node is None: lowerCAmelCase__ : str = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase__ : Dict = self.root while node.left is not None: lowerCAmelCase__ : str = node.left return node def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> None: lowerCAmelCase__ : Optional[int] = self.search(__UpperCAmelCase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__UpperCAmelCase ,__UpperCAmelCase ) elif node.left is None: # Has only right children self.__reassign_nodes(__UpperCAmelCase ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__UpperCAmelCase ,node.left ) else: lowerCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase__ : Dict = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self ,__UpperCAmelCase=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> None: if node: self.inorder(__UpperCAmelCase ,node.left ) arr.append(node.value ) self.inorder(__UpperCAmelCase ,node.right ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: lowerCAmelCase__ : list[int] = [] self.inorder(__UpperCAmelCase ,__UpperCAmelCase ) # append all values to list using inorder traversal return arr[k - 1] def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : int = [] if curr_node is not None: lowerCAmelCase__ : Union[str, Any] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[str] = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase__ : Any = BinarySearchTree() for i in testlist: t.insert(UpperCamelCase ) # Prints all the elements of the list in order traversal print(UpperCamelCase ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn't exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn't exist""" ) if not t.empty(): print("""Max Value: """ , t.get_max().value ) # type: ignore print("""Min Value: """ , t.get_min().value ) # type: ignore for i in testlist: t.remove(UpperCamelCase ) print(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
565
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) # TODO Update this _lowerCAmelCase = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = '''esm''' def __init__( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=768 ,__UpperCAmelCase=12 ,__UpperCAmelCase=12 ,__UpperCAmelCase=3072 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=1026 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-12 ,__UpperCAmelCase="absolute" ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Dict: super().__init__(pad_token_id=__UpperCAmelCase ,mask_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : List[str] = vocab_size lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : Optional[Any] = num_attention_heads lowerCAmelCase__ : Optional[int] = intermediate_size lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : Tuple = initializer_range lowerCAmelCase__ : str = layer_norm_eps lowerCAmelCase__ : Optional[Any] = position_embedding_type lowerCAmelCase__ : int = use_cache lowerCAmelCase__ : Union[str, Any] = emb_layer_norm_before lowerCAmelCase__ : List[Any] = token_dropout lowerCAmelCase__ : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowerCAmelCase__ : Dict = EsmFoldConfig() elif isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Dict = EsmFoldConfig(**__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowerCAmelCase__ : Optional[Any] = get_default_vocab_list() else: lowerCAmelCase__ : Any = vocab_list else: lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Any = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"""use_esm_attn_map""" ,__UpperCAmelCase ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : Any = super().to_dict() if isinstance(self.esmfold_config ,__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : str = None __lowercase : bool = True __lowercase : bool = False __lowercase : bool = False __lowercase : bool = False __lowercase : float = 0 __lowercase : bool = True __lowercase : bool = False __lowercase : int = 1_2_8 __lowercase : "TrunkConfig" = None def UpperCAmelCase_ ( self ) -> int: if self.trunk is None: lowerCAmelCase__ : Dict = TrunkConfig() elif isinstance(self.trunk ,__UpperCAmelCase ): lowerCAmelCase__ : Tuple = TrunkConfig(**self.trunk ) def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Dict = asdict(self ) lowerCAmelCase__ : Optional[int] = self.trunk.to_dict() return output @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : int = 4_8 __lowercase : int = 1_0_2_4 __lowercase : int = 1_2_8 __lowercase : int = 3_2 __lowercase : int = 3_2 __lowercase : int = 3_2 __lowercase : float = 0 __lowercase : float = 0 __lowercase : bool = False __lowercase : int = 4 __lowercase : Optional[int] = 1_2_8 __lowercase : "StructureModuleConfig" = None def UpperCAmelCase_ ( self ) -> List[Any]: if self.structure_module is None: lowerCAmelCase__ : str = StructureModuleConfig() elif isinstance(self.structure_module ,__UpperCAmelCase ): lowerCAmelCase__ : Dict = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) lowerCAmelCase__ : Union[str, Any] = self.sequence_state_dim // self.sequence_head_width lowerCAmelCase__ : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = asdict(self ) lowerCAmelCase__ : Dict = self.structure_module.to_dict() return output @dataclass class lowerCAmelCase_: '''simple docstring''' __lowercase : int = 3_8_4 __lowercase : int = 1_2_8 __lowercase : int = 1_6 __lowercase : int = 1_2_8 __lowercase : int = 1_2 __lowercase : int = 4 __lowercase : int = 8 __lowercase : float = 0.1 __lowercase : int = 8 __lowercase : int = 1 __lowercase : int = 2 __lowercase : int = 7 __lowercase : int = 1_0 __lowercase : float = 1e-8 __lowercase : float = 1e5 def UpperCAmelCase_ ( self ) -> int: return asdict(self ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
565
1
def UpperCamelCase_( _A :int )-> int: UpperCamelCase__ = [1] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = 0, 0, 0 UpperCamelCase__ = ugly_nums[ia] * 2 UpperCamelCase__ = ugly_nums[ia] * 3 UpperCamelCase__ = ugly_nums[ia] * 5 for _ in range(1 , _A ): UpperCamelCase__ = min(_A , _A , _A ) ugly_nums.append(_A ) if next_num == next_a: ia += 1 UpperCamelCase__ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCamelCase__ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCamelCase__ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
719
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : int = 'data2vec-text' def __init__( self , snake_case=30522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=1E-1_2 , snake_case=1 , snake_case=0 , snake_case=2 , snake_case="absolute" , snake_case=True , snake_case=None , **snake_case , ): '''simple docstring''' super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = use_cache UpperCamelCase__ = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
185
0
import os # Precomputes a list of the 100 first triangular numbers lowerCamelCase_ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def UpperCAmelCase_ ( ): SCREAMING_SNAKE_CASE__ =os.path.dirname(os.path.realpath(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE__ =os.path.join(__UpperCamelCase, """words.txt""" ) SCREAMING_SNAKE_CASE__ ='''''' with open(__UpperCamelCase ) as f: SCREAMING_SNAKE_CASE__ =f.readline() SCREAMING_SNAKE_CASE__ =[word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] SCREAMING_SNAKE_CASE__ =[ word for word in [sum(ord(__UpperCamelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__UpperCamelCase ) if __name__ == "__main__": print(solution())
151
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {} class a__ ( UpperCamelCase_ ): snake_case__ = '''llama''' snake_case__ = ['''past_key_values'''] def __init__( self : str ,a__ : Union[str, Any]=3_2000 ,a__ : Any=4096 ,a__ : int=1_1008 ,a__ : int=32 ,a__ : Optional[Any]=32 ,a__ : List[Any]=None ,a__ : List[Any]="silu" ,a__ : Union[str, Any]=2048 ,a__ : Any=0.02 ,a__ : Any=1E-6 ,a__ : int=True ,a__ : Optional[int]=0 ,a__ : Any=1 ,a__ : Any=2 ,a__ : str=1 ,a__ : str=False ,a__ : Union[str, Any]=None ,**a__ : List[Any] ,) -> str: """simple docstring""" _lowerCAmelCase:Tuple = vocab_size _lowerCAmelCase:Optional[int] = max_position_embeddings _lowerCAmelCase:int = hidden_size _lowerCAmelCase:Dict = intermediate_size _lowerCAmelCase:List[Any] = num_hidden_layers _lowerCAmelCase:List[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: _lowerCAmelCase:List[Any] = num_attention_heads _lowerCAmelCase:Any = num_key_value_heads _lowerCAmelCase:Union[str, Any] = hidden_act _lowerCAmelCase:int = initializer_range _lowerCAmelCase:Any = rms_norm_eps _lowerCAmelCase:Optional[Any] = pretraining_tp _lowerCAmelCase:str = use_cache _lowerCAmelCase:Union[str, Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=a__ ,bos_token_id=a__ ,eos_token_id=a__ ,tie_word_embeddings=a__ ,**a__ ,) def __UpperCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,a__) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'got {self.rope_scaling}') _lowerCAmelCase:Optional[Any] = self.rope_scaling.get('''type''' ,a__) _lowerCAmelCase:Any = self.rope_scaling.get('''factor''' ,a__) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}') if rope_scaling_factor is None or not isinstance(a__ ,a__) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}')
227
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __magic_name__ ( SCREAMING_SNAKE_CASE = "" ) -> dict[str, float]: _lowercase : Any = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' _lowercase : List[str] = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE ).text , 'html.parser' ) _lowercase : str = soup.find_all('td' , attrs='titleColumn' ) _lowercase : List[str] = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) } def __magic_name__ ( SCREAMING_SNAKE_CASE = "IMDb_Top_250_Movies.csv" ) -> None: _lowercase : int = get_imdb_top_aaa_movies() with open(SCREAMING_SNAKE_CASE , 'w' , newline='' ) as out_file: _lowercase : Dict = csv.writer(SCREAMING_SNAKE_CASE ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
712
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase = typing.Union[np.floataa, int, float] # noqa: UP007 def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return np.sqrt(np.sum((np.asarray(SCREAMING_SNAKE_CASE ) - np.asarray(SCREAMING_SNAKE_CASE )) ** 2 ) ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def __magic_name__ ( ) -> None: from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10_000 , globals=globals() , ) ) benchmark()
677
0
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __UpperCAmelCase = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __UpperCAmelCase = json.load(f) @require_torch class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> str: return FSMTTokenizer.from_pretrained(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(lowerCamelCase_ ).to(lowerCamelCase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(lowerCamelCase_ ) lowerCAmelCase__ = self.get_model(lowerCamelCase_ ) lowerCAmelCase__ = bleu_data[pair]['''src'''] lowerCAmelCase__ = bleu_data[pair]['''tgt'''] lowerCAmelCase__ = tokenizer(lowerCamelCase_ , return_tensors='''pt''' , truncation=lowerCamelCase_ , padding='''longest''' ).to(lowerCamelCase_ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) lowerCAmelCase__ = calculate_bleu(lowerCamelCase_ , lowerCamelCase_ ) print(lowerCamelCase_ ) self.assertGreaterEqual(scores['''bleu'''] , lowerCamelCase_ )
90
import os # Precomputes a list of the 100 first triangular numbers UpperCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCamelCase_ ( ) -> List[Any]: __A : Optional[Any] = os.path.dirname(os.path.realpath(_lowercase ) ) __A : Any = os.path.join(_lowercase , "words.txt" ) __A : Dict = "" with open(_lowercase ) as f: __A : List[str] = f.readline() __A : Union[str, Any] = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] __A : List[Any] = [ word for word in [sum(ord(_lowercase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_lowercase ) if __name__ == "__main__": print(solution())
520
0
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Optional[int] = "autoformer" _UpperCamelCase : List[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "student_t" , _lowerCAmelCase = "nll" , _lowerCAmelCase = 1 , _lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7] , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 6_4 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 3_2 , _lowerCAmelCase = 3_2 , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 1_0_0 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = True , _lowerCAmelCase=True , _lowerCAmelCase = 1_0 , _lowerCAmelCase = 2_5 , _lowerCAmelCase = 3 , **_lowerCAmelCase , ): # time series specific configuration _lowercase : str = prediction_length _lowercase : List[Any] = context_length if context_length is not None else prediction_length _lowercase : Union[str, Any] = distribution_output _lowercase : Optional[Any] = loss _lowercase : Optional[int] = input_size _lowercase : List[Any] = num_time_features _lowercase : Optional[int] = lags_sequence _lowercase : Tuple = scaling _lowercase : Any = num_dynamic_real_features _lowercase : Dict = num_static_real_features _lowercase : List[str] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_lowerCAmelCase ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) _lowercase : Any = cardinality else: _lowercase : Optional[int] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_lowerCAmelCase ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) _lowercase : Union[str, Any] = embedding_dimension else: _lowercase : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _lowercase : str = num_parallel_samples # Transformer architecture configuration _lowercase : Optional[Any] = input_size * len(self.lags_sequence ) + self._number_of_features _lowercase : str = d_model _lowercase : Optional[int] = encoder_attention_heads _lowercase : List[str] = decoder_attention_heads _lowercase : List[Any] = encoder_ffn_dim _lowercase : Optional[Any] = decoder_ffn_dim _lowercase : str = encoder_layers _lowercase : Union[str, Any] = decoder_layers _lowercase : List[str] = dropout _lowercase : str = attention_dropout _lowercase : Dict = activation_dropout _lowercase : int = encoder_layerdrop _lowercase : Tuple = decoder_layerdrop _lowercase : Union[str, Any] = activation_function _lowercase : Tuple = init_std _lowercase : Dict = use_cache # Autoformer _lowercase : Tuple = label_length _lowercase : str = moving_average _lowercase : List[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase ) @property def __a ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
677
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} UpperCamelCase = {"facebook/bart-base": BartTokenizer} def __magic_name__ ( ) -> str: _lowercase : Optional[int] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=SCREAMING_SNAKE_CASE , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--config_name' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='Where to store the final ONNX file.' ) _lowercase : Optional[Any] = parser.parse_args() return args def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="cpu" ) -> List[Any]: _lowercase : Dict = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) _lowercase : int = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE ) if model_name in ["facebook/bart-base"]: _lowercase : Dict = 0 _lowercase : Optional[int] = None _lowercase : Union[str, Any] = 0 return huggingface_model, tokenizer def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: model.eval() _lowercase : List[Any] = None _lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE ) ) with torch.no_grad(): _lowercase : Optional[int] = 'My friends are cool but they eat too many carbs.' _lowercase : int = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt' ).to(model.device ) _lowercase : str = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , early_stopping=SCREAMING_SNAKE_CASE , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=SCREAMING_SNAKE_CASE , ) logger.info('Model exported to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : str = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE ) ) logger.info('Deduplicated and optimized model written to {}'.format(SCREAMING_SNAKE_CASE ) ) _lowercase : Union[str, Any] = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ort_sess.run( SCREAMING_SNAKE_CASE , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(SCREAMING_SNAKE_CASE ), 'max_length': np.array(SCREAMING_SNAKE_CASE ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def __magic_name__ ( ) -> Any: _lowercase : Dict = parse_args() _lowercase : Union[str, Any] = 5 _lowercase : Union[str, Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _lowercase : Optional[Any] = torch.device(args.device ) _lowercase , _lowercase : List[Any] = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(SCREAMING_SNAKE_CASE ) if args.max_length: _lowercase : Any = args.max_length if args.num_beams: _lowercase : List[str] = args.num_beams if args.output_file_path: _lowercase : Union[str, Any] = args.output_file_path else: _lowercase : Tuple = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __magic_name__ : Union[str, Any] = {"""configuration_vit_mae""": ["""VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMAEConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : str = [ """VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMAEForPreTraining""", """ViTMAELayer""", """ViTMAEModel""", """ViTMAEPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : List[Any] = [ """TFViTMAEForPreTraining""", """TFViTMAEModel""", """TFViTMAEPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __magic_name__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
102
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCamelCase = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _lowerCamelCase = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ _lowerCamelCase = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _snake_case (datasets.Metric): def UpperCamelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ,id="token" ) ,id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" ,id="token" ) ,id="sequence" ) ,id="references" ), } ) ,) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ,_snake_case = 1 ,_snake_case = 4 ,): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_snake_case ,hypotheses=_snake_case ,min_len=_snake_case ,max_len=_snake_case ) }
71
0
from copy import deepcopy class __snake_case : '''simple docstring''' def __init__( self : Dict , A : List[Any] = None , A : str = None ): if arr is None and size is not None: __snake_case: str = size __snake_case: Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError("""Either arr or size must be specified""" ) def UpperCAmelCase__ ( self : List[Any] , A : List[str] ): __snake_case: Optional[Any] = len(lowercase__ ) __snake_case: int = deepcopy(lowercase__ ) for i in range(1 , self.size ): __snake_case: Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def UpperCAmelCase__ ( self : List[str] ): __snake_case: Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): __snake_case: Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCAmelCase__ ( A : List[str] ): return index + (index & (-index)) @staticmethod def UpperCAmelCase__ ( A : Optional[Any] ): return index - (index & (-index)) def UpperCAmelCase__ ( self : Optional[Any] , A : str , A : Tuple ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value __snake_case: Tuple = self.next_(lowercase__ ) def UpperCAmelCase__ ( self : List[Any] , A : Optional[Any] , A : Optional[int] ): self.add(lowercase__ , value - self.get(lowercase__ ) ) def UpperCAmelCase__ ( self : str , A : Optional[Any] ): if right == 0: return 0 __snake_case: List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] __snake_case: Optional[int] = self.prev(lowercase__ ) return result def UpperCAmelCase__ ( self : Optional[Any] , A : Optional[Any] , A : List[str] ): return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def UpperCAmelCase__ ( self : Tuple , A : Dict ): return self.query(lowercase__ , index + 1 ) def UpperCAmelCase__ ( self : Union[str, Any] , A : Dict ): value -= self.tree[0] if value < 0: return -1 __snake_case: Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 __snake_case: Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
704
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_50, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[Any] ): if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=A , ) assert hasattr(self , """env""" ) def UpperCAmelCase__ ( self : int , A : List[Any] ): __snake_case: Optional[int] = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings __snake_case: Optional[int] = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A , py_version="""py36""" , ) def UpperCAmelCase__ ( self : List[Any] , A : int ): TrainingJobAnalytics(A ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def UpperCAmelCase__ ( self : str , A : Any ): # create estimator __snake_case: str = self.create_estimator(A ) # run training estimator.fit() # result dataframe __snake_case: Optional[int] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __snake_case: Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) __snake_case: List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __snake_case: Tuple = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , A )
155
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : int ): UpperCAmelCase__ :Tuple = 1_0 def __SCREAMING_SNAKE_CASE ( self : int ): UpperCAmelCase__ :Optional[Any] = [1, 2, 3, 4] UpperCAmelCase__ :str = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__lowerCamelCase , self.block_size , 0 ) , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): UpperCAmelCase__ :Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] UpperCAmelCase__ :Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__lowerCamelCase , self.block_size , 0 ) , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : str ): UpperCAmelCase__ :List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] UpperCAmelCase__ :Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__lowerCamelCase , self.block_size , 0 ) , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): UpperCAmelCase__ :int = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCAmelCase__ , UpperCAmelCase__ :Any = process_story(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , [] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): UpperCAmelCase__ :int = '''''' UpperCAmelCase__ , UpperCAmelCase__ :List[Any] = process_story(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , [] ) self.assertEqual(__lowerCamelCase , [] ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ :Any = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCAmelCase__ , UpperCAmelCase__ :Optional[int] = process_story(__lowerCamelCase ) UpperCAmelCase__ :Union[str, Any] = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :Union[str, Any] = ['''It was the best of times.'''] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): UpperCAmelCase__ :Dict = torch.tensor([1, 2, 3, 4] ) UpperCAmelCase__ :int = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__lowerCamelCase , 0 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): UpperCAmelCase__ :List[Any] = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) UpperCAmelCase__ :str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__lowerCamelCase , 2_3 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self : Dict ): UpperCAmelCase__ :Optional[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCAmelCase__ :Any = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__lowerCamelCase , 1 ).numpy() , expected.numpy() ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ): UpperCAmelCase__ :int = 1_0_1 UpperCAmelCase__ :Optional[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) UpperCAmelCase__ :int = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCAmelCase__ :Any = compute_token_type_ids(__lowerCamelCase , __lowerCamelCase ) np.testing.assert_array_equal(__lowerCamelCase , __lowerCamelCase )
467
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=_snake_case ): UpperCAmelCase = ["speech"] def __init__( self : List[Any] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ): requires_backends(self , ['''speech'''] ) class UpperCAmelCase ( metaclass=_snake_case ): UpperCAmelCase = ["speech"] def __init__( self : int , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ): requires_backends(self , ['''speech'''] )
467
1
from math import factorial def _lowerCAmelCase ( _lowerCAmelCase = 20 ) -> int: '''simple docstring''' __snake_case = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... __snake_case = n // 2 return int(factorial(_lowerCAmelCase ) / (factorial(_lowerCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: A : int = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
473
from __future__ import annotations from collections.abc import Iterator class UpperCamelCase: def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int ) -> None: '''simple docstring''' __snake_case = value __snake_case = None __snake_case = None class UpperCamelCase: def __init__( self : int , SCREAMING_SNAKE_CASE : Node ) -> None: '''simple docstring''' __snake_case = tree def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE : Node | None ) -> int: '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
473
1
import tensorflow as tf from ...tf_utils import shape_list class __magic_name__ ( tf.keras.layers.Layer): '''simple docstring''' def __init__( self: List[str] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: str , _lowerCamelCase: List[Any] , _lowerCamelCase: Any , _lowerCamelCase: Dict=1 , _lowerCamelCase: str=False , **_lowerCamelCase: int ): super().__init__(**_a ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = d_embed SCREAMING_SNAKE_CASE_ = d_proj SCREAMING_SNAKE_CASE_ = cutoffs + [vocab_size] SCREAMING_SNAKE_CASE_ = [0] + self.cutoffs SCREAMING_SNAKE_CASE_ = div_val SCREAMING_SNAKE_CASE_ = self.cutoffs[0] SCREAMING_SNAKE_CASE_ = len(self.cutoffs ) - 1 SCREAMING_SNAKE_CASE_ = self.shortlist_size + self.n_clusters SCREAMING_SNAKE_CASE_ = keep_order SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def _A ( self: List[Any] , _lowerCamelCase: Any ): if self.n_clusters > 0: SCREAMING_SNAKE_CASE_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=_a , name='''cluster_weight''' ) SCREAMING_SNAKE_CASE_ = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=_a , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: SCREAMING_SNAKE_CASE_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=_a , name=f"out_projs_._{i}" , ) self.out_projs.append(_a ) else: self.out_projs.append(_a ) SCREAMING_SNAKE_CASE_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=_a , name=f"out_layers_._{i}_._weight" , ) SCREAMING_SNAKE_CASE_ = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=_a , name=f"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE_ = self.d_embed // (self.div_val**i) SCREAMING_SNAKE_CASE_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=_a , name=f"out_projs_._{i}" ) self.out_projs.append(_a ) SCREAMING_SNAKE_CASE_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=_a , name=f"out_layers_._{i}_._weight" , ) SCREAMING_SNAKE_CASE_ = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=_a , name=f"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) super().build(_a ) @staticmethod def _A ( _lowerCamelCase: Tuple , _lowerCamelCase: Tuple , _lowerCamelCase: Tuple , _lowerCamelCase: str=None ): SCREAMING_SNAKE_CASE_ = x if proj is not None: SCREAMING_SNAKE_CASE_ = tf.einsum('''ibd,ed->ibe''' , _a , _a ) return tf.einsum('''ibd,nd->ibn''' , _a , _a ) + b @staticmethod def _A ( _lowerCamelCase: int , _lowerCamelCase: Dict ): SCREAMING_SNAKE_CASE_ = shape_list(_a ) SCREAMING_SNAKE_CASE_ = tf.range(lp_size[0] , dtype=target.dtype ) SCREAMING_SNAKE_CASE_ = tf.stack([r, target] , 1 ) return tf.gather_nd(_a , _a ) def _A ( self: Any , _lowerCamelCase: List[str] , _lowerCamelCase: Dict , _lowerCamelCase: str=True , _lowerCamelCase: Optional[int]=False ): SCREAMING_SNAKE_CASE_ = 0 if self.n_clusters == 0: SCREAMING_SNAKE_CASE_ = self._logit(_a , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: SCREAMING_SNAKE_CASE_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_a , logits=_a ) SCREAMING_SNAKE_CASE_ = tf.nn.log_softmax(_a , axis=-1 ) else: SCREAMING_SNAKE_CASE_ = shape_list(_a ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: SCREAMING_SNAKE_CASE_ = (target >= l_idx) & (target < r_idx) SCREAMING_SNAKE_CASE_ = tf.where(_a ) SCREAMING_SNAKE_CASE_ = tf.boolean_mask(_a , _a ) - l_idx if self.div_val == 1: SCREAMING_SNAKE_CASE_ = self.out_layers[0][0][l_idx:r_idx] SCREAMING_SNAKE_CASE_ = self.out_layers[0][1][l_idx:r_idx] else: SCREAMING_SNAKE_CASE_ = self.out_layers[i][0] SCREAMING_SNAKE_CASE_ = self.out_layers[i][1] if i == 0: SCREAMING_SNAKE_CASE_ = tf.concat([cur_W, self.cluster_weight] , 0 ) SCREAMING_SNAKE_CASE_ = tf.concat([cur_b, self.cluster_bias] , 0 ) SCREAMING_SNAKE_CASE_ = self._logit(_a , _a , _a , self.out_projs[0] ) SCREAMING_SNAKE_CASE_ = tf.nn.log_softmax(_a ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: SCREAMING_SNAKE_CASE_ = tf.boolean_mask(_a , _a ) SCREAMING_SNAKE_CASE_ = self._gather_logprob(_a , _a ) else: SCREAMING_SNAKE_CASE_ = self._logit(_a , _a , _a , self.out_projs[i] ) SCREAMING_SNAKE_CASE_ = tf.nn.log_softmax(_a ) SCREAMING_SNAKE_CASE_ = self.cutoffs[0] + i - 1 # No probability for the head cluster SCREAMING_SNAKE_CASE_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_a ) if target is not None: SCREAMING_SNAKE_CASE_ = tf.boolean_mask(_a , _a ) SCREAMING_SNAKE_CASE_ = tf.boolean_mask(_a , _a ) SCREAMING_SNAKE_CASE_ = self._gather_logprob(_a , _a ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_a , -cur_logprob , shape_list(_a ) ) SCREAMING_SNAKE_CASE_ = tf.concat(_a , axis=-1 ) if target is not None: if return_mean: SCREAMING_SNAKE_CASE_ = tf.reduce_mean(_a ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_a ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_a , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
234
def A(__a: int = 50 ): lowerCAmelCase_ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
122
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup A_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def _UpperCamelCase ( __UpperCamelCase = "mumbai" ) -> Generator[tuple[str, str], None, None]: lowerCamelCase_ = BeautifulSoup(requests.get(url + location ).content ,'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' ,attrs={'data-tn-component': 'organicJob'} ): lowerCamelCase_ = job.find('a' ,attrs={'data-tn-element': 'jobTitle'} ).text.strip() lowerCamelCase_ = job.find('span' ,{'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
384
'''simple docstring''' from ....utils import logging A_ = logging.get_logger(__name__) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2048 ) -> Dict: '''simple docstring''' lowerCamelCase_ = config.__dict__ lowerCamelCase_ = modal_hidden_size if num_labels: lowerCamelCase_ = num_labels
384
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __SCREAMING_SNAKE_CASE :List[str] = random.Random() if is_torch_available(): import torch def UpperCAmelCase_ ( __lowercase : Tuple , __lowercase : Union[str, Any]=1.0 , __lowercase : str=None , __lowercase : str=None ) -> Optional[int]: '''simple docstring''' if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A_ ( unittest.TestCase ): def __init__( self : Dict , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any]=7 , snake_case_ : Tuple=4_0_0 , snake_case_ : Optional[Any]=2_0_0_0 , snake_case_ : Optional[int]=1 , snake_case_ : int=0.0 , snake_case_ : List[Any]=1_6_0_0_0 , snake_case_ : Optional[int]=True , snake_case_ : List[Any]=True , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = feature_size _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize def lowercase ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase ( self : Dict , snake_case_ : Optional[Any]=False , snake_case_ : Tuple=False ): def _flatten(snake_case_ : Tuple ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : Tuple = ASTFeatureExtractor def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = ASTFeatureExtractionTester(self ) def lowercase ( self : Any ): # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values _UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feat_extract(snake_case_ , padding=snake_case_ , return_tensors="np" ).input_values _UpperCAmelCase = feat_extract(snake_case_ , padding=snake_case_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _UpperCAmelCase = np.asarray(snake_case_ ) _UpperCAmelCase = feat_extract(snake_case_ , return_tensors="np" ).input_values _UpperCAmelCase = feat_extract(snake_case_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) @require_torch def lowercase ( self : Tuple ): import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase ( self : str , snake_case_ : str ): from datasets import load_dataset _UpperCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort("id" ).select(range(snake_case_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def lowercase ( self : List[str] ): # fmt: off _UpperCAmelCase = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = ASTFeatureExtractor() _UpperCAmelCase = feature_extractor(snake_case_ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1_0_2_4, 1_2_8) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , snake_case_ , atol=1e-4 ) )
236
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __SCREAMING_SNAKE_CASE :int = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCAmelCase_ ( __lowercase : List[str] ) -> str: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : Dict ) -> str: '''simple docstring''' if args.student_type == "roberta": _UpperCAmelCase = False elif args.student_type == "gpt2": _UpperCAmelCase = False def UpperCAmelCase_ ( __lowercase : Any , __lowercase : List[Any] ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _UpperCAmelCase = False def UpperCAmelCase_ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=__lowercase , required=__lowercase , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=__lowercase , required=__lowercase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=__lowercase , choices=["distilbert", "roberta", "gpt2"] , required=__lowercase , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=__lowercase , required=__lowercase , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=__lowercase , type=__lowercase , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=__lowercase , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=__lowercase , required=__lowercase , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=__lowercase , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=__lowercase , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=__lowercase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=__lowercase , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=__lowercase , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=__lowercase , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=__lowercase , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=__lowercase , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=__lowercase , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=__lowercase , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=__lowercase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=__lowercase , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=__lowercase , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=__lowercase , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=__lowercase , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=__lowercase , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=__lowercase , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5E-4 , type=__lowercase , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1E-6 , type=__lowercase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=__lowercase , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=__lowercase , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__lowercase , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=__lowercase , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=__lowercase , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=__lowercase , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=__lowercase , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=__lowercase , default=4000 , help="Checkpoint interval." ) _UpperCAmelCase = parser.parse_args() sanity_checks(__lowercase ) # ARGS # init_gpu_params(__lowercase ) set_seed(__lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(f'Param: {args}' ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(__lowercase ) , __lowercase , indent=4 ) git_log(args.dump_path ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = MODEL_CLASSES[args.student_type] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _UpperCAmelCase = tokenizer.all_special_tokens.index(__lowercase ) _UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f'Special tokens {special_tok_ids}' ) _UpperCAmelCase = special_tok_ids _UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'Loading data from {args.data_file}' ) with open(args.data_file , "rb" ) as fp: _UpperCAmelCase = pickle.load(__lowercase ) if args.mlm: logger.info(f'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts , "rb" ) as fp: _UpperCAmelCase = pickle.load(__lowercase ) _UpperCAmelCase = np.maximum(__lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _UpperCAmelCase = 0.0 # do not predict special tokens _UpperCAmelCase = torch.from_numpy(__lowercase ) else: _UpperCAmelCase = None _UpperCAmelCase = LmSeqsDataset(params=__lowercase , data=__lowercase ) logger.info("Data loader created." ) # STUDENT # logger.info(f'Loading student config from {args.student_config}' ) _UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) _UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f'Loading pretrained weights from {args.student_pretrained_weights}' ) _UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowercase ) else: _UpperCAmelCase = student_model_class(__lowercase ) if args.n_gpu > 0: student.to(f'cuda:{args.local_rank}' ) logger.info("Student loaded." ) # TEACHER # _UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowercase ) if args.n_gpu > 0: teacher.to(f'cuda:{args.local_rank}' ) logger.info(f'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__lowercase , __lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__lowercase , __lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _UpperCAmelCase = Distiller( params=__lowercase , dataset=__lowercase , token_probs=__lowercase , student=__lowercase , teacher=__lowercase ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
236
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset SCREAMING_SNAKE_CASE__ = random.Random() def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Tuple=1.0 , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if rng is None: snake_case = global_rng snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=4_00 , lowerCAmelCase=20_00 , lowerCAmelCase=20_48 , lowerCAmelCase=1_28 , lowerCAmelCase=1 , lowerCAmelCase=5_12 , lowerCAmelCase=30 , lowerCAmelCase=4_41_00 , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = min_seq_length snake_case = max_seq_length snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case = spectrogram_length snake_case = feature_size snake_case = num_audio_channels snake_case = hop_length snake_case = chunk_length snake_case = sampling_rate def snake_case ( self ): """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case ( self , lowerCAmelCase=False , lowerCAmelCase=False ): """simple docstring""" def _flatten(lowerCAmelCase ): return list(itertools.chain(*lowerCAmelCase ) ) if equal_length: snake_case = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case = [np.asarray(lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase_ ( lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : str = TvltFeatureExtractor def snake_case ( self ): """simple docstring""" snake_case = TvltFeatureExtractionTester(self ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCAmelCase , 'spectrogram_length' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'num_audio_channels' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'hop_length' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'chunk_length' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate' ) ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = feat_extract_first.save_pretrained(lowerCAmelCase )[0] check_json_file_has_correct_format(lowerCAmelCase ) snake_case = self.feature_extraction_class.from_pretrained(lowerCAmelCase ) snake_case = feat_extract_first.to_dict() snake_case = feat_extract_second.to_dict() snake_case = dict_first.pop('mel_filters' ) snake_case = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case = os.path.join(lowerCAmelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(lowerCAmelCase ) snake_case = self.feature_extraction_class.from_json_file(lowerCAmelCase ) snake_case = feat_extract_first.to_dict() snake_case = feat_extract_second.to_dict() snake_case = dict_first.pop('mel_filters' ) snake_case = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case = [np.asarray(lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input snake_case = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched snake_case = feature_extractor(lowerCAmelCase , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking snake_case = feature_extractor( lowerCAmelCase , return_tensors='np' , sampling_rate=4_41_00 , mask_audio=lowerCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. snake_case = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case = np.asarray(lowerCAmelCase ) snake_case = feature_extractor(lowerCAmelCase , return_tensors='np' , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech snake_case = ds.sort('id' ).select(range(lowerCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def snake_case ( self ): """simple docstring""" snake_case = self._load_datasamples(1 ) snake_case = TvltFeatureExtractor() snake_case = feature_extractor(lowerCAmelCase , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) ) snake_case = torch.tensor([[-0.30_32, -0.27_08], [-0.44_34, -0.40_07]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowerCAmelCase , atol=1E-4 ) )
721
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=18 , lowerCAmelCase=30 , lowerCAmelCase=4_00 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=[0.5, 0.5, 0.5] , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size if size is not None else {'height': 18, 'width': 20} snake_case = do_thumbnail snake_case = do_align_axis snake_case = do_pad snake_case = do_normalize snake_case = image_mean snake_case = image_std def snake_case ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCAmelCase_ ( lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : str = DonutImageProcessor if is_vision_available() else None def snake_case ( self ): """simple docstring""" snake_case = DonutImageProcessingTester(self ) @property def snake_case ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): """simple docstring""" snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_thumbnail' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_pad' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'image_std' ) ) def snake_case ( self ): """simple docstring""" snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def snake_case ( self ): """simple docstring""" pass @is_flaky() def snake_case ( self ): """simple docstring""" snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched snake_case = image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def snake_case ( self ): """simple docstring""" snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched snake_case = image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def snake_case ( self ): """simple docstring""" snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched snake_case = image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
104
0
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] __UpperCamelCase = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks SCREAMING_SNAKE_CASE = int(re.match(R'.*layer_(\d*).*' , SCREAMING_SNAKE_CASE_ )[1] ) layer_number -= 3 return F'h.{layer_number}.' + key def lowercase (SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]: if dtype == torch.bool: return 1 / 8 SCREAMING_SNAKE_CASE = re.search(R'[^\d](\d+)$' , str(SCREAMING_SNAKE_CASE_ ) ) if bit_search is None: raise ValueError(F'`dtype` is not a valid dtype: {dtype}.' ) SCREAMING_SNAKE_CASE = int(bit_search.groups()[0] ) return bit_size // 8 def lowercase (SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[Any]: # Construct model if bloom_config_file == "": SCREAMING_SNAKE_CASE = BloomConfig() else: SCREAMING_SNAKE_CASE = BloomConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) if shard_model: SCREAMING_SNAKE_CASE = os.listdir(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = sorted(filter(lambda SCREAMING_SNAKE_CASE_ : s.startswith('layer' ) and "model_00" in s , SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = {'weight_map': {}, 'metadata': {}} SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = BloomConfig() for j, file in enumerate(SCREAMING_SNAKE_CASE_ ): print('Processing file: {}'.format(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = None for i in range(SCREAMING_SNAKE_CASE_ ): # load all TP files SCREAMING_SNAKE_CASE = file.replace('model_00' , F'model_0{i}' ) SCREAMING_SNAKE_CASE = torch.load(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , map_location='cpu' ) # Rename keys in the transformers names SCREAMING_SNAKE_CASE = list(temp.keys() ) for key in keys: SCREAMING_SNAKE_CASE = temp.pop(SCREAMING_SNAKE_CASE_ ) if tensors is None: SCREAMING_SNAKE_CASE = temp else: for key in tensors.keys(): if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel SCREAMING_SNAKE_CASE = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks SCREAMING_SNAKE_CASE = torch.cat([tensors[key], temp[key]] , dim=SCREAMING_SNAKE_CASE_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): SCREAMING_SNAKE_CASE = tensors[key] / pretraining_tp torch.save( SCREAMING_SNAKE_CASE_ , os.path.join( SCREAMING_SNAKE_CASE_ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(SCREAMING_SNAKE_CASE_ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): SCREAMING_SNAKE_CASE = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: SCREAMING_SNAKE_CASE = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(SCREAMING_SNAKE_CASE_ ) ).zfill(5 ) ) SCREAMING_SNAKE_CASE = BloomConfig() SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + '/' + CONFIG_NAME SCREAMING_SNAKE_CASE = total_size with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE = json.dumps(SCREAMING_SNAKE_CASE_ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ ) + '\n' f.write(SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE = BloomModel(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = os.listdir(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = sorted(filter(lambda SCREAMING_SNAKE_CASE_ : s.startswith('layer' ) and "model_00" in s , SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = None for i, file in enumerate(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = None for i in range(SCREAMING_SNAKE_CASE_ ): # load all TP files SCREAMING_SNAKE_CASE = file.replace('model_00' , F'model_0{i}' ) SCREAMING_SNAKE_CASE = torch.load(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , map_location='cpu' ) # Rename keys in the transformers names SCREAMING_SNAKE_CASE = list(temp.keys() ) for key in keys: SCREAMING_SNAKE_CASE = temp.pop(SCREAMING_SNAKE_CASE_ ) if tensors is None: SCREAMING_SNAKE_CASE = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel SCREAMING_SNAKE_CASE = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks SCREAMING_SNAKE_CASE = torch.cat([tensors[key], temp[key]] , dim=SCREAMING_SNAKE_CASE_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(SCREAMING_SNAKE_CASE_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): SCREAMING_SNAKE_CASE = tensors[key] / pretraining_tp SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert not other_keys.unexpected_keys, F'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: SCREAMING_SNAKE_CASE = set(other_keys.missing_keys ) else: SCREAMING_SNAKE_CASE = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + '/' + WEIGHTS_NAME SCREAMING_SNAKE_CASE = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: SCREAMING_SNAKE_CASE = model.to(config.torch_dtype ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) __UpperCamelCase = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
247
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = CustomTokenizer pass
247
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : List[str]=13 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : List[Any]=True , snake_case__ : Optional[int]=99 , snake_case__ : Any=32 , snake_case__ : Any=5 , snake_case__ : int=4 , snake_case__ : Optional[Any]=37 , snake_case__ : Dict="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : int=5_12 , snake_case__ : Optional[Any]=16 , snake_case__ : List[Any]=2 , snake_case__ : Union[str, Any]=0.02 , snake_case__ : List[str]=4 , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_choices def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_attention_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( self : Any ): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class A_ ( __a , unittest.TestCase ): '''simple docstring''' _A :List[Any] = True _A :Union[str, Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self : int ): lowercase = FlaxRoFormerModelTester(self ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): for model_class_name in self.all_model_classes: lowercase = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=snake_case__ ) lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ ) @require_flax class A_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) lowercase = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowercase = model(snake_case__ )[0] lowercase = 5_00_00 lowercase = (1, 6, vocab_size) self.assertEqual(output.shape , snake_case__ ) lowercase = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) )
703
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : str =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str ={ '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A_ ( __a ): _A :Tuple = '''data2vec-audio''' def __init__( self : Optional[Any] , snake_case__ : List[Any]=32 , snake_case__ : List[Any]=7_68 , snake_case__ : int=12 , snake_case__ : Dict=12 , snake_case__ : List[str]=30_72 , snake_case__ : List[str]="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : Tuple=0.0 , snake_case__ : Tuple=0.1 , snake_case__ : Any=0.1 , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-5 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , snake_case__ : List[str]=(5, 2, 2, 2, 2, 2, 2) , snake_case__ : str=(10, 3, 3, 3, 3, 2, 2) , snake_case__ : Any=False , snake_case__ : List[str]=16 , snake_case__ : Any=19 , snake_case__ : Optional[Any]=5 , snake_case__ : str=0.05 , snake_case__ : Tuple=10 , snake_case__ : Optional[Any]=2 , snake_case__ : Dict=0.0 , snake_case__ : int=10 , snake_case__ : Any=0 , snake_case__ : int="sum" , snake_case__ : str=False , snake_case__ : str=False , snake_case__ : Optional[int]=2_56 , snake_case__ : List[str]=(5_12, 5_12, 5_12, 5_12, 15_00) , snake_case__ : List[str]=(5, 3, 3, 1, 1) , snake_case__ : int=(1, 2, 3, 1, 1) , snake_case__ : Optional[Any]=5_12 , snake_case__ : Dict=0 , snake_case__ : Optional[Any]=1 , snake_case__ : Tuple=2 , snake_case__ : Tuple=False , snake_case__ : List[str]=3 , snake_case__ : List[str]=2 , snake_case__ : Tuple=3 , snake_case__ : List[str]=None , **snake_case__ : str , ): super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) lowercase = hidden_size lowercase = feat_extract_activation lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = conv_bias lowercase = num_conv_pos_embeddings lowercase = num_conv_pos_embedding_groups lowercase = conv_pos_kernel_size lowercase = len(self.conv_dim ) lowercase = num_hidden_layers lowercase = intermediate_size lowercase = hidden_act lowercase = num_attention_heads lowercase = hidden_dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = feat_proj_dropout lowercase = final_dropout lowercase = layerdrop lowercase = layer_norm_eps lowercase = initializer_range lowercase = vocab_size lowercase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase = mask_time_prob lowercase = mask_time_length lowercase = mask_time_min_masks lowercase = mask_feature_prob lowercase = mask_feature_length lowercase = mask_feature_min_masks # ctc loss lowercase = ctc_loss_reduction lowercase = ctc_zero_infinity # adapter lowercase = add_adapter lowercase = adapter_kernel_size lowercase = adapter_stride lowercase = num_adapter_layers lowercase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = list(snake_case__ ) lowercase = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): return math.prod(self.conv_stride )
72
0
'''simple docstring''' from __future__ import annotations class a__: '''simple docstring''' def __init__( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = order # a_{0} ... a_{k} lowerCAmelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} lowerCAmelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowerCAmelCase = [0.0] * self.order # y[n-1] ... y[n-k] lowerCAmelCase = [0.0] * self.order def a_ ( self , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" if len(__lowerCAmelCase) < self.order: lowerCAmelCase = [1.0, *a_coeffs] if len(__lowerCAmelCase) != self.order + 1: lowerCAmelCase = ( f"Expected a_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(__lowerCAmelCase)}" ) raise ValueError(__lowerCAmelCase) if len(__lowerCAmelCase) != self.order + 1: lowerCAmelCase = ( f"Expected b_coeffs to have {self.order + 1} elements " f"for {self.order}-order filter, got {len(__lowerCAmelCase)}" ) raise ValueError(__lowerCAmelCase) lowerCAmelCase = a_coeffs lowerCAmelCase = b_coeffs def a_ ( self , __lowerCAmelCase): """simple docstring""" lowerCAmelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowerCAmelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowerCAmelCase = self.input_history[:-1] lowerCAmelCase = self.output_history[:-1] lowerCAmelCase = sample lowerCAmelCase = result return result
370
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase (__snake_case ): def __init__( self :Any , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] ) ->Dict: super().__init__() # make sure scheduler can always be converted to DDIM lowercase : Optional[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__magic_name__ , scheduler=__magic_name__ ) @torch.no_grad() def __call__( self :Optional[int] , __magic_name__ :int = 1 , __magic_name__ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ :float = 0.0 , __magic_name__ :int = 50 , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[str] = "pil" , __magic_name__ :bool = True , ) ->Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __magic_name__ ): lowercase : int = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowercase : Tuple = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__magic_name__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowercase : Dict = randn_tensor(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__magic_name__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase : Union[str, Any] = self.unet(__magic_name__ , __magic_name__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase : int = self.scheduler.step( __magic_name__ , __magic_name__ , __magic_name__ , eta=__magic_name__ , use_clipped_model_output=__magic_name__ , generator=__magic_name__ ).prev_sample lowercase : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) lowercase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase : Any = self.numpy_to_pil(__magic_name__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=__magic_name__ )
264
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _a (unittest.TestCase): """simple docstring""" def __init__( self , A__ , A__=7 , A__=3 , A__=30 , A__=4_00 , A__=True , A__=None , A__=True , A__=[0.5, 0.5, 0.5] , A__=[0.5, 0.5, 0.5] , A__=True , A__=1 / 2_55 , A__=True , ) -> Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean _SCREAMING_SNAKE_CASE = image_std _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_pad def UpperCamelCase ( self ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase ( self , A__ , A__=False ) -> List[str]: if not batched: _SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(A__ , Image.Image ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.size else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] if w < h: _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * h / w ) _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] elif w > h: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = int(self.size["""shortest_edge"""] * w / h ) else: _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] _SCREAMING_SNAKE_CASE = self.size["""shortest_edge"""] else: _SCREAMING_SNAKE_CASE = [] for image in image_inputs: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _SCREAMING_SNAKE_CASE = max(A__ , key=lambda A__ : item[0] )[0] _SCREAMING_SNAKE_CASE = max(A__ , key=lambda A__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = DetaImageProcessor if is_vision_available() else None def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = DetaImageProcessingTester(self ) @property def UpperCamelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , """image_mean""" ) ) self.assertTrue(hasattr(A__ , """image_std""" ) ) self.assertTrue(hasattr(A__ , """do_normalize""" ) ) self.assertTrue(hasattr(A__ , """do_resize""" ) ) self.assertTrue(hasattr(A__ , """do_rescale""" ) ) self.assertTrue(hasattr(A__ , """do_pad""" ) ) self.assertTrue(hasattr(A__ , """size""" ) ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , A__ ) def UpperCamelCase ( self ) -> List[str]: pass def UpperCamelCase ( self ) -> List[str]: # Initialize image_processing _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) _SCREAMING_SNAKE_CASE = image_processing(A__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self ) -> Optional[int]: # Initialize image_processing _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(A__ , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase ( self ) -> List[Any]: # Initialize image_processing _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(A__ , return_tensors="""pt""" ).pixel_values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase ( self ) -> Tuple: # prepare image and target _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: _SCREAMING_SNAKE_CASE = json.loads(f.read() ) _SCREAMING_SNAKE_CASE = {"""image_id""": 3_97_69, """annotations""": target} # encode them _SCREAMING_SNAKE_CASE = DetaImageProcessor() _SCREAMING_SNAKE_CASE = image_processing(images=A__ , annotations=A__ , return_tensors="""pt""" ) # verify pixel values _SCREAMING_SNAKE_CASE = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , A__ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A__ , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A__ ) ) # verify boxes _SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A__ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A__ , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A__ ) ) # verify is_crowd _SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A__ ) ) # verify class_labels _SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A__ ) ) # verify orig_size _SCREAMING_SNAKE_CASE = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A__ ) ) # verify size _SCREAMING_SNAKE_CASE = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A__ ) ) @slow def UpperCamelCase ( self ) -> List[str]: # prepare image, target and masks_path _SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: _SCREAMING_SNAKE_CASE = json.loads(f.read() ) _SCREAMING_SNAKE_CASE = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} _SCREAMING_SNAKE_CASE = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them _SCREAMING_SNAKE_CASE = DetaImageProcessor(format="""coco_panoptic""" ) _SCREAMING_SNAKE_CASE = image_processing(images=A__ , annotations=A__ , masks_path=A__ , return_tensors="""pt""" ) # verify pixel values _SCREAMING_SNAKE_CASE = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , A__ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A__ , atol=1E-4 ) ) # verify area _SCREAMING_SNAKE_CASE = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A__ ) ) # verify boxes _SCREAMING_SNAKE_CASE = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A__ ) _SCREAMING_SNAKE_CASE = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A__ , atol=1E-3 ) ) # verify image_id _SCREAMING_SNAKE_CASE = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A__ ) ) # verify is_crowd _SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A__ ) ) # verify class_labels _SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A__ ) ) # verify masks _SCREAMING_SNAKE_CASE = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , A__ ) # verify orig_size _SCREAMING_SNAKE_CASE = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A__ ) ) # verify size _SCREAMING_SNAKE_CASE = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A__ ) )
0
'''simple docstring''' import sys UpperCamelCase__ : int = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = N ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = -sys.maxsize - 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) - 12 ): _SCREAMING_SNAKE_CASE = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _SCREAMING_SNAKE_CASE = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
0
1
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def A_ ( snake_case ): return EnvironmentCommand() class _snake_case ( __UpperCAmelCase ): @staticmethod def __UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): SCREAMING_SNAKE_CASE:int = parser.add_parser("env" ) download_parser.set_defaults(func=lowerCAmelCase_ ) def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:int = huggingface_hub.__version__ SCREAMING_SNAKE_CASE:Optional[Any] = 'not installed' SCREAMING_SNAKE_CASE:Union[str, Any] = 'NA' if is_torch_available(): import torch SCREAMING_SNAKE_CASE:Union[str, Any] = torch.__version__ SCREAMING_SNAKE_CASE:Union[str, Any] = torch.cuda.is_available() SCREAMING_SNAKE_CASE:Union[str, Any] = 'not installed' if is_transformers_available(): import transformers SCREAMING_SNAKE_CASE:Tuple = transformers.__version__ SCREAMING_SNAKE_CASE:Optional[int] = 'not installed' if is_accelerate_available(): import accelerate SCREAMING_SNAKE_CASE:str = accelerate.__version__ SCREAMING_SNAKE_CASE:str = 'not installed' if is_xformers_available(): import xformers SCREAMING_SNAKE_CASE:Optional[int] = xformers.__version__ SCREAMING_SNAKE_CASE:Any = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F'''{pt_version} ({pt_cuda_available})''', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(lowerCAmelCase_ ) ) return info @staticmethod def __UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
143
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCAmelCase__ = get_logger(__name__) lowerCAmelCase__ = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class _lowerCAmelCase : @add_start_docstrings(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _lowerCAmelCase : @add_start_docstrings(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _lowerCAmelCase ( __UpperCAmelCase ): @add_start_docstrings(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> jnp.ndarray: for processor in self: _SCREAMING_SNAKE_CASE : int = inspect.signature(processor.__call__ ).parameters if len(lowerCAmelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) _SCREAMING_SNAKE_CASE : Any = processor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) else: _SCREAMING_SNAKE_CASE : Optional[int] = processor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ ) -> Any: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) _SCREAMING_SNAKE_CASE : Tuple = temperature def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE : Optional[int] = scores / self.temperature return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = -float('Inf' ) , lowerCAmelCase_ = 1 ) -> int: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = top_p _SCREAMING_SNAKE_CASE : Optional[int] = filter_value _SCREAMING_SNAKE_CASE : Any = min_tokens_to_keep def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = lax.top_k(lowerCAmelCase_ , scores.shape[-1] ) _SCREAMING_SNAKE_CASE : Dict = jnp.full_like(lowerCAmelCase_ , self.filter_value ) _SCREAMING_SNAKE_CASE : int = jax.nn.softmax(lowerCAmelCase_ , axis=-1 ).cumsum(axis=-1 ) _SCREAMING_SNAKE_CASE : List[str] = cumulative_probs < self.top_p # include the token that is higher than top_p as well _SCREAMING_SNAKE_CASE : Optional[int] = jnp.roll(lowerCAmelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(lowerCAmelCase_ ) # min tokens to keep _SCREAMING_SNAKE_CASE : Optional[Any] = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = jnp.where(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = jax.lax.sort_key_val(lowerCAmelCase_ , lowerCAmelCase_ )[-1] return next_scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = -float('Inf' ) , lowerCAmelCase_ = 1 ) -> Tuple: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) _SCREAMING_SNAKE_CASE : Tuple = max(lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = filter_value def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = scores.shape _SCREAMING_SNAKE_CASE : int = jnp.full(batch_size * vocab_size , self.filter_value ) _SCREAMING_SNAKE_CASE : Union[str, Any] = min(self.top_k , scores.shape[-1] ) # Safety check _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = lax.top_k(lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.broadcast_to((jnp.arange(lowerCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() _SCREAMING_SNAKE_CASE : List[Any] = topk_scores.flatten() _SCREAMING_SNAKE_CASE : Dict = topk_indices.flatten() + shift _SCREAMING_SNAKE_CASE : List[str] = next_scores_flat.at[topk_indices_flat].set(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : int = next_scores_flat.reshape(lowerCAmelCase_ , lowerCAmelCase_ ) return next_scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = bos_token_id def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE : Optional[int] = jnp.full(scores.shape , -float('inf' ) ) _SCREAMING_SNAKE_CASE : int = 1 - jnp.bool_(cur_len - 1 ) _SCREAMING_SNAKE_CASE : List[str] = jnp.where(lowerCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = max_length _SCREAMING_SNAKE_CASE : Any = eos_token_id def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE : List[Any] = jnp.full(scores.shape , -float('inf' ) ) _SCREAMING_SNAKE_CASE : Dict = 1 - jnp.bool_(cur_len - self.max_length + 1 ) _SCREAMING_SNAKE_CASE : Tuple = jnp.where(lowerCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = min_length _SCREAMING_SNAKE_CASE : str = eos_token_id def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied _SCREAMING_SNAKE_CASE : Tuple = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(lowerCAmelCase_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _SCREAMING_SNAKE_CASE : List[str] = list(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = begin_index def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _SCREAMING_SNAKE_CASE : Any = 1 - jnp.bool_(cur_len - self.begin_index ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.where(lowerCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , lowerCAmelCase_ ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : str = list(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: _SCREAMING_SNAKE_CASE : Union[str, Any] = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ ) -> Any: _SCREAMING_SNAKE_CASE : Optional[Any] = dict(lowerCAmelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _SCREAMING_SNAKE_CASE : Dict = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: _SCREAMING_SNAKE_CASE : Dict = force_token_array.at[index].set(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : str = jnp.intaa(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> jnp.ndarray: def _force_token(lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : str = scores.shape[0] _SCREAMING_SNAKE_CASE : List[Any] = self.force_token_array[generation_idx] _SCREAMING_SNAKE_CASE : Dict = jnp.ones_like(lowerCAmelCase_ , dtype=scores.dtype ) * -float('inf' ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) _SCREAMING_SNAKE_CASE : str = lax.dynamic_update_slice(lowerCAmelCase_ , lowerCAmelCase_ , (0, current_token) ) return new_scores _SCREAMING_SNAKE_CASE : Optional[int] = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowerCAmelCase_ ) , lambda: scores , ) , ) return scores class _lowerCAmelCase ( __UpperCAmelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _SCREAMING_SNAKE_CASE : Tuple = generate_config.eos_token_id _SCREAMING_SNAKE_CASE : str = generate_config.no_timestamps_token_id _SCREAMING_SNAKE_CASE : Optional[int] = generate_config.no_timestamps_token_id + 1 _SCREAMING_SNAKE_CASE : str = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCAmelCase_ , 'max_initial_timestamp_index' ): _SCREAMING_SNAKE_CASE : Union[str, Any] = generate_config.max_initial_timestamp_index else: _SCREAMING_SNAKE_CASE : Union[str, Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: _SCREAMING_SNAKE_CASE : Dict = model_config.vocab_size def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: # suppress <|notimestamps|> which is handled by without_timestamps _SCREAMING_SNAKE_CASE : Optional[Any] = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(lowerCAmelCase_ , lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : int = jnp.where((cur_len - self.begin_index) >= 1 , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : Any = jnp.where((cur_len - self.begin_index) < 2 , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowerCAmelCase_ , lowerCAmelCase_ , ) return jnp.where( lowerCAmelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : Optional[Any] = jax.vmap(lowerCAmelCase_ )(lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[str] = jnp.where(cur_len == self.begin_index , lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : Tuple = self.timestamp_begin + self.max_initial_timestamp_index _SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where( lowerCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , lowerCAmelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp _SCREAMING_SNAKE_CASE : str = jax.nn.log_softmax(lowerCAmelCase_ , axis=-1 ) def handle_cumulative_probs(lowerCAmelCase_ , lowerCAmelCase_ ): _SCREAMING_SNAKE_CASE : Any = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) _SCREAMING_SNAKE_CASE : int = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , lowerCAmelCase_ , ) _SCREAMING_SNAKE_CASE : Dict = jax.vmap(lowerCAmelCase_ )(lowerCAmelCase_ , lowerCAmelCase_ ) return scores
621
0
import re def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> bool: """simple docstring""" __A = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(__lowercase , __lowercase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
707
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : '''simple docstring''' def __init__( self : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any]=13 , UpperCamelCase_ : Optional[Any]=30 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : int=True , UpperCamelCase_ : str=True , UpperCamelCase_ : str=32 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : List[str]=37 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : str=0.02 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : int=None , ): """simple docstring""" __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range __A = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __A = (image_size // patch_size) ** 2 __A = num_patches + 1 def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : int ): """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] ): """simple docstring""" __A = TFViTModel(config=UpperCamelCase_ ) __A = model(UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. __A = self.image_size // 2 __A = pixel_values[:, :, :image_size, :image_size] __A = model(UpperCamelCase_ , interpolate_pos_encoding=UpperCamelCase_ , training=UpperCamelCase_ ) __A = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ): """simple docstring""" __A = self.type_sequence_label_size __A = TFViTForImageClassification(UpperCamelCase_ ) __A = model(UpperCamelCase_ , labels=UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. __A = self.image_size // 2 __A = pixel_values[:, :, :image_size, :image_size] __A = model(UpperCamelCase_ , interpolate_pos_encoding=UpperCamelCase_ , training=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = TFViTForImageClassification(UpperCamelCase_ ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" __A = TFViTModelTester(self ) __A = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" pass def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(UpperCamelCase_ ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @slow def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(UpperCamelCase_ ) def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" __A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" __A = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=UpperCamelCase_ , return_tensors="""tf""" ) # forward pass __A = model(**UpperCamelCase_ ) # verify the logits __A = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) __A = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4 )
199
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): __lowerCamelCase : int = ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' a__ : Optional[Any] = (3, 32, 1_28) a__ : Any = tempfile.mkdtemp() # fmt: off a__ : str = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on a__ : List[Any] = dict(zip(a_ , range(len(a_ ) ) ) ) a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) a__ : Any = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 1_28}, } a__ : Tuple = os.path.join(self.tmpdirname , a_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(a_ , a_ ) def UpperCAmelCase ( self : List[str] , **a_ : List[str] ) -> Union[str, Any]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase ( self : List[Any] , **a_ : Union[str, Any] ) -> Dict: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase ( self : Dict ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self : List[str] ) -> Any: '''simple docstring''' a__ : Any = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) a__ : List[str] = Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) return image_input def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] = self.get_tokenizer() a__ : Any = self.get_image_processor() a__ : Optional[int] = MgpstrProcessor(tokenizer=a_ , image_processor=a_ ) processor.save_pretrained(self.tmpdirname ) a__ : Optional[Any] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=a_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , a_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , a_ ) def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' a__ : Optional[Any] = self.get_tokenizer() a__ : Tuple = self.get_image_processor() a__ : Optional[int] = MgpstrProcessor(tokenizer=a_ , image_processor=a_ ) processor.save_pretrained(self.tmpdirname ) a__ : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) a__ : Any = self.get_image_processor(do_normalize=a_ , padding_value=1.0 ) a__ : Dict = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=a_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , a_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a_ ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: '''simple docstring''' a__ : str = self.get_image_processor() a__ : Union[str, Any] = self.get_tokenizer() a__ : Any = MgpstrProcessor(tokenizer=a_ , image_processor=a_ ) a__ : List[str] = self.prepare_image_inputs() a__ : List[Any] = image_processor(a_ , return_tensors="np" ) a__ : Optional[Any] = processor(images=a_ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self : Tuple ) -> int: '''simple docstring''' a__ : Optional[Any] = self.get_image_processor() a__ : List[Any] = self.get_tokenizer() a__ : int = MgpstrProcessor(tokenizer=a_ , image_processor=a_ ) a__ : List[str] = "test" a__ : Any = processor(text=a_ ) a__ : Tuple = tokenizer(a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : Tuple = self.get_image_processor() a__ : List[str] = self.get_tokenizer() a__ : List[Any] = MgpstrProcessor(tokenizer=a_ , image_processor=a_ ) a__ : str = "test" a__ : str = self.prepare_image_inputs() a__ : Any = processor(text=a_ , images=a_ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' a__ : Any = self.get_image_processor() a__ : Tuple = self.get_tokenizer() a__ : Dict = MgpstrProcessor(tokenizer=a_ , image_processor=a_ ) a__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] a__ : Any = processor.char_decode(a_ ) a__ : str = tokenizer.batch_decode(a_ ) a__ : Union[str, Any] = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(a_ , a_ ) def UpperCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' a__ : List[str] = self.get_image_processor() a__ : Any = self.get_tokenizer() a__ : Any = MgpstrProcessor(tokenizer=a_ , image_processor=a_ ) a__ : str = None a__ : Optional[Any] = self.prepare_image_inputs() a__ : Optional[int] = processor(text=a_ , images=a_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: '''simple docstring''' a__ : List[Any] = self.get_image_processor() a__ : List[str] = self.get_tokenizer() a__ : Optional[Any] = MgpstrProcessor(tokenizer=a_ , image_processor=a_ ) a__ : List[str] = torch.randn(1 , 27 , 38 ) a__ : Tuple = torch.randn(1 , 27 , 5_02_57 ) a__ : List[Any] = torch.randn(1 , 27 , 3_05_22 ) a__ : Optional[Any] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
642
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((a__) , (a__)) : List[Any] = extended_euclid(lowerCAmelCase__ , a % b ) a__ : str = a // b return (y, x - k * y) def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' ((a__) , (a__)) : Tuple = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : List[str] = na * na a__ : Union[str, Any] = ra * x * na + ra * y * na return (n % m + m) % m def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' ((a__) , (a__)) : Optional[Any] = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) if b < 0: a__ : Optional[int] = (b % n + n) % n return b def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' a__ , a__ : List[Any] = invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ), invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Dict = na * na a__ : Any = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
642
1
from __future__ import annotations from collections.abc import Iterator class lowerCAmelCase__ : def __init__( self : Any , _A : List[Any]): A__ : Optional[Any] = value A__ : Node | None = None A__ : Node | None = None class lowerCAmelCase__ : def __init__( self : Dict , _A : Optional[Any]): A__ : str = tree def _lowercase ( self : str , _A : Union[str, Any]): if node is None: return 0 return node.value + ( self.depth_first_search(node.left) + self.depth_first_search(node.right) ) def __iter__( self : List[Any]): yield self.depth_first_search(self.tree) if __name__ == "__main__": import doctest doctest.testmod()
704
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def snake_case__ ( __lowercase , __lowercase ) -> int: """simple docstring""" A__ : List[str] = checkpoint A__ : Dict = {} A__ : Union[str, Any] = vae_state_dict["encoder.conv_in.weight"] A__ : int = vae_state_dict["encoder.conv_in.bias"] A__ : List[Any] = vae_state_dict["encoder.conv_out.weight"] A__ : Optional[int] = vae_state_dict["encoder.conv_out.bias"] A__ : int = vae_state_dict["encoder.norm_out.weight"] A__ : Optional[int] = vae_state_dict["encoder.norm_out.bias"] A__ : Optional[int] = vae_state_dict["decoder.conv_in.weight"] A__ : Optional[Any] = vae_state_dict["decoder.conv_in.bias"] A__ : str = vae_state_dict["decoder.conv_out.weight"] A__ : Optional[int] = vae_state_dict["decoder.conv_out.bias"] A__ : Union[str, Any] = vae_state_dict["decoder.norm_out.weight"] A__ : Optional[Any] = vae_state_dict["decoder.norm_out.bias"] A__ : Optional[Any] = vae_state_dict["quant_conv.weight"] A__ : Optional[Any] = vae_state_dict["quant_conv.bias"] A__ : Dict = vae_state_dict["post_quant_conv.weight"] A__ : Union[str, Any] = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only A__ : str = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) A__ : Optional[int] = { layer_id: [key for key in vae_state_dict if F'down.{layer_id}' in key] for layer_id in range(__lowercase ) } # Retrieves the keys for the decoder up blocks only A__ : Any = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) A__ : Any = { layer_id: [key for key in vae_state_dict if F'up.{layer_id}' in key] for layer_id in range(__lowercase ) } for i in range(__lowercase ): A__ : Any = [key for key in down_blocks[i] if F'down.{i}' in key and F'down.{i}.downsample' not in key] if F'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: A__ : Any = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.weight' ) A__ : Optional[int] = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.bias' ) A__ : Any = renew_vae_resnet_paths(__lowercase ) A__ : int = {"old": F'down.{i}.block', "new": F'down_blocks.{i}.resnets'} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) A__ : int = [key for key in vae_state_dict if "encoder.mid.block" in key] A__ : Any = 2 for i in range(1 , num_mid_res_blocks + 1 ): A__ : Optional[int] = [key for key in mid_resnets if F'encoder.mid.block_{i}' in key] A__ : Optional[Any] = renew_vae_resnet_paths(__lowercase ) A__ : int = {"old": F'mid.block_{i}', "new": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) A__ : str = [key for key in vae_state_dict if "encoder.mid.attn" in key] A__ : List[Any] = renew_vae_attention_paths(__lowercase ) A__ : Optional[int] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) conv_attn_to_linear(__lowercase ) for i in range(__lowercase ): A__ : Dict = num_up_blocks - 1 - i A__ : int = [ key for key in up_blocks[block_id] if F'up.{block_id}' in key and F'up.{block_id}.upsample' not in key ] if F'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: A__ : Tuple = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.weight' ] A__ : List[Any] = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.bias' ] A__ : str = renew_vae_resnet_paths(__lowercase ) A__ : List[str] = {"old": F'up.{block_id}.block', "new": F'up_blocks.{i}.resnets'} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) A__ : int = [key for key in vae_state_dict if "decoder.mid.block" in key] A__ : Optional[int] = 2 for i in range(1 , num_mid_res_blocks + 1 ): A__ : Union[str, Any] = [key for key in mid_resnets if F'decoder.mid.block_{i}' in key] A__ : Dict = renew_vae_resnet_paths(__lowercase ) A__ : int = {"old": F'mid.block_{i}', "new": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) A__ : Optional[Any] = [key for key in vae_state_dict if "decoder.mid.attn" in key] A__ : Union[str, Any] = renew_vae_attention_paths(__lowercase ) A__ : List[str] = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) conv_attn_to_linear(__lowercase ) return new_checkpoint def snake_case__ ( __lowercase , __lowercase , ) -> Tuple: """simple docstring""" A__ : List[str] = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) A__ : Dict = io.BytesIO(r.content ) A__ : str = OmegaConf.load(__lowercase ) A__ : Any = 5_1_2 A__ : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open A__ : str = {} with safe_open(__lowercase , framework="pt" , device="cpu" ) as f: for key in f.keys(): A__ : List[str] = f.get_tensor(__lowercase ) else: A__ : str = torch.load(__lowercase , map_location=__lowercase )["state_dict"] # Convert the VAE model. A__ : List[str] = create_vae_diffusers_config(__lowercase , image_size=__lowercase ) A__ : List[Any] = custom_convert_ldm_vae_checkpoint(__lowercase , __lowercase ) A__ : Dict = AutoencoderKL(**__lowercase ) vae.load_state_dict(__lowercase ) vae.save_pretrained(__lowercase ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') snake_case : int = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
182
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __A ( UpperCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = None def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase=0.9_9_9 , lowerCamelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) __magic_name__ : List[str] =[] for i in range(lowerCamelCase ): __magic_name__ : int =i / num_diffusion_timesteps __magic_name__ : Optional[int] =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ) , lowerCamelCase ) ) return torch.tensor(lowerCamelCase , dtype=torch.floataa ) class __A ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __snake_case :int = 10_00 , __snake_case :str = "fixed_small_log" , __snake_case :bool = True , __snake_case :Optional[float] = 1.0 , __snake_case :str = "epsilon" , __snake_case :str = "squaredcos_cap_v2" , ): '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) __magic_name__ : Optional[int] =betas_for_alpha_bar(__snake_case ) __magic_name__ : Dict =1.0 - self.betas __magic_name__ : Tuple =torch.cumprod(self.alphas , dim=0 ) __magic_name__ : List[str] =torch.tensor(1.0 ) # standard deviation of the initial noise distribution __magic_name__ : Optional[int] =1.0 # setable values __magic_name__ : str =None __magic_name__ : List[str] =torch.from_numpy(np.arange(0 , __snake_case )[::-1].copy() ) __magic_name__ : Dict =variance_type def A__ ( self :List[str] , __snake_case :torch.FloatTensor , __snake_case :Optional[int] = None ): '''simple docstring''' return sample def A__ ( self :str , __snake_case :int , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Tuple =num_inference_steps __magic_name__ : List[str] =(self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __magic_name__ : Dict =(np.arange(0 , __snake_case ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __magic_name__ : Union[str, Any] =torch.from_numpy(__snake_case ).to(__snake_case ) def A__ ( self :List[Any] , __snake_case :str , __snake_case :Any=None , __snake_case :List[Any]=None , __snake_case :Union[str, Any]=None ): '''simple docstring''' if prev_timestep is None: __magic_name__ : List[Any] =t - 1 __magic_name__ : Any =self.alphas_cumprod[t] __magic_name__ : List[str] =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : int =1 - alpha_prod_t __magic_name__ : str =1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : Union[str, Any] =self.betas[t] else: __magic_name__ : Optional[Any] =1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __magic_name__ : Optional[Any] =beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __magic_name__ : Dict =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __magic_name__ : Optional[int] =torch.log(torch.clamp(__snake_case , min=1E-20 ) ) __magic_name__ : Dict =torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __magic_name__ : str =variance.log() __magic_name__ : str =beta.log() __magic_name__ : List[str] =(predicted_variance + 1) / 2 __magic_name__ : str =frac * max_log + (1 - frac) * min_log return variance def A__ ( self :List[str] , __snake_case :torch.FloatTensor , __snake_case :int , __snake_case :torch.FloatTensor , __snake_case :Optional[int] = None , __snake_case :Dict=None , __snake_case :bool = True , ): '''simple docstring''' __magic_name__ : List[str] =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __magic_name__ , __magic_name__ : int =torch.split(__snake_case , sample.shape[1] , dim=1 ) else: __magic_name__ : str =None # 1. compute alphas, betas if prev_timestep is None: __magic_name__ : Optional[Any] =t - 1 __magic_name__ : Union[str, Any] =self.alphas_cumprod[t] __magic_name__ : Optional[int] =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __magic_name__ : Dict =1 - alpha_prod_t __magic_name__ : Optional[int] =1 - alpha_prod_t_prev if prev_timestep == t - 1: __magic_name__ : Optional[Any] =self.betas[t] __magic_name__ : Any =self.alphas[t] else: __magic_name__ : List[Any] =1 - alpha_prod_t / alpha_prod_t_prev __magic_name__ : Tuple =1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __magic_name__ : Optional[Any] =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __magic_name__ : str =model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __magic_name__ : int =torch.clamp( __snake_case , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : Optional[Any] =(alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __magic_name__ : Dict =alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : Any =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __magic_name__ : Any =0 if t > 0: __magic_name__ : str =randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__snake_case , device=model_output.device ) __magic_name__ : Optional[Any] =self._get_variance( __snake_case , predicted_variance=__snake_case , prev_timestep=__snake_case , ) if self.variance_type == "fixed_small_log": __magic_name__ : List[str] =variance elif self.variance_type == "learned_range": __magic_name__ : int =(0.5 * variance).exp() else: raise ValueError( f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" """ for the UnCLIPScheduler.""" ) __magic_name__ : Union[str, Any] =variance * variance_noise __magic_name__ : str =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__snake_case , pred_original_sample=__snake_case ) def A__ ( self :List[str] , __snake_case :torch.FloatTensor , __snake_case :torch.FloatTensor , __snake_case :torch.IntTensor , ): '''simple docstring''' __magic_name__ : str =self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __magic_name__ : Union[str, Any] =timesteps.to(original_samples.device ) __magic_name__ : List[Any] =alphas_cumprod[timesteps] ** 0.5 __magic_name__ : Dict =sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : Union[str, Any] =sqrt_alpha_prod.unsqueeze(-1 ) __magic_name__ : List[Any] =(1 - alphas_cumprod[timesteps]) ** 0.5 __magic_name__ : str =sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __magic_name__ : Union[str, Any] =sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __magic_name__ : List[str] =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
21
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
384
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class a_ ( unittest.TestCase ): def UpperCamelCase ( self : List[str] , a_ : Path , a_ : Union[str, None] = None , a_ : Union[List[str], None] = None , a_ : Union[str, List[str], None] = None , a_ : bool = True , ) -> List[str]: snake_case: Optional[Any] =[file for file in os.listdir(a_ ) if os.path.isfile(os.path.join(a_ , a_ ) )] if identifier is not None: snake_case: Dict =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(a_ , a_ ): for n_ in n_identifier: snake_case: Tuple =[file for file in files if n_ not in file] else: snake_case: Optional[Any] =[file for file in files if n_identifier not in file] snake_case: int =ignore_files or [] ignore_files.append('__init__.py' ) snake_case: Dict =[file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , a_ ) if only_modules: snake_case: Optional[int] =file.split('.' )[0] try: snake_case: str =getattr(a_ , a_ ) snake_case: Dict =doctest.DocTestSuite(a_ ) snake_case: Dict =unittest.TextTestRunner().run(a_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: snake_case: List[str] =doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def UpperCamelCase ( self : Union[str, Any] ) -> Tuple: snake_case: List[Any] =Path('src/transformers' ) snake_case: List[Any] ="modeling" snake_case: Tuple =[ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(a_ , identifier=a_ , ignore_files=a_ ) def UpperCamelCase ( self : Any ) -> Tuple: snake_case: List[Any] =Path('src/transformers' ) snake_case: List[Any] ="tokenization" self.analyze_directory(a_ , identifier=a_ ) def UpperCamelCase ( self : Any ) -> Tuple: snake_case: Optional[int] =Path('src/transformers' ) snake_case: Union[str, Any] ="configuration" self.analyze_directory(a_ , identifier=a_ ) def UpperCamelCase ( self : str ) -> Optional[Any]: snake_case: Optional[Any] =Path('src/transformers' ) snake_case: Optional[int] =["configuration", "modeling", "tokenization"] self.analyze_directory(a_ , n_identifier=a_ ) def UpperCamelCase ( self : Optional[int] ) -> Any: snake_case: Any =Path('docs/source' ) snake_case: List[str] =["favicon.ico"] self.analyze_directory(a_ , ignore_files=a_ , only_modules=a_ )
704
'''simple docstring''' import argparse import copy def a_ ( __UpperCAmelCase ) -> Dict: """simple docstring""" snake_case: int ={} with open(__UpperCAmelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case: Any =[] _list.append([line.split()[1], line.split()[2]] ) snake_case: Tuple =_list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case: Any =[] _list.append([line.split()[0], line.split()[2]] ) snake_case: List[str] =_list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: """simple docstring""" with open(__UpperCAmelCase ) as f: snake_case: Optional[Any] =f.read(1 ) snake_case: Tuple =start_node snake_case: Union[str, Any] =[] snake_case: Any =start_node snake_case: Optional[int] =0 while visiting not in first_solution: snake_case: List[str] =1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__UpperCAmelCase ) and k[0] not in first_solution: snake_case: Tuple =k[1] snake_case: List[Any] =k[0] first_solution.append(__UpperCAmelCase ) snake_case: List[Any] =distance_of_first_solution + int(__UpperCAmelCase ) snake_case: int =best_node first_solution.append(__UpperCAmelCase ) snake_case: str =0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case: List[Any] =( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: """simple docstring""" snake_case: Optional[Any] =[] for n in solution[1:-1]: snake_case: Any =solution.index(__UpperCAmelCase ) for kn in solution[1:-1]: snake_case: int =solution.index(__UpperCAmelCase ) if n == kn: continue snake_case: str =copy.deepcopy(__UpperCAmelCase ) snake_case: Dict =kn snake_case: Optional[Any] =n snake_case: Dict =0 for k in _tmp[:-1]: snake_case: Optional[int] =_tmp[_tmp.index(__UpperCAmelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case: int =distance + int(i[1] ) _tmp.append(__UpperCAmelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case: List[Any] =len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __UpperCAmelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: """simple docstring""" snake_case: int =1 snake_case: Dict =first_solution snake_case: str =[] snake_case: int =distance_of_first_solution snake_case: str =solution while count <= iters: snake_case: int =find_neighborhood(__UpperCAmelCase , __UpperCAmelCase ) snake_case: Union[str, Any] =0 snake_case: Dict =neighborhood[index_of_best_solution] snake_case: List[str] =len(__UpperCAmelCase ) - 1 snake_case: int =False while not found: snake_case: str =0 while i < len(__UpperCAmelCase ): if best_solution[i] != solution[i]: snake_case: Any =best_solution[i] snake_case: Optional[int] =solution[i] break snake_case: str =i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case: Dict =True snake_case: Union[str, Any] =best_solution[:-1] snake_case: Union[str, Any] =neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case: List[Any] =cost snake_case: Dict =solution else: snake_case: str =index_of_best_solution + 1 snake_case: List[str] =neighborhood[index_of_best_solution] if len(__UpperCAmelCase ) >= size: tabu_list.pop(0 ) snake_case: List[str] =count + 1 return best_solution_ever, best_cost def a_ ( __UpperCAmelCase=None ) -> int: """simple docstring""" snake_case: Any =generate_neighbours(args.File ) snake_case , snake_case: Dict =generate_first_solution( args.File , __UpperCAmelCase ) snake_case , snake_case: Optional[Any] =tabu_search( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": a = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
347
0
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters a_ : int = False a_ : Dict = False def UpperCAmelCase ( A__: Optional[int] ) -> Optional[Any]: return TrainCommand(__a ) class __lowercase( lowercase__ ): '''simple docstring''' @staticmethod def snake_case_ ( __a ): __lowerCamelCase : Tuple = parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=_lowerCamelCase , required=_lowerCamelCase , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=_lowerCamelCase , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=_lowerCamelCase , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=_lowerCamelCase , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=_lowerCamelCase , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=_lowerCamelCase , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=_lowerCamelCase , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=_lowerCamelCase , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=_lowerCamelCase , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=_lowerCamelCase , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=_lowerCamelCase , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=_lowerCamelCase , default=3E-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=_lowerCamelCase , default=1E-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=_lowerCamelCase ) def __init__( self , __a ): __lowerCamelCase : Any = logging.get_logger('transformers-cli/training' ) __lowerCamelCase : int = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = args.output __lowerCamelCase : List[Any] = args.column_label __lowerCamelCase : List[str] = args.column_text __lowerCamelCase : Any = args.column_id self.logger.info(f'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": __lowerCamelCase : Tuple = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'''Loading dataset from {args.train_data}''' ) __lowerCamelCase : str = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __lowerCamelCase : int = None if args.validation_data: self.logger.info(f'''Loading validation dataset from {args.validation_data}''' ) __lowerCamelCase : List[Any] = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __lowerCamelCase : Any = args.validation_split __lowerCamelCase : Optional[int] = args.train_batch_size __lowerCamelCase : int = args.valid_batch_size __lowerCamelCase : Optional[int] = args.learning_rate __lowerCamelCase : Dict = args.adam_epsilon def snake_case_ ( self ): if self.framework == "tf": return self.run_tf() return self.run_torch() def snake_case_ ( self ): raise NotImplementedError def snake_case_ ( self ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
594
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ): A__ = tempfile.mkdtemp() A__ = BlipImageProcessor() A__ = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) A__ = BlipProcessor(_lowerCamelCase , _lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def A__ ( self : List[Any] , **_lowerCamelCase : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).tokenizer def A__ ( self : Optional[Any] , **_lowerCamelCase : List[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor def A__ ( self : str ): shutil.rmtree(self.tmpdirname ) def A__ ( self : str ): A__ = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self : Union[str, Any] ): A__ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A__ = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A__ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def A__ ( self : Dict ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(_lowerCamelCase , return_tensors='''np''' ) A__ = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A__ ( self : Optional[int] ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A__ = '''lower newer''' A__ = processor(text=_lowerCamelCase ) A__ = tokenizer(_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self : Any ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A__ = '''lower newer''' A__ = self.prepare_image_inputs() A__ = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def A__ ( self : Optional[int] ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(_lowerCamelCase ) A__ = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def A__ ( self : Optional[Any] ): A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A__ = '''lower newer''' A__ = self.prepare_image_inputs() A__ = processor(text=_lowerCamelCase , images=_lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
571
0
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __snake_case ( __a): """simple docstring""" lowercase = 'char' lowercase = 'bpe' lowercase = 'wp' __A : List[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __snake_case ( __a): """simple docstring""" lowercase = ['image_processor', 'char_tokenizer'] lowercase = 'ViTImageProcessor' lowercase = 'MgpstrTokenizer' def __init__( self : Tuple , lowerCamelCase : Any=None , lowerCamelCase : Tuple=None , **lowerCamelCase : Dict ) -> Any: lowerCAmelCase_ : List[str] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , a_ , ) lowerCAmelCase_ : List[str] = kwargs.pop("""feature_extractor""" ) lowerCAmelCase_ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) lowerCAmelCase_ : List[str] = tokenizer lowerCAmelCase_ : Tuple = AutoTokenizer.from_pretrained("""gpt2""" ) lowerCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(a_ , a_ ) def __call__( self : Any , lowerCamelCase : Any=None , lowerCamelCase : List[Any]=None , lowerCamelCase : Any=None , **lowerCamelCase : Tuple ) -> Tuple: if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: lowerCAmelCase_ : int = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None: lowerCAmelCase_ : Union[str, Any] = self.char_tokenizer(a_ , return_tensors=a_ , **a_ ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase_ : Optional[int] = encodings["""input_ids"""] return inputs def __lowercase ( self : str , lowerCamelCase : Union[str, Any] ) -> List[str]: lowerCAmelCase_ : Union[str, Any] = sequences lowerCAmelCase_ : List[Any] = char_preds.size(0 ) lowerCAmelCase_ : Optional[int] = self._decode_helper(a_ , """char""" ) lowerCAmelCase_ : Union[str, Any] = self._decode_helper(a_ , """bpe""" ) lowerCAmelCase_ : List[str] = self._decode_helper(a_ , """wp""" ) lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : List[Any] = [] for i in range(a_ ): lowerCAmelCase_ : Any = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCAmelCase_ : str = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCAmelCase_ : Union[str, Any] = scores.index(max(a_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : List[str] = final_strs lowerCAmelCase_ : Optional[int] = final_scores lowerCAmelCase_ : Optional[int] = char_strs lowerCAmelCase_ : Optional[Any] = bpe_strs lowerCAmelCase_ : Dict = wp_strs return out def __lowercase ( self : Any , lowerCamelCase : List[Any] , lowerCamelCase : Any ) -> List[Any]: if format == DecodeType.CHARACTER: lowerCAmelCase_ : int = self.char_decode lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : str = """[s]""" elif format == DecodeType.BPE: lowerCAmelCase_ : Dict = self.bpe_decode lowerCAmelCase_ : Any = 2 lowerCAmelCase_ : str = """#""" elif format == DecodeType.WORDPIECE: lowerCAmelCase_ : Optional[int] = self.wp_decode lowerCAmelCase_ : Optional[int] = 1_02 lowerCAmelCase_ : List[str] = """[SEP]""" else: raise ValueError(F'Format {format} is not supported.' ) lowerCAmelCase_ : List[str] = [], [] lowerCAmelCase_ : str = pred_logits.size(0 ) lowerCAmelCase_ : List[str] = pred_logits.size(1 ) lowerCAmelCase_ : List[Any] = pred_logits.topk(1 , dim=-1 , largest=a_ , sorted=a_ ) lowerCAmelCase_ : Optional[int] = preds_index.view(-1 , a_ )[:, 1:] lowerCAmelCase_ : Tuple = decoder(a_ ) lowerCAmelCase_ : Any = torch.nn.functional.softmax(a_ , dim=2 ).max(dim=2 ) lowerCAmelCase_ : Dict = preds_max_prob[:, 1:] for index in range(a_ ): lowerCAmelCase_ : Optional[int] = preds_str[index].find(a_ ) lowerCAmelCase_ : Dict = preds_str[index][:pred_eos] lowerCAmelCase_ : List[Any] = preds_index[index].cpu().tolist() lowerCAmelCase_ : Tuple = pred_index.index(a_ ) if eos_token in pred_index else -1 lowerCAmelCase_ : str = preds_max_prob[index][: pred_eos_index + 1] lowerCAmelCase_ : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(a_ ) conf_scores.append(a_ ) return dec_strs, conf_scores def __lowercase ( self : Union[str, Any] , lowerCamelCase : List[Any] ) -> List[Any]: lowerCAmelCase_ : Union[str, Any] = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(a_ )] return decode_strs def __lowercase ( self : Optional[Any] , lowerCamelCase : Dict ) -> List[Any]: return self.bpe_tokenizer.batch_decode(a_ ) def __lowercase ( self : List[Any] , lowerCamelCase : Optional[Any] ) -> List[str]: lowerCAmelCase_ : str = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(a_ )] return decode_strs
706
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = (EulerDiscreteScheduler,) lowercase = 10 def __lowercase ( self : Any , **lowerCamelCase : Optional[Any] ) -> Optional[Any]: lowerCAmelCase_ : int = { """num_train_timesteps""": 11_00, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowerCamelCase ) return config def __lowercase ( self : Tuple ) -> Tuple: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def __lowercase ( self : Optional[Any] ) -> str: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def __lowercase ( self : Union[str, Any] ) -> Dict: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def __lowercase ( self : Union[str, Any] ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> Dict: lowerCAmelCase_ : List[str] = self.scheduler_classes[0] lowerCAmelCase_ : int = self.get_scheduler_config() lowerCAmelCase_ : Union[str, Any] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ : int = torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = self.dummy_model() lowerCAmelCase_ : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : int = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : str = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = output.prev_sample lowerCAmelCase_ : Optional[int] = torch.sum(torch.abs(lowerCamelCase ) ) lowerCAmelCase_ : Any = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def __lowercase ( self : Any ) -> List[str]: lowerCAmelCase_ : int = self.scheduler_classes[0] lowerCAmelCase_ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCAmelCase_ : Optional[Any] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = self.dummy_model() lowerCAmelCase_ : str = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : Optional[Any] = sample.to(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Tuple = model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) lowerCAmelCase_ : Any = output.prev_sample lowerCAmelCase_ : str = torch.sum(torch.abs(lowerCamelCase ) ) lowerCAmelCase_ : Optional[int] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_002 ) < 1E-2 assert abs(result_mean.item() - 2.2_676E-06 ) < 1E-3 def __lowercase ( self : Optional[int] ) -> List[Any]: lowerCAmelCase_ : List[Any] = self.scheduler_classes[0] lowerCAmelCase_ : Optional[int] = self.get_scheduler_config() lowerCAmelCase_ : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) lowerCAmelCase_ : Tuple = torch.manual_seed(0 ) lowerCAmelCase_ : Dict = self.dummy_model() lowerCAmelCase_ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase_ : List[Any] = sample.to(lowerCamelCase ) for t in scheduler.timesteps: lowerCAmelCase_ : Optional[int] = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : str = model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : List[Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) lowerCAmelCase_ : Optional[int] = output.prev_sample lowerCAmelCase_ : Dict = torch.sum(torch.abs(lowerCamelCase ) ) lowerCAmelCase_ : Optional[Any] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1E-2 assert abs(result_mean.item() - 0.0_131 ) < 1E-3 def __lowercase ( self : int ) -> int: lowerCAmelCase_ : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase_ : Union[str, Any] = self.get_scheduler_config() lowerCAmelCase_ : Optional[Any] = scheduler_class(**lowerCamelCase , use_karras_sigmas=lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase ) lowerCAmelCase_ : List[Any] = torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = self.dummy_model() lowerCAmelCase_ : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase_ : List[Any] = sample.to(lowerCamelCase ) for t in scheduler.timesteps: lowerCAmelCase_ : Dict = scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : str = model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase ) lowerCAmelCase_ : Dict = output.prev_sample lowerCAmelCase_ : Tuple = torch.sum(torch.abs(lowerCamelCase ) ) lowerCAmelCase_ : Tuple = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1E-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1E-3
398
0
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = CpmAntTokenizer SCREAMING_SNAKE_CASE : Dict = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): super().setUp() __lowercase = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __lowercase = '''今天天气真好!''' __lowercase = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __lowercase = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = '''今天天气真好!''' __lowercase = [tokenizer.bos_token] + tokens __lowercase = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) ,lowercase__ ) __lowercase = tokenizer.decode(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ )
41
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any]=13 , lowerCamelCase : Dict=32 , lowerCamelCase : Optional[int]=3 , lowerCamelCase : List[Any]=4 , lowerCamelCase : Tuple=[10, 20, 30, 40] , lowerCamelCase : str=[2, 2, 3, 2] , lowerCamelCase : Optional[int]=True , lowerCamelCase : List[Any]=True , lowerCamelCase : Union[str, Any]=37 , lowerCamelCase : Any="gelu" , lowerCamelCase : Tuple=10 , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : Union[str, Any]=["stage2", "stage3", "stage4"] , lowerCamelCase : Any=[2, 3, 4] , lowerCamelCase : Tuple=None , ) -> int: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_stages _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = initializer_range _UpperCAmelCase = out_features _UpperCAmelCase = out_indices _UpperCAmelCase = scope def lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Any ) -> str: """simple docstring""" _UpperCAmelCase = ConvNextModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : Dict , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = ConvNextForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Dict , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase = ConvNextBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCAmelCase = None _UpperCAmelCase = ConvNextBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _lowerCamelCase = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowerCamelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase = ConvNextModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def lowerCamelCase ( self : int ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def lowerCamelCase ( self : int ) -> int: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" pass def lowerCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def lowerCamelCase ( self : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowerCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase ) def lowerCamelCase ( self : int ) -> Any: """simple docstring""" def check_hidden_states_output(lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] ): _UpperCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = ConvNextModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( ) -> Tuple: _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase ( self : Dict ) -> int: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(lowerCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**lowerCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) _UpperCAmelCase = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = (ConvNextBackbone,) if is_torch_available() else () _lowerCamelCase = ConvNextConfig _lowerCamelCase = False def lowerCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = ConvNextModelTester(self )
108
0
"""simple docstring""" import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Optional[Any] = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) _lowerCamelCase : List[Any] = DatasetInfosDict.from_directory(lowercase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : List[str] = str(lowercase__ ) dataset_info.write_to_directory(lowercase__ ) _lowerCamelCase : Union[str, Any] = DatasetInfo.from_directory(lowercase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowercase__ , 'dataset_info.json' ) ) def _snake_case ( ): _lowerCamelCase : int = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) _lowerCamelCase : Optional[Any] = dataset_info._to_yaml_dict() assert sorted(lowercase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _lowerCamelCase : Optional[Any] = yaml.safe_dump(lowercase__ ) _lowerCamelCase : str = yaml.safe_load(lowercase__ ) assert dataset_info_yaml_dict == reloaded def _snake_case ( ): _lowerCamelCase : str = DatasetInfo() _lowerCamelCase : str = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : int = str(lowercase__ ) dataset_infos_dict.write_to_directory(lowercase__ ) _lowerCamelCase : List[str] = DatasetInfosDict.from_directory(lowercase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _lowerCamelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _lowerCamelCase : Any = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowercase__ , 'README.md' ) )
710
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowercase__ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase = 101 ): _lowerCamelCase : Optional[int] = length def __len__( self ): return self.length def __getitem__( self , lowercase ): return i class lowerCAmelCase__ : '''simple docstring''' def __call__( self , lowercase ): return {"input_ids": torch.tensor(lowercase ), "labels": torch.tensor(lowercase )} class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() # Add some (unused) params otherwise DDP will complain. _lowerCamelCase : int = nn.Linear(120 , 80 ) def A_ ( self , lowercase , lowercase=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @require_torch_neuroncore def A_ ( self ): _lowerCamelCase : Optional[Any] = F'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() _lowerCamelCase : int = self.get_auto_remove_tmp_dir() _lowerCamelCase : str = F'''--output_dir {output_dir}'''.split() _lowerCamelCase : Tuple = ['torchrun'] + distributed_args + args execute_subprocess_async(lowercase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowerCAmelCase__ ( lowercase ): '''simple docstring''' @require_torch_multi_gpu def A_ ( self ): _lowerCamelCase : Union[str, Any] = F'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() _lowerCamelCase : List[str] = self.get_auto_remove_tmp_dir() _lowerCamelCase : Any = F'''--output_dir {output_dir}'''.split() _lowerCamelCase : Any = ['torchrun'] + distributed_args + args execute_subprocess_async(lowercase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowercase__ = HfArgumentParser((TrainingArguments,)) lowercase__ = parser.parse_args_into_dataclasses()[0] logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " F"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: lowercase__ = DummyDataset(dataset_length) def _snake_case ( lowercase__ ): _lowerCamelCase : int = list(range(len(lowercase__ ) ) ) _lowerCamelCase : Optional[int] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} lowercase__ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowercase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase__ = 2 lowercase__ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowercase__ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowercase__ = None
492
0
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging A_ : Union[str, Any] = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def UpperCamelCase__ ( __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int=None ) -> str: '''simple docstring''' snake_case__ : Tuple = XLNetConfig.from_json_file(__magic_name__ ) snake_case__ : str = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) snake_case__ : Any = finetuning_task snake_case__ : List[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] snake_case__ : Optional[Any] = XLNetForSequenceClassification(__magic_name__ ) elif "squad" in finetuning_task: snake_case__ : int = finetuning_task snake_case__ : str = XLNetForQuestionAnswering(__magic_name__ ) else: snake_case__ : List[str] = XLNetLMHeadModel(__magic_name__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model snake_case__ : List[str] = os.path.join(__magic_name__ , __magic_name__ ) snake_case__ : Tuple = os.path.join(__magic_name__ , __magic_name__ ) print(f"Save PyTorch model to {os.path.abspath(__magic_name__ )}" ) torch.save(model.state_dict() , __magic_name__ ) print(f"Save configuration file to {os.path.abspath(__magic_name__ )}" ) with open(__magic_name__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) A_ : Union[str, Any] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
38
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _lowerCamelCase : Optional[Any] = { "169M": 1_2, "430M": 2_4, "1B5": 2_4, "3B": 3_2, "7B": 3_2, "14B": 4_0, } _lowerCamelCase : int = { "169M": 7_6_8, "430M": 1_0_2_4, "1B5": 2_0_4_8, "3B": 2_5_6_0, "7B": 4_0_9_6, "14B": 5_1_2_0, } def _UpperCAmelCase (UpperCamelCase_ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase : str = list(state_dict.keys() ) for name in state_dict_keys: _lowerCAmelCase : str = state_dict.pop(UpperCamelCase_ ) # emb -> embedding if name.startswith("""emb.""" ): _lowerCAmelCase : str = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): _lowerCAmelCase : Tuple = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention _lowerCAmelCase : Dict = re.sub(R"""blocks\.(\d+)\.att""" , R"""blocks.\1.attention""" , UpperCamelCase_ ) # ffn -> feed_forward _lowerCAmelCase : List[Any] = re.sub(R"""blocks\.(\d+)\.ffn""" , R"""blocks.\1.feed_forward""" , UpperCamelCase_ ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): _lowerCAmelCase : Dict = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): _lowerCAmelCase : Any = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): _lowerCAmelCase : List[str] = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": _lowerCAmelCase : Optional[int] = """rwkv.""" + name _lowerCAmelCase : List[Any] = weight return state_dict def _UpperCAmelCase (UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : int=None ): '''simple docstring''' # 1. If possible, build the tokenizer. if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) _lowerCAmelCase : List[str] = 50277 _lowerCAmelCase : Any = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: _lowerCAmelCase : int = PreTrainedTokenizerFast(tokenizer_file=UpperCamelCase_ ) _lowerCAmelCase : int = len(UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) # 2. Build the config _lowerCAmelCase : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _lowerCAmelCase : Any = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(F"`size` should be one of {possible_sizes}, got {size}." ) _lowerCAmelCase : List[Any] = RwkvConfig( vocab_size=UpperCamelCase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(UpperCamelCase_ ) # 3. Download model file then convert state_dict _lowerCAmelCase : Optional[Any] = hf_hub_download(UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = torch.load(UpperCamelCase_ , map_location="""cpu""" ) _lowerCAmelCase : Any = convert_state_dict(UpperCamelCase_ ) # 4. Split in shards and save _lowerCAmelCase , _lowerCAmelCase : Dict = shard_checkpoint(UpperCamelCase_ ) for shard_file, shard in shards.items(): torch.save(UpperCamelCase_ , os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) if index is not None: _lowerCAmelCase : Tuple = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) # Save the index as well with open(UpperCamelCase_ , """w""" , encoding="""utf-8""" ) as f: _lowerCAmelCase : Optional[Any] = json.dumps(UpperCamelCase_ , indent=2 , sort_keys=UpperCamelCase_ ) + """\n""" f.write(UpperCamelCase_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) _lowerCAmelCase : Union[str, Any] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _lowerCAmelCase : int = torch.load(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) _lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained(UpperCamelCase_ ) model.push_to_hub(UpperCamelCase_ , max_shard_size="""2GB""" ) tokenizer.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) _lowerCamelCase : Tuple = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
429
0
"""simple docstring""" class a : def __init__( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ): _UpperCAmelCase = name _UpperCAmelCase = value _UpperCAmelCase = weight def __repr__( self : List[str] ): return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def lowerCAmelCase_ ( self : Tuple ): return self.value def lowerCAmelCase_ ( self : Optional[Any] ): return self.name def lowerCAmelCase_ ( self : Optional[Any] ): return self.weight def lowerCAmelCase_ ( self : List[str] ): return self.value / self.weight def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [] for i in range(len(lowercase ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = sorted(lowercase ,key=lowercase ,reverse=lowercase ) _UpperCAmelCase = [] _UpperCAmelCase , _UpperCAmelCase = 0.0, 0.0 for i in range(len(lowercase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import datasets UpperCAmelCase__ = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ UpperCAmelCase__ = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ UpperCAmelCase__ = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCAmelCase_ ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Any ): return {"accuracy": simple_accuracy(__lowerCAmelCase , __lowerCAmelCase )}
275
0
def A__ ( lowercase: str ) -> str: A : Tuple ='' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def A__ ( lowercase: str ) -> dict[str, str]: A : List[Any] =[chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key A : Dict =remove_duplicates(key.upper() ) A : Tuple =len(lowercase ) # First fill cipher with key characters A : str ={alphabet[i]: char for i, char in enumerate(lowercase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowercase ), 26 ): A : Tuple =alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 A : List[str] =alphabet[i - offset] A : Dict =char return cipher_alphabet def A__ ( lowercase: str, lowercase: dict[str, str] ) -> str: return "".join(cipher_map.get(lowercase, lowercase ) for ch in message.upper() ) def A__ ( lowercase: str, lowercase: dict[str, str] ) -> str: A : Union[str, Any] ={v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowercase, lowercase ) for ch in message.upper() ) def A__ ( ) -> None: A : Union[str, Any] =input('Enter message to encode or decode: ' ).strip() A : Optional[Any] =input('Enter keyword: ' ).strip() A : Optional[Any] =input('Encipher or decipher? E/D:' ).strip()[0].lower() try: A : Optional[Any] ={'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) A : Dict =create_cipher_map(lowercase ) print(func(lowercase, lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
305
import os def A__ ( lowercase: str = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(lowercase ), lowercase ) ) as input_file: A : Dict =[ [int(lowercase ) for element in line.split(',' )] for line in input_file.readlines() ] A : Optional[int] =len(lowercase ) A : Optional[int] =len(matrix[0] ) A : Optional[int] =[[-1 for _ in range(lowercase )] for _ in range(lowercase )] for i in range(lowercase ): A : Optional[int] =matrix[i][0] for j in range(1, lowercase ): for i in range(lowercase ): A : Optional[int] =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1, lowercase ): A : Union[str, Any] =min( minimal_path_sums[i][j], minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2, -1, -1 ): A : Tuple =min( minimal_path_sums[i][j], minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
305
1
"""simple docstring""" from pathlib import Path import fire def __lowerCAmelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : int ) -> Union[str, Any]: _UpperCamelCase : Dict = Path(__lowerCAmelCase ) _UpperCamelCase : List[Any] = Path(__lowerCAmelCase ) dest_dir.mkdir(exist_ok=__lowerCAmelCase ) for path in src_dir.iterdir(): _UpperCamelCase : Optional[int] = [x.rstrip() for x in list(path.open().readlines() )][:n] _UpperCamelCase : Union[str, Any] = dest_dir.joinpath(path.name ) print(__lowerCAmelCase ) dest_path.open("w" ).write("\n".join(__lowerCAmelCase ) ) if __name__ == "__main__": fire.Fire(minify)
718
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCAmelCase = """vit_mae""" def __init__(self , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=2_24 , lowerCAmelCase__=16 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=16 , lowerCAmelCase__=5_12 , lowerCAmelCase__=8 , lowerCAmelCase__=20_48 , lowerCAmelCase__=0.75 , lowerCAmelCase__=False , **lowerCAmelCase__ , ): '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : Tuple = intermediate_size _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = initializer_range _UpperCamelCase : Tuple = layer_norm_eps _UpperCamelCase : Dict = image_size _UpperCamelCase : Union[str, Any] = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : Optional[int] = qkv_bias _UpperCamelCase : List[str] = decoder_num_attention_heads _UpperCamelCase : int = decoder_hidden_size _UpperCamelCase : Dict = decoder_num_hidden_layers _UpperCamelCase : Dict = decoder_intermediate_size _UpperCamelCase : str = mask_ratio _UpperCamelCase : List[str] = norm_pix_loss
239
0
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = {"vocab_file": "spiece.model"} __A : str = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } __A : Dict = { "AI-Sweden/gpt-sw3-126m": 2048, "AI-Sweden/gpt-sw3-350m": 2048, "AI-Sweden/gpt-sw3-1.6b": 2048, "AI-Sweden/gpt-sw3-6.7b": 2048, "AI-Sweden/gpt-sw3-20b": 2048, } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self : Tuple , lowerCamelCase : str , lowerCamelCase : List[Any]=False , lowerCamelCase : str=False , lowerCamelCase : Union[str, Any]=False , lowerCamelCase : int=None , lowerCamelCase : Tuple=None , lowerCamelCase : Dict=None , lowerCamelCase : Any=None , lowerCamelCase : Optional[Dict[str, Any]] = None , **lowerCamelCase : Dict , ) -> None: lowerCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase_ : Optional[Any] = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) lowerCAmelCase_ : Optional[Any] = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCAmelCase_ : Dict = """<|endoftext|>""" if eos_token is None else eos_token lowerCAmelCase_ : str = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCAmelCase_ : List[str] = unk_token if pad_token is None else pad_token lowerCAmelCase_ : Optional[Any] = eos_token if bos_token is None else bos_token else: lowerCAmelCase_ : Optional[Any] = """<pad>""" if pad_token is None else pad_token lowerCAmelCase_ : int = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=lowerCamelCase , remove_space=lowerCamelCase , keep_accents=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) lowerCAmelCase_ : Any = do_lower_case lowerCAmelCase_ : str = remove_space lowerCAmelCase_ : Union[str, Any] = keep_accents lowerCAmelCase_ : int = vocab_file lowerCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase ) # Used for whitespace normalization in input texts # fmt : off lowerCAmelCase_ : List[Any] = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCAmelCase_ : Dict = re.compile( F'[{"".join(map(lowerCamelCase , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]' ) def __getstate__( self : Any ) -> List[str]: lowerCAmelCase_ : Tuple = self.__dict__.copy() lowerCAmelCase_ : int = None return state def __setstate__( self : List[str] , lowerCamelCase : str ) -> Dict: lowerCAmelCase_ : Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase_ : int = {} lowerCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __lowercase ( self : List[str] ) -> int: return len(self.sp_model ) def __lowercase ( self : Optional[Any] , lowerCamelCase : str ) -> str: lowerCAmelCase_ : Optional[int] = self.non_printing_characters_re.sub("""""" , lowerCamelCase ) # Normalize whitespaces lowerCAmelCase_ : Optional[int] = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization lowerCAmelCase_ : Optional[int] = unicodedata.normalize("""NFC""" , lowerCamelCase ) return text def __lowercase ( self : List[Any] , lowerCamelCase : str , **lowerCamelCase : Any ) -> List[str]: lowerCAmelCase_ : Tuple = self.preprocess_text(lowerCamelCase ) return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def __lowercase ( self : List[Any] , lowerCamelCase : str ) -> int: return self.sp_model.PieceToId(lowerCamelCase ) def __lowercase ( self : Union[str, Any] , lowerCamelCase : int ) -> str: return self.sp_model.IdToPiece(lowerCamelCase ) @staticmethod def __lowercase ( lowerCamelCase : str ) -> str: return out_string def __lowercase ( self : Optional[int] , lowerCamelCase : List[str] ) -> str: lowerCAmelCase_ : str = [] lowerCAmelCase_ : int = """""" lowerCAmelCase_ : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase ) + token lowerCAmelCase_ : Any = True lowerCAmelCase_ : Dict = [] else: current_sub_tokens.append(lowerCamelCase ) lowerCAmelCase_ : str = False out_string += self.sp_model.decode(lowerCamelCase ) return out_string def __lowercase ( self : int ) -> Dict[str, int]: lowerCAmelCase_ : int = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self : str , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase_ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , """wb""" ) as fi: lowerCAmelCase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,) def __lowercase ( self : Optional[Any] , lowerCamelCase : Union[str, List[str]] , lowerCamelCase : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : Optional[Any] = self.preprocess_text(lowerCamelCase ) lowerCAmelCase_ : Tuple = self.sp_model.encode(lowerCamelCase ) else: lowerCAmelCase_ : Tuple = [self.preprocess_text(lowerCamelCase ) for t in text] lowerCAmelCase_ : Tuple = self.sp_model.encode(lowerCamelCase ) if return_tensors is True or return_tensors == "pt": lowerCAmelCase_ : Optional[int] = torch.tensor(lowerCamelCase ) return token_ids def __lowercase ( self : List[str] , lowerCamelCase : Union[int, List[int]] ) -> str: return self.sp_model.decode(lowerCamelCase ) def __lowercase ( self : List[Any] , lowerCamelCase : "Conversation" ) -> List[int]: lowerCAmelCase_ : Optional[int] = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] lowerCAmelCase_ : Tuple = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(lowerCamelCase ) + F'{self.bos_token}Bot:' ) return self.encode(text=lowerCamelCase )
275
'''simple docstring''' from collections.abc import Callable class __snake_case : """simple docstring""" def __init__( self : Tuple , lowerCamelCase : Callable | None = None ) -> None: # Stores actual heap items. lowerCAmelCase_ : list = [] # Stores indexes of each item for supporting updates and deletion. lowerCAmelCase_ : dict = {} # Stores current size of heap. lowerCAmelCase_ : List[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowerCAmelCase_ : Tuple = key or (lambda lowerCamelCase : x) def __lowercase ( self : Optional[Any] , lowerCamelCase : int ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def __lowercase ( self : Union[str, Any] , lowerCamelCase : int ) -> int | None: lowerCAmelCase_ : List[str] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowercase ( self : Optional[Any] , lowerCamelCase : int ) -> int | None: lowerCAmelCase_ : List[Any] = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowercase ( self : List[str] , lowerCamelCase : int , lowerCamelCase : int ) -> None: lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.arr[j], self.arr[i] def __lowercase ( self : Tuple , lowerCamelCase : int , lowerCamelCase : int ) -> bool: return self.arr[i][1] < self.arr[j][1] def __lowercase ( self : int , lowerCamelCase : int ) -> int: lowerCAmelCase_ : List[str] = self._left(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = self._right(lowerCamelCase ) lowerCAmelCase_ : Tuple = i if left is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : int = left if right is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : Optional[Any] = right return valid_parent def __lowercase ( self : List[Any] , lowerCamelCase : int ) -> None: lowerCAmelCase_ : Tuple = self._parent(lowerCamelCase ) while parent is not None and not self._cmp(lowerCamelCase , lowerCamelCase ): self._swap(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_ : str = parent, self._parent(lowerCamelCase ) def __lowercase ( self : Tuple , lowerCamelCase : int ) -> None: lowerCAmelCase_ : Optional[Any] = self._get_valid_parent(lowerCamelCase ) while valid_parent != index: self._swap(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_, lowerCAmelCase_ : int = valid_parent, self._get_valid_parent(lowerCamelCase ) def __lowercase ( self : Optional[Any] , lowerCamelCase : int , lowerCamelCase : int ) -> None: if item not in self.pos_map: return lowerCAmelCase_ : Dict = self.pos_map[item] lowerCAmelCase_ : Dict = [item, self.key(lowerCamelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(lowerCamelCase ) self._heapify_down(lowerCamelCase ) def __lowercase ( self : int , lowerCamelCase : int ) -> None: if item not in self.pos_map: return lowerCAmelCase_ : List[str] = self.pos_map[item] del self.pos_map[item] lowerCAmelCase_ : Tuple = self.arr[self.size - 1] lowerCAmelCase_ : List[str] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(lowerCamelCase ) self._heapify_down(lowerCamelCase ) def __lowercase ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ) -> None: lowerCAmelCase_ : Any = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(lowerCamelCase )] ) else: lowerCAmelCase_ : str = [item, self.key(lowerCamelCase )] lowerCAmelCase_ : Optional[Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowercase ( self : str ) -> tuple | None: return self.arr[0] if self.size else None def __lowercase ( self : Optional[Any] ) -> tuple | None: lowerCAmelCase_ : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def UpperCamelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
275
1
def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return x if y == 0 else greatest_common_divisor(lowercase_ , x % y ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return (x * y) // greatest_common_divisor(lowercase_ , lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ = 20 ) -> int: """simple docstring""" __UpperCamelCase = 1 for i in range(1 , n + 1 ): __UpperCamelCase = lcm(lowercase_ , lowercase_ ) return g if __name__ == "__main__": print(f"""{solution() = }""")
375
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _lowerCamelCase : """simple docstring""" def __init__( self : str , snake_case : Any , snake_case : str=14 , snake_case : Dict=7 , snake_case : Any=True , snake_case : Any=True , snake_case : str=True , snake_case : List[str]=True , snake_case : int=True , snake_case : List[Any]=99 , snake_case : Optional[int]=32 , snake_case : str=5 , snake_case : int=4 , snake_case : str=37 , snake_case : Union[str, Any]="gelu" , snake_case : List[str]=0.1 , snake_case : Optional[int]=0.1 , snake_case : Tuple=512 , snake_case : int=16 , snake_case : Any=2 , snake_case : List[str]=0.02 , snake_case : List[Any]=3 , snake_case : str=4 , snake_case : Tuple=None , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_input_mask __UpperCamelCase = use_labels __UpperCamelCase = use_mc_token_ids __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope __UpperCamelCase = self.vocab_size - 1 def snake_case ( self : Optional[Any] ): __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase = None if self.use_mc_token_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() __UpperCamelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def snake_case ( self : Optional[int] ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def snake_case ( self : Any , snake_case : Optional[int] , snake_case : Any , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[Any] , *snake_case : Union[str, Any] ): __UpperCamelCase = CTRLModel(config=snake_case ) model.to(snake_case ) model.eval() model(snake_case , token_type_ids=snake_case , head_mask=snake_case ) model(snake_case , token_type_ids=snake_case ) __UpperCamelCase = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def snake_case ( self : Any , snake_case : Tuple , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] , *snake_case : Union[str, Any] ): __UpperCamelCase = CTRLLMHeadModel(snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Any ): __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def snake_case ( self : List[Any] , snake_case : int , snake_case : Dict , snake_case : Optional[Any] , snake_case : Any , *snake_case : str ): __UpperCamelCase = self.num_labels __UpperCamelCase = CTRLForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class _lowerCamelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : int = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCAmelCase__ : List[str] = (CTRLLMHeadModel,) if is_torch_available() else () lowerCAmelCase__ : str = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Dict = True lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : str = False def snake_case ( self : str , snake_case : Optional[int] , snake_case : List[str] , snake_case : Tuple , snake_case : Dict , snake_case : List[str] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def snake_case ( self : Optional[int] ): __UpperCamelCase = CTRLModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=snake_case , n_embd=37 ) def snake_case ( self : Union[str, Any] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def snake_case ( self : Dict ): self.config_tester.run_common_tests() def snake_case ( self : Optional[int] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*snake_case ) def snake_case ( self : Tuple ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case ( self : List[Any] ): pass @slow def snake_case ( self : Optional[Any] ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = CTRLModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def snake_case ( self : List[Any] ): pass @require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self : int ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def snake_case ( self : Optional[int] ): __UpperCamelCase = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(snake_case ) __UpperCamelCase = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=snake_case ) # Legal the president is __UpperCamelCase = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __UpperCamelCase = model.generate(snake_case , do_sample=snake_case ) self.assertListEqual(output_ids[0].tolist() , snake_case )
375
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {"""vocab_file""": """sentencepiece.bpe.model"""} __SCREAMING_SNAKE_CASE = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } __SCREAMING_SNAKE_CASE = { """moussaKam/mbarthez""": 10_24, """moussaKam/barthez""": 10_24, """moussaKam/barthez-orangesum-title""": 10_24, } __SCREAMING_SNAKE_CASE = """▁""" class __snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase_ : Dict = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[str] = ['input_ids', 'attention_mask'] def __init__( self :Any , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :Tuple="<s>" , UpperCamelCase__ :int="</s>" , UpperCamelCase__ :Optional[Any]="</s>" , UpperCamelCase__ :List[str]="<s>" , UpperCamelCase__ :Union[str, Any]="<unk>" , UpperCamelCase__ :Union[str, Any]="<pad>" , UpperCamelCase__ :List[Any]="<mask>" , UpperCamelCase__ :Optional[Dict[str, Any]] = None , **UpperCamelCase__ :Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) _a = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _a = len(self.sp_model ) - 1 _a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE_ ( self :int , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self :str , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None , UpperCamelCase__ :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def SCREAMING_SNAKE_CASE_ ( self :Tuple , UpperCamelCase__ :List[int] , UpperCamelCase__ :Optional[List[int]] = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :str ): return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , UpperCamelCase__ :Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _a = self.sp_model.PieceToId(UpperCamelCase__ ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , UpperCamelCase__ :List[str] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :int , UpperCamelCase__ :Any ): _a = [] _a = "" _a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token _a = True _a = [] else: current_sub_tokens.append(UpperCamelCase__ ) _a = False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def __getstate__( self :Optional[Any] ): _a = self.__dict__.copy() _a = None return state def __setstate__( self :Dict , UpperCamelCase__ :List[Any] ): _a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self :Dict , UpperCamelCase__ :str , UpperCamelCase__ :Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
388
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __SCREAMING_SNAKE_CASE = False class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE_ ( self :List[str] ): return 12 @property def SCREAMING_SNAKE_CASE_ ( self :int ): return 12 @property def SCREAMING_SNAKE_CASE_ ( self :Dict ): return 32 @property def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): torch.manual_seed(0 ) _a = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCamelCase__ ) @property def SCREAMING_SNAKE_CASE_ ( self :str ): torch.manual_seed(0 ) _a = 12 _a = 12 _a = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } _a = TransformeraDModel(**UpperCamelCase__ ) return model def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): _a = "cpu" _a = self.dummy_vqvae _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_transformer _a = VQDiffusionScheduler(self.num_embed ) _a = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCamelCase__ ) _a = VQDiffusionPipeline( vqvae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , transformer=UpperCamelCase__ , scheduler=UpperCamelCase__ , learned_classifier_free_sampling_embeddings=UpperCamelCase__ , ) _a = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a = "teddy bear playing in the pool" _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe([prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="np" ) _a = output.images _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe( [prompt] , generator=UpperCamelCase__ , output_type="np" , return_dict=UpperCamelCase__ , num_inference_steps=2 )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _a = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): _a = "cpu" _a = self.dummy_vqvae _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_transformer _a = VQDiffusionScheduler(self.num_embed ) _a = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCamelCase__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) _a = VQDiffusionPipeline( vqvae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , transformer=UpperCamelCase__ , scheduler=UpperCamelCase__ , learned_classifier_free_sampling_embeddings=UpperCamelCase__ , ) _a = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _a = "teddy bear playing in the pool" _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe([prompt] , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="np" ) _a = output.images _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipe( [prompt] , generator=UpperCamelCase__ , output_type="np" , return_dict=UpperCamelCase__ , num_inference_steps=2 )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) _a = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) _a = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) _a = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though _a = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) _a = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=UpperCamelCase__ , output_type="np" , ) _a = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
388
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=7 , snake_case__=3 , snake_case__=18 , snake_case__=30 , snake_case__=400 , snake_case__=True , snake_case__=None , snake_case__=True , ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = size if size is not None else {"height": 18, "width": 18} _SCREAMING_SNAKE_CASE : Optional[int] = parent _SCREAMING_SNAKE_CASE : Any = batch_size _SCREAMING_SNAKE_CASE : List[str] = num_channels _SCREAMING_SNAKE_CASE : List[str] = image_size _SCREAMING_SNAKE_CASE : Any = min_resolution _SCREAMING_SNAKE_CASE : Tuple = max_resolution _SCREAMING_SNAKE_CASE : List[Any] = do_resize _SCREAMING_SNAKE_CASE : Optional[int] = size _SCREAMING_SNAKE_CASE : List[str] = apply_ocr def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = LayoutLMvaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "apply_ocr" ) ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE : Dict = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , snake_case__ ) self.assertIsInstance(encoding.boxes , snake_case__ ) # Test batched _SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _SCREAMING_SNAKE_CASE : Optional[int] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _SCREAMING_SNAKE_CASE : Tuple = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = LayoutLMvaImageProcessor() from datasets import load_dataset _SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) _SCREAMING_SNAKE_CASE : Dict = Image.open(ds[0]["file"] ).convert("RGB" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(snake_case__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _SCREAMING_SNAKE_CASE : Tuple = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 _SCREAMING_SNAKE_CASE : Dict = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , snake_case__ ) self.assertListEqual(encoding.boxes , snake_case__ ) # with apply_OCR = False _SCREAMING_SNAKE_CASE : int = LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) _SCREAMING_SNAKE_CASE : int = image_processing(snake_case__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
713
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def _lowerCAmelCase ( lowerCamelCase__ : str ) -> Optional[int]: def decorator(lowerCamelCase__ : int ): _SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowerCamelCase__, "handle_key", [] ) handle += [key] setattr(lowerCamelCase__, "handle_key", lowerCamelCase__ ) return func return decorator def _lowerCAmelCase ( *lowerCamelCase__ : List[str] ) -> Tuple: def decorator(lowerCamelCase__ : Dict ): _SCREAMING_SNAKE_CASE : List[Any] = getattr(lowerCamelCase__, "handle_key", [] ) handle += keys setattr(lowerCamelCase__, "handle_key", lowerCamelCase__ ) return func return decorator class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __new__( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = super().__new__(cls , snake_case__ , snake_case__ , snake_case__ ) if not hasattr(snake_case__ , "key_handler" ): setattr(snake_case__ , "key_handler" , {} ) setattr(snake_case__ , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): _SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(snake_case__ , "handle_key" , [] ) for key in handled_keys: _SCREAMING_SNAKE_CASE : Tuple = value return new_cls @staticmethod def __SCREAMING_SNAKE_CASE ( cls ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = get_character() if char != KEYMAP["undefined"]: _SCREAMING_SNAKE_CASE : Dict = ord(snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = cls.key_handler.get(snake_case__ ) if handler: _SCREAMING_SNAKE_CASE : Optional[int] = char return handler(cls ) else: return None def _lowerCAmelCase ( cls : List[Any] ) -> str: return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
295
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def lowerCamelCase__ ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ) -> float: return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case_ , snake_case_ ) ) ) def lowerCamelCase__ ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ) -> list[list[list[float] | float]]: if dataset.ndim != value_array.ndim: __snake_case = ( '''Wrong input data\'s dimensions... ''' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(snake_case_ ) try: if dataset.shape[1] != value_array.shape[1]: __snake_case = ( '''Wrong input data\'s shape... ''' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(snake_case_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: __snake_case = ( '''Input data have different datatype... ''' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(snake_case_ ) __snake_case = [] for value in value_array: __snake_case = euclidean(snake_case_ , dataset[0] ) __snake_case = dataset[0].tolist() for dataset_value in dataset[1:]: __snake_case = euclidean(snake_case_ , snake_case_ ) if dist > temp_dist: __snake_case = temp_dist __snake_case = dataset_value.tolist() answer.append([vector, dist] ) return answer def lowerCamelCase__ ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ) -> float: return np.dot(snake_case_ , snake_case_ ) / (norm(snake_case_ ) * norm(snake_case_ )) if __name__ == "__main__": import doctest doctest.testmod()
592
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position snake_case_ = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip snake_case_ = concatenate_datasets snake_case_ = DownloadConfig snake_case_ = DownloadManager snake_case_ = DownloadMode snake_case_ = DownloadConfig snake_case_ = DownloadMode snake_case_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
592
1
"""simple docstring""" import math def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 ): UpperCAmelCase_ = end or len(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = i UpperCAmelCase_ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: UpperCAmelCase_ = array[temp_index - 1] temp_index -= 1 UpperCAmelCase_ = temp_index_value return array def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Max Heap UpperCAmelCase_ = index UpperCAmelCase_ = 2 * index + 1 # Left Node UpperCAmelCase_ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: UpperCAmelCase_ = left_index if right_index < heap_size and array[largest] < array[right_index]: UpperCAmelCase_ = right_index if largest != index: UpperCAmelCase_ , UpperCAmelCase_ = array[largest], array[index] heapify(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = len(lowerCAmelCase__ ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for i in range(n - 1 , 0 , -1 ): UpperCAmelCase_ , UpperCAmelCase_ = array[0], array[i] heapify(lowerCAmelCase__ , 0 , lowerCAmelCase__ ) return array def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = low UpperCAmelCase_ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i UpperCAmelCase_ , UpperCAmelCase_ = array[j], array[i] i += 1 def a__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return array UpperCAmelCase_ = 2 * math.ceil(math.loga(len(lowerCAmelCase__ ) ) ) UpperCAmelCase_ = 16 return intro_sort(lowerCAmelCase__ , 0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCAmelCase__ ) max_depth -= 1 UpperCAmelCase_ = median_of_a(lowerCAmelCase__ , lowerCAmelCase__ , start + ((end - start) // 2) + 1 , end - 1 ) UpperCAmelCase_ = partition(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) intro_sort(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = p return insertion_sort(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase = input("""Enter numbers separated by a comma : """).strip() lowerCamelCase = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
709
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_text_model''' def __init__( self : List[Any] , _UpperCAmelCase : str=49408 , _UpperCAmelCase : str=512 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : List[str]="quick_gelu" , _UpperCAmelCase : Dict=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Dict=49406 , _UpperCAmelCase : Union[str, Any]=49407 , **_UpperCAmelCase : List[str] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit_vision_model''' def __init__( self : str , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=768 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Dict="quick_gelu" , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=1.0 , **_UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = initializer_factor @classmethod def lowercase__ ( cls : Any , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''owlvit''' UpperCamelCase = True def __init__( self : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=512 , _UpperCAmelCase : Any=2.6592 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCAmelCase ) if text_config is None: UpperCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase_ = OwlViTTextConfig(**_UpperCAmelCase ) UpperCAmelCase_ = OwlViTVisionConfig(**_UpperCAmelCase ) UpperCAmelCase_ = projection_dim UpperCAmelCase_ = logit_scale_init_value UpperCAmelCase_ = return_dict UpperCAmelCase_ = 1.0 @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = text_config UpperCAmelCase_ = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ = self.text_config.to_dict() UpperCAmelCase_ = self.vision_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-4 def lowercase__ ( self : List[str] , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return 14
14
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _lowerCAmelCase = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def _snake_case ( __snake_case , __snake_case ): inspect_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCamelCase = path + ".py" assert script_name in os.listdir(_SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(_SCREAMING_SNAKE_CASE ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def _snake_case ( __snake_case , __snake_case ): inspect_metric(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCamelCase = path + ".py" assert script_name in os.listdir(_SCREAMING_SNAKE_CASE ) assert "__pycache__" not in os.listdir(_SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = get_dataset_config_info(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def _snake_case ( __snake_case , __snake_case , __snake_case ): with pytest.raises(_SCREAMING_SNAKE_CASE ): get_dataset_config_info(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = get_dataset_config_names(_SCREAMING_SNAKE_CASE ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = get_dataset_infos(_SCREAMING_SNAKE_CASE ) assert list(infos.keys() ) == expected_configs _UpperCamelCase = expected_configs[0] assert expected_config in infos _UpperCamelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = get_dataset_infos(_SCREAMING_SNAKE_CASE ) assert expected_config in infos _UpperCamelCase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def _snake_case ( __snake_case , __snake_case , __snake_case ): with pytest.raises(_SCREAMING_SNAKE_CASE ): get_dataset_split_names(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE )
10
"""simple docstring""" UpperCamelCase = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
473
0
'''simple docstring''' def __lowerCAmelCase ( a_ ) -> bool: '''simple docstring''' if not isinstance(a_ , a_ ): SCREAMING_SNAKE_CASE : str = f"""Input value of [number={number}] must be an integer""" raise TypeError(a_ ) if number < 0: return False SCREAMING_SNAKE_CASE : Tuple = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
179
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowerCAmelCase :Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCAmelCase ( a_ ) -> List[Any]: '''simple docstring''' warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , a_ , ) if isinstance(a_ , torch.Tensor ): return image elif isinstance(a_ , PIL.Image.Image ): SCREAMING_SNAKE_CASE : str = [image] if isinstance(image[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = image[0].size SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 SCREAMING_SNAKE_CASE : Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] SCREAMING_SNAKE_CASE : List[Any] = np.concatenate(a_ , axis=0 ) SCREAMING_SNAKE_CASE : Tuple = np.array(a_ ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE : Tuple = image.transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE : Dict = 2.0 * image - 1.0 SCREAMING_SNAKE_CASE : int = torch.from_numpy(a_ ) elif isinstance(image[0] , torch.Tensor ): SCREAMING_SNAKE_CASE : Tuple = torch.cat(a_ , dim=0 ) return image def __lowerCAmelCase ( a_ ) -> List[Any]: '''simple docstring''' if isinstance(a_ , torch.Tensor ): return mask elif isinstance(a_ , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Optional[int] = [mask] if isinstance(mask[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = mask[0].size SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE : Tuple = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] SCREAMING_SNAKE_CASE : Union[str, Any] = np.concatenate(a_ , axis=0 ) SCREAMING_SNAKE_CASE : List[Any] = mask.astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 1 SCREAMING_SNAKE_CASE : str = torch.from_numpy(a_ ) elif isinstance(mask[0] , torch.Tensor ): SCREAMING_SNAKE_CASE : List[Any] = torch.cat(a_ , dim=0 ) return mask class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : UNetaDModel snake_case__ : RePaintScheduler def __init__( self , lowercase__ , lowercase__ ) -> Union[str, Any]: super().__init__() self.register_modules(unet=lowercase__ , scheduler=lowercase__ ) @torch.no_grad() def __call__( self , lowercase__ , lowercase__ , lowercase__ = 250 , lowercase__ = 0.0 , lowercase__ = 10 , lowercase__ = 10 , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ) -> Union[ImagePipelineOutput, Tuple]: SCREAMING_SNAKE_CASE : Optional[int] = image SCREAMING_SNAKE_CASE : List[str] = _preprocess_image(lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = original_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE : Any = _preprocess_mask(lowercase__ ) SCREAMING_SNAKE_CASE : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE : int = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowercase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) SCREAMING_SNAKE_CASE : Dict = original_image.shape SCREAMING_SNAKE_CASE : Any = randn_tensor(lowercase__ , generator=lowercase__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowercase__ , lowercase__ , lowercase__ , self.device ) SCREAMING_SNAKE_CASE : Optional[Any] = eta SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.timesteps[0] + 1 SCREAMING_SNAKE_CASE : Tuple = generator[0] if isinstance(lowercase__ , lowercase__ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual SCREAMING_SNAKE_CASE : Optional[int] = self.unet(lowercase__ , lowercase__ ).sample # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE : Tuple = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ).prev_sample else: # compute the reverse: x_t-1 -> x_t SCREAMING_SNAKE_CASE : List[str] = self.scheduler.undo_step(lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : int = t SCREAMING_SNAKE_CASE : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Dict = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ )
179
1
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm UpperCAmelCase_ : int = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : Dict = 256 def UpperCAmelCase_ ( A ): '''simple docstring''' if len(A ) < MIN_NUM_TOKENS: return None _a : Union[str, Any] = MinHash(num_perm=A ) for token in set(A ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase_ ( A ): '''simple docstring''' return {t for t in NON_ALPHA.split(A ) if len(t.strip() ) > 0} class a : '''simple docstring''' def __init__( self , *, lowerCamelCase_ = 0.85 , ) -> List[Any]: _a : int = duplication_jaccard_threshold _a : Dict = NUM_PERM _a : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a : Optional[Any] = defaultdict(lowerCamelCase_ ) def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ ) -> None: _a : List[Any] = self._index.query(lowerCamelCase_ ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCamelCase_ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCamelCase_ ) def __UpperCamelCase ( self ) -> List[List[Dict]]: _a : Union[str, Any] = [] for base, duplicates in self._duplicate_clusters.items(): _a : Union[str, Any] = [base] + list(lowerCamelCase_ ) # reformat the cluster to be a list of dict _a : List[str] = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(lowerCamelCase_ ) return duplicate_clusters def __UpperCamelCase ( self , lowerCamelCase_ ) -> None: _a : Tuple = self.get_duplicate_clusters() with open(lowerCamelCase_ , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase_ ( A ): '''simple docstring''' _a , _a : List[Any] = element _a : Union[str, Any] = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase_ ( A ): '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(A , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def UpperCAmelCase_ ( A , A ): '''simple docstring''' _a : int = DuplicationIndex(duplication_jaccard_threshold=A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(A ) ) , max_queue_size=1_0_0 ) ): di.add(A , A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase_ ( A , A ): '''simple docstring''' _a : Optional[int] = get_tokens(A ) _a : Union[str, Any] = get_tokens(A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) UpperCAmelCase_ : Optional[Any] = None def UpperCAmelCase_ ( A , A ): '''simple docstring''' _a : str = [] for elementa in cluster: _a : Union[str, Any] = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: _a : Optional[Any] = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(A , A ) >= jaccard_threshold: elementa["copies"] += 1 break else: _a : int = 1 extremes.append(A ) return extremes def UpperCAmelCase_ ( A , A , A ): '''simple docstring''' global _shared_dataset _a : List[str] = dataset _a : int = [] _a : Dict = partial(_find_cluster_extremes_shared , jaccard_threshold=A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( A , A , ) , total=len(A ) , ): extremes_list.append(A ) return extremes_list def UpperCAmelCase_ ( A , A = 0.85 ): '''simple docstring''' _a : Tuple = make_duplicate_clusters(A , A ) _a : Any = {x['base_index'] for cluster in duplicate_clusters for x in cluster} _a : str = {} _a : Dict = find_extremes(A , A , A ) for extremes in extremes_clusters: for element in extremes: _a : Dict = element _a : int = duplicate_indices - set(extreme_dict.keys() ) _a : int = dataset.filter(lambda A , A : idx not in remove_indices , with_indices=A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a : Union[str, Any] = element['base_index'] in extreme_dict if element["is_extreme"]: _a : Optional[int] = extreme_dict[element['base_index']]['copies'] print(f'''Original dataset size: {len(A )}''' ) print(f'''Number of duplicate clusters: {len(A )}''' ) print(f'''Files in duplicate cluster: {len(A )}''' ) print(f'''Unique files in duplicate cluster: {len(A )}''' ) print(f'''Filtered dataset size: {len(A )}''' ) return ds_filter, duplicate_clusters
120
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : List[Any] = tau * frequency / samplerate _a : Tuple = sin(A ) _a : List[Any] = cos(A ) _a : Union[str, Any] = _sin / (2 * q_factor) _a : Dict = (1 - _cos) / 2 _a : Any = 1 - _cos _a : Any = 1 + alpha _a : int = -2 * _cos _a : str = 1 - alpha _a : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : int = tau * frequency / samplerate _a : int = sin(A ) _a : Union[str, Any] = cos(A ) _a : int = _sin / (2 * q_factor) _a : Dict = (1 + _cos) / 2 _a : int = -1 - _cos _a : Optional[int] = 1 + alpha _a : str = -2 * _cos _a : Dict = 1 - alpha _a : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : str = tau * frequency / samplerate _a : Dict = sin(A ) _a : int = cos(A ) _a : Dict = _sin / (2 * q_factor) _a : List[Any] = _sin / 2 _a : List[str] = 0 _a : Dict = -ba _a : List[Any] = 1 + alpha _a : Union[str, Any] = -2 * _cos _a : List[Any] = 1 - alpha _a : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' _a : Optional[Any] = tau * frequency / samplerate _a : Tuple = sin(A ) _a : Tuple = cos(A ) _a : Dict = _sin / (2 * q_factor) _a : List[Any] = 1 - alpha _a : int = -2 * _cos _a : List[Any] = 1 + alpha _a : str = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' _a : Union[str, Any] = tau * frequency / samplerate _a : str = sin(A ) _a : str = cos(A ) _a : List[Any] = _sin / (2 * q_factor) _a : Optional[Any] = 1_0 ** (gain_db / 4_0) _a : Dict = 1 + alpha * big_a _a : str = -2 * _cos _a : Tuple = 1 - alpha * big_a _a : Tuple = 1 + alpha / big_a _a : str = -2 * _cos _a : Union[str, Any] = 1 - alpha / big_a _a : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' _a : Optional[int] = tau * frequency / samplerate _a : List[str] = sin(A ) _a : Tuple = cos(A ) _a : Union[str, Any] = _sin / (2 * q_factor) _a : str = 1_0 ** (gain_db / 4_0) _a : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos _a : List[str] = (big_a + 1) + (big_a - 1) * _cos _a : List[Any] = (big_a - 1) - (big_a + 1) * _cos _a : Dict = (big_a - 1) + (big_a + 1) * _cos _a : Tuple = 2 * sqrt(A ) * alpha _a : Any = big_a * (pmc + aaa) _a : Optional[int] = 2 * big_a * mpc _a : Dict = big_a * (pmc - aaa) _a : List[str] = ppmc + aaa _a : int = -2 * pmpc _a : Tuple = ppmc - aaa _a : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase_ ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' _a : Dict = tau * frequency / samplerate _a : Tuple = sin(A ) _a : Any = cos(A ) _a : int = _sin / (2 * q_factor) _a : str = 1_0 ** (gain_db / 4_0) _a : List[Any] = (big_a + 1) - (big_a - 1) * _cos _a : Union[str, Any] = (big_a + 1) + (big_a - 1) * _cos _a : List[Any] = (big_a - 1) - (big_a + 1) * _cos _a : List[str] = (big_a - 1) + (big_a + 1) * _cos _a : Union[str, Any] = 2 * sqrt(A ) * alpha _a : Optional[Any] = big_a * (ppmc + aaa) _a : List[str] = -2 * big_a * pmpc _a : Any = big_a * (ppmc - aaa) _a : List[Any] = pmc + aaa _a : Tuple = 2 * mpc _a : List[Any] = pmc - aaa _a : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
120
1
from __future__ import annotations def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[str, float]: '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
334
from __future__ import annotations from typing import Any class lowercase_ : def __init__( self: Tuple, _lowercase: int): '''simple docstring''' __lowerCAmelCase = num_of_nodes __lowerCAmelCase = [] __lowerCAmelCase = {} def _lowercase ( self: str, _lowercase: int, _lowercase: int, _lowercase: int): '''simple docstring''' self.m_edges.append([u_node, v_node, weight]) def _lowercase ( self: Optional[Any], _lowercase: int): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def _lowercase ( self: Any, _lowercase: int): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowerCAmelCase = self.find_component(_lowercase) def _lowercase ( self: Tuple, _lowercase: list[int], _lowercase: int, _lowercase: int): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowerCAmelCase = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowercase) elif component_size[u_node] >= component_size[v_node]: __lowerCAmelCase = self.find_component(_lowercase) component_size[u_node] += component_size[v_node] self.set_component(_lowercase) def _lowercase ( self: Optional[Any]): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) __lowerCAmelCase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = edge __lowerCAmelCase = self.m_component[u] __lowerCAmelCase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowerCAmelCase = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowercase, _lowercase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = edge __lowerCAmelCase = self.m_component[u] __lowerCAmelCase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowercase, _lowercase, _lowercase) print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''') num_of_components -= 1 __lowerCAmelCase = [-1] * self.m_num_of_nodes print(f'''The total weight of the minimal spanning tree is: {mst_weight}''') def UpperCAmelCase ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
334
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer snake_case : Dict = logging.get_logger(__name__) snake_case : List[str] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp snake_case : Tuple = { 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } snake_case : Union[str, Any] = { 'RUCAIBox/mvp': 10_24, } class __lowercase ( UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : Dict = MvpTokenizer def __init__( self , A_=None , A_=None , A_=None , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , A_=True , **A_ , )-> str: super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) _SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , A_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = getattr(A_ , pre_tok_state.pop('type' ) ) _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = pre_tok_class(**A_ ) _SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _SCREAMING_SNAKE_CASE = 'post_processor' _SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , A_ , A_ ) if tokenizer_component_instance: _SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _SCREAMING_SNAKE_CASE = tuple(state['sep'] ) if "cls" in state: _SCREAMING_SNAKE_CASE = tuple(state['cls'] ) _SCREAMING_SNAKE_CASE = False if state.get('add_prefix_space' , A_ ) != add_prefix_space: _SCREAMING_SNAKE_CASE = add_prefix_space _SCREAMING_SNAKE_CASE = True if state.get('trim_offsets' , A_ ) != trim_offsets: _SCREAMING_SNAKE_CASE = trim_offsets _SCREAMING_SNAKE_CASE = True if changes_to_apply: _SCREAMING_SNAKE_CASE = getattr(A_ , state.pop('type' ) ) _SCREAMING_SNAKE_CASE = component_class(**A_ ) setattr(self.backend_tokenizer , A_ , A_ ) @property def __magic_name__ ( self )-> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __magic_name__ ( self , A_ )-> int: _SCREAMING_SNAKE_CASE = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else value _SCREAMING_SNAKE_CASE = value def __magic_name__ ( self , *A_ , **A_ )-> BatchEncoding: _SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*A_ , **A_ ) def __magic_name__ ( self , *A_ , **A_ )-> BatchEncoding: _SCREAMING_SNAKE_CASE = kwargs.get('is_split_into_words' , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*A_ , **A_ ) def __magic_name__ ( self , A_ , A_ = None )-> Tuple[str]: _SCREAMING_SNAKE_CASE = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def __magic_name__ ( self , A_ , A_=None )-> Optional[Any]: _SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __magic_name__ ( self , A_ , A_ = None )-> List[int]: _SCREAMING_SNAKE_CASE = [self.sep_token_id] _SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
605
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters snake_case : Tuple = (7_20, 12_80) # Height, Width snake_case : List[Any] = (0.4, 0.6) # if height or width lower than this scale, drop it. snake_case : str = 1 / 1_00 snake_case : List[Any] = '' snake_case : Union[str, Any] = '' snake_case : Tuple = '' snake_case : List[str] = 2_50 def SCREAMING_SNAKE_CASE ( ): """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = get_dataset(UpperCAmelCase__ ,UpperCAmelCase__ ) for index in range(UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE = random.sample(range(len(UpperCAmelCase__ ) ) ,4 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = update_image_and_anno( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,filter_scale=UpperCAmelCase__ ,) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _SCREAMING_SNAKE_CASE = random_chars(32 ) _SCREAMING_SNAKE_CASE = path.split(os.sep )[-1].rsplit('.' ,1 )[0] _SCREAMING_SNAKE_CASE = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' ,UpperCAmelCase__ ,[cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) _SCREAMING_SNAKE_CASE = [] for anno in new_annos: _SCREAMING_SNAKE_CASE = anno[3] - anno[1] _SCREAMING_SNAKE_CASE = anno[4] - anno[2] _SCREAMING_SNAKE_CASE = anno[1] + width / 2 _SCREAMING_SNAKE_CASE = anno[2] + height / 2 _SCREAMING_SNAKE_CASE = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(UpperCAmelCase__ ) with open(f'''{file_root}.txt''' ,'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ,UpperCAmelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for label_file in glob.glob(os.path.join(UpperCAmelCase__ ,'*.txt' ) ): _SCREAMING_SNAKE_CASE = label_file.split(os.sep )[-1].rsplit('.' ,1 )[0] with open(UpperCAmelCase__ ) as in_file: _SCREAMING_SNAKE_CASE = in_file.readlines() _SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ ,f'''{label_name}.jpg''' ) _SCREAMING_SNAKE_CASE = [] for obj_list in obj_lists: _SCREAMING_SNAKE_CASE = obj_list.rstrip('\n' ).split(' ' ) _SCREAMING_SNAKE_CASE = float(obj[1] ) - float(obj[3] ) / 2 _SCREAMING_SNAKE_CASE = float(obj[2] ) - float(obj[4] ) / 2 _SCREAMING_SNAKE_CASE = float(obj[1] ) + float(obj[3] ) / 2 _SCREAMING_SNAKE_CASE = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(UpperCAmelCase__ ) labels.append(UpperCAmelCase__ ) return img_paths, labels def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ = 0.0 ,): """simple docstring""" _SCREAMING_SNAKE_CASE = np.zeros([output_size[0], output_size[1], 3] ,dtype=np.uinta ) _SCREAMING_SNAKE_CASE = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _SCREAMING_SNAKE_CASE = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _SCREAMING_SNAKE_CASE = int(scale_x * output_size[1] ) _SCREAMING_SNAKE_CASE = int(scale_y * output_size[0] ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for i, index in enumerate(UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE = all_img_list[index] path_list.append(UpperCAmelCase__ ) _SCREAMING_SNAKE_CASE = all_annos[index] _SCREAMING_SNAKE_CASE = cva.imread(UpperCAmelCase__ ) if i == 0: # top-left _SCREAMING_SNAKE_CASE = cva.resize(UpperCAmelCase__ ,(divid_point_x, divid_point_y) ) _SCREAMING_SNAKE_CASE = img for bbox in img_annos: _SCREAMING_SNAKE_CASE = bbox[1] * scale_x _SCREAMING_SNAKE_CASE = bbox[2] * scale_y _SCREAMING_SNAKE_CASE = bbox[3] * scale_x _SCREAMING_SNAKE_CASE = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _SCREAMING_SNAKE_CASE = cva.resize(UpperCAmelCase__ ,(output_size[1] - divid_point_x, divid_point_y) ) _SCREAMING_SNAKE_CASE = img for bbox in img_annos: _SCREAMING_SNAKE_CASE = scale_x + bbox[1] * (1 - scale_x) _SCREAMING_SNAKE_CASE = bbox[2] * scale_y _SCREAMING_SNAKE_CASE = scale_x + bbox[3] * (1 - scale_x) _SCREAMING_SNAKE_CASE = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _SCREAMING_SNAKE_CASE = cva.resize(UpperCAmelCase__ ,(divid_point_x, output_size[0] - divid_point_y) ) _SCREAMING_SNAKE_CASE = img for bbox in img_annos: _SCREAMING_SNAKE_CASE = bbox[1] * scale_x _SCREAMING_SNAKE_CASE = scale_y + bbox[2] * (1 - scale_y) _SCREAMING_SNAKE_CASE = bbox[3] * scale_x _SCREAMING_SNAKE_CASE = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _SCREAMING_SNAKE_CASE = cva.resize( UpperCAmelCase__ ,(output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _SCREAMING_SNAKE_CASE = img for bbox in img_annos: _SCREAMING_SNAKE_CASE = scale_x + bbox[1] * (1 - scale_x) _SCREAMING_SNAKE_CASE = scale_y + bbox[2] * (1 - scale_y) _SCREAMING_SNAKE_CASE = scale_x + bbox[3] * (1 - scale_x) _SCREAMING_SNAKE_CASE = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _SCREAMING_SNAKE_CASE = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _SCREAMING_SNAKE_CASE = ascii_lowercase + digits return "".join(random.choice(UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ ) ) if __name__ == "__main__": main() print('DONE ✅')
605
1
import requests __lowercase :Optional[Any] = "" # <-- Put your OpenWeatherMap appid here! __lowercase :Any = "https://api.openweathermap.org/data/2.5/" def UpperCAmelCase ( _lowerCamelCase : Dict = "Chicago" , _lowerCamelCase : str = APPID ): '''simple docstring''' return requests.get(URL_BASE + "weather" , params=locals() ).json() def UpperCAmelCase ( _lowerCamelCase : Optional[Any] = "Kolkata, India" , _lowerCamelCase : Union[str, Any] = APPID ): '''simple docstring''' return requests.get(URL_BASE + "forecast" , params=locals() ).json() def UpperCAmelCase ( _lowerCamelCase : Union[str, Any] = 5_5.6_8 , _lowerCamelCase : Dict = 1_2.5_7 , _lowerCamelCase : Tuple = APPID ): '''simple docstring''' return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __lowercase :Tuple = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
707
import numpy class _a : """simple docstring""" def __init__( self : Optional[int] , a : numpy.ndarray , a : numpy.ndarray ) ->None: SCREAMING_SNAKE_CASE__ : Any = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. SCREAMING_SNAKE_CASE__ : int = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. SCREAMING_SNAKE_CASE__ : Dict = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. SCREAMING_SNAKE_CASE__ : List[Any] = numpy.random.rand(3 , 1 ) # Real output values provided. SCREAMING_SNAKE_CASE__ : str = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. SCREAMING_SNAKE_CASE__ : Tuple = numpy.zeros(output_array.shape ) def A_ ( self : Union[str, Any] ) ->numpy.ndarray: SCREAMING_SNAKE_CASE__ : List[Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. SCREAMING_SNAKE_CASE__ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. SCREAMING_SNAKE_CASE__ : int = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def A_ ( self : int ) ->None: SCREAMING_SNAKE_CASE__ : Optional[int] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) SCREAMING_SNAKE_CASE__ : int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def A_ ( self : int , a : numpy.ndarray , a : int , a : bool ) ->None: for iteration in range(1 , iterations + 1 ): SCREAMING_SNAKE_CASE__ : Dict = self.feedforward() self.back_propagation() if give_loss: SCREAMING_SNAKE_CASE__ : int = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def A_ ( self : Tuple , a : numpy.ndarray ) ->int: SCREAMING_SNAKE_CASE__ : Optional[int] = input_arr SCREAMING_SNAKE_CASE__ : Dict = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) SCREAMING_SNAKE_CASE__ : Any = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def UpperCAmelCase ( _lowerCamelCase : numpy.ndarray ): '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def UpperCAmelCase ( _lowerCamelCase : numpy.ndarray ): '''simple docstring''' return (value) * (1 - (value)) def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. SCREAMING_SNAKE_CASE__ : Any = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. SCREAMING_SNAKE_CASE__ : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=_lowerCamelCase , output_array=_lowerCamelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_lowerCamelCase , iterations=10 , give_loss=_lowerCamelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
26
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef snake_case : List[str] = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): """simple docstring""" warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , '''sklearn''' ) return (preds == labels).mean() def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ): """simple docstring""" warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , '''sklearn''' ) a :Dict = simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ ) a :Any = fa_score(y_true=UpperCAmelCase_ , y_pred=UpperCAmelCase_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __lowerCamelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ): """simple docstring""" warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , '''sklearn''' ) a :str = pearsonr(UpperCAmelCase_ , UpperCAmelCase_ )[0] a :Union[str, Any] = spearmanr(UpperCAmelCase_ , UpperCAmelCase_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict ): """simple docstring""" warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , '''sklearn''' ) assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ), F'''Predictions and labels have mismatched lengths {len(UpperCAmelCase_ )} and {len(UpperCAmelCase_ )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "mrpc": return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_ ) elif task_name == "sts-b": return pearson_and_spearman(UpperCAmelCase_ , UpperCAmelCase_ ) elif task_name == "qqp": return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "qnli": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "rte": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "wnli": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} elif task_name == "hans": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} else: raise KeyError(UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] ): """simple docstring""" warnings.warn(UpperCAmelCase_ , UpperCAmelCase_ ) requires_backends(UpperCAmelCase_ , '''sklearn''' ) if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError(F'''Predictions and labels have mismatched lengths {len(UpperCAmelCase_ )} and {len(UpperCAmelCase_ )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} else: raise KeyError(UpperCAmelCase_ )
445
from __future__ import annotations from typing import Any class _snake_case ( _snake_case ): pass class _snake_case : def __init__( self , _lowerCamelCase ): a :Any = data a :Node | None = None def __iter__( self ): a :Dict = self a :Optional[int] = [] while node: if node in visited: raise ContainsLoopError visited.append(_lowerCamelCase ) yield node.data a :str = node.next_node @property def SCREAMING_SNAKE_CASE__ ( self ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": snake_case : int = Node(1) snake_case : int = Node(2) snake_case : Optional[int] = Node(3) snake_case : List[str] = Node(4) print(root_node.has_loop) # False snake_case : Optional[Any] = root_node.next_node print(root_node.has_loop) # True snake_case : Dict = Node(5) snake_case : List[Any] = Node(6) snake_case : Optional[int] = Node(5) snake_case : Union[str, Any] = Node(6) print(root_node.has_loop) # False snake_case : Tuple = Node(1) print(root_node.has_loop) # False
445
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _a : int = open # noqa: we just need to have a builtin inside this module to test it properly
721
def UpperCamelCase__ ( _A: list , _A: list , _A: int ): '''simple docstring''' if len(_A ) != len(_A ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowerCamelCase = [p / w for p, w in zip(_A , _A )] # Creating a copy of the list and sorting profit/weight in ascending order __lowerCamelCase = sorted(_A ) # declaring useful variables __lowerCamelCase = len(_A ) __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowerCamelCase = sorted_profit_by_weight[length - i - 1] __lowerCamelCase = profit_by_weight.index(_A ) __lowerCamelCase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) _a : List[Any] = [int(x) for x in input('Input profits separated by spaces: ').split()] _a : List[Any] = [int(x) for x in input('Input weights separated by spaces: ').split()] _a : Any = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
571
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any=False ) -> List[Any]: """simple docstring""" lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowerCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _snake_case ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any=False ) -> List[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase = '' else: lowerCAmelCase = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase = in_proj_bias[: config.hidden_size] lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase = in_proj_bias[-config.hidden_size :] def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" lowerCAmelCase = dct.pop(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase = val def _snake_case ( ) -> Dict: """simple docstring""" lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase = DeiTConfig() # all deit models have fine-tuned heads lowerCAmelCase = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowerCAmelCase = 1_000 lowerCAmelCase = 'huggingface/label-files' lowerCAmelCase = 'imagenet-1k-id2label.json' lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowerCAmelCase = idalabel lowerCAmelCase = {v: k for k, v in idalabel.items()} lowerCAmelCase = int(deit_name[-6:-4] ) lowerCAmelCase = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): lowerCAmelCase = 192 lowerCAmelCase = 768 lowerCAmelCase = 12 lowerCAmelCase = 3 elif deit_name[9:].startswith("""small""" ): lowerCAmelCase = 384 lowerCAmelCase = 1_536 lowerCAmelCase = 12 lowerCAmelCase = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): lowerCAmelCase = 1_024 lowerCAmelCase = 4_096 lowerCAmelCase = 24 lowerCAmelCase = 16 # load original model from timm lowerCAmelCase = timm.create_model(SCREAMING_SNAKE_CASE__ , pretrained=SCREAMING_SNAKE_CASE__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase = timm_model.state_dict() lowerCAmelCase = create_rename_keys(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # load HuggingFace model lowerCAmelCase = DeiTForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # Check outputs on an image, prepared by DeiTImageProcessor lowerCAmelCase = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowerCAmelCase = DeiTImageProcessor(size=SCREAMING_SNAKE_CASE__ , crop_size=config.image_size ) lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase = encoding['pixel_values'] lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase = timm_model(SCREAMING_SNAKE_CASE__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE__ , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
433
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCamelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def a_ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' for attribute in key.split('.' ): _lowerCamelCase : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: _lowerCamelCase : str =getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: _lowerCamelCase : Optional[Any] =hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCamelCase : Tuple =value elif weight_type == "weight_g": _lowerCamelCase : Any =value elif weight_type == "weight_v": _lowerCamelCase : Any =value elif weight_type == "bias": _lowerCamelCase : Dict =value else: _lowerCamelCase : Union[str, Any] =value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] =[] _lowerCamelCase : Optional[Any] =fairseq_model.state_dict() _lowerCamelCase : Tuple =hf_model.feature_extractor _lowerCamelCase : int =hf_model.adapter for name, value in fairseq_dict.items(): _lowerCamelCase : Optional[Any] =False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == 'group' , ) _lowerCamelCase : Optional[int] =True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : int =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _lowerCamelCase : Dict =True if "*" in mapped_key: _lowerCamelCase : List[str] =name.split(SCREAMING_SNAKE_CASE__ )[0].split('.' )[-2] _lowerCamelCase : Dict =mapped_key.replace('*' , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: _lowerCamelCase : List[Any] ='weight_g' elif "weight_v" in name: _lowerCamelCase : int ='weight_v' elif "bias" in name: _lowerCamelCase : int ='bias' elif "weight" in name: _lowerCamelCase : Optional[int] ='weight' else: _lowerCamelCase : Any =None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def a_ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' _lowerCamelCase : str =full_name.split('conv_layers.' )[-1] _lowerCamelCase : List[Any] =name.split('.' ) _lowerCamelCase : Optional[int] =int(items[0] ) _lowerCamelCase : List[Any] =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCamelCase : Any =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCamelCase : int =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _lowerCamelCase : List[Any] =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCamelCase : Tuple =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) def a_ ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' _lowerCamelCase : Optional[int] =full_name.split('adaptor.' )[-1] _lowerCamelCase : str =name.split('.' ) if items[1].isdigit(): _lowerCamelCase : Any =int(items[1] ) else: _lowerCamelCase : int =None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' _lowerCamelCase : str =value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' _lowerCamelCase : str =value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' _lowerCamelCase : Optional[Any] =value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' _lowerCamelCase : Optional[Any] =value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' _lowerCamelCase : List[Any] =value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' _lowerCamelCase : Dict =value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) def a_ ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : List[Any] =emb.weight.shape _lowerCamelCase : str =nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Optional[Any] =emb.weight.data return lin_layer @torch.no_grad() def a_ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , ): '''simple docstring''' _lowerCamelCase : int =WavaVecaConfig.from_pretrained( SCREAMING_SNAKE_CASE__ , add_adapter=SCREAMING_SNAKE_CASE__ , adapter_stride=SCREAMING_SNAKE_CASE__ , adapter_kernel_size=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , output_hidden_size=SCREAMING_SNAKE_CASE__ , ) _lowerCamelCase : str =MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) # load model _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) _lowerCamelCase : Any =model[0].eval() # load feature extractor _lowerCamelCase : List[Any] =WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ ) # set weights for wav2vec2 encoder _lowerCamelCase : List[Any] =WavaVecaModel(SCREAMING_SNAKE_CASE__ ) recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE__ ) # load decoder weights _lowerCamelCase : int =MBartForCausalLM(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE__ ) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) _lowerCamelCase : Dict =SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : List[Any] =False _lowerCamelCase : Any =MBartaaTokenizer(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : int =hf_wavavec.config.to_dict() _lowerCamelCase : Optional[int] =tokenizer.pad_token_id _lowerCamelCase : Tuple =tokenizer.bos_token_id _lowerCamelCase : Any =tokenizer.eos_token_id _lowerCamelCase : int ='mbart50' _lowerCamelCase : Tuple ='wav2vec2' _lowerCamelCase : Tuple =tokenizer.eos_token_id _lowerCamelCase : Dict =250_004 _lowerCamelCase : List[str] =tokenizer.eos_token_id _lowerCamelCase : Dict =SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE__ ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=10_24, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=25_00_04, type=int, help='`decoder_start_token_id` of model config') lowerCamelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
464
0
'''simple docstring''' import math import sys import cva import numpy as np def snake_case ( snake_case : np.ndarray , snake_case : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase = math.sqrt(snake_case ) lowerCAmelCase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def snake_case ( snake_case : np.ndarray , snake_case : int , snake_case : int , snake_case : int ) -> np.ndarray: """simple docstring""" lowerCAmelCase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def snake_case ( snake_case : int , snake_case : float ) -> np.ndarray: """simple docstring""" lowerCAmelCase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , snake_case ): for j in range(0 , snake_case ): lowerCAmelCase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(snake_case , snake_case ) def snake_case ( snake_case : np.ndarray , snake_case : float , snake_case : float , snake_case : int , ) -> np.ndarray: """simple docstring""" lowerCAmelCase = np.zeros(img.shape ) lowerCAmelCase = get_gauss_kernel(snake_case , snake_case ) lowerCAmelCase , lowerCAmelCase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): lowerCAmelCase = get_slice(snake_case , snake_case , snake_case , snake_case ) lowerCAmelCase = img_s - img_s[kernel_size // 2, kernel_size // 2] lowerCAmelCase = vec_gaussian(snake_case , snake_case ) lowerCAmelCase = np.multiply(snake_case , snake_case ) lowerCAmelCase = np.multiply(snake_case , snake_case ) lowerCAmelCase = np.sum(snake_case ) / np.sum(snake_case ) lowerCAmelCase = val return imga def snake_case ( snake_case : list ) -> tuple: """simple docstring""" lowerCAmelCase = args[1] if args[1:] else '../image_data/lena.jpg' lowerCAmelCase = float(args[2] ) if args[2:] else 1.0 lowerCAmelCase = float(args[3] ) if args[3:] else 1.0 if args[4:]: lowerCAmelCase = int(args[4] ) lowerCAmelCase = kernel_size + abs(kernel_size % 2 - 1 ) else: lowerCAmelCase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _UpperCamelCase : Any = parse_args(sys.argv) _UpperCamelCase : Tuple = cva.imread(filename, 0) cva.imshow("input image", img) _UpperCamelCase : int = img / 255 _UpperCamelCase : Optional[Any] = out.astype("float32") _UpperCamelCase : List[str] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _UpperCamelCase : Optional[Any] = out * 255 _UpperCamelCase : Union[str, Any] = np.uinta(out) cva.imshow("output image", out) cva.waitKey(0) cva.destroyAllWindows()
703
'''simple docstring''' def snake_case ( snake_case : int ) -> int: """simple docstring""" assert ( isinstance(snake_case , snake_case ) and number_of_steps > 0 ), F'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 lowerCAmelCase , lowerCAmelCase = 1, 1 for _ in range(number_of_steps - 1 ): lowerCAmelCase , lowerCAmelCase = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
514
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCAmelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" _snake_case : str = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def A ( self : Tuple , A_ : Any=0 )-> Union[str, Any]: __UpperCamelCase = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(A_ ) ) __UpperCamelCase = np.random.RandomState(A_ ) __UpperCamelCase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def A ( self : str )-> List[str]: __UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs() __UpperCamelCase = pipe(**A_ ).images __UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) __UpperCamelCase = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def A ( self : List[str] )-> int: __UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __UpperCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs() __UpperCamelCase = pipe(**A_ ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __UpperCamelCase = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def A ( self : List[str] )-> Dict: __UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __UpperCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations __UpperCamelCase = pipe(**self.get_dummy_inputs() ) __UpperCamelCase = self.get_dummy_inputs() __UpperCamelCase = pipe(**A_ ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __UpperCamelCase = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def A ( self : Tuple )-> Tuple: __UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __UpperCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs() __UpperCamelCase = pipe(**A_ ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __UpperCamelCase = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def A ( self : Any )-> Optional[Any]: __UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __UpperCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs() __UpperCamelCase = pipe(**A_ ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __UpperCamelCase = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def A ( self : Any )-> int: __UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __UpperCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs() __UpperCamelCase = pipe(**A_ ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) __UpperCamelCase = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @property def A ( self : Optional[Any] )-> List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A ( self : Any )-> Any: __UpperCamelCase = ort.SessionOptions() __UpperCamelCase = False return options def A ( self : Optional[Any] )-> Optional[int]: __UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __UpperCamelCase = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default __UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = "A fantasy landscape, trending on artstation" __UpperCamelCase = np.random.RandomState(0 ) __UpperCamelCase = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=A_ , output_type="np" , ) __UpperCamelCase = output.images __UpperCamelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) __UpperCamelCase = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def A ( self : Any )-> Union[str, Any]: __UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __UpperCamelCase = init_image.resize((7_68, 5_12) ) __UpperCamelCase = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) __UpperCamelCase = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=A_ , safety_checker=A_ , feature_extractor=A_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = "A fantasy landscape, trending on artstation" __UpperCamelCase = np.random.RandomState(0 ) __UpperCamelCase = pipe( prompt=A_ , image=A_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=A_ , output_type="np" , ) __UpperCamelCase = output.images __UpperCamelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) __UpperCamelCase = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
505
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _A = logging.get_logger(__name__) _A = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp _A = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } _A = { "RUCAIBox/mvp": 1_024, } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" _snake_case : Dict = VOCAB_FILES_NAMES _snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Tuple = ['input_ids', 'attention_mask'] _snake_case : Any = MvpTokenizer def __init__( self : str , A_ : int=None , A_ : List[Any]=None , A_ : Optional[Any]=None , A_ : int="replace" , A_ : int="<s>" , A_ : Any="</s>" , A_ : List[str]="</s>" , A_ : Optional[int]="<s>" , A_ : Optional[int]="<unk>" , A_ : Optional[int]="<pad>" , A_ : Union[str, Any]="<mask>" , A_ : str=False , A_ : List[str]=True , **A_ : Union[str, Any] , )-> Any: super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , A_ ) != add_prefix_space: __UpperCamelCase = getattr(A_ , pre_tok_state.pop("type" ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**A_ ) __UpperCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __UpperCamelCase = "post_processor" __UpperCamelCase = getattr(self.backend_tokenizer , A_ , A_ ) if tokenizer_component_instance: __UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCamelCase = tuple(state["sep"] ) if "cls" in state: __UpperCamelCase = tuple(state["cls"] ) __UpperCamelCase = False if state.get("add_prefix_space" , A_ ) != add_prefix_space: __UpperCamelCase = add_prefix_space __UpperCamelCase = True if state.get("trim_offsets" , A_ ) != trim_offsets: __UpperCamelCase = trim_offsets __UpperCamelCase = True if changes_to_apply: __UpperCamelCase = getattr(A_ , state.pop("type" ) ) __UpperCamelCase = component_class(**A_ ) setattr(self.backend_tokenizer , A_ , A_ ) @property def A ( self : List[str] )-> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A ( self : Any , A_ : List[Any] )-> List[Any]: __UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else value __UpperCamelCase = value def A ( self : str , *A_ : Dict , **A_ : Dict )-> BatchEncoding: __UpperCamelCase = kwargs.get("is_split_into_words" , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_ ) def A ( self : Tuple , *A_ : str , **A_ : List[str] )-> BatchEncoding: __UpperCamelCase = kwargs.get("is_split_into_words" , A_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_ ) def A ( self : Optional[int] , A_ : str , A_ : Optional[str] = None )-> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def A ( self : Any , A_ : Dict , A_ : Dict=None )-> Union[str, Any]: __UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : Optional[int] , A_ : List[int] , A_ : Optional[List[int]] = None )-> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
505
1
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __snake_case : Dict = datasets.logging.get_logger(__name__) __snake_case : Any = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' __snake_case : List[Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' __snake_case : Dict = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="dummy_doc" ): """simple docstring""" UpperCAmelCase__ :Union[str, Any] = {doc: key_lines} UpperCAmelCase__ :List[str] = {doc: sys_lines} UpperCAmelCase__ :List[str] = {} UpperCAmelCase__ :Optional[int] = 0 UpperCAmelCase__ :Dict = 0 UpperCAmelCase__ :str = 0 UpperCAmelCase__ :str = 0 UpperCAmelCase__ :int = 0 UpperCAmelCase__ :Any = 0 UpperCAmelCase__ , UpperCAmelCase__ :Tuple = reader.get_doc_mentions(SCREAMING_SNAKE_CASE , key_doc_lines[doc] , SCREAMING_SNAKE_CASE ) key_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase__ :Tuple = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE , key_doc_lines[doc] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCAmelCase__ , UpperCAmelCase__ :Dict = reader.get_doc_mentions(SCREAMING_SNAKE_CASE , sys_doc_lines[doc] , SCREAMING_SNAKE_CASE ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase__ :Optional[int] = reader.set_annotated_parse_trees(SCREAMING_SNAKE_CASE , key_doc_lines[doc] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if remove_nested: UpperCAmelCase__ , UpperCAmelCase__ :Dict = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCAmelCase__ , UpperCAmelCase__ :List[Any] = reader.remove_nested_coref_mentions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCAmelCase__ :Union[str, Any] = reader.get_mention_assignments(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Tuple = reader.get_mention_assignments(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Dict = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Any = get_coref_infos(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :int = {} UpperCAmelCase__ :List[Any] = 0 UpperCAmelCase__ :Any = 0 for name, metric in metrics: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :Optional[int] = evaluator.evaluate_documents(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 100:.2f}""" , f""" Precision: {precision * 100:.2f}""" , f""" F1: {fa * 100:.2f}""" , ) if conll_subparts_num == 3: UpperCAmelCase__ :List[Any] = (conll / 3) * 100 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Tuple = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: UpperCAmelCase__ :Any = line.split()[5] if not parse_col == "-": UpperCAmelCase__ :List[str] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCamelCase__ ( datasets.Metric): '''simple docstring''' def A__ ( self ) ->Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def A__ ( self , A , A , A=True , A=False , A=False , A=False ) ->int: UpperCAmelCase__ :List[Any] = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: UpperCAmelCase__ :List[Any] = util.check_gold_parse_annotation(A ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCAmelCase__ :Optional[Any] = evaluate( key_lines=A , sys_lines=A , metrics=A , NP_only=A , remove_nested=A , keep_singletons=A , min_span=A , ) return score
433
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __snake_case : Optional[Any] = '\\n\n' __snake_case : List[Any] = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' __snake_case : Tuple = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCamelCase__ ( datasets.Metric): '''simple docstring''' def A__ ( self ) ->int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def A__ ( self , A , A , A = 16 , A = True , A=None ) ->Tuple: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase__ :Union[str, Any] = 'cuda' else: UpperCAmelCase__ :Optional[int] = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCAmelCase__ :Optional[int] = AutoModelForCausalLM.from_pretrained(A ) UpperCAmelCase__ :Any = model.to(A ) UpperCAmelCase__ :Optional[int] = AutoTokenizer.from_pretrained(A ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase__ :str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(A ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase__ :List[Any] = model.config.max_length - 1 else: UpperCAmelCase__ :List[Any] = model.config.max_length UpperCAmelCase__ :Tuple = tokenizer( A , add_special_tokens=A , padding=A , truncation=A , max_length=A , return_tensors='pt' , return_attention_mask=A , ).to(A ) UpperCAmelCase__ :List[Any] = encodings['input_ids'] UpperCAmelCase__ :str = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase__ :Union[str, Any] = [] UpperCAmelCase__ :int = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(A ) , A ) ): UpperCAmelCase__ :int = min(start_index + batch_size , len(A ) ) UpperCAmelCase__ :str = encoded_texts[start_index:end_index] UpperCAmelCase__ :List[Any] = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase__ :List[Any] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(A ) UpperCAmelCase__ :Any = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase__ :Optional[int] = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(A ), attn_mask] , dim=1 ) UpperCAmelCase__ :int = encoded_batch with torch.no_grad(): UpperCAmelCase__ :Optional[Any] = model(A , attention_mask=A ).logits UpperCAmelCase__ :str = out_logits[..., :-1, :].contiguous() UpperCAmelCase__ :Dict = labels[..., 1:].contiguous() UpperCAmelCase__ :Any = attn_mask[..., 1:].contiguous() UpperCAmelCase__ :int = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , A ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(A )}
433
1
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A_ , A_ , A_ ): # Initialise PyTorch model UpperCAmelCase_ = MobileBertConfig.from_json_file(A_ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase_ = MobileBertForPreTraining(A_ ) # Load weights from tf checkpoint UpperCAmelCase_ = load_tf_weights_in_mobilebert(A_ , A_ , A_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , A_ ) if __name__ == "__main__": __snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
660
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __snake_case : Optional[int] = logging.getLogger(__name__) def lowerCamelCase__ ( A_ , A_ ): # save results if os.path.exists(A_ ): if os.path.exists(os.path.join(A_ , "config.json" ) ) and os.path.isfile( os.path.join(A_ , "config.json" ) ): os.remove(os.path.join(A_ , "config.json" ) ) if os.path.exists(os.path.join(A_ , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(A_ , "pytorch_model.bin" ) ): os.remove(os.path.join(A_ , "pytorch_model.bin" ) ) else: os.makedirs(A_ ) model.save_pretrained(A_ ) def lowerCamelCase__ ( A_ , A_=False ): UpperCAmelCase_ = 2 if unlogit: UpperCAmelCase_ = torch.pow(A_ , A_ ) UpperCAmelCase_ = p * torch.log(A_ ) UpperCAmelCase_ = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase__ ( A_ ): logger.info("lv, h >\t" + "\t".join(F"""{x + 1}""" for x in range(len(A_ ) ) ) ) for row in range(len(A_ ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + "\t".join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def lowerCamelCase__ ( A_ , A_ , A_ , A_=True , A_=True , A_=None , A_=False ): UpperCAmelCase_ , UpperCAmelCase_ = model.config.num_hidden_layers, model.config.num_attention_heads UpperCAmelCase_ = torch.zeros(A_ , A_ ).to(args.device ) UpperCAmelCase_ = torch.zeros(A_ , A_ ).to(args.device ) if head_mask is None: UpperCAmelCase_ = torch.ones(A_ , A_ ).to(args.device ) head_mask.requires_grad_(requires_grad=A_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCAmelCase_ = None UpperCAmelCase_ = 0.0 UpperCAmelCase_ = 0.0 for step, inputs in enumerate(tqdm(A_ , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): UpperCAmelCase_ = tuple(t.to(args.device ) for t in inputs ) ((UpperCAmelCase_) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCAmelCase_ = model(A_ , labels=A_ , head_mask=A_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(A_ ): UpperCAmelCase_ = entropy(attn.detach() , A_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(A_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCAmelCase_ = 2 UpperCAmelCase_ = torch.pow(torch.pow(A_ , A_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: UpperCAmelCase_ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(A_ ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(A_ ) logger.info("Head ranked by importance scores" ) UpperCAmelCase_ = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCAmelCase_ = torch.arange( head_importance.numel() , device=args.device ) UpperCAmelCase_ = head_ranks.view_as(A_ ) print_ad_tensor(A_ ) return attn_entropy, head_importance, total_loss def lowerCamelCase__ ( A_ , A_ , A_ ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = compute_heads_importance(A_ , A_ , A_ , compute_entropy=A_ ) UpperCAmelCase_ = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , A_ , original_score * args.masking_threshold ) UpperCAmelCase_ = torch.ones_like(A_ ) UpperCAmelCase_ = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCAmelCase_ = original_score while current_score >= original_score * args.masking_threshold: UpperCAmelCase_ = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCAmelCase_ = float("Inf" ) UpperCAmelCase_ = head_importance.view(-1 ).sort()[1] if len(A_ ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads UpperCAmelCase_ = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) UpperCAmelCase_ = new_head_mask.view(-1 ) UpperCAmelCase_ = 0.0 UpperCAmelCase_ = new_head_mask.view_as(A_ ) UpperCAmelCase_ = new_head_mask.clone().detach() print_ad_tensor(A_ ) # Compute metric and head importance again UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , head_mask=A_ ) UpperCAmelCase_ = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , A_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(A_ ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase__ ( A_ , A_ , A_ , A_ ): UpperCAmelCase_ = datetime.now() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ ) UpperCAmelCase_ = 1 / loss UpperCAmelCase_ = datetime.now() - before_time UpperCAmelCase_ = sum(p.numel() for p in model.parameters() ) UpperCAmelCase_ = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(A_ ) ) } for k, v in heads_to_prune.items(): if isinstance(A_ , A_ ): UpperCAmelCase_ = [ v, ] assert sum(len(A_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(A_ ) UpperCAmelCase_ = sum(p.numel() for p in model.parameters() ) UpperCAmelCase_ = datetime.now() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = compute_heads_importance( A_ , A_ , A_ , compute_entropy=A_ , compute_importance=A_ , head_mask=A_ , actually_pruned=A_ , ) UpperCAmelCase_ = 1 / loss UpperCAmelCase_ = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , A_ , A_ , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , A_ , A_ ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(A_ , args.output_dir ) def lowerCamelCase__ ( ): UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=A_ , type=A_ , required=A_ , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=A_ , type=A_ , required=A_ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=A_ , type=A_ , required=A_ , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=A_ , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=A_ , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=A_ , type=A_ , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=A_ , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=A_ , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=A_ , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=A_ , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=A_ , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=A_ , help="Batch size." ) parser.add_argument("--seed" , type=A_ , default=42 ) parser.add_argument("--local_rank" , type=A_ , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=A_ , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=A_ , default="" , help="Can be used for distant debugging." ) UpperCAmelCase_ = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCAmelCase_ = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) UpperCAmelCase_ = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCAmelCase_ = torch.device("cuda" , args.local_rank ) UpperCAmelCase_ = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCAmelCase_ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCAmelCase_ = nn.parallel.DistributedDataParallel( A_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=A_ ) elif args.n_gpu > 1: UpperCAmelCase_ = nn.DataParallel(A_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=A_ ) torch.save(A_ , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , A_ ) # Prepare dataset UpperCAmelCase_ = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCAmelCase_ = (torch.from_numpy(A_ ),) UpperCAmelCase_ = TensorDataset(*A_ ) UpperCAmelCase_ = RandomSampler(A_ ) UpperCAmelCase_ = DataLoader(A_ , sampler=A_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(A_ , A_ , A_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCAmelCase_ = mask_heads(A_ , A_ , A_ ) prune_heads(A_ , A_ , A_ , A_ ) if __name__ == "__main__": main()
660
1
'''simple docstring''' import datasets a_ : Union[str, Any] = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ a_ : Union[str, Any] = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ a_ : Tuple = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def __snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def snake_case ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" return {"accuracy": simple_accuracy(UpperCamelCase , UpperCamelCase )}
445
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase="resnet50" , UpperCamelCase=3 , UpperCamelCase=32 , UpperCamelCase=3 , UpperCamelCase=True , UpperCamelCase=True , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = out_indices if out_indices is not None else [4] lowerCamelCase_ = stage_names lowerCamelCase_ = out_features lowerCamelCase_ = backbone lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = use_pretrained_backbone lowerCamelCase_ = is_training def snake_case ( self ): """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = self.get_config() return config, pixel_values def snake_case ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TimmBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(UpperCamelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class snake_case ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (TimmBackbone,) if is_torch_available() else () _lowerCamelCase = {"feature-extraction": TimmBackbone} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TimmBackboneModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase ) def snake_case ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = "resnet18" lowerCamelCase_ = "microsoft/resnet-18" lowerCamelCase_ = AutoBackbone.from_pretrained(UpperCamelCase , use_timm_backbone=UpperCamelCase ) lowerCamelCase_ = AutoBackbone.from_pretrained(UpperCamelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCamelCase_ = AutoBackbone.from_pretrained(UpperCamelCase , use_timm_backbone=UpperCamelCase , out_indices=[1, 2, 3] ) lowerCamelCase_ = AutoBackbone.from_pretrained(UpperCamelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def snake_case ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True lowerCamelCase_ = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCamelCase_ = self.all_model_classes[0] lowerCamelCase_ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) lowerCamelCase_ = model(**UpperCamelCase ) lowerCamelCase_ = outputs[0][-1] # Encoder-/Decoder-only models lowerCamelCase_ = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCamelCase_ = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCamelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(**UpperCamelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCamelCase_ = copy.deepcopy(UpperCamelCase ) lowerCamelCase_ = None lowerCamelCase_ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(**UpperCamelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCamelCase_ = copy.deepcopy(UpperCamelCase ) lowerCamelCase_ = False lowerCamelCase_ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCamelCase_ = model(**UpperCamelCase )
445
1
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ = None ,snake_case__ = None ,snake_case__ = False ,snake_case__ = False ,snake_case__ = None ,snake_case__ = None ,**snake_case__ ,): super().__init__( features=snake_case__ ,cache_dir=snake_case__ ,keep_in_memory=snake_case__ ,streaming=snake_case__ ,num_proc=snake_case__ ,**snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = Generator( cache_dir=snake_case__ ,features=snake_case__ ,generator=snake_case__ ,gen_kwargs=snake_case__ ,**snake_case__ ,) def snake_case ( self ): # Build iterable dataset if self.streaming: SCREAMING_SNAKE_CASE_ : Dict = self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None self.builder.download_and_prepare( download_config=snake_case__ ,download_mode=snake_case__ ,verification_mode=snake_case__ ,base_path=snake_case__ ,num_proc=self.num_proc ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.builder.as_dataset( split='train' ,verification_mode=snake_case__ ,in_memory=self.keep_in_memory ) return dataset
105
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline UpperCamelCase_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __lowercase ( datasets.BuilderConfig ): _A = None _A = "utf-8" _A = None _A = None _A = True # deprecated _A = None # deprecated _A = 10 << 20 # 10MB _A = None class __lowercase ( datasets.ArrowBasedBuilder ): _A = JsonConfig def _a(self : List[Any] ) -> Dict: if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" ) _lowercase : Union[str, Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" ) return datasets.DatasetInfo(features=self.config.features ) def _a(self : Any , snake_case : Union[str, Any] ) -> List[str]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowercase : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case , (str, list, tuple) ): _lowercase : int = data_files if isinstance(snake_case , snake_case ): _lowercase : Union[str, Any] = [files] _lowercase : Union[str, Any] = [dl_manager.iter_files(snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _lowercase : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(snake_case , snake_case ): _lowercase : List[Any] = [files] _lowercase : Optional[Any] = [dl_manager.iter_files(snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case , gen_kwargs={"files": files} ) ) return splits def _a(self : List[Any] , snake_case : pa.Table ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _lowercase : Any = self.config.features.arrow_schema.field(snake_case ).type _lowercase : Optional[Any] = pa_table.append_column(snake_case , pa.array([None] * len(snake_case ) , type=snake_case ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _lowercase : str = table_cast(snake_case , self.config.features.arrow_schema ) return pa_table def _a(self : str , snake_case : Tuple ) -> Tuple: for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _lowercase : Any = json.load(snake_case ) # We keep only the field we are interested in _lowercase : List[Any] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(snake_case , (list, tuple) ): _lowercase : Optional[int] = set().union(*[row.keys() for row in dataset] ) _lowercase : Union[str, Any] = {col: [row.get(snake_case ) for row in dataset] for col in keys} else: _lowercase : List[Any] = dataset _lowercase : int = pa.Table.from_pydict(snake_case ) yield file_idx, self._cast_table(snake_case ) # If the file has one json object per line else: with open(snake_case , "rb" ) as f: _lowercase : Union[str, Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _lowercase : Dict = max(self.config.chunksize // 32 , 16 << 10 ) _lowercase : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: _lowercase : Tuple = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(snake_case ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _lowercase : Union[str, Any] = batch.decode(self.config.encoding , errors=snake_case ).encode("utf-8" ) try: while True: try: _lowercase : Optional[Any] = paj.read_json( io.BytesIO(snake_case ) , read_options=paj.ReadOptions(block_size=snake_case ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(snake_case , pa.ArrowInvalid ) and "straddling" not in str(snake_case ) or block_size > len(snake_case ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(snake_case )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _lowercase : Any = json.load(snake_case ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(snake_case )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(snake_case , snake_case ): # list is the only sequence type supported in JSON try: _lowercase : int = set().union(*[row.keys() for row in dataset] ) _lowercase : Dict = {col: [row.get(snake_case ) for row in dataset] for col in keys} _lowercase : str = pa.Table.from_pydict(snake_case ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(snake_case )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(snake_case ) break else: logger.error(F"""Failed to read file '{file}' with error {type(snake_case )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case ) batch_idx += 1
461
0
from importlib import import_module from .logging import get_logger __snake_case = get_logger(__name__) class UpperCAmelCase : def __init__( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int]=None ): """simple docstring""" UpperCamelCase = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self , __magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) UpperCamelCase = module._original_module if isinstance(__magic_name__ , _PatchedModuleObj ) else module class UpperCAmelCase : lowercase = [] def __init__( self : List[Any] , __magic_name__ : str , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Dict=None ): """simple docstring""" UpperCamelCase = obj UpperCamelCase = target UpperCamelCase = new UpperCamelCase = target.split(""".""" )[0] UpperCamelCase = {} UpperCamelCase = attrs or [] def __enter__( self : Any ): """simple docstring""" *UpperCamelCase , UpperCamelCase = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__magic_name__ ) ): try: UpperCamelCase = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): UpperCamelCase = getattr(self.obj , __magic_name__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__magic_name__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): UpperCamelCase = obj_attr # patch at top level setattr(self.obj , __magic_name__ , _PatchedModuleObj(__magic_name__ , attrs=self.attrs ) ) UpperCamelCase = getattr(self.obj , __magic_name__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__magic_name__ , __magic_name__ , _PatchedModuleObj(getattr(__magic_name__ , __magic_name__ , __magic_name__ ) , attrs=self.attrs ) ) UpperCamelCase = getattr(__magic_name__ , __magic_name__ ) # finally set the target attribute setattr(__magic_name__ , __magic_name__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: UpperCamelCase = getattr(import_module(""".""".join(__magic_name__ ) ) , __magic_name__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , __magic_name__ ) is attr_value: UpperCamelCase = getattr(self.obj , __magic_name__ ) setattr(self.obj , __magic_name__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" UpperCamelCase = globals()["""__builtins__"""][target_attr] setattr(self.obj , __magic_name__ , self.new ) else: raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self : Union[str, Any] , *__magic_name__ : List[str] ): """simple docstring""" for attr in list(self.original ): setattr(self.obj , __magic_name__ , self.original.pop(__magic_name__ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" self.__enter__() self._active_patches.append(self ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
718
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( __snake_case ): lowercase = ["""image_processor""", """tokenizer"""] lowercase = """FlavaImageProcessor""" lowercase = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Optional[int] , __magic_name__ : Optional[int]=None , __magic_name__ : str=None , **__magic_name__ : Any ): """simple docstring""" UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __magic_name__ , ) UpperCamelCase = kwargs.pop("""feature_extractor""" ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__magic_name__ , __magic_name__ ) UpperCamelCase = self.image_processor def __call__( self : int , __magic_name__ : Optional[ImageInput] = None , __magic_name__ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = False , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : str , ): """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCamelCase = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if images is not None: UpperCamelCase = self.image_processor( __magic_name__ , return_image_mask=__magic_name__ , return_codebook_pixels=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if text is not None and images is not None: encoding.update(__magic_name__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowerCamelCase_ ( self : Tuple , *__magic_name__ : Dict , **__magic_name__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowerCamelCase_ ( self : int , *__magic_name__ : Tuple , **__magic_name__ : Optional[Any] ): """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __magic_name__ , ) return self.image_processor_class @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __magic_name__ , ) return self.image_processor
181
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} lowercase_ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } lowercase_ = { 'abeja/gpt-neox-japanese-2.7b': 2_0_4_8, } def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f: __lowerCamelCase : Any = json.loads(f.read() ) __lowerCamelCase : List[str] = collections.OrderedDict() __lowerCamelCase : List[str] = collections.OrderedDict() __lowerCamelCase : Any = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f: __lowerCamelCase : Union[str, Any] = f.readlines() __lowerCamelCase : str = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Any = b __lowerCamelCase : Optional[int] = idx for wd in b: __lowerCamelCase : Tuple = idx return vocab, raw_vocab, ids_to_tokens, emoji class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ["""input_ids""", """attention_mask"""] def __init__( self: Union[str, Any] , a: int , a: str , a: Dict="<|endoftext|>" , a: str="<|endoftext|>" , a: Any="<|startoftext|>" , a: List[str]="<|endoftext|>" , a: List[Any]=False , **a: Union[str, Any] , ): super().__init__( unk_token=a , pad_token=a , bos_token=a , eos_token=a , do_clean_text=a , **a , ) if not os.path.isfile(a ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(a ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) __lowerCamelCase : List[str] = do_clean_text __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = load_vocab_and_emoji(a , a ) __lowerCamelCase : Union[str, Any] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _snake_case ( self: List[str] ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def _snake_case ( self: Tuple ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def _snake_case ( self: str , a: Any ): return self.subword_tokenizer.tokenize(a , clean=self.do_clean_text ) def _snake_case ( self: str , a: Dict ): return self.vocab.get(a , self.vocab.get(self.unk_token ) ) def _snake_case ( self: Dict , a: Optional[Any] ): return self.subword_tokenizer.convert_id_to_token(a ) def _snake_case ( self: str , a: Any ): __lowerCamelCase : List[str] = ''.join(a ).strip() return out_string def _snake_case ( self: List[Any] , a: "Conversation" ): __lowerCamelCase : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a ) + [self.eos_token_id] ) if len(a ) > self.model_max_length: __lowerCamelCase : Dict = input_ids[-self.model_max_length :] return input_ids def _snake_case ( self: List[Any] , a: str , a: Optional[str] = None ): __lowerCamelCase : Dict = 0 if os.path.isdir(a ): __lowerCamelCase : Tuple = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Optional[int] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: __lowerCamelCase : List[Any] = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : List[str] = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(a , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) __lowerCamelCase : Optional[int] = token_index writer.write(','.join(a ) + '\n' ) index += 1 with open(a , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , a ) return vocab_file, emoji_file class A_ ( __UpperCamelCase ): '''simple docstring''' def __init__( self: str , a: Dict , a: List[Any] , a: Dict ): __lowerCamelCase : str = vocab # same as swe __lowerCamelCase : Dict = ids_to_tokens # same as bpe __lowerCamelCase : Tuple = emoji __lowerCamelCase : int = np.max([len(a ) for w in self.vocab.keys()] ) __lowerCamelCase : Optional[int] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) __lowerCamelCase : Optional[int] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) __lowerCamelCase : Any = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) __lowerCamelCase : Optional[int] = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) __lowerCamelCase : Dict = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) __lowerCamelCase : Union[str, Any] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) __lowerCamelCase : int = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' __lowerCamelCase : Optional[Any] = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' __lowerCamelCase : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self: Optional[int] ): return len(self.ids_to_tokens ) def _snake_case ( self: Optional[Any] , a: Tuple ): __lowerCamelCase : str = self.content_repattera.sub('<URL>' , a ) __lowerCamelCase : List[str] = self.content_repattera.sub('<EMAIL>' , a ) __lowerCamelCase : Tuple = self.content_repattera.sub('<TEL>' , a ) __lowerCamelCase : Union[str, Any] = self.content_repattera.sub('<DATE>' , a ) __lowerCamelCase : str = self.content_repattera.sub('<DATE>' , a ) __lowerCamelCase : List[str] = self.content_repattera.sub('<PRICE>' , a ) __lowerCamelCase : Optional[Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __lowerCamelCase : Dict = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def _snake_case ( self: int , a: List[Any] , a: Any=False ): __lowerCamelCase : List[str] = text.replace(' ' , '<SP>' ) __lowerCamelCase : List[str] = text.replace(' ' , '<SP>' ) __lowerCamelCase : Union[str, Any] = text.replace('\r\n' , '<BR>' ) __lowerCamelCase : Optional[int] = text.replace('\n' , '<BR>' ) __lowerCamelCase : int = text.replace('\r' , '<BR>' ) __lowerCamelCase : Union[str, Any] = text.replace('\t' , '<TAB>' ) __lowerCamelCase : Optional[Any] = text.replace('—' , 'ー' ) __lowerCamelCase : Dict = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: __lowerCamelCase : Dict = text.replace(a , a ) if clean: __lowerCamelCase : int = self.clean_text(a ) def check_simbol(a: Optional[int] ): __lowerCamelCase : Optional[int] = x.encode() if len(a ) == 1 and len(a ) == 2: __lowerCamelCase : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2a1 and c <= 0Xc2bf) or (c >= 0Xc780 and c <= 0Xc783) or (c >= 0Xcab9 and c <= 0Xcbbf) or (c >= 0Xcc80 and c <= 0Xcda2) ): return True return False def checkuae(a: str ): __lowerCamelCase : Union[str, Any] = x.encode() if len(a ) == 1 and len(a ) == 3: __lowerCamelCase : List[Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe2_8080 and c <= 0Xe2_b07f: return True return False __lowerCamelCase : int = 0 __lowerCamelCase : Any = [] while pos < len(a ): __lowerCamelCase : Optional[Any] = min(len(a ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 __lowerCamelCase : Optional[int] = [] # (token_id, token, pos) for e in range(a , a , -1 ): __lowerCamelCase : Optional[int] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a ) > 2: __lowerCamelCase : Any = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(a ) > 0: # the smallest token_id is adopted __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = sorted(a , key=lambda a : x[0] )[0] result.append(a ) __lowerCamelCase : str = e else: __lowerCamelCase : Union[str, Any] = pos + 1 __lowerCamelCase : Optional[int] = text[pos:end] if check_simbol(a ): result.append('<KIGOU>' ) elif checkuae(a ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) __lowerCamelCase : Dict = end return result def _snake_case ( self: Any , a: List[str] , a: str="\n" ): __lowerCamelCase : str = [] __lowerCamelCase : Union[str, Any] = [] __lowerCamelCase : Optional[Any] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(a ) > 0: words.append(bytearray(a ).decode('utf-8' , errors='replace' ) ) __lowerCamelCase : Tuple = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(a ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(a ) if len(a ) > 0: words.append(bytearray(a ).decode('utf-8' , errors='replace' ) ) __lowerCamelCase : Optional[int] = ''.join(a ) return text
669
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = CLIPTokenizer __snake_case = CLIPTokenizerFast __snake_case = True __snake_case = {} __snake_case = False def _snake_case ( self: Union[str, Any] ): super().setUp() # fmt: off __lowerCamelCase : Any = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __lowerCamelCase : Tuple = dict(zip(a , range(len(a ) ) ) ) __lowerCamelCase : List[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] __lowerCamelCase : Tuple = {'unk_token': '<unk>'} __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a ) ) def _snake_case ( self: Tuple , **a: Union[str, Any] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **a ) def _snake_case ( self: Union[str, Any] , **a: List[str] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a ) def _snake_case ( self: Optional[int] , a: List[Any] ): __lowerCamelCase : Tuple = 'lower newer' __lowerCamelCase : Tuple = 'lower newer' return input_text, output_text def _snake_case ( self: List[str] ): __lowerCamelCase : List[Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase : Optional[Any] = 'lower newer' __lowerCamelCase : int = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] __lowerCamelCase : Optional[int] = tokenizer.tokenize(a ) self.assertListEqual(a , a ) __lowerCamelCase : int = tokens + [tokenizer.unk_token] __lowerCamelCase : int = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) @require_ftfy def _snake_case ( self: Union[str, Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase : List[Any] = self.tokenizer_class.from_pretrained(a , **a ) __lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained(a , **a ) __lowerCamelCase : str = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' __lowerCamelCase : Optional[Any] = tokenizer_s.tokenize(a ) __lowerCamelCase : Optional[Any] = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __lowerCamelCase : List[Any] = 'xa\u0303y' + ' ' + 'x\xe3y' __lowerCamelCase : Tuple = tokenizer_s.tokenize(a ) __lowerCamelCase : Any = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) # Test that the tokenization is identical on unicode of space type __lowerCamelCase : List[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __lowerCamelCase : List[Any] = tokenizer_s.tokenize(a ) __lowerCamelCase : Optional[int] = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) # Test that the tokenization is identical on unicode of line break type __lowerCamelCase : str = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __lowerCamelCase : Dict = tokenizer_s.tokenize(a ) __lowerCamelCase : List[str] = tokenizer_r.tokenize(a ) self.assertListEqual(a , a ) def _snake_case ( self: List[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __lowerCamelCase : Optional[int] = F'{text_of_1_token} {text_of_1_token}' __lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , ) __lowerCamelCase : Any = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a ) + 1, len(a ) + 1 + len(a )) , ) __lowerCamelCase : List[Any] = F' {text}' __lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , ) __lowerCamelCase : Any = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a ) + 1, 1 + len(a ) + 1 + len(a )) , ) def _snake_case ( self: str ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(a ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def _snake_case ( self: Tuple ): super().test_tokenization_python_rust_equals() def _snake_case ( self: Tuple ): # CLIP always lower cases letters pass
669
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
529
"""simple docstring""" from __future__ import annotations def lowercase (snake_case__ : list[int] , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> None: '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): lowerCAmelCase , lowerCAmelCase = array[indexa], array[indexa] def lowercase (snake_case__ : list[int] , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> None: '''simple docstring''' if length > 1: lowerCAmelCase = int(length / 2 ) for i in range(snake_case__ , low + middle ): comp_and_swap(snake_case__ , snake_case__ , i + middle , snake_case__ ) bitonic_merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) bitonic_merge(snake_case__ , low + middle , snake_case__ , snake_case__ ) def lowercase (snake_case__ : list[int] , snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> None: '''simple docstring''' if length > 1: lowerCAmelCase = int(length / 2 ) bitonic_sort(snake_case__ , snake_case__ , snake_case__ , 1 ) bitonic_sort(snake_case__ , low + middle , snake_case__ , 0 ) bitonic_merge(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if __name__ == "__main__": a = input('Enter numbers separated by a comma:\n').strip() a = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
529
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _a : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _a : Union[str, Any] = 256_047 _a : str = 256_145 @require_sentencepiece @require_tokenizers class _lowercase ( __lowercase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Dict = NllbTokenizer _SCREAMING_SNAKE_CASE : Tuple = NllbTokenizerFast _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Dict = True _SCREAMING_SNAKE_CASE : Any = {} def a ( self : List[str] ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing __snake_case = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : int ) -> int: __snake_case = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __snake_case = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __snake_case = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __snake_case = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def a ( self : List[str] ) -> Tuple: __snake_case = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = tempfile.mkdtemp() __snake_case = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __snake_case = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way __snake_case = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True __snake_case = tempfile.mkdtemp() __snake_case = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way __snake_case = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False __snake_case = tempfile.mkdtemp() __snake_case = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __snake_case = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch def a ( self : Dict ) -> Optional[Any]: if not self.test_seqaseq: return __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __snake_case = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __snake_case = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __snake_case = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __snake_case = tokenizer.prepare_seqaseq_batch( SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __snake_case = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE_ ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def a ( self : Any ) -> Union[str, Any]: pass def a ( self : str ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case = [AddedToken('<special>' , lstrip=SCREAMING_SNAKE_CASE_ )] __snake_case = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_r.encode('Hey this is a <special> token' ) __snake_case = tokenizer_r.encode('<special>' , add_special_tokens=SCREAMING_SNAKE_CASE_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __snake_case = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __snake_case = self.tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer_p.encode('Hey this is a <special> token' ) __snake_case = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "facebook/nllb-200-distilled-600M" _SCREAMING_SNAKE_CASE : Optional[Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] _SCREAMING_SNAKE_CASE : Optional[int] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] _SCREAMING_SNAKE_CASE : List[str] = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def a ( cls : Union[str, Any] ) -> Union[str, Any]: __snake_case = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __snake_case = 1 return cls def a ( self : int ) -> str: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def a ( self : Optional[int] ) -> int: __snake_case = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def a ( self : Tuple ) -> Union[str, Any]: self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) # fmt: off __snake_case = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __snake_case = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __snake_case = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> Union[str, Any]: __snake_case = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) __snake_case = 10 __snake_case = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> str: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def a ( self : str ) -> Tuple: __snake_case = tempfile.mkdtemp() __snake_case = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = NllbTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def a ( self : str ) -> List[Any]: __snake_case = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __snake_case = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __snake_case = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self : int ) -> List[Any]: __snake_case = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) __snake_case = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' ) __snake_case = targets['input_ids'] __snake_case = shift_tokens_right( SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self : Union[str, Any] ) -> Any: __snake_case = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def a ( self : List[str] ) -> Union[str, Any]: __snake_case = True __snake_case = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __snake_case = False __snake_case = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
56
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Any = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = ['MaskFormerFeatureExtractor'] UpperCAmelCase_ : List[str] = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] UpperCAmelCase_ : Optional[int] = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys UpperCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
365
0
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
706
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () snake_case__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). snake_case__ = [0, 25, 50] snake_case__ = [25, 50, 75] snake_case__ = fuzz.membership.trimf(X, abca) snake_case__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. snake_case__ = np.ones(75) snake_case__ = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) snake_case__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) snake_case__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) snake_case__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] snake_case__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) snake_case__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] snake_case__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
638
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase ) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) lowercase__ = Features({'audio': Audio()} ) lowercase__ = Features({'transcription': Value('string' )} ) lowercase__ = "audio" lowercase__ = "transcription" def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''') if not isinstance(features[self.audio_column] , __a): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''') _UpperCamelCase = copy.deepcopy(self) _UpperCamelCase = self.input_schema.copy() _UpperCamelCase = features[self.audio_column] _UpperCamelCase = input_schema return task_template @property def UpperCAmelCase ( self) -> Dict[str, str]: '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
19
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : str = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = '''efficientformer''' def __init__( self : Optional[Any] , lowercase__ : List[int] = [3, 2, 6, 4] , lowercase__ : List[int] = [48, 96, 224, 448] , lowercase__ : List[bool] = [True, True, True, True] , lowercase__ : int = 448 , lowercase__ : int = 32 , lowercase__ : int = 4 , lowercase__ : int = 7 , lowercase__ : int = 5 , lowercase__ : int = 8 , lowercase__ : int = 4 , lowercase__ : float = 0.0 , lowercase__ : int = 16 , lowercase__ : int = 3 , lowercase__ : int = 3 , lowercase__ : int = 3 , lowercase__ : int = 2 , lowercase__ : int = 1 , lowercase__ : float = 0.0 , lowercase__ : int = 1 , lowercase__ : bool = True , lowercase__ : bool = True , lowercase__ : float = 1e-5 , lowercase__ : str = "gelu" , lowercase__ : float = 0.0_2 , lowercase__ : float = 1e-12 , lowercase__ : int = 224 , lowercase__ : float = 1e-05 , **lowercase__ : Any , ) ->None: '''simple docstring''' super().__init__(**lowercase__ ) _UpperCamelCase : Any = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : List[str] = hidden_sizes _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : List[Any] = num_attention_heads _UpperCamelCase : int = initializer_range _UpperCamelCase : Dict = layer_norm_eps _UpperCamelCase : Any = patch_size _UpperCamelCase : int = num_channels _UpperCamelCase : int = depths _UpperCamelCase : Union[str, Any] = mlp_expansion_ratio _UpperCamelCase : Union[str, Any] = downsamples _UpperCamelCase : Optional[Any] = dim _UpperCamelCase : Tuple = key_dim _UpperCamelCase : Tuple = attention_ratio _UpperCamelCase : Dict = resolution _UpperCamelCase : Any = pool_size _UpperCamelCase : List[Any] = downsample_patch_size _UpperCamelCase : str = downsample_stride _UpperCamelCase : int = downsample_pad _UpperCamelCase : Any = drop_path_rate _UpperCamelCase : List[str] = num_metaad_blocks _UpperCamelCase : List[Any] = distillation _UpperCamelCase : Optional[Any] = use_layer_scale _UpperCamelCase : Union[str, Any] = layer_scale_init_value _UpperCamelCase : Tuple = image_size _UpperCamelCase : Union[str, Any] = batch_norm_eps
435
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : List[str] , A_ : str )-> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): __UpperCamelCase = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(A_ ) def A ( self : Tuple )-> int: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Dict )-> int: __UpperCamelCase = "sgugger/tiny-distilbert-classification" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , only_pretrain_model=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : List[str] )-> Dict: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , torchscript=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def A ( self : Optional[Any] )-> Union[str, Any]: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , fpaa=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Dict )-> Tuple: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) # set architectures equal to `None` __UpperCamelCase = None __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Union[str, Any] )-> str: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def A ( self : List[Any] )-> List[Any]: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A_ , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : Tuple )-> Union[str, Any]: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Any )-> List[str]: __UpperCamelCase = "sshleifer/tinier_bart" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Tuple )-> Optional[int]: __UpperCamelCase = "sshleifer/tiny-gpt2" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : List[str] )-> Dict: __UpperCamelCase = "sshleifer/tinier_bart" __UpperCamelCase = AutoConfig.from_pretrained(A_ ) __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) __UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : int )-> Optional[Any]: __UpperCamelCase = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , save_to_csv=A_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A_ , "inf_time.csv" ) , train_memory_csv_file=os.path.join(A_ , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(A_ , "inf_mem.csv" ) , train_time_csv_file=os.path.join(A_ , "train_time.csv" ) , env_info_csv_file=os.path.join(A_ , "env.csv" ) , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) benchmark.run() self.assertTrue(Path(os.path.join(A_ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , "env.csv" ) ).exists() ) def A ( self : List[Any] )-> str: __UpperCamelCase = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(A_ : List[str] ): self.assertTrue(hasattr(A_ , "sequential" ) ) self.assertTrue(hasattr(A_ , "cumulative" ) ) self.assertTrue(hasattr(A_ , "current" ) ) self.assertTrue(hasattr(A_ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A_ , "log.txt" ) , log_print=A_ , trace_memory_line_by_line=A_ , multi_process=A_ , ) __UpperCamelCase = PyTorchBenchmark(A_ ) __UpperCamelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A_ , "log.txt" ) ).exists() )
703
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Union[str, Any] )-> Tuple: __UpperCamelCase = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) __UpperCamelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCamelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim __UpperCamelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCamelCase = model(A_ )["last_hidden_state"].detach() self.assertEqual(output.shape , A_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , A_ , atol=1e-3 ) ) @slow def A ( self : List[Any] )-> Union[str, Any]: __UpperCamelCase = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) __UpperCamelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCamelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim __UpperCamelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCamelCase = model(A_ )["last_hidden_state"].detach() self.assertEqual(output.shape , A_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , A_ , atol=1e-3 ) )
228
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("""[^A-Za-z_0-9]""") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[MinHash]: if len(_SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS: return None lowercase__ = MinHash(num_perm=_SCREAMING_SNAKE_CASE ) for token in set(_SCREAMING_SNAKE_CASE ): min_hash.update(token.encode() ) return min_hash def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Set[str]: return {t for t in NON_ALPHA.split(_SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , *, a : float = 0.85 , )-> Any: """simple docstring""" lowercase__ = duplication_jaccard_threshold lowercase__ = NUM_PERM lowercase__ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowercase__ = defaultdict(a ) def SCREAMING_SNAKE_CASE_ ( self : Dict , a : Tuple , a : MinHash )-> None: """simple docstring""" lowercase__ = self._index.query(a ) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""" ) return self._index.insert(a , a ) if len(a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(a ) break else: self._duplicate_clusters[close_duplicates[0]].add(a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[List[Dict]]: """simple docstring""" lowercase__ = [] for base, duplicates in self._duplicate_clusters.items(): lowercase__ = [base] + list(a ) # reformat the cluster to be a list of dict lowercase__ = [{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(a ) return duplicate_clusters def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : Optional[int] )-> None: """simple docstring""" lowercase__ = self.get_duplicate_clusters() with open(a , 'w' ) as f: json.dump(a , a ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ , lowercase__ = element lowercase__ = get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_SCREAMING_SNAKE_CASE , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ = DuplicationIndex(duplication_jaccard_threshold=_SCREAMING_SNAKE_CASE ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_SCREAMING_SNAKE_CASE ) ) , max_queue_size=100 ) ): di.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: lowercase__ = get_tokens(_SCREAMING_SNAKE_CASE ) lowercase__ = get_tokens(_SCREAMING_SNAKE_CASE ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowercase_ = None def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = [] for elementa in cluster: lowercase__ = _shared_dataset[elementa['base_index']]['content'] for elementa in extremes: lowercase__ = _shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowercase__ = 1 extremes.append(_SCREAMING_SNAKE_CASE ) return extremes def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: global _shared_dataset lowercase__ = dataset lowercase__ = [] lowercase__ = partial(_find_cluster_extremes_shared , jaccard_threshold=_SCREAMING_SNAKE_CASE ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) , total=len(_SCREAMING_SNAKE_CASE ) , ): extremes_list.append(_SCREAMING_SNAKE_CASE ) return extremes_list def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.8_5 ) -> Tuple[Type[Dataset], List[List[Dict]]]: lowercase__ = make_duplicate_clusters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = {x['base_index'] for cluster in duplicate_clusters for x in cluster} lowercase__ = {} lowercase__ = find_extremes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for extremes in extremes_clusters: for element in extremes: lowercase__ = element lowercase__ = duplicate_indices - set(extreme_dict.keys() ) lowercase__ = dataset.filter(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=_SCREAMING_SNAKE_CASE ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowercase__ = element['base_index'] in extreme_dict if element["is_extreme"]: lowercase__ = extreme_dict[element['base_index']]['copies'] print(F"""Original dataset size: {len(_SCREAMING_SNAKE_CASE )}""" ) print(F"""Number of duplicate clusters: {len(_SCREAMING_SNAKE_CASE )}""" ) print(F"""Files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}""" ) print(F"""Unique files in duplicate cluster: {len(_SCREAMING_SNAKE_CASE )}""" ) print(F"""Filtered dataset size: {len(_SCREAMING_SNAKE_CASE )}""" ) return ds_filter, duplicate_clusters
235
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Union[str, Any] = ['audio_values', 'audio_mask'] def __init__( self : Dict , a : Optional[Any]=2_048 , a : Union[str, Any]=1 , a : str=[16, 16] , a : Optional[int]=128 , a : str=44_100 , a : List[str]=86 , a : int=2_048 , a : Tuple=0.0 , **a : int , )-> Any: """simple docstring""" super().__init__( feature_size=a , sampling_rate=a , padding_value=a , **a , ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=a , norm='slaney' , mel_scale='slaney' , ).T def SCREAMING_SNAKE_CASE_ ( self : Dict , a : np.array )-> np.ndarray: """simple docstring""" lowercase__ = spectrogram( a , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : List[Any] , a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a : Optional[Union[str, TensorType]] = None , a : Optional[bool] = True , a : Optional[int] = None , a : bool = False , a : bool = False , **a : Union[str, Any] , )-> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" f""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowercase__ = isinstance(a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a , np.ndarray ): lowercase__ = np.asarray(a , dtype=np.floataa ) elif isinstance(a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , a ): lowercase__ = [np.asarray(a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(a ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(a ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: lowercase__ = {'audio_values': padded_audio_features} lowercase__ = BatchFeature(data=a , tensor_type=a ) return encoded_inputs
235
1
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = '''M-CLIP''' def __init__( self , lowercase__=1_0_2_4 , lowercase__=7_6_8 , **lowercase__): __UpperCAmelCase : Optional[int] = transformerDimSize __UpperCAmelCase : Optional[int] = imageDimSize super().__init__(**lowercase__) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : int = MCLIPConfig def __init__( self , lowercase__ , *lowercase__ , **lowercase__): super().__init__(lowercase__ , *lowercase__ , **lowercase__) __UpperCAmelCase : int = XLMRobertaModel(lowercase__) __UpperCAmelCase : Optional[Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims) def A( self , lowercase__ , lowercase__): __UpperCAmelCase : List[Any] = self.transformer(input_ids=lowercase__ , attention_mask=lowercase__)[0] __UpperCAmelCase : Any = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(lowercase__), embs
675
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) __UpperCAmelCase : List[Any] = re.match(r'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowercase_ ) if matches: __UpperCAmelCase : Any = float(matches[1] ) __UpperCAmelCase : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __UpperCAmelCase : Dict = 1001 __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[str] = '''huggingface/label-files''' __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(lowercase_ ) + 1: v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = '''background''' __UpperCAmelCase : str = idalabel __UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Tuple = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = get_mobilenet_va_config(lowercase_ ) # Load 🤗 model __UpperCAmelCase : int = MobileNetVaForImageClassification(lowercase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowercase_ , lowercase_ , lowercase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __UpperCAmelCase : List[str] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 32} , ) __UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) __UpperCAmelCase : Union[str, Any] = model(**lowercase_ ) __UpperCAmelCase : Optional[Any] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __UpperCAmelCase : Any = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __UpperCAmelCase : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __UpperCAmelCase : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowercase_ , atol=1e-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: print('''Pushing to the hub...''' ) __UpperCAmelCase : List[str] = '''google/''' + model_name image_processor.push_to_hub(lowercase_ ) model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
675
1