code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def __UpperCAmelCase ( __A = 5_0_0_0_0_0_0_0 ) -> int: '''simple docstring''' UpperCAmelCase__ = set() UpperCAmelCase__ = int((limit - 2_4) ** (1 / 2) ) UpperCAmelCase__ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , SCREAMING_SNAKE_CASE_ ) ) ) for primea in primes: UpperCAmelCase__ = primea * primea for primea in primes: UpperCAmelCase__ = primea * primea * primea if square + cube >= limit - 1_6: break for primea in primes: UpperCAmelCase__ = primea * primea * primea * primea UpperCAmelCase__ = square + cube + tetr if total >= limit: break ret.add(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(f"{solution() = }")
475
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def __snake_case ( self : str) -> Optional[int]: A_ = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused') A_ = load_dataset('ashraq/esc50') A_ = dataset['train']['audio'][-1]['array'] A_ = audio_classifier(_lowercase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(_lowercase) , [{'score': 0.5_01, 'label': 'Sound of a dog'}, {'score': 0.4_99, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF') def __snake_case ( self : Tuple) -> str: pass @slow @require_torch def __snake_case ( self : Optional[Any]) -> Tuple: A_ = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog A_ = load_dataset('ashraq/esc50') A_ = dataset['train']['audio'][-1]['array'] A_ = audio_classifier(_lowercase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(_lowercase) , [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ] , ) A_ = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(_lowercase) , [ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) A_ = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5) self.assertEqual( nested_simplify(_lowercase) , [ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF') def __snake_case ( self : List[str]) -> str: pass
366
0
'''simple docstring''' from __future__ import annotations class lowercase : def __init__( self : List[Any] , _lowercase : list[list[int]] ): SCREAMING_SNAKE_CASE__ : List[str] = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(_lowercase ) != 0: SCREAMING_SNAKE_CASE__ : Tuple = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_lowercase ) != cols: raise error for value in row: if not isinstance(_lowercase , (int, float) ): raise error SCREAMING_SNAKE_CASE__ : str = rows else: SCREAMING_SNAKE_CASE__ : Optional[int] = [] def lowercase__ ( self : Optional[int] ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowercase__ ( self : List[Any] ): return len(self.rows ) @property def lowercase__ ( self : Tuple ): return len(self.rows[0] ) @property def lowercase__ ( self : Optional[int] ): return (self.num_rows, self.num_columns) @property def lowercase__ ( self : Tuple ): return self.order[0] == self.order[1] def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Dict = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_lowercase ) def lowercase__ ( self : Optional[int] ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowercase__ ( self : Tuple ): return bool(self.determinant() ) def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : int ): SCREAMING_SNAKE_CASE__ : int = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_lowercase ).determinant() def lowercase__ ( self : List[str] , _lowercase : int , _lowercase : int ): if (row + column) % 2 == 0: return self.get_minor(_lowercase , _lowercase ) return -1 * self.get_minor(_lowercase , _lowercase ) def lowercase__ ( self : List[str] ): return Matrix( [ [self.get_minor(_lowercase , _lowercase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowercase__ ( self : Tuple ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : List[str] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Any = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[Any] ): return str(self.rows ) def __str__( self : List[Any] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(_lowercase ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def lowercase__ ( self : Any , _lowercase : list[int] , _lowercase : int | None = None ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(_lowercase , _lowercase ): raise type_error for value in row: if not isinstance(_lowercase , (int, float) ): raise type_error if len(_lowercase ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(_lowercase ) else: SCREAMING_SNAKE_CASE__ : str = self.rows[0:position] + [row] + self.rows[position:] def lowercase__ ( self : List[Any] , _lowercase : list[int] , _lowercase : int | None = None ): SCREAMING_SNAKE_CASE__ : List[str] = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(_lowercase , _lowercase ): raise type_error for value in column: if not isinstance(_lowercase , (int, float) ): raise type_error if len(_lowercase ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: SCREAMING_SNAKE_CASE__ : List[Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: SCREAMING_SNAKE_CASE__ : Optional[int] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , _lowercase : object ): if not isinstance(_lowercase , _lowercase ): return NotImplemented return self.rows == other.rows def __ne__( self : Optional[int] , _lowercase : object ): return not self == other def __neg__( self : Optional[int] ): return self * -1 def __add__( self : Dict , _lowercase : Matrix ): if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Optional[int] , _lowercase : Matrix ): if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Any , _lowercase : Matrix | int | float ): if isinstance(_lowercase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_lowercase , _lowercase ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(_lowercase , _lowercase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self : int , _lowercase : int ): if not isinstance(_lowercase , _lowercase ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = self for _ in range(other - 1 ): result *= self return result @classmethod def lowercase__ ( cls : str , _lowercase : list[int] , _lowercase : list[int] ): return sum(row[i] * column[i] for i in range(len(_lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
701
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a_ :int = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase ): def __init__( self : List[Any] , **_lowercase : Optional[int] ): super().__init__(**_lowercase ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type(_lowercase ) def __call__( self : Tuple , _lowercase : Union[str, "Image.Image", List[Dict[str, Any]]] , _lowercase : Union[str, List[str]] = None , **_lowercase : Any , ): if "text_queries" in kwargs: SCREAMING_SNAKE_CASE__ : Any = kwargs.pop('''text_queries''' ) if isinstance(_lowercase , (str, Image.Image) ): SCREAMING_SNAKE_CASE__ : Any = {'''image''': image, '''candidate_labels''': candidate_labels} else: SCREAMING_SNAKE_CASE__ : Any = image SCREAMING_SNAKE_CASE__ : Optional[Any] = super().__call__(_lowercase , **_lowercase ) return results def lowercase__ ( self : List[str] , **_lowercase : str ): SCREAMING_SNAKE_CASE__ : Any = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE__ : Any = kwargs['''threshold'''] if "top_k" in kwargs: SCREAMING_SNAKE_CASE__ : Dict = kwargs['''top_k'''] return {}, {}, postprocess_params def lowercase__ ( self : List[Any] , _lowercase : Any ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = load_image(inputs['''image'''] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs['''candidate_labels'''] if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = candidate_labels.split(''',''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = self.tokenizer(_lowercase , return_tensors=self.framework ) SCREAMING_SNAKE_CASE__ : Dict = self.image_processor(_lowercase , return_tensors=self.framework ) yield { "is_last": i == len(_lowercase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self : Optional[int] , _lowercase : str ): SCREAMING_SNAKE_CASE__ : List[str] = model_inputs.pop('''target_size''' ) SCREAMING_SNAKE_CASE__ : str = model_inputs.pop('''candidate_label''' ) SCREAMING_SNAKE_CASE__ : List[str] = model_inputs.pop('''is_last''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.model(**_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def lowercase__ ( self : List[Any] , _lowercase : Tuple , _lowercase : List[str]=0.1 , _lowercase : int=None ): SCREAMING_SNAKE_CASE__ : Any = [] for model_output in model_outputs: SCREAMING_SNAKE_CASE__ : Optional[int] = model_output['''candidate_label'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] = BaseModelOutput(_lowercase ) SCREAMING_SNAKE_CASE__ : str = self.image_processor.post_process_object_detection( outputs=_lowercase , threshold=_lowercase , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): SCREAMING_SNAKE_CASE__ : Optional[Any] = outputs['''scores'''][index].item() SCREAMING_SNAKE_CASE__ : Any = self._get_bounding_box(outputs['''boxes'''][index][0] ) SCREAMING_SNAKE_CASE__ : List[Any] = {'''score''': score, '''label''': label, '''box''': box} results.append(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = sorted(_lowercase , key=lambda _lowercase : x["score"] , reverse=_lowercase ) if top_k: SCREAMING_SNAKE_CASE__ : List[Any] = results[:top_k] return results def lowercase__ ( self : int , _lowercase : "torch.Tensor" ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = box.int().tolist() SCREAMING_SNAKE_CASE__ : str = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
250
0
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __a = [int(SCREAMING_SNAKE_CASE__ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(SCREAMING_SNAKE_CASE__ ) == 4 and all(0 <= int(SCREAMING_SNAKE_CASE__ ) <= 254 for octet in octets ) if __name__ == "__main__": lowerCamelCase__ = input().strip() lowerCamelCase__ = "valid" if is_ip_va_address_valid(ip) else "invalid" print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
225
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ) -> Any: '''simple docstring''' _UpperCAmelCase : Any = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) # set absolute/relative position embeddings parameter _UpperCAmelCase : Optional[Any] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase : Optional[int] = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase : List[str] = 4 _UpperCAmelCase : int = True # hparam_utils.py hparams _UpperCAmelCase : Optional[int] = 0.664_694 _UpperCAmelCase : Any = 0.207_951 _UpperCAmelCase : Any = 0.121_194 _UpperCAmelCase : List[Any] = True _UpperCAmelCase : Dict = True _UpperCAmelCase : Tuple = False _UpperCAmelCase : List[Any] = 0.0_352_513 _UpperCAmelCase : Union[str, Any] = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase : List[str] = 4 _UpperCAmelCase : Optional[int] = False # hparam_utils.py hparams _UpperCAmelCase : List[Any] = 36.4_519 _UpperCAmelCase : Union[str, Any] = 0.903_421 _UpperCAmelCase : List[Any] = 222.088 _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : str = True _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : str = 0.763_141 _UpperCAmelCase : Optional[Any] = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) elif task == "TABFACT": _UpperCAmelCase : int = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE__ ) elif task == "MLM": _UpperCAmelCase : List[str] = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase : Optional[Any] = TapasModel(config=SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f'Task {task} not supported.' ) print(f'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model (weights and configuration) print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Save tokenizer files print(f'Save tokenizer files to {pytorch_dump_path}' ) _UpperCAmelCase : Optional[int] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
289
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowercase : int = logging.get_logger(__name__) class _UpperCAmelCase ( lowercase__ ): a__ : Dict = ["pixel_values"] def __init__( self : int , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) __UpperCAmelCase = size if size is not None else {"shortest_edge": 2_56} __UpperCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase ) __UpperCAmelCase = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} __UpperCAmelCase = get_size_dict(_lowercase ) __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_center_crop __UpperCAmelCase = crop_size __UpperCAmelCase = do_rescale __UpperCAmelCase = rescale_factor __UpperCAmelCase = do_normalize __UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def a ( self : Tuple , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): __UpperCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __UpperCAmelCase = get_resize_output_image_size(_lowercase , size=size['''shortest_edge'''] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[Any] , ): __UpperCAmelCase = get_size_dict(_lowercase ) return center_crop(_lowercase , size=(size['''height'''], size['''width''']) , data_format=_lowercase , **_lowercase ) def a ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Dict ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def a ( self : Union[str, Any] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def a ( self : Tuple , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(_lowercase , default_to_square=_lowercase ) __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase = get_size_dict(_lowercase ) __UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase = image_std if image_std is not None else self.image_std __UpperCAmelCase = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(_lowercase ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: __UpperCAmelCase = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: __UpperCAmelCase = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] __UpperCAmelCase = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] __UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
704
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() _lowercase : List[str] = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Tuple , snake_case_ :List[str] , snake_case_ :List[Any]=False , snake_case_ :List[Any]=True ): if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __UpperCAmelCase = cached_file(snake_case_ , snake_case_ , force_download=not use_cached_models ) __UpperCAmelCase = config_class.from_json_file(snake_case_ ) __UpperCAmelCase = True __UpperCAmelCase = True print(F'''Building TensorFlow model from configuration: {config}''' ) __UpperCAmelCase = model_class(snake_case_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __UpperCAmelCase = cached_file( snake_case_ , snake_case_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __UpperCAmelCase = load_pytorch_checkpoint_in_tfa_model(snake_case_ , snake_case_ ) if compare_with_pt_model: __UpperCAmelCase = tf_model(tf_model.dummy_inputs , training=snake_case_ ) # build the network __UpperCAmelCase = torch.load(snake_case_ , map_location='''cpu''' ) __UpperCAmelCase = pt_model_class.from_pretrained( pretrained_model_name_or_path=snake_case_ , config=snake_case_ , state_dict=snake_case_ ) with torch.no_grad(): __UpperCAmelCase = pt_model(**pt_model.dummy_inputs ) __UpperCAmelCase = pto[0].numpy() __UpperCAmelCase = tfo[0].numpy() __UpperCAmelCase = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(snake_case_ , save_format='''h5''' ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] , snake_case_ :int=None , snake_case_ :Optional[int]=None , snake_case_ :List[str]=False , snake_case_ :Optional[int]=False , snake_case_ :Dict=False , snake_case_ :List[Any]=False , ): if args_model_type is None: __UpperCAmelCase = list(MODEL_CLASSES.keys() ) else: __UpperCAmelCase = [args_model_type] for j, model_type in enumerate(snake_case_ , start=1 ): print('''=''' * 100 ) print(F''' Converting model type {j}/{len(snake_case_ )}: {model_type}''' ) print('''=''' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __UpperCAmelCase = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __UpperCAmelCase = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(snake_case_ , snake_case_ ) , start=1 ): print('''-''' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue __UpperCAmelCase = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(snake_case_ )}: {model_shortcut_name} - model_type {model_type}''' ) print('''-''' * 100 ) if config_shortcut_name in aws_config_map: __UpperCAmelCase = cached_file(snake_case_ , snake_case_ , force_download=not use_cached_models ) else: __UpperCAmelCase = config_shortcut_name if model_shortcut_name in aws_model_maps: __UpperCAmelCase = cached_file(snake_case_ , snake_case_ , force_download=not use_cached_models ) else: __UpperCAmelCase = model_shortcut_name if os.path.isfile(snake_case_ ): __UpperCAmelCase = '''converted_model''' convert_pt_checkpoint_to_tf( model_type=snake_case_ , pytorch_checkpoint_path=snake_case_ , config_file=snake_case_ , tf_dump_path=os.path.join(snake_case_ , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=snake_case_ , ) if remove_cached_files: os.remove(snake_case_ ) os.remove(snake_case_ ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( f"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') _lowercase : List[Any] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
397
0
from math import sqrt def UpperCamelCase_ ( __a = 1_000_000 ) -> int: a__ : int = 0 a__ : int = 0 a__ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__a , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
37
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = { "configuration_upernet": ["UperNetConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
666
0
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = DownBlockaD # noqa F405 snake_case = "down" def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" A_ = [-0.0_2_3_2, -0.9_8_6_9, 0.8_0_5_4, -0.0_6_3_7, -0.1_6_8_8, -1.4_2_6_4, 0.4_4_7_0, -1.3_3_9_4, 0.0_9_0_4] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = ResnetDownsampleBlockaD # noqa F405 snake_case = "down" def lowerCamelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" A_ = [0.0_7_1_0, 0.2_4_1_0, -0.7_3_2_0, -1.0_7_5_7, -1.1_3_4_3, 0.3_5_4_0, -0.0_1_3_3, -0.2_5_7_6, 0.0_9_4_8] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = AttnDownBlockaD # noqa F405 snake_case = "down" def lowerCamelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" A_ = [0.0_6_3_6, 0.8_9_6_4, -0.6_2_3_4, -1.0_1_3_1, 0.0_8_4_4, 0.4_9_3_5, 0.3_4_3_7, 0.0_9_1_1, -0.2_9_5_7] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = CrossAttnDownBlockaD # noqa F405 snake_case = "down" def lowerCamelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" A_ , A_ = super().prepare_init_args_and_inputs_for_common() A_ = 32 return init_dict, inputs_dict def lowerCamelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" A_ = [0.2_2_3_8, -0.7_3_9_6, -0.2_2_5_5, -0.3_8_2_9, 0.1_9_2_5, 1.1_6_6_5, 0.0_6_0_3, -0.7_2_9_5, 0.1_9_8_3] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = SimpleCrossAttnDownBlockaD # noqa F405 snake_case = "down" @property def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=_snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" A_ , A_ = super().prepare_init_args_and_inputs_for_common() A_ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def lowerCamelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" A_ = [0.7_9_2_1, -0.0_9_9_2, -0.1_9_6_2, -0.7_6_9_5, -0.4_2_4_2, 0.7_8_0_4, 0.4_7_3_7, 0.2_7_6_5, 0.3_3_3_8] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = SkipDownBlockaD # noqa F405 snake_case = "down" @property def lowerCamelCase__ ( self : int ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_skip_sample=_snake_case ) def lowerCamelCase__ ( self : str ) -> int: """simple docstring""" A_ = [-0.0_8_4_5, -0.2_0_8_7, -0.2_4_6_5, 0.0_9_7_1, 0.1_9_0_0, -0.0_4_8_4, 0.2_6_6_4, 0.4_1_7_9, 0.5_0_6_9] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = AttnSkipDownBlockaD # noqa F405 snake_case = "down" @property def lowerCamelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_skip_sample=_snake_case ) def lowerCamelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" A_ = [0.5_5_3_9, 0.1_6_0_9, 0.4_9_2_4, 0.0_5_3_7, -0.1_9_9_5, 0.4_0_5_0, 0.0_9_7_9, -0.2_7_2_1, -0.0_6_4_2] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = DownEncoderBlockaD # noqa F405 snake_case = "down" @property def lowerCamelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_temb=_snake_case ) def lowerCamelCase__ ( self : int ) -> Dict: """simple docstring""" A_ = { "in_channels": 32, "out_channels": 32, } A_ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : int ) -> Any: """simple docstring""" A_ = [1.1_1_0_2, 0.5_3_0_2, 0.4_8_7_2, -0.0_0_2_3, -0.8_0_4_2, 0.0_4_8_3, -0.3_4_8_9, -0.5_6_3_2, 0.7_6_2_6] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = AttnDownEncoderBlockaD # noqa F405 snake_case = "down" @property def lowerCamelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" return super().get_dummy_input(include_temb=_snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" A_ = { "in_channels": 32, "out_channels": 32, } A_ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : int ) -> Tuple: """simple docstring""" A_ = [0.8_9_6_6, -0.1_4_8_6, 0.8_5_6_8, 0.8_1_4_1, -0.9_0_4_6, -0.1_3_4_2, -0.0_9_7_2, -0.7_4_1_7, 0.1_5_3_8] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = UNetMidBlockaD # noqa F405 snake_case = "mid" def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" A_ = { "in_channels": 32, "temb_channels": 128, } A_ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : List[Any] ) -> Any: """simple docstring""" A_ = [-0.1_0_6_2, 1.7_2_4_8, 0.3_4_9_4, 1.4_5_6_9, -0.0_9_1_0, -1.2_4_2_1, -0.9_9_8_4, 0.6_7_3_6, 1.0_0_2_8] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = UNetMidBlockaDCrossAttn # noqa F405 snake_case = "mid" def lowerCamelCase__ ( self : List[Any] ) -> Any: """simple docstring""" A_ , A_ = super().prepare_init_args_and_inputs_for_common() A_ = 32 return init_dict, inputs_dict def lowerCamelCase__ ( self : int ) -> str: """simple docstring""" A_ = [0.0_1_8_7, 2.4_2_2_0, 0.4_4_8_4, 1.1_2_0_3, -0.6_1_2_1, -1.5_1_2_2, -0.8_2_7_0, 0.7_8_5_1, 1.8_3_3_5] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = UNetMidBlockaDSimpleCrossAttn # noqa F405 snake_case = "mid" @property def lowerCamelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=_snake_case ) def lowerCamelCase__ ( self : List[str] ) -> str: """simple docstring""" A_ , A_ = super().prepare_init_args_and_inputs_for_common() A_ = 32 return init_dict, inputs_dict def lowerCamelCase__ ( self : Tuple ) -> str: """simple docstring""" A_ = [0.7_1_4_3, 1.9_9_7_4, 0.5_4_4_8, 1.3_9_7_7, 0.1_2_8_2, -1.1_2_3_7, -1.4_2_3_8, 0.5_5_3_0, 0.8_8_8_0] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = UpBlockaD # noqa F405 snake_case = "up" @property def lowerCamelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def lowerCamelCase__ ( self : int ) -> int: """simple docstring""" A_ = [-0.2_0_4_1, -0.4_1_6_5, -0.3_0_2_2, 0.0_0_4_1, -0.6_6_2_8, -0.7_0_5_3, 0.1_9_2_8, -0.0_3_2_5, 0.0_5_2_3] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = ResnetUpsampleBlockaD # noqa F405 snake_case = "up" @property def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" A_ = [0.2_2_8_7, 0.3_5_4_9, -0.1_3_4_6, 0.4_7_9_7, -0.1_7_1_5, -0.9_6_4_9, 0.7_3_0_5, -0.5_8_6_4, -0.6_2_4_4] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = CrossAttnUpBlockaD # noqa F405 snake_case = "up" @property def lowerCamelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def lowerCamelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" A_ , A_ = super().prepare_init_args_and_inputs_for_common() A_ = 32 return init_dict, inputs_dict def lowerCamelCase__ ( self : str ) -> Any: """simple docstring""" A_ = [-0.1_4_0_3, -0.3_5_1_5, -0.0_4_2_0, -0.1_4_2_5, 0.3_1_6_7, 0.5_0_9_4, -0.2_1_8_1, 0.5_9_3_1, 0.5_5_8_2] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = SimpleCrossAttnUpBlockaD # noqa F405 snake_case = "up" @property def lowerCamelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case , include_encoder_hidden_states=_snake_case ) def lowerCamelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" A_ , A_ = super().prepare_init_args_and_inputs_for_common() A_ = 32 return init_dict, inputs_dict def lowerCamelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" A_ = [0.2_6_4_5, 0.1_4_8_0, 0.0_9_0_9, 0.8_0_4_4, -0.9_7_5_8, -0.9_0_8_3, 0.0_9_9_4, -1.1_4_5_3, -0.7_4_0_2] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = AttnUpBlockaD # noqa F405 snake_case = "up" @property def lowerCamelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def lowerCamelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" A_ = [0.0_9_7_9, 0.1_3_2_6, 0.0_0_2_1, 0.0_6_5_9, 0.2_2_4_9, 0.0_0_5_9, 0.1_1_3_2, 0.5_9_5_2, 0.1_0_3_3] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = SkipUpBlockaD # noqa F405 snake_case = "up" @property def lowerCamelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def lowerCamelCase__ ( self : Dict ) -> List[str]: """simple docstring""" A_ = [-0.0_8_9_3, -0.1_2_3_4, -0.1_5_0_6, -0.0_3_3_2, 0.0_1_2_3, -0.0_2_1_1, 0.0_5_6_6, 0.0_1_4_3, 0.0_3_6_2] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = AttnSkipUpBlockaD # noqa F405 snake_case = "up" @property def lowerCamelCase__ ( self : List[Any] ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" A_ = [0.0_3_6_1, 0.0_6_1_7, 0.2_7_8_7, -0.0_3_5_0, 0.0_3_4_2, 0.3_4_2_1, -0.0_8_4_3, 0.0_9_1_3, 0.3_0_1_5] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = UpDecoderBlockaD # noqa F405 snake_case = "up" @property def lowerCamelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_temb=_snake_case ) def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" A_ = {"in_channels": 32, "out_channels": 32} A_ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" A_ = [0.4_4_0_4, 0.1_9_9_8, -0.9_8_8_6, -0.3_3_2_0, -0.3_1_2_8, -0.7_0_3_4, -0.6_9_5_5, -0.2_3_3_8, -0.3_1_3_7] super().test_output(_snake_case ) class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" snake_case = AttnUpDecoderBlockaD # noqa F405 snake_case = "up" @property def lowerCamelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_temb=_snake_case ) def lowerCamelCase__ ( self : int ) -> List[str]: """simple docstring""" A_ = {"in_channels": 32, "out_channels": 32} A_ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase__ ( self : int ) -> int: """simple docstring""" A_ = [0.6_7_3_8, 0.4_4_9_1, 0.1_0_5_5, 1.0_7_1_0, 0.7_3_1_6, 0.3_3_3_9, 0.3_3_5_2, 0.1_0_2_3, 0.3_5_6_8] super().test_output(_snake_case )
482
"""simple docstring""" def A_ (__a , __a , __a ): '''simple docstring''' A_ = len(__a ) A_ = [[0] * n for i in range(__a )] for i in range(__a ): A_ = y_points[i] for i in range(2 , __a ): for j in range(__a , __a ): A_ = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
482
1
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCAmelCase : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=16 , _lowerCamelCase=[32, 64, 128] , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.02 , _lowerCamelCase=1E-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=10 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2"] , _lowerCamelCase=[1, 2] , ): lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = depths lowerCAmelCase_ = num_heads lowerCAmelCase_ = window_size lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = use_absolute_embeddings lowerCAmelCase_ = patch_norm lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range lowerCAmelCase_ = is_training lowerCAmelCase_ = scope lowerCAmelCase_ = use_labels lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = encoder_stride lowerCAmelCase_ = out_features lowerCAmelCase_ = out_indices def UpperCAmelCase_ ( self ): lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = FocalNetModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase ) lowerCAmelCase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowerCAmelCase_ = None lowerCAmelCase_ = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = FocalNetForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase_ = 1 lowerCAmelCase_ = FocalNetForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = self.type_sequence_label_size lowerCAmelCase_ = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase_ = 1 lowerCAmelCase_ = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowerCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( __a , __a , unittest.TestCase ): __A : Tuple = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __A : Any = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) __A : List[str] = False __A : Optional[Any] = False __A : Union[str, Any] = False __A : List[str] = False __A : Optional[Any] = False def UpperCAmelCase_ ( self ): lowerCAmelCase_ = FocalNetModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=37 , has_text_modality=_lowerCamelCase ) def UpperCAmelCase_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self ): return def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @unittest.skip(reason='''FocalNet does not use inputs_embeds''' ) def UpperCAmelCase_ ( self ): pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''' ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): lowerCAmelCase_ ,lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCAmelCase_ = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ ,lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowerCAmelCase_ = model_class(_lowerCamelCase ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) lowerCAmelCase_ = outputs.hidden_states lowerCAmelCase_ = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # FocalNet has a different seq_length lowerCAmelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase_ = outputs.reshaped_hidden_states self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = reshaped_hidden_states[0].shape lowerCAmelCase_ = ( reshaped_hidden_states[0].view(_lowerCamelCase , _lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ ,lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowerCAmelCase_ = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ ,lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowerCAmelCase_ = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @slow def UpperCAmelCase_ ( self ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = FocalNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ ,lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = _config_zero_init(_lowerCamelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class __UpperCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase_ ( self ): # TODO update organization return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self ): lowerCAmelCase_ = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''' ).to(_lowerCamelCase ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase_ = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**_lowerCamelCase ) # verify the logits lowerCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) lowerCAmelCase_ = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __UpperCAmelCase ( __a , unittest.TestCase ): __A : Dict = (FocalNetBackbone,) if is_torch_available() else () __A : List[str] = FocalNetConfig __A : Optional[int] = False def UpperCAmelCase_ ( self ): lowerCAmelCase_ = FocalNetModelTester(self )
274
'''simple docstring''' from __future__ import annotations from typing import Any def snake_case_ ( __snake_case : list[Any]) -> None: create_state_space_tree(__snake_case , [] , 0) def snake_case_ ( __snake_case : list[Any] , __snake_case : list[Any] , __snake_case : int) -> None: if index == len(__snake_case): print(__snake_case) return create_state_space_tree(__snake_case , __snake_case , index + 1) current_subsequence.append(sequence[index]) create_state_space_tree(__snake_case , __snake_case , index + 1) current_subsequence.pop() if __name__ == "__main__": A_ : list[Any] =[3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
274
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake SCREAMING_SNAKE_CASE_ = numpy.array([0, 0]) SCREAMING_SNAKE_CASE_ = numpy.array([0.5, 0.866_0254]) SCREAMING_SNAKE_CASE_ = numpy.array([1, 0]) SCREAMING_SNAKE_CASE_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase__ ( _lowercase : list[numpy.ndarray] , _lowercase : int ) -> list[numpy.ndarray]: __UpperCAmelCase: int = initial_vectors for _ in range(_lowercase ): __UpperCAmelCase: Any = iteration_step(_lowercase ) return vectors def UpperCamelCase__ ( _lowercase : list[numpy.ndarray] ) -> list[numpy.ndarray]: __UpperCAmelCase: Optional[int] = [] for i, start_vector in enumerate(vectors[:-1] ): __UpperCAmelCase: Union[str, Any] = vectors[i + 1] new_vectors.append(_lowercase ) __UpperCAmelCase: Optional[int] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase__ ( _lowercase : numpy.ndarray , _lowercase : float ) -> numpy.ndarray: __UpperCAmelCase: Tuple = numpy.radians(_lowercase ) __UpperCAmelCase, __UpperCAmelCase: Optional[Any] = numpy.cos(_lowercase ), numpy.sin(_lowercase ) __UpperCAmelCase: Tuple = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowercase , _lowercase ) def UpperCamelCase__ ( _lowercase : list[numpy.ndarray] ) -> None: __UpperCAmelCase: Union[str, Any] = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __UpperCAmelCase, __UpperCAmelCase: Dict = zip(*_lowercase ) plt.plot(_lowercase , _lowercase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
466
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class lowerCamelCase_ ( _lowercase ): _lowercase : jnp.ndarray @flax_register_to_config class lowerCamelCase_ ( nn.Module , _lowercase , _lowercase ): _lowercase : int = 32 _lowercase : int = 4 _lowercase : int = 4 _lowercase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _lowercase : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _lowercase : Union[bool, Tuple[bool]] = False _lowercase : Tuple[int] = (320, 640, 1280, 1280) _lowercase : int = 2 _lowercase : Union[int, Tuple[int]] = 8 _lowercase : Optional[Union[int, Tuple[int]]] = None _lowercase : int = 1280 _lowercase : float = 0.0 _lowercase : bool = False _lowercase : jnp.dtype = jnp.floataa _lowercase : bool = True _lowercase : int = 0 _lowercase : bool = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : jax.random.KeyArray ): # init input tensors __A : Tuple = (1, self.in_channels, self.sample_size, self.sample_size) __A : str = jnp.zeros(__A , dtype=jnp.floataa ) __A : Optional[int] = jnp.ones((1,) , dtype=jnp.intaa ) __A : Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __A , __A : List[Any] = jax.random.split(__A ) __A : Any = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__A , __A , __A , __A )["params"] def lowerCAmelCase_ ( self : List[Any] ): __A : Union[str, Any] = self.block_out_channels __A : Optional[Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __A : Optional[int] = self.num_attention_heads or self.attention_head_dim # input __A : str = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __A : str = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __A : List[Any] = FlaxTimestepEmbedding(__A , dtype=self.dtype ) __A : Optional[int] = self.only_cross_attention if isinstance(__A , __A ): __A : int = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__A , __A ): __A : int = (num_attention_heads,) * len(self.down_block_types ) # down __A : Dict = [] __A : Tuple = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __A : Optional[int] = output_channel __A : Union[str, Any] = block_out_channels[i] __A : Dict = i == len(__A ) - 1 if down_block_type == "CrossAttnDownBlock2D": __A : Any = FlaxCrossAttnDownBlockaD( in_channels=__A , out_channels=__A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __A : List[Any] = FlaxDownBlockaD( in_channels=__A , out_channels=__A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__A ) __A : Tuple = down_blocks # mid __A : Any = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __A : Optional[Any] = [] __A : Tuple = list(reversed(__A ) ) __A : Union[str, Any] = list(reversed(__A ) ) __A : List[str] = list(reversed(__A ) ) __A : Union[str, Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __A : List[Any] = output_channel __A : Any = reversed_block_out_channels[i] __A : str = reversed_block_out_channels[min(i + 1 , len(__A ) - 1 )] __A : Union[str, Any] = i == len(__A ) - 1 if up_block_type == "CrossAttnUpBlock2D": __A : Any = FlaxCrossAttnUpBlockaD( in_channels=__A , out_channels=__A , prev_output_channel=__A , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __A : Optional[int] = FlaxUpBlockaD( in_channels=__A , out_channels=__A , prev_output_channel=__A , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__A ) __A : str = output_channel __A : Optional[Any] = up_blocks # out __A : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __A : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[Any] , __A : Dict , __A : int , __A : List[str] , __A : List[Any]=None , __A : Any=None , __A : bool = True , __A : bool = False , ): # 1. time if not isinstance(__A , jnp.ndarray ): __A : Tuple = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__A , jnp.ndarray ) and len(timesteps.shape ) == 0: __A : int = timesteps.astype(dtype=jnp.floataa ) __A : Union[str, Any] = jnp.expand_dims(__A , 0 ) __A : List[str] = self.time_proj(__A ) __A : str = self.time_embedding(__A ) # 2. pre-process __A : List[str] = jnp.transpose(__A , (0, 2, 3, 1) ) __A : str = self.conv_in(__A ) # 3. down __A : Any = (sample,) for down_block in self.down_blocks: if isinstance(__A , __A ): __A , __A : Optional[int] = down_block(__A , __A , __A , deterministic=not train ) else: __A , __A : List[str] = down_block(__A , __A , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __A : Tuple = () for down_block_res_sample, down_block_additional_residual in zip( __A , __A ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __A : str = new_down_block_res_samples # 4. mid __A : Any = self.mid_block(__A , __A , __A , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __A : int = down_block_res_samples[-(self.layers_per_block + 1) :] __A : Tuple = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__A , __A ): __A : Optional[int] = up_block( __A , temb=__A , encoder_hidden_states=__A , res_hidden_states_tuple=__A , deterministic=not train , ) else: __A : int = up_block(__A , temb=__A , res_hidden_states_tuple=__A , deterministic=not train ) # 6. post-process __A : Optional[Any] = self.conv_norm_out(__A ) __A : Optional[Any] = nn.silu(__A ) __A : Dict = self.conv_out(__A ) __A : str = jnp.transpose(__A , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__A )
17
"""simple docstring""" import argparse import json import subprocess def UpperCamelCase ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Dict = ( f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _UpperCAmelCase : List[str] = subprocess.run(_lowerCAmelCase, shell=_lowerCAmelCase, stdout=subprocess.PIPE ) _UpperCAmelCase : List[str] = output.stdout.decode("""utf-8""" ) _UpperCAmelCase : Optional[int] = json.loads(_lowerCAmelCase ) _UpperCAmelCase : Dict = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCAmelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""", """w""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) > 0: _UpperCAmelCase : List[str] = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def UpperCamelCase ( _lowerCAmelCase : List[Any] ) -> Any: return values.split(""",""" ) lowerCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) lowerCamelCase__ : Dict = parser.parse_args() get_runner_status(args.target_runners, args.token)
238
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ) -> int: snake_case_ : str = tempfile.mkdtemp() snake_case_ : str = BlipImageProcessor() snake_case_ : List[Any] = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) snake_case_ : List[Any] = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) snake_case_ : Dict = InstructBlipProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).tokenizer def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).image_processor def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ).qformer_tokenizer def _lowerCAmelCase ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ) -> str: snake_case_ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ : List[str] = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Any = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) snake_case_ : Tuple = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case_ : List[Any] = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) snake_case_ : Union[str, Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor.qformer_tokenizer , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : Any = self.get_image_processor() snake_case_ : Any = self.get_tokenizer() snake_case_ : Tuple = self.get_qformer_tokenizer() snake_case_ : List[Any] = InstructBlipProcessor( tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE , qformer_tokenizer=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = self.prepare_image_inputs() snake_case_ : Dict = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="np" ) snake_case_ : List[str] = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : Dict = self.get_image_processor() snake_case_ : List[str] = self.get_tokenizer() snake_case_ : Any = self.get_qformer_tokenizer() snake_case_ : Optional[Any] = InstructBlipProcessor( tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE , qformer_tokenizer=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = "lower newer" snake_case_ : List[str] = processor(text=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = tokenizer(_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) snake_case_ : str = qformer_tokenizer(_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def _lowerCAmelCase ( self ) -> str: snake_case_ : List[Any] = self.get_image_processor() snake_case_ : List[Any] = self.get_tokenizer() snake_case_ : Any = self.get_qformer_tokenizer() snake_case_ : Dict = InstructBlipProcessor( tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE , qformer_tokenizer=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = "lower newer" snake_case_ : Optional[int] = self.prepare_image_inputs() snake_case_ : List[str] = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def _lowerCAmelCase ( self ) -> Dict: snake_case_ : Union[str, Any] = self.get_image_processor() snake_case_ : Union[str, Any] = self.get_tokenizer() snake_case_ : Any = self.get_qformer_tokenizer() snake_case_ : Any = InstructBlipProcessor( tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE , qformer_tokenizer=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ : str = processor.batch_decode(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> str: snake_case_ : Tuple = self.get_image_processor() snake_case_ : int = self.get_tokenizer() snake_case_ : List[Any] = self.get_qformer_tokenizer() snake_case_ : List[Any] = InstructBlipProcessor( tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE , qformer_tokenizer=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = "lower newer" snake_case_ : Union[str, Any] = self.prepare_image_inputs() snake_case_ : Dict = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
704
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Tuple = ['image_processor', 'tokenizer'] A : List[Any] = 'ViltImageProcessor' A : Optional[Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> int: snake_case_ : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _SCREAMING_SNAKE_CASE , ) snake_case_ : str = kwargs.pop("feature_extractor" ) snake_case_ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : str = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchEncoding: snake_case_ : List[Any] = self.tokenizer( text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # add pixel_values + pixel_mask snake_case_ : str = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) encoding.update(_SCREAMING_SNAKE_CASE ) return encoding def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : List[Any] = self.tokenizer.model_input_names snake_case_ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def _lowerCAmelCase ( self ) -> Optional[int]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _SCREAMING_SNAKE_CASE , ) return self.image_processor
114
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ) -> str: if not (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )): raise ValueError('longest_common_substring() takes two strings for inputs' ) __lowerCamelCase : str = len(__UpperCAmelCase ) __lowerCamelCase : Optional[int] = len(__UpperCAmelCase ) __lowerCamelCase : Optional[int] = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __lowerCamelCase : str = 0 __lowerCamelCase : Optional[Any] = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __lowerCamelCase : Dict = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __lowerCamelCase : Any = i __lowerCamelCase : Dict = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
13
"""simple docstring""" def lowercase_ ( __UpperCAmelCase ) -> str: return " ".join( """""".join(word[::-1] ) if len(__UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
299
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=14 ,__lowerCamelCase=7 ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=99 ,__lowerCamelCase=32 ,__lowerCamelCase=5 ,__lowerCamelCase=4 ,__lowerCamelCase=37 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=5_12 ,__lowerCamelCase=16 ,__lowerCamelCase=2 ,__lowerCamelCase=0.02 ,__lowerCamelCase=3 ,__lowerCamelCase=4 ,__lowerCamelCase=None ,) -> int: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : str = is_training lowerCAmelCase__ : Optional[Any] = use_token_type_ids lowerCAmelCase__ : Dict = use_input_mask lowerCAmelCase__ : Union[str, Any] = use_labels lowerCAmelCase__ : Dict = use_mc_token_ids lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : str = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : str = num_attention_heads lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : Any = hidden_dropout_prob lowerCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = max_position_embeddings lowerCAmelCase__ : Tuple = type_vocab_size lowerCAmelCase__ : Optional[int] = type_sequence_label_size lowerCAmelCase__ : str = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : List[Any] = num_choices lowerCAmelCase__ : Any = scope lowerCAmelCase__ : Any = self.vocab_size - 1 def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : List[str] = None if self.use_input_mask: lowerCAmelCase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Union[str, Any] = None if self.use_token_type_ids: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase__ : Optional[int] = None if self.use_mc_token_ids: lowerCAmelCase__ : Dict = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) lowerCAmelCase__ : str = None lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None if self.use_labels: lowerCAmelCase__ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size] ,self.num_choices ) lowerCAmelCase__ : Optional[Any] = self.get_config() lowerCAmelCase__ : Tuple = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,*__lowerCamelCase ) -> Any: """simple docstring""" lowerCAmelCase__ : Dict = CTRLModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() model(__lowerCamelCase ,token_type_ids=__lowerCamelCase ,head_mask=__lowerCamelCase ) model(__lowerCamelCase ,token_type_ids=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,*__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = CTRLLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : str = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase__ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,*__lowerCamelCase ) -> str: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.num_labels lowerCAmelCase__ : Any = CTRLForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : List[str] = model(__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =(CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () snake_case_ =(CTRLLMHeadModel,) if is_torch_available() else () snake_case_ =( { """feature-extraction""": CTRLModel, """text-classification""": CTRLForSequenceClassification, """text-generation""": CTRLLMHeadModel, """zero-shot""": CTRLForSequenceClassification, } if is_torch_available() else {} ) snake_case_ =True snake_case_ =False snake_case_ =False def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : str = CTRLModelTester(self ) lowerCAmelCase__ : Union[str, Any] = ConfigTester(self ,config_class=__lowerCamelCase ,n_embd=37 ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass @slow def lowerCAmelCase__ (self ) -> str: """simple docstring""" for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Union[str, Any] = CTRLModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" pass @require_torch class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = torch.tensor( [[1_18_59, 0, 16_11, 8]] ,dtype=torch.long ,device=__lowerCamelCase ) # Legal the president is lowerCAmelCase__ : List[str] = [ 1_18_59, 0, 16_11, 8, 5, 1_50, 2_64_49, 2, 19, 3_48, 4_69, 3, 25_95, 48, 2_07_40, 24_65_33, 24_65_33, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCAmelCase__ : List[Any] = model.generate(__lowerCamelCase ,do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() ,__lowerCamelCase )
90
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case : str =logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =["""pixel_values"""] def __init__(self ,__lowerCamelCase = True ,__lowerCamelCase = None ,__lowerCamelCase = PILImageResampling.BICUBIC ,__lowerCamelCase = True ,__lowerCamelCase = None ,__lowerCamelCase = True ,__lowerCamelCase = 1 / 2_55 ,__lowerCamelCase = True ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = True ,**__lowerCamelCase ,) -> None: """simple docstring""" super().__init__(**__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 2_24} lowerCAmelCase__ : Union[str, Any] = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} lowerCAmelCase__ : Optional[int] = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ,param_name='''crop_size''' ) lowerCAmelCase__ : Optional[int] = do_resize lowerCAmelCase__ : Any = size lowerCAmelCase__ : int = resample lowerCAmelCase__ : Dict = do_center_crop lowerCAmelCase__ : str = crop_size lowerCAmelCase__ : Dict = do_rescale lowerCAmelCase__ : Optional[Any] = rescale_factor lowerCAmelCase__ : Dict = do_normalize lowerCAmelCase__ : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase__ : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase__ : int = do_convert_rgb def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = PILImageResampling.BICUBIC ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> np.ndarray: """simple docstring""" lowerCAmelCase__ : Optional[int] = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCAmelCase__ : Optional[int] = get_resize_output_image_size(__lowerCamelCase ,size=size['''shortest_edge'''] ,default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase ,size=__lowerCamelCase ,resample=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> np.ndarray: """simple docstring""" lowerCAmelCase__ : List[Any] = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__lowerCamelCase ,size=(size['''height'''], size['''width''']) ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> int: """simple docstring""" return rescale(__lowerCamelCase ,scale=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = None ,**__lowerCamelCase ,) -> np.ndarray: """simple docstring""" return normalize(__lowerCamelCase ,mean=__lowerCamelCase ,std=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = None ,__lowerCamelCase = ChannelDimension.FIRST ,**__lowerCamelCase ,) -> PIL.Image.Image: """simple docstring""" lowerCAmelCase__ : Tuple = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : Tuple = size if size is not None else self.size lowerCAmelCase__ : Any = get_size_dict(__lowerCamelCase ,param_name='''size''' ,default_to_square=__lowerCamelCase ) lowerCAmelCase__ : Tuple = resample if resample is not None else self.resample lowerCAmelCase__ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : List[Any] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : str = get_size_dict(__lowerCamelCase ,param_name='''crop_size''' ,default_to_square=__lowerCamelCase ) lowerCAmelCase__ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : int = image_std if image_std is not None else self.image_std lowerCAmelCase__ : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ : Optional[int] = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ : Union[str, Any] = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ : Any = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: lowerCAmelCase__ : str = [self.resize(image=__lowerCamelCase ,size=__lowerCamelCase ,resample=__lowerCamelCase ) for image in images] if do_center_crop: lowerCAmelCase__ : Dict = [self.center_crop(image=__lowerCamelCase ,size=__lowerCamelCase ) for image in images] if do_rescale: lowerCAmelCase__ : Union[str, Any] = [self.rescale(image=__lowerCamelCase ,scale=__lowerCamelCase ) for image in images] if do_normalize: lowerCAmelCase__ : Optional[Any] = [self.normalize(image=__lowerCamelCase ,mean=__lowerCamelCase ,std=__lowerCamelCase ) for image in images] lowerCAmelCase__ : List[Any] = [to_channel_dimension_format(__lowerCamelCase ,__lowerCamelCase ) for image in images] lowerCAmelCase__ : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=__lowerCamelCase ,tensor_type=__lowerCamelCase )
90
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Any: """simple docstring""" lowerCAmelCase__ = FunnelConfig.from_json_file(snake_case__ ) print(f'Building PyTorch model from configuration: {config}' ) lowerCAmelCase__ = FunnelBaseModel(snake_case__ ) if base_model else FunnelModel(snake_case__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _lowerCAmelCase : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
193
from typing import Dict from .base import GenericTensor, Pipeline class __snake_case ( SCREAMING_SNAKE_CASE ): def SCREAMING_SNAKE_CASE_ ( self ,a_=None ,a_=None ,a_=None ,**a_ ): """simple docstring""" if tokenize_kwargs is None: lowerCAmelCase__ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) lowerCAmelCase__ = truncation lowerCAmelCase__ = tokenize_kwargs lowerCAmelCase__ = {} if return_tensors is not None: lowerCAmelCase__ = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE_ ( self ,a_ ,**a_ ): """simple docstring""" lowerCAmelCase__ = self.framework lowerCAmelCase__ = self.tokenizer(a_ ,return_tensors=a_ ,**a_ ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = self.model(**a_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_=False ): """simple docstring""" # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self ,*a_ ,**a_ ): """simple docstring""" return super().__call__(*a_ ,**a_ )
193
1
'''simple docstring''' import argparse from collections import defaultdict import yaml snake_case_ : int = "docs/source/en/_toctree.yml" def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: UpperCAmelCase_ : List[Any] = defaultdict(__snake_case ) for doc in model_doc: counts[doc["local"]] += 1 UpperCAmelCase_ : Optional[Any] = [key for key, value in counts.items() if value > 1] UpperCAmelCase_ : Dict = [] for duplicate_key in duplicates: UpperCAmelCase_ : Dict = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(__snake_case ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(__snake_case, key=lambda SCREAMING_SNAKE_CASE__ : s["title"].lower() ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ) -> List[Any]: with open(__snake_case, encoding='''utf-8''' ) as f: UpperCAmelCase_ : Tuple = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase_ : List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase_ : List[Any] = content[api_idx]['''sections'''] # Then to the model doc UpperCAmelCase_ : str = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCAmelCase_ : Any = api_doc[model_idx]['''sections'''] UpperCAmelCase_ : Union[str, Any] = [(idx, section) for idx, section in enumerate(__snake_case ) if '''sections''' in section] UpperCAmelCase_ : Union[str, Any] = False for idx, modality_doc in modalities_docs: UpperCAmelCase_ : Union[str, Any] = modality_doc['''sections'''] UpperCAmelCase_ : Dict = clean_model_doc_toc(__snake_case ) if old_modality_doc != new_modality_doc: UpperCAmelCase_ : List[str] = True if overwrite: UpperCAmelCase_ : Union[str, Any] = new_modality_doc if diff: if overwrite: UpperCAmelCase_ : Any = model_doc UpperCAmelCase_ : List[Any] = api_doc with open(__snake_case, '''w''', encoding='''utf-8''' ) as f: f.write(yaml.dump(__snake_case, allow_unicode=__snake_case ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": snake_case_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") snake_case_ : List[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
705
'''simple docstring''' class __a : def __init__( self : List[Any] , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : Optional[Any] = size UpperCAmelCase_ : Tuple = [0] * size UpperCAmelCase_ : Optional[Any] = [0] * size @staticmethod def UpperCAmelCase__ ( __magic_name__ : int ) -> int: """simple docstring""" return index | (index + 1) @staticmethod def UpperCAmelCase__ ( __magic_name__ : int ) -> int: """simple docstring""" return (index & (index + 1)) - 1 def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None: """simple docstring""" UpperCAmelCase_ : int = value while index < self.size: UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1 if current_left_border == index: UpperCAmelCase_ : List[str] = value else: UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ ) def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" right -= 1 # Because of right is exclusive UpperCAmelCase_ : List[str] = 0 while left <= right: UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ ) if left <= current_left: UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] ) UpperCAmelCase_ : Optional[Any] = current_left else: UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
644
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE : List[str] =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[str] ={ 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" A__ : List[str] = '''trajectory_transformer''' A__ : str = ['''past_key_values'''] A__ : Dict = { '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , A=1_00 , A=5 , A=1 , A=1 , A=2_49 , A=6 , A=17 , A=25 , A=4 , A=4 , A=1_28 , A=0.1 , A=0.1 , A=0.1 , A=0.0006 , A=5_12 , A=0.02 , A=1e-12 , A=1 , A=True , A=1 , A=5_02_56 , A=5_02_56 , **A , ) -> Tuple: A: Optional[int] = vocab_size A: str = action_weight A: Optional[Any] = reward_weight A: str = value_weight A: int = max_position_embeddings A: Any = block_size A: str = action_dim A: int = observation_dim A: Optional[int] = transition_dim A: List[Any] = learning_rate A: List[Any] = n_layer A: List[Any] = n_head A: Dict = n_embd A: Any = embd_pdrop A: Union[str, Any] = attn_pdrop A: Any = resid_pdrop A: Any = initializer_range A: Union[str, Any] = layer_norm_eps A: List[Any] = kaiming_initializer_range A: Union[str, Any] = use_cache super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A )
135
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
135
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a__ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
706
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a__ = logging.getLogger() def _UpperCAmelCase ( ): snake_case__ = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case__ = parser.parse_args() return args.f class _lowerCAmelCase ( lowercase_ ): """simple docstring""" def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = logging.StreamHandler(sys.stdout) logger.addHandler(UpperCamelCase__) def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : List[str]): '''simple docstring''' snake_case__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""") with patch.object(UpperCamelCase__ , """argv""" , UpperCamelCase__): snake_case__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(UpperCamelCase__ , 0.6_66) @slow @require_torch_non_multi_gpu def __magic_name__ ( self : str): '''simple docstring''' snake_case__ = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(UpperCamelCase__) snake_case__ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(UpperCamelCase__) snake_case__ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(UpperCamelCase__)
99
0
from __future__ import annotations from PIL import Image # Define glider example _lowerCAmelCase : int = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _lowerCAmelCase : str = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def a_ ( UpperCamelCase_ : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowerCamelCase = [] for i in range(len(UpperCamelCase_ ) ): lowerCamelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCamelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(UpperCamelCase_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(UpperCamelCase_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(UpperCamelCase_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCamelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(UpperCamelCase_ ) return next_generation def a_ ( UpperCamelCase_ : list[list[int]] , UpperCamelCase_ : int ) -> list[Image.Image]: """simple docstring""" lowerCamelCase = [] for _ in range(UpperCamelCase_ ): # Create output image lowerCamelCase = Image.new('RGB' , (len(cells[0] ), len(UpperCamelCase_ )) ) lowerCamelCase = img.load() # Save cells to image for x in range(len(UpperCamelCase_ ) ): for y in range(len(cells[0] ) ): lowerCamelCase = 2_5_5 - cells[y][x] * 2_5_5 lowerCamelCase = (colour, colour, colour) # Save image images.append(UpperCamelCase_ ) lowerCamelCase = new_generation(UpperCamelCase_ ) return images if __name__ == "__main__": _lowerCAmelCase : Any = generate_images(GLIDER, 1_6) images[0].save('out.gif', save_all=True, append_images=images[1:])
246
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' snake_case = 42 snake_case = jnp.floataa snake_case = True def lowerCamelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' super().setup() lowerCamelCase = nn.Dense(5 , dtype=self.dtype ) def __call__( self : int , *__snake_case : str , **__snake_case : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCamelCase = super().__call__(*__snake_case , **__snake_case ) lowerCamelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' snake_case = FlaxBigBirdForNaturalQuestionsModule def a_ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : List[str] ) -> Any: """simple docstring""" def cross_entropy(UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any=None ): lowerCamelCase = logits.shape[-1] lowerCamelCase = (labels[..., None] == jnp.arange(UpperCamelCase_ )[None]).astype('f4' ) lowerCamelCase = jax.nn.log_softmax(UpperCamelCase_ , axis=-1 ) lowerCamelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCamelCase = reduction(UpperCamelCase_ ) return loss lowerCamelCase = partial(UpperCamelCase_ , reduction=jnp.mean ) lowerCamelCase = cross_entropy(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase = cross_entropy(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase = cross_entropy(UpperCamelCase_ , UpperCamelCase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowerCAmelCase : '''simple docstring''' snake_case = "google/bigbird-roberta-base" snake_case = 3_000 snake_case = 10_500 snake_case = 128 snake_case = 3 snake_case = 1 snake_case = 5 # tx_args snake_case = 3E-5 snake_case = 0.0 snake_case = 20_000 snake_case = 0.0_0_9_5 snake_case = "bigbird-roberta-natural-questions" snake_case = "training-expt" snake_case = "data/nq-training.jsonl" snake_case = "data/nq-validation.jsonl" def lowerCamelCase__ ( self : str ) -> Tuple: '''simple docstring''' os.makedirs(self.base_dir , exist_ok=__snake_case ) lowerCamelCase = os.path.join(self.base_dir , self.save_dir ) lowerCamelCase = self.batch_size_per_device * jax.device_count() @dataclass class lowerCAmelCase : '''simple docstring''' snake_case = 42 snake_case = 4_096 # no dynamic padding on TPUs def __call__( self : Optional[int] , __snake_case : Any ) -> int: '''simple docstring''' lowerCamelCase = self.collate_fn(__snake_case ) lowerCamelCase = jax.tree_util.tree_map(__snake_case , __snake_case ) return batch def lowerCamelCase__ ( self : Dict , __snake_case : Any ) -> Any: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.fetch_inputs(features['input_ids'] ) lowerCamelCase = { 'input_ids': jnp.array(__snake_case , dtype=jnp.intaa ), 'attention_mask': jnp.array(__snake_case , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def lowerCamelCase__ ( self : Optional[int] , __snake_case : list ) -> str: '''simple docstring''' lowerCamelCase = [self._fetch_inputs(__snake_case ) for ids in input_ids] return zip(*__snake_case ) def lowerCamelCase__ ( self : Tuple , __snake_case : list ) -> int: '''simple docstring''' lowerCamelCase = [1 for _ in range(len(__snake_case ) )] while len(__snake_case ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def a_ ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any]=None ) -> Any: """simple docstring""" if seed is not None: lowerCamelCase = dataset.shuffle(seed=UpperCamelCase_ ) for i in range(len(UpperCamelCase_ ) // batch_size ): lowerCamelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCamelCase_ ) @partial(jax.pmap , axis_name='batch' ) def a_ ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , **UpperCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def loss_fn(UpperCamelCase_ : Optional[int] ): lowerCamelCase = model_inputs.pop('start_labels' ) lowerCamelCase = model_inputs.pop('end_labels' ) lowerCamelCase = model_inputs.pop('pooled_labels' ) lowerCamelCase = state.apply_fn(**UpperCamelCase_ , params=UpperCamelCase_ , dropout_rng=UpperCamelCase_ , train=UpperCamelCase_ ) lowerCamelCase , lowerCamelCase , lowerCamelCase = outputs return state.loss_fn( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) lowerCamelCase , lowerCamelCase = jax.random.split(UpperCamelCase_ ) lowerCamelCase = jax.value_and_grad(UpperCamelCase_ ) lowerCamelCase , lowerCamelCase = grad_fn(state.params ) lowerCamelCase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) lowerCamelCase = jax.lax.pmean(UpperCamelCase_ , 'batch' ) lowerCamelCase = state.apply_gradients(grads=UpperCamelCase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def a_ ( UpperCamelCase_ : List[str] , **UpperCamelCase_ : List[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase = model_inputs.pop('start_labels' ) lowerCamelCase = model_inputs.pop('end_labels' ) lowerCamelCase = model_inputs.pop('pooled_labels' ) lowerCamelCase = state.apply_fn(**UpperCamelCase_ , params=state.params , train=UpperCamelCase_ ) lowerCamelCase , lowerCamelCase , lowerCamelCase = outputs lowerCamelCase = state.loss_fn(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class lowerCAmelCase ( train_state.TrainState ): '''simple docstring''' snake_case = struct.field(pytree_node=__UpperCamelCase ) @dataclass class lowerCAmelCase : '''simple docstring''' snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 snake_case = None def lowerCamelCase__ ( self : Any , __snake_case : str , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[int]=None ) -> Optional[int]: '''simple docstring''' lowerCamelCase = model.params lowerCamelCase = TrainState.create( apply_fn=model.__call__ , params=__snake_case , tx=__snake_case , loss_fn=__snake_case , ) if ckpt_dir is not None: lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = restore_checkpoint(__snake_case , __snake_case ) lowerCamelCase = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } lowerCamelCase , lowerCamelCase = build_tx(**__snake_case ) lowerCamelCase = train_state.TrainState( step=__snake_case , apply_fn=model.__call__ , params=__snake_case , tx=__snake_case , opt_state=__snake_case , ) lowerCamelCase = args lowerCamelCase = data_collator lowerCamelCase = lr lowerCamelCase = params lowerCamelCase = jax_utils.replicate(__snake_case ) return state def lowerCamelCase__ ( self : int , __snake_case : Any , __snake_case : List[Any] , __snake_case : Any ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.args lowerCamelCase = len(__snake_case ) // args.batch_size lowerCamelCase = jax.random.PRNGKey(0 ) lowerCamelCase = jax.random.split(__snake_case , jax.device_count() ) for epoch in range(args.max_epochs ): lowerCamelCase = jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase = get_batched_dataset(__snake_case , args.batch_size , seed=__snake_case ) lowerCamelCase = 0 for batch in tqdm(__snake_case , total=__snake_case , desc=F'''Running EPOCH-{epoch}''' ): lowerCamelCase = self.data_collator(__snake_case ) lowerCamelCase , lowerCamelCase , lowerCamelCase = self.train_step_fn(__snake_case , __snake_case , **__snake_case ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: lowerCamelCase = jax_utils.unreplicate(state.step ) lowerCamelCase = running_loss.item() / i lowerCamelCase = self.scheduler_fn(state_step - 1 ) lowerCamelCase = self.evaluate(__snake_case , __snake_case ) lowerCamelCase = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(__snake_case ) ) self.logger.log(__snake_case , commit=__snake_case ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=__snake_case ) def lowerCamelCase__ ( self : Tuple , __snake_case : Dict , __snake_case : Tuple ) -> Dict: '''simple docstring''' lowerCamelCase = get_batched_dataset(__snake_case , self.args.batch_size ) lowerCamelCase = len(__snake_case ) // self.args.batch_size lowerCamelCase = jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase = 0 for batch in tqdm(__snake_case , total=__snake_case , desc='Evaluating ... ' ): lowerCamelCase = self.data_collator(__snake_case ) lowerCamelCase = self.val_step_fn(__snake_case , **__snake_case ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def lowerCamelCase__ ( self : Optional[int] , __snake_case : List[str] , __snake_case : Tuple ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = jax_utils.unreplicate(__snake_case ) print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=' ... ' ) self.model_save_fn(__snake_case , params=state.params ) with open(os.path.join(__snake_case , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__snake_case , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(__snake_case , 'data_collator.joblib' ) ) with open(os.path.join(__snake_case , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , __snake_case ) print('DONE' ) def a_ ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ) -> str: """simple docstring""" print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=' ... ' ) with open(os.path.join(UpperCamelCase_ , 'flax_model.msgpack' ) , 'rb' ) as f: lowerCamelCase = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCamelCase_ , 'opt_state.msgpack' ) , 'rb' ) as f: lowerCamelCase = from_bytes(state.opt_state , f.read() ) lowerCamelCase = joblib.load(os.path.join(UpperCamelCase_ , 'args.joblib' ) ) lowerCamelCase = joblib.load(os.path.join(UpperCamelCase_ , 'data_collator.joblib' ) ) with open(os.path.join(UpperCamelCase_ , 'training_state.json' ) , 'r' ) as f: lowerCamelCase = json.load(UpperCamelCase_ ) lowerCamelCase = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def a_ ( UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase = num_train_steps - warmup_steps lowerCamelCase = optax.linear_schedule(init_value=UpperCamelCase_ , end_value=UpperCamelCase_ , transition_steps=UpperCamelCase_ ) lowerCamelCase = optax.linear_schedule(init_value=UpperCamelCase_ , end_value=1E-7 , transition_steps=UpperCamelCase_ ) lowerCamelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def a_ ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" def weight_decay_mask(UpperCamelCase_ : List[str] ): lowerCamelCase = traverse_util.flatten_dict(UpperCamelCase_ ) lowerCamelCase = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCamelCase_ ) lowerCamelCase = scheduler_fn(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase = optax.adamw(learning_rate=UpperCamelCase_ , weight_decay=UpperCamelCase_ , mask=UpperCamelCase_ ) return tx, lr
246
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass A =(3, 9, -11, 0, 7, 5, 1, -1) A =(4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _a : __a : int __a : Node | None class _a : def __init__( self : Union[str, Any] , lowercase : Iterable[int] ): '''simple docstring''' UpperCAmelCase = None for i in sorted(lowercase , reverse=lowercase ): UpperCAmelCase = Node(lowercase , self.head ) def __iter__( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.head while node: yield node.data UpperCAmelCase = node.next_node def __len__( self : int ): '''simple docstring''' return sum(1 for _ in self ) def __str__( self : Any ): '''simple docstring''' return " -> ".join([str(lowercase ) for node in self] ) def snake_case_ (_a : SortedLinkedList , _a : SortedLinkedList ): return SortedLinkedList(list(_a ) + list(_a ) ) if __name__ == "__main__": import doctest doctest.testmod() A =SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
711
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( __a , unittest.TestCase ): __a : Any = MgpstrTokenizer __a : Optional[Any] = False __a : str = {} __a : Optional[int] = False def A ( self : Dict ): '''simple docstring''' super().setUp() # fmt: off UpperCAmelCase = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on UpperCAmelCase = dict(zip(lowercase , range(len(lowercase ) ) ) ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase ) + '''\n''' ) def A ( self : int , **lowercase : Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase ) def A ( self : int , lowercase : str ): '''simple docstring''' UpperCAmelCase = '''tester''' UpperCAmelCase = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def A ( self : Optional[int] ): '''simple docstring''' pass def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers(do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) UpperCAmelCase = tokenizer.encode([special_token] , add_special_tokens=lowercase ) self.assertEqual(len(lowercase ) , 1 ) UpperCAmelCase = tokenizer.decode(lowercase , skip_special_tokens=lowercase ) self.assertTrue(special_token not in decoded ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase , UpperCAmelCase = self.get_input_output_texts(lowercase ) UpperCAmelCase = tokenizer.tokenize(lowercase ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase ) UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowercase ) self.assertNotEqual(len(lowercase ) , 0 ) UpperCAmelCase = tokenizer.decode(lowercase ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , lowercase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def A ( self : Any ): '''simple docstring''' pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def A ( self : str ): '''simple docstring''' pass
358
0
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=lowerCAmelCase ): __lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __A ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __A ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class snake_case_ ( metaclass=lowerCAmelCase ): __lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __A ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __A ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class snake_case_ ( metaclass=lowerCAmelCase ): __lowerCamelCase : str = ['torch', 'transformers', 'onnx'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __A ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __A ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class snake_case_ ( metaclass=lowerCAmelCase ): __lowerCamelCase : Optional[Any] = ['torch', 'transformers', 'onnx'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __A ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __A ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class snake_case_ ( metaclass=lowerCAmelCase ): __lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __A ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __A ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class snake_case_ ( metaclass=lowerCAmelCase ): __lowerCamelCase : Any = ['torch', 'transformers', 'onnx'] def __init__( self , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __A ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __A ( cls , *__lowerCAmelCase , **__lowerCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] )
345
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case_ ( lowerCAmelCase , unittest.TestCase ): __lowerCamelCase : Any = TransfoXLTokenizer __lowerCamelCase : int = False __lowerCamelCase : str = False def __A ( self ): super().setUp() SCREAMING_SNAKE_CASE_ : int = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __A ( self , **__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Dict = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = '<unk> UNwanted , running' SCREAMING_SNAKE_CASE_ : List[str] = '<unk> unwanted, running' return input_text, output_text def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(__lowerCAmelCase , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [0, 4, 8, 7] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : int = TransfoXLTokenizer(lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = TransfoXLTokenizer(lower_case=__lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = TransfoXLTokenizer(lower_case=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' SCREAMING_SNAKE_CASE_ : Dict = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowerCAmelCase ) , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(__lowerCAmelCase ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowerCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
345
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __snake_case ( lowerCAmelCase__ ): def __init__( self , _A , _A , _A , _A = None , ): super().__init__() self.register_modules(transformer=_A , vae=_A , scheduler=_A) # create a imagenet -> id dictionary for easier use SCREAMING_SNAKE_CASE_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(','): SCREAMING_SNAKE_CASE_ = int(_A) SCREAMING_SNAKE_CASE_ = dict(sorted(self.labels.items())) def lowerCAmelCase__ ( self , _A): if not isinstance(_A , _A): SCREAMING_SNAKE_CASE_ = list(_A) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""") return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , _A , _A = 4.0 , _A = None , _A = 50 , _A = "pil" , _A = True , ): SCREAMING_SNAKE_CASE_ = len(_A) SCREAMING_SNAKE_CASE_ = self.transformer.config.sample_size SCREAMING_SNAKE_CASE_ = self.transformer.config.in_channels SCREAMING_SNAKE_CASE_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_A , device=self.device , dtype=self.transformer.dtype , ) SCREAMING_SNAKE_CASE_ = torch.cat([latents] * 2) if guidance_scale > 1 else latents SCREAMING_SNAKE_CASE_ = torch.tensor(_A , device=self.device).reshape(-1) SCREAMING_SNAKE_CASE_ = torch.tensor([1000] * batch_size , device=self.device) SCREAMING_SNAKE_CASE_ = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_A) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: SCREAMING_SNAKE_CASE_ = latent_model_input[: len(_A) // 2] SCREAMING_SNAKE_CASE_ = torch.cat([half, half] , dim=0) SCREAMING_SNAKE_CASE_ = self.scheduler.scale_model_input(_A , _A) SCREAMING_SNAKE_CASE_ = t if not torch.is_tensor(_A): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) SCREAMING_SNAKE_CASE_ = latent_model_input.device.type == 'mps' if isinstance(_A , _A): SCREAMING_SNAKE_CASE_ = torch.floataa if is_mps else torch.floataa else: SCREAMING_SNAKE_CASE_ = torch.intaa if is_mps else torch.intaa SCREAMING_SNAKE_CASE_ = torch.tensor([timesteps] , dtype=_A , device=latent_model_input.device) elif len(timesteps.shape) == 0: SCREAMING_SNAKE_CASE_ = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE_ = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output SCREAMING_SNAKE_CASE_ = self.transformer( _A , timestep=_A , class_labels=_A).sample # perform guidance if guidance_scale > 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.split(_A , len(_A) // 2 , dim=0) SCREAMING_SNAKE_CASE_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) SCREAMING_SNAKE_CASE_ = torch.cat([half_eps, half_eps] , dim=0) SCREAMING_SNAKE_CASE_ = torch.cat([eps, rest] , dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.split(_A , _A , dim=1) else: SCREAMING_SNAKE_CASE_ = noise_pred # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_A , _A , _A).prev_sample if guidance_scale > 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = latent_model_input.chunk(2 , dim=0) else: SCREAMING_SNAKE_CASE_ = latent_model_input SCREAMING_SNAKE_CASE_ = 1 / self.vae.config.scaling_factor * latents SCREAMING_SNAKE_CASE_ = self.vae.decode(_A).sample SCREAMING_SNAKE_CASE_ = (samples / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE_ = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A) if not return_dict: return (samples,) return ImagePipelineOutput(images=_A)
620
import pickle import numpy as np from matplotlib import pyplot as plt class __snake_case : def __init__( self , _A , _A , _A , _A , _A , _A=0.2 , _A=0.2): SCREAMING_SNAKE_CASE_ = bp_numa SCREAMING_SNAKE_CASE_ = bp_numa SCREAMING_SNAKE_CASE_ = bp_numa SCREAMING_SNAKE_CASE_ = conva_get[:2] SCREAMING_SNAKE_CASE_ = conva_get[2] SCREAMING_SNAKE_CASE_ = size_pa SCREAMING_SNAKE_CASE_ = rate_w SCREAMING_SNAKE_CASE_ = rate_t SCREAMING_SNAKE_CASE_ = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5) for i in range(self.conva[1]) ] SCREAMING_SNAKE_CASE_ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) SCREAMING_SNAKE_CASE_ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) SCREAMING_SNAKE_CASE_ = -2 * np.random.rand(self.conva[1]) + 1 SCREAMING_SNAKE_CASE_ = -2 * np.random.rand(self.num_bpa) + 1 SCREAMING_SNAKE_CASE_ = -2 * np.random.rand(self.num_bpa) + 1 def lowerCAmelCase__ ( self , _A): # save model dict with pickle SCREAMING_SNAKE_CASE_ = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(_A , 'wb') as f: pickle.dump(_A , _A) print(f"""Model saved: {save_path}""") @classmethod def lowerCAmelCase__ ( cls , _A): # read saved model with open(_A , 'rb') as f: SCREAMING_SNAKE_CASE_ = pickle.load(_A) # noqa: S301 SCREAMING_SNAKE_CASE_ = model_dic.get('conv1') conv_get.append(model_dic.get('step_conv1')) SCREAMING_SNAKE_CASE_ = model_dic.get('size_pooling1') SCREAMING_SNAKE_CASE_ = model_dic.get('num_bp1') SCREAMING_SNAKE_CASE_ = model_dic.get('num_bp2') SCREAMING_SNAKE_CASE_ = model_dic.get('num_bp3') SCREAMING_SNAKE_CASE_ = model_dic.get('rate_weight') SCREAMING_SNAKE_CASE_ = model_dic.get('rate_thre') # create model instance SCREAMING_SNAKE_CASE_ = CNN(_A , _A , _A , _A , _A , _A , _A) # modify model parameter SCREAMING_SNAKE_CASE_ = model_dic.get('w_conv1') SCREAMING_SNAKE_CASE_ = model_dic.get('wkj') SCREAMING_SNAKE_CASE_ = model_dic.get('vji') SCREAMING_SNAKE_CASE_ = model_dic.get('thre_conv1') SCREAMING_SNAKE_CASE_ = model_dic.get('thre_bp2') SCREAMING_SNAKE_CASE_ = model_dic.get('thre_bp3') return conv_ins def lowerCAmelCase__ ( self , _A): return 1 / (1 + np.exp(-1 * x)) def lowerCAmelCase__ ( self , _A): return round(_A , 3) def lowerCAmelCase__ ( self , _A , _A , _A , _A , _A): # convolution process SCREAMING_SNAKE_CASE_ = convs[0] SCREAMING_SNAKE_CASE_ = convs[1] SCREAMING_SNAKE_CASE_ = np.shape(_A)[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE_ = [] for i_focus in range(0 , size_data - size_conv + 1 , _A): for j_focus in range(0 , size_data - size_conv + 1 , _A): SCREAMING_SNAKE_CASE_ = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_A) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = int((size_data - size_conv) / conv_step + 1) for i_map in range(_A): SCREAMING_SNAKE_CASE_ = [] for i_focus in range(len(_A)): SCREAMING_SNAKE_CASE_ = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map])) - thre_convs[i_map] ) featuremap.append(self.sig(_A)) SCREAMING_SNAKE_CASE_ = np.asmatrix(_A).reshape( _A , _A) data_featuremap.append(_A) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE_ = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_A)) SCREAMING_SNAKE_CASE_ = np.asarray(_A) return focus_list, data_featuremap def lowerCAmelCase__ ( self , _A , _A , _A="average_pool"): # pooling process SCREAMING_SNAKE_CASE_ = len(featuremaps[0]) SCREAMING_SNAKE_CASE_ = int(size_map / size_pooling) SCREAMING_SNAKE_CASE_ = [] for i_map in range(len(_A)): SCREAMING_SNAKE_CASE_ = featuremaps[i_map] SCREAMING_SNAKE_CASE_ = [] for i_focus in range(0 , _A , _A): for j_focus in range(0 , _A , _A): SCREAMING_SNAKE_CASE_ = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_A)) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_A)) SCREAMING_SNAKE_CASE_ = np.asmatrix(_A).reshape(_A , _A) featuremap_pooled.append(_A) return featuremap_pooled def lowerCAmelCase__ ( self , _A): # expanding three dimension data to one dimension list SCREAMING_SNAKE_CASE_ = [] for i in range(len(_A)): SCREAMING_SNAKE_CASE_ = np.shape(data[i]) SCREAMING_SNAKE_CASE_ = data[i].reshape(1 , shapes[0] * shapes[1]) SCREAMING_SNAKE_CASE_ = data_listed.getA().tolist()[0] data_expanded.extend(_A) SCREAMING_SNAKE_CASE_ = np.asarray(_A) return data_expanded def lowerCAmelCase__ ( self , _A): # expanding matrix to one dimension list SCREAMING_SNAKE_CASE_ = np.asarray(_A) SCREAMING_SNAKE_CASE_ = np.shape(_A) SCREAMING_SNAKE_CASE_ = data_mat.reshape(1 , shapes[0] * shapes[1]) return data_expanded def lowerCAmelCase__ ( self , _A , _A , _A , _A , _A): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 for i_map in range(_A): SCREAMING_SNAKE_CASE_ = np.ones((size_map, size_map)) for i in range(0 , _A , _A): for j in range(0 , _A , _A): SCREAMING_SNAKE_CASE_ = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE_ = i_pool + 1 SCREAMING_SNAKE_CASE_ = np.multiply( _A , np.multiply(out_map[i_map] , (1 - out_map[i_map]))) pd_all.append(_A) return pd_all def lowerCAmelCase__ ( self , _A , _A , _A , _A , _A , _A=bool): # model traning print('----------------------Start Training-------------------------') print((' - - Shape: Train_Data ', np.shape(_A))) print((' - - Shape: Teach_Data ', np.shape(_A))) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 10000 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE_ = 0 print(f"""-------------Learning Time {rp}--------------""") for p in range(len(_A)): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE_ = np.asmatrix(datas_train[p]) SCREAMING_SNAKE_CASE_ = np.asarray(datas_teach[p]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.convolute( _A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE_ = self.pooling(_A , self.size_poolinga) SCREAMING_SNAKE_CASE_ = np.shape(_A) SCREAMING_SNAKE_CASE_ = self._expand(_A) SCREAMING_SNAKE_CASE_ = data_bp_input SCREAMING_SNAKE_CASE_ = np.dot(_A , self.vji.T) - self.thre_bpa SCREAMING_SNAKE_CASE_ = self.sig(_A) SCREAMING_SNAKE_CASE_ = np.dot(_A , self.wkj.T) - self.thre_bpa SCREAMING_SNAKE_CASE_ = self.sig(_A) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE_ = np.multiply( (data_teach - bp_outa) , np.multiply(_A , (1 - bp_outa))) SCREAMING_SNAKE_CASE_ = np.multiply( np.dot(_A , self.wkj) , np.multiply(_A , (1 - bp_outa))) SCREAMING_SNAKE_CASE_ = np.dot(_A , self.vji) SCREAMING_SNAKE_CASE_ = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE_ = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE_ = self._calculate_gradient_from_pool( _A , _A , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1]): SCREAMING_SNAKE_CASE_ = self._expand_mat(pd_conva_all[k_conv]) SCREAMING_SNAKE_CASE_ = self.rate_weight * np.dot(_A , _A) SCREAMING_SNAKE_CASE_ = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0])) SCREAMING_SNAKE_CASE_ = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv]) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE_ = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE_ = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE_ = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE_ = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE_ = np.sum(abs(data_teach - bp_outa)) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE_ = rp + 1 SCREAMING_SNAKE_CASE_ = error_count / patterns all_mse.append(_A) def draw_error(): SCREAMING_SNAKE_CASE_ = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(_A , '+-') plt.plot(_A , 'r--') plt.xlabel('Learning Times') plt.ylabel('All_mse') plt.grid(_A , alpha=0.5) plt.show() print('------------------Training Complished---------------------') print((' - - Training epoch: ', rp, f""" - - Mse: {mse:.6f}""")) if draw_e: draw_error() return mse def lowerCAmelCase__ ( self , _A): # model predict SCREAMING_SNAKE_CASE_ = [] print('-------------------Start Testing-------------------------') print((' - - Shape: Test_Data ', np.shape(_A))) for p in range(len(_A)): SCREAMING_SNAKE_CASE_ = np.asmatrix(datas_test[p]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.convolute( _A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE_ = self.pooling(_A , self.size_poolinga) SCREAMING_SNAKE_CASE_ = self._expand(_A) SCREAMING_SNAKE_CASE_ = data_bp_input SCREAMING_SNAKE_CASE_ = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE_ = self.sig(_A) SCREAMING_SNAKE_CASE_ = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE_ = self.sig(_A) produce_out.extend(bp_outa.getA().tolist()) SCREAMING_SNAKE_CASE_ = [list(map(self.do_round , _A)) for each in produce_out] return np.asarray(_A) def lowerCAmelCase__ ( self , _A): # return the data of image after convoluting process so we can check it out SCREAMING_SNAKE_CASE_ = np.asmatrix(_A) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.convolute( _A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE_ = self.pooling(_A , self.size_poolinga) return data_conveda, data_pooleda if __name__ == "__main__": pass
620
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class snake_case ( UpperCamelCase_ ): def __init__( self : Optional[Any] , a_ : List[str] , a_ : List[str] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = params SCREAMING_SNAKE_CASE__ : List[str] = np.array(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = np.array([len(a_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : List[str] , a_ : Optional[Any] )-> Optional[int]: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : str )-> List[str]: """simple docstring""" return len(self.lengths ) def __lowercase( self : Optional[Any] )-> Optional[Any]: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __lowercase( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.params.max_model_input_size SCREAMING_SNAKE_CASE__ : Tuple = self.lengths > max_len logger.info(F'''Splitting {sum(a_ )} too long sequences.''' ) def divide_chunks(a_ : List[str] , a_ : Optional[Any] ): return [l[i : i + n] for i in range(0 , len(a_ ) , a_ )] SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] if self.params.mlm: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: SCREAMING_SNAKE_CASE__ : Optional[Any] = np.insert(a_ , 0 , a_ ) if sub_s[-1] != sep_id: SCREAMING_SNAKE_CASE__ : List[Any] = np.insert(a_ , len(a_ ) , a_ ) assert len(a_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(a_ ) new_tok_ids.extend(a_ ) new_lengths.extend([len(a_ ) for l in sub_seqs] ) SCREAMING_SNAKE_CASE__ : List[Any] = np.array(a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array(a_ ) def __lowercase( self : Union[str, Any] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = len(self ) SCREAMING_SNAKE_CASE__ : Dict = self.lengths > 11 SCREAMING_SNAKE_CASE__ : List[str] = self.token_ids[indices] SCREAMING_SNAKE_CASE__ : Dict = self.lengths[indices] SCREAMING_SNAKE_CASE__ : Any = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def __lowercase( self : Union[str, Any] )-> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: SCREAMING_SNAKE_CASE__ : Any = self.params.special_tok_ids['unk_token'] SCREAMING_SNAKE_CASE__ : Tuple = len(self ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) SCREAMING_SNAKE_CASE__ : Tuple = (unk_occs / self.lengths) < 0.5 SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.token_ids[indices] SCREAMING_SNAKE_CASE__ : Any = self.lengths[indices] SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def __lowercase( self : Optional[Any] )-> List[str]: """simple docstring""" if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __lowercase( self : List[Any] , a_ : List[str] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = [t[0] for t in batch] SCREAMING_SNAKE_CASE__ : Any = [t[1] for t in batch] assert len(a_ ) == len(a_ ) # Max for paddings SCREAMING_SNAKE_CASE__ : Tuple = max(a_ ) # Pad token ids if self.params.mlm: SCREAMING_SNAKE_CASE__ : List[Any] = self.params.special_tok_ids['pad_token'] else: SCREAMING_SNAKE_CASE__ : Optional[int] = self.params.special_tok_ids['unk_token'] SCREAMING_SNAKE_CASE__ : Optional[Any] = [list(t.astype(a_ ) ) + [pad_idx] * (max_seq_len_ - len(a_ )) for t in token_ids] assert len(tk_ ) == len(a_ ) assert all(len(a_ ) == max_seq_len_ for t in tk_ ) SCREAMING_SNAKE_CASE__ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor(a_ ) # (bs) return tk_t, lg_t
85
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __lowercase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Path , __lowerCAmelCase : str = None , __lowerCAmelCase : str = None , __lowerCAmelCase : str = None , ): if config_name_or_path is None: a__ = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: a__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: a__ = question_encoder_name_or_path a__ = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. a__ = RagConfig.from_pretrained(__lowerCAmelCase ) a__ = AutoConfig.from_pretrained(__lowerCAmelCase ) a__ = AutoConfig.from_pretrained(__lowerCAmelCase ) a__ = gen_config a__ = question_encoder_config a__ = model_class.from_pretrained_question_encoder_generator( __lowerCAmelCase , __lowerCAmelCase , config=__lowerCAmelCase ) rag_model.save_pretrained(__lowerCAmelCase ) # Sanity check. model_class.from_pretrained(__lowerCAmelCase ) # Save tokenizers. a__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) a__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) snake_case : Union[str, Any] = parser.parse_args() snake_case : Dict = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
335
0
'''simple docstring''' from __future__ import annotations class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> Dict: lowerCAmelCase__ : Any = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(__A ) != 0: lowerCAmelCase__ : Union[str, Any] = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__A ) != cols: raise error for value in row: if not isinstance(__A ,(int, float) ): raise error lowerCAmelCase__ : List[str] = rows else: lowerCAmelCase__ : Any = [] def UpperCAmelCase_ ( self ) -> list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def UpperCAmelCase_ ( self ) -> int: return len(self.rows ) @property def UpperCAmelCase_ ( self ) -> int: return len(self.rows[0] ) @property def UpperCAmelCase_ ( self ) -> tuple[int, int]: return (self.num_rows, self.num_columns) @property def UpperCAmelCase_ ( self ) -> bool: return self.order[0] == self.order[1] def UpperCAmelCase_ ( self ) -> Matrix: lowerCAmelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__A ) def UpperCAmelCase_ ( self ) -> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def UpperCAmelCase_ ( self ) -> bool: return bool(self.determinant() ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: lowerCAmelCase__ : str = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__A ).determinant() def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: if (row + column) % 2 == 0: return self.get_minor(__A ,__A ) return -1 * self.get_minor(__A ,__A ) def UpperCAmelCase_ ( self ) -> Matrix: return Matrix( [ [self.get_minor(__A ,__A ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def UpperCAmelCase_ ( self ) -> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def UpperCAmelCase_ ( self ) -> Matrix: lowerCAmelCase__ : str = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__A ) def UpperCAmelCase_ ( self ) -> Matrix: lowerCAmelCase__ : Optional[Any] = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self ) -> str: return str(self.rows ) def __str__( self ) -> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(__A ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> None: lowerCAmelCase__ : Optional[int] = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(__A ,__A ): raise type_error for value in row: if not isinstance(__A ,(int, float) ): raise type_error if len(__A ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(__A ) else: lowerCAmelCase__ : List[Any] = self.rows[0:position] + [row] + self.rows[position:] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> None: lowerCAmelCase__ : Union[str, Any] = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(__A ,__A ): raise type_error for value in column: if not isinstance(__A ,(int, float) ): raise type_error if len(__A ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: lowerCAmelCase__ : Union[str, Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: lowerCAmelCase__ : Union[str, Any] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self ,__UpperCAmelCase ) -> bool: if not isinstance(__A ,__A ): return NotImplemented return self.rows == other.rows def __ne__( self ,__UpperCAmelCase ) -> bool: return not self == other def __neg__( self ) -> Matrix: return self * -1 def __add__( self ,__UpperCAmelCase ) -> Matrix: if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self ,__UpperCAmelCase ) -> Matrix: if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self ,__UpperCAmelCase ) -> Matrix: if isinstance(__A ,(int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__A ,__A ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(__A ,__A ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self ,__UpperCAmelCase ) -> Matrix: if not isinstance(__A ,__A ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) lowerCAmelCase__ : str = self for _ in range(other - 1 ): result *= self return result @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ,__UpperCAmelCase ) -> int: return sum(row[i] * column[i] for i in range(len(__A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets _lowerCAmelCase = datasets.logging.get_logger(__name__) _lowerCAmelCase = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' _lowerCAmelCase = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' _lowerCAmelCase = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase="dummy_doc" ): """simple docstring""" lowerCAmelCase__ : str = {doc: key_lines} lowerCAmelCase__ : Tuple = {doc: sys_lines} lowerCAmelCase__ : int = {} lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ , lowerCAmelCase__ : Any = reader.get_doc_mentions(UpperCamelCase , key_doc_lines[doc] , UpperCamelCase ) key_singletons_num += singletons_num if NP_only or min_span: lowerCAmelCase__ : Optional[int] = reader.set_annotated_parse_trees(UpperCamelCase , key_doc_lines[doc] , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = reader.get_doc_mentions(UpperCamelCase , sys_doc_lines[doc] , UpperCamelCase ) sys_singletons_num += singletons_num if NP_only or min_span: lowerCAmelCase__ : List[str] = reader.set_annotated_parse_trees(UpperCamelCase , key_doc_lines[doc] , UpperCamelCase , UpperCamelCase ) if remove_nested: lowerCAmelCase__ , lowerCAmelCase__ : str = reader.remove_nested_coref_mentions(UpperCamelCase , UpperCamelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowerCAmelCase__ , lowerCAmelCase__ : Any = reader.remove_nested_coref_mentions(UpperCamelCase , UpperCamelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowerCAmelCase__ : Optional[int] = reader.get_mention_assignments(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = reader.get_mention_assignments(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( """Number of resulting singleton clusters in the key """ f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ """files, respectively""" ) return doc_coref_infos def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = get_coref_infos(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : str = {} lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : str = 0 for name, metric in metrics: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = evaluator.evaluate_documents(UpperCamelCase , UpperCamelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 100:.2f}""" , f""" Precision: {precision * 100:.2f}""" , f""" F1: {fa * 100:.2f}""" , ) if conll_subparts_num == 3: lowerCAmelCase__ : Any = (conll / 3) * 100 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({"""conll_score""": conll} ) return output_scores def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: lowerCAmelCase__ : List[Any] = line.split()[5] if not parse_col == "-": lowerCAmelCase__ : Union[str, Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) ,codebase_urls=["""https://github.com/ns-moosavi/coval"""] ,reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ) -> str: lowerCAmelCase__ : List[str] = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: lowerCAmelCase__ : Optional[int] = util.check_gold_parse_annotation(__UpperCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowerCAmelCase__ : Dict = evaluate( key_lines=__UpperCAmelCase ,sys_lines=__UpperCAmelCase ,metrics=__UpperCAmelCase ,NP_only=__UpperCAmelCase ,remove_nested=__UpperCAmelCase ,keep_singletons=__UpperCAmelCase ,min_span=__UpperCAmelCase ,) return score
160
0
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _a : Union[str, Any] = logging.get_logger(__name__) # General docstring _a : Optional[Any] = 'RegNetConfig' # Base docstring _a : List[str] = 'facebook/regnet-y-040' _a : List[str] = [1, 1_088, 7, 7] # Image classification docstring _a : Union[str, Any] = 'facebook/regnet-y-040' _a : Dict = 'tabby, tabby cat' _a : Union[str, Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( tf.keras.layers.Layer ): def __init__( self , a__ , a__ = 3 , a__ = 1 , a__ = 1 , a__ = "relu" , **a__ , ): super().__init__(**_snake_case ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _lowerCAmelCase : List[str] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _lowerCAmelCase : Tuple = tf.keras.layers.ConvaD( filters=_snake_case , kernel_size=_snake_case , strides=_snake_case , padding="""VALID""" , groups=_snake_case , use_bias=_snake_case , name="""convolution""" , ) _lowerCAmelCase : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) _lowerCAmelCase : Union[str, Any] = ACTaFN[activation] if activation is not None else tf.identity def __A ( self , a__ ): _lowerCAmelCase : Tuple = self.convolution(self.padding(_snake_case ) ) _lowerCAmelCase : Tuple = self.normalization(_snake_case ) _lowerCAmelCase : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( tf.keras.layers.Layer ): def __init__( self , a__ , **a__ ): super().__init__(**_snake_case ) _lowerCAmelCase : List[str] = config.num_channels _lowerCAmelCase : Optional[int] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def __A ( self , a__ ): _lowerCAmelCase : Union[str, Any] = shape_list(_snake_case )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _lowerCAmelCase : List[Any] = tf.transpose(_snake_case , perm=(0, 2, 3, 1) ) _lowerCAmelCase : Tuple = self.embedder(_snake_case ) return hidden_state class __A ( tf.keras.layers.Layer ): def __init__( self , a__ , a__ = 2 , **a__ ): super().__init__(**_snake_case ) _lowerCAmelCase : Optional[int] = tf.keras.layers.ConvaD( filters=_snake_case , kernel_size=1 , strides=_snake_case , use_bias=_snake_case , name="""convolution""" ) _lowerCAmelCase : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) def __A ( self , a__ , a__ = False ): return self.normalization(self.convolution(_snake_case ) , training=_snake_case ) class __A ( tf.keras.layers.Layer ): def __init__( self , a__ , a__ , **a__ ): super().__init__(**_snake_case ) _lowerCAmelCase : int = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_snake_case , name="""pooler""" ) _lowerCAmelCase : List[str] = [ tf.keras.layers.ConvaD(filters=_snake_case , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=_snake_case , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def __A ( self , a__ ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] _lowerCAmelCase : Optional[Any] = self.pooler(_snake_case ) for layer_module in self.attention: _lowerCAmelCase : Optional[int] = layer_module(_snake_case ) _lowerCAmelCase : Optional[int] = hidden_state * pooled return hidden_state class __A ( tf.keras.layers.Layer ): def __init__( self , a__ , a__ , a__ , a__ = 1 , **a__ ): super().__init__(**_snake_case ) _lowerCAmelCase : Union[str, Any] = in_channels != out_channels or stride != 1 _lowerCAmelCase : str = max(1 , out_channels // config.groups_width ) _lowerCAmelCase : List[str] = ( TFRegNetShortCut(_snake_case , stride=_snake_case , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _lowerCAmelCase : str = [ TFRegNetConvLayer(_snake_case , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _snake_case , stride=_snake_case , groups=_snake_case , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(_snake_case , kernel_size=1 , activation=_snake_case , name="""layer.2""" ), ] _lowerCAmelCase : Dict = ACTaFN[config.hidden_act] def __A ( self , a__ ): _lowerCAmelCase : Dict = hidden_state for layer_module in self.layers: _lowerCAmelCase : List[str] = layer_module(_snake_case ) _lowerCAmelCase : Any = self.shortcut(_snake_case ) hidden_state += residual _lowerCAmelCase : int = self.activation(_snake_case ) return hidden_state class __A ( tf.keras.layers.Layer ): def __init__( self , a__ , a__ , a__ , a__ = 1 , **a__ ): super().__init__(**_snake_case ) _lowerCAmelCase : Optional[int] = in_channels != out_channels or stride != 1 _lowerCAmelCase : List[Any] = max(1 , out_channels // config.groups_width ) _lowerCAmelCase : Any = ( TFRegNetShortCut(_snake_case , stride=_snake_case , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) _lowerCAmelCase : Optional[int] = [ TFRegNetConvLayer(_snake_case , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _snake_case , stride=_snake_case , groups=_snake_case , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(_snake_case , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(_snake_case , kernel_size=1 , activation=_snake_case , name="""layer.3""" ), ] _lowerCAmelCase : Optional[Any] = ACTaFN[config.hidden_act] def __A ( self , a__ ): _lowerCAmelCase : Any = hidden_state for layer_module in self.layers: _lowerCAmelCase : Optional[Any] = layer_module(_snake_case ) _lowerCAmelCase : List[str] = self.shortcut(_snake_case ) hidden_state += residual _lowerCAmelCase : Optional[int] = self.activation(_snake_case ) return hidden_state class __A ( tf.keras.layers.Layer ): def __init__( self , a__ , a__ , a__ , a__ = 2 , a__ = 2 , **a__ ): super().__init__(**_snake_case ) _lowerCAmelCase : Tuple = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer _lowerCAmelCase : Tuple = [ # downsampling is done in the first layer with stride of 2 layer(_snake_case , _snake_case , _snake_case , stride=_snake_case , name="""layers.0""" ), *[layer(_snake_case , _snake_case , _snake_case , name=F"layers.{i+1}" ) for i in range(depth - 1 )], ] def __A ( self , a__ ): for layer_module in self.layers: _lowerCAmelCase : Tuple = layer_module(_snake_case ) return hidden_state class __A ( tf.keras.layers.Layer ): def __init__( self , a__ , **a__ ): super().__init__(**_snake_case ) _lowerCAmelCase : Optional[Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) _lowerCAmelCase : Tuple = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_snake_case , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_snake_case , _snake_case , _snake_case , depth=_snake_case , name=F"stages.{i+1}" ) ) def __A ( self , a__ , a__ = False , a__ = True ): _lowerCAmelCase : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowerCAmelCase : Optional[Any] = hidden_states + (hidden_state,) _lowerCAmelCase : Optional[int] = stage_module(_snake_case ) if output_hidden_states: _lowerCAmelCase : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_snake_case , hidden_states=_snake_case ) @keras_serializable class __A ( tf.keras.layers.Layer ): _UpperCamelCase : List[str] = RegNetConfig def __init__( self , a__ , **a__ ): super().__init__(**_snake_case ) _lowerCAmelCase : Any = config _lowerCAmelCase : str = TFRegNetEmbeddings(_snake_case , name="""embedder""" ) _lowerCAmelCase : Tuple = TFRegNetEncoder(_snake_case , name="""encoder""" ) _lowerCAmelCase : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_snake_case , name="""pooler""" ) @unpack_inputs def __A ( self , a__ , a__ = None , a__ = None , a__ = False , ): _lowerCAmelCase : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Any = self.embedder(_snake_case , training=_snake_case ) _lowerCAmelCase : List[Any] = self.encoder( _snake_case , output_hidden_states=_snake_case , return_dict=_snake_case , training=_snake_case ) _lowerCAmelCase : Optional[int] = encoder_outputs[0] _lowerCAmelCase : Union[str, Any] = self.pooler(_snake_case ) # Change to NCHW output format have uniformity in the modules _lowerCAmelCase : Union[str, Any] = tf.transpose(_snake_case , perm=(0, 3, 1, 2) ) _lowerCAmelCase : Tuple = tf.transpose(_snake_case , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _lowerCAmelCase : List[Any] = tuple([tf.transpose(_snake_case , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_snake_case , pooler_output=_snake_case , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __A ( _SCREAMING_SNAKE_CASE ): _UpperCamelCase : Optional[Any] = RegNetConfig _UpperCamelCase : List[str] = "regnet" _UpperCamelCase : int = "pixel_values" @property def __A ( self ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} _a : List[str] = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' _a : Any = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , _SCREAMING_SNAKE_CASE , ) class __A ( _SCREAMING_SNAKE_CASE ): def __init__( self , a__ , *a__ , **a__ ): super().__init__(_snake_case , *_snake_case , **_snake_case ) _lowerCAmelCase : Any = TFRegNetMainLayer(_snake_case , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __A ( self , a__ , a__ = None , a__ = None , a__=False , ): _lowerCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : str = self.regnet( pixel_values=_snake_case , output_hidden_states=_snake_case , return_dict=_snake_case , training=_snake_case , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _SCREAMING_SNAKE_CASE , ) class __A ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): def __init__( self , a__ , *a__ , **a__ ): super().__init__(_snake_case , *_snake_case , **_snake_case ) _lowerCAmelCase : Dict = config.num_labels _lowerCAmelCase : Any = TFRegNetMainLayer(_snake_case , name="""regnet""" ) # classification head _lowerCAmelCase : Dict = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __A ( self , a__ = None , a__ = None , a__ = None , a__ = None , a__=False , ): _lowerCAmelCase : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Dict = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Dict = self.regnet( _snake_case , output_hidden_states=_snake_case , return_dict=_snake_case , training=_snake_case ) _lowerCAmelCase : int = outputs.pooler_output if return_dict else outputs[1] _lowerCAmelCase : Any = self.classifier[0](_snake_case ) _lowerCAmelCase : Optional[int] = self.classifier[1](_snake_case ) _lowerCAmelCase : int = None if labels is None else self.hf_compute_loss(labels=_snake_case , logits=_snake_case ) if not return_dict: _lowerCAmelCase : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_snake_case , logits=_snake_case , hidden_states=outputs.hidden_states )
213
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> str: return "".join(sorted(__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> list[str]: return word_by_signature[signature(__UpperCAmelCase )] _A = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') _A = sorted({word.strip().lower() for word in data.splitlines()}) _A = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _A = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
159
0
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Dict) -> List[Any]: __snake_case : Any = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case : Optional[int] = dict(zip(_A , range(len(_A)))) __snake_case : Any = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case : List[Any] = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_60_00, 'return_attention_mask': False, 'do_normalize': True, } __snake_case : Dict = tempfile.mkdtemp() __snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) __snake_case : Any = os.path.join(self.tmpdirname , _A) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(_A) + '\n') with open(self.feature_extraction_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(_A) + '\n') # load decoder from hub __snake_case : Optional[Any] = 'hf-internal-testing/ngram-beam-search-decoder' def _lowercase (self : Optional[int] , **_A : Optional[Any]) -> Optional[Any]: __snake_case : int = self.add_kwargs_tokens_map.copy() kwargs.update(_A) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A) def _lowercase (self : Tuple , **_A : Tuple) -> str: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A) def _lowercase (self : str , **_A : Any) -> Union[str, Any]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A) def _lowercase (self : Tuple) -> Optional[int]: shutil.rmtree(self.tmpdirname) def _lowercase (self : Dict) -> Optional[int]: __snake_case : List[Any] = self.get_tokenizer() __snake_case : Optional[Any] = self.get_feature_extractor() __snake_case : List[Any] = self.get_decoder() __snake_case : List[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A) processor.save_pretrained(self.tmpdirname) __snake_case : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , _A) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , _A) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A) def _lowercase (self : Union[str, Any]) -> Any: __snake_case : Dict = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) processor.save_pretrained(self.tmpdirname) # make sure that error is thrown when decoder alphabet doesn't match __snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3) # decoder self.assertEqual(processor.language_model.alpha , 5.0) self.assertEqual(processor.language_model.beta , 3.0) self.assertEqual(processor.language_model.score_boundary , -7.0) self.assertEqual(processor.language_model.unk_score_offset , 3) def _lowercase (self : int) -> int: __snake_case : Optional[int] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx']) with self.assertRaisesRegex(_A , 'include'): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) def _lowercase (self : Union[str, Any]) -> int: __snake_case : Dict = self.get_feature_extractor() __snake_case : Any = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_decoder() __snake_case : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A) __snake_case : Any = floats_list((3, 10_00)) __snake_case : List[Any] = feature_extractor(_A , return_tensors='np') __snake_case : Optional[int] = processor(_A , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def _lowercase (self : Optional[Any]) -> Optional[Any]: __snake_case : List[Any] = self.get_feature_extractor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : Optional[Any] = self.get_decoder() __snake_case : List[str] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A) __snake_case : str = 'This is a test string' __snake_case : Tuple = processor(text=_A) __snake_case : List[str] = tokenizer(_A) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _lowercase (self : Tuple , _A : Union[str, Any]=(2, 10, 16) , _A : int=77) -> Any: np.random.seed(_A) return np.random.rand(*_A) def _lowercase (self : str) -> Union[str, Any]: __snake_case : List[str] = self.get_feature_extractor() __snake_case : Dict = self.get_tokenizer() __snake_case : Optional[Any] = self.get_decoder() __snake_case : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A) __snake_case : Union[str, Any] = self._get_dummy_logits(shape=(10, 16) , seed=13) __snake_case : Optional[int] = processor.decode(_A) __snake_case : Optional[Any] = decoder.decode_beams(_A)[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text) self.assertEqual('</s> <s> </s>' , decoded_processor.text) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score) @parameterized.expand([[None], ['fork'], ['spawn']]) def _lowercase (self : List[str] , _A : Union[str, Any]) -> Tuple: __snake_case : Dict = self.get_feature_extractor() __snake_case : Any = self.get_tokenizer() __snake_case : Tuple = self.get_decoder() __snake_case : List[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A) __snake_case : List[str] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case : str = processor.batch_decode(_A) else: with get_context(_A).Pool() as pool: __snake_case : Any = processor.batch_decode(_A , _A) __snake_case : List[str] = list(_A) with get_context('fork').Pool() as p: __snake_case : Any = decoder.decode_beams_batch(_A , _A) __snake_case , __snake_case , __snake_case : Optional[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0]) logit_scores_decoder.append(beams[0][-2]) lm_scores_decoder.append(beams[0][-1]) self.assertListEqual(_A , decoded_processor.text) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text) self.assertListEqual(_A , decoded_processor.logit_score) self.assertListEqual(_A , decoded_processor.lm_score) def _lowercase (self : Dict) -> List[str]: __snake_case : Any = self.get_feature_extractor() __snake_case : List[str] = self.get_tokenizer() __snake_case : Dict = self.get_decoder() __snake_case : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A) __snake_case : int = self._get_dummy_logits() __snake_case : str = 15 __snake_case : List[str] = -20.0 __snake_case : int = -4.0 __snake_case : Dict = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) __snake_case : Tuple = decoded_processor_out.text __snake_case : Dict = list(_A) with get_context('fork').Pool() as pool: __snake_case : Optional[Any] = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) __snake_case : Any = [d[0][0] for d in decoded_decoder_out] __snake_case : Any = [d[0][2] for d in decoded_decoder_out] __snake_case : int = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , _A) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score)) self.assertTrue(np.allclose([-20.054, -18.447] , _A , atol=1E-3)) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score)) self.assertTrue(np.allclose([-15.554, -13.9_474] , _A , atol=1E-3)) def _lowercase (self : Dict) -> Dict: __snake_case : Tuple = self.get_feature_extractor() __snake_case : Tuple = self.get_tokenizer() __snake_case : Union[str, Any] = self.get_decoder() __snake_case : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A) __snake_case : Optional[int] = self._get_dummy_logits() __snake_case : List[Any] = 2.0 __snake_case : Optional[int] = 5.0 __snake_case : Union[str, Any] = -20.0 __snake_case : Optional[int] = True __snake_case : List[str] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) __snake_case : Optional[int] = decoded_processor_out.text __snake_case : Tuple = list(_A) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context('fork').Pool() as pool: __snake_case : List[str] = decoder.decode_beams_batch( _A , _A , ) __snake_case : Tuple = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , _A) __snake_case : Dict = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0) self.assertEqual(lm_model.beta , 5.0) self.assertEqual(lm_model.unk_score_offset , -20.0) self.assertEqual(lm_model.score_boundary , _A) def _lowercase (self : Union[str, Any]) -> Optional[int]: __snake_case : str = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') __snake_case : Any = processor.decoder.model_container[processor.decoder._model_key] __snake_case : Optional[int] = Path(language_model._kenlm_model.path.decode('utf-8')).parent.parent.absolute() __snake_case : Optional[int] = os.listdir(_A) __snake_case : Optional[Any] = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A) def _lowercase (self : Any) -> str: __snake_case : Any = snapshot_download('hf-internal-testing/processor_with_lm') __snake_case : Any = WavaVecaProcessorWithLM.from_pretrained(_A) __snake_case : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] __snake_case : List[str] = Path(language_model._kenlm_model.path.decode('utf-8')).parent.parent.absolute() __snake_case : Dict = os.listdir(_A) __snake_case : List[str] = os.listdir(_A) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A) def _lowercase (self : str) -> Any: __snake_case : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') __snake_case : Union[str, Any] = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm') __snake_case : Tuple = floats_list((3, 10_00)) __snake_case : Optional[Any] = processor_wavaveca(_A , return_tensors='np') __snake_case : Optional[int] = processor_auto(_A , return_tensors='np') for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2) __snake_case : List[Any] = self._get_dummy_logits() __snake_case : Union[str, Any] = processor_wavaveca.batch_decode(_A) __snake_case : List[Any] = processor_auto.batch_decode(_A) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text) def _lowercase (self : Optional[Any]) -> List[str]: __snake_case : Optional[int] = self.get_feature_extractor() __snake_case : Dict = self.get_tokenizer() __snake_case : Tuple = self.get_decoder() __snake_case : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def _lowercase (_A : Any , _A : str) -> str: __snake_case : Any = [d[key] for d in offsets] return retrieved_list def _lowercase (self : List[Any]) -> Dict: __snake_case : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') __snake_case : List[str] = self._get_dummy_logits()[0] __snake_case : Any = processor.decode(_A , output_word_offsets=_A) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue('text' in outputs) self.assertTrue('word_offsets' in outputs) self.assertTrue(isinstance(_A , _A)) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word')) , outputs.text) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word') , ['<s>', '<s>', '</s>']) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset') , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset') , [1, 3, 5]) def _lowercase (self : Any) -> Dict: __snake_case : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') __snake_case : List[str] = self._get_dummy_logits() __snake_case : List[str] = processor.batch_decode(_A , output_word_offsets=_A) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue('text' in outputs) self.assertTrue('word_offsets' in outputs) self.assertTrue(isinstance(_A , _A)) self.assertListEqual( [' '.join(self.get_from_offsets(_A , 'word')) for o in outputs['word_offsets']] , outputs.text) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word') , ['<s>', '<s>', '</s>']) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset') , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset') , [1, 3, 5]) @slow @require_torch @require_torchaudio def _lowercase (self : Any) -> Union[str, Any]: import torch __snake_case : int = load_dataset('common_voice' , 'en' , split='train' , streaming=_A) __snake_case : int = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_60_00)) __snake_case : List[Any] = iter(_A) __snake_case : List[Any] = next(_A) __snake_case : Optional[int] = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm') __snake_case : List[Any] = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm') # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case : Optional[int] = processor(sample['audio']['array'] , return_tensors='pt').input_values with torch.no_grad(): __snake_case : Optional[Any] = model(_A).logits.cpu().numpy() __snake_case : int = processor.decode(logits[0] , output_word_offsets=_A) __snake_case : List[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case : Any = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case : Tuple = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(_A , 'word')) , _A) self.assertEqual(' '.join(self.get_from_offsets(_A , 'word')) , output.text) # output times __snake_case : List[str] = torch.tensor(self.get_from_offsets(_A , 'start_time')) __snake_case : List[str] = torch.tensor(self.get_from_offsets(_A , 'end_time')) # fmt: off __snake_case : Tuple = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599]) __snake_case : Tuple = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94]) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.01)) self.assertTrue(torch.allclose(_A , _A , atol=0.01))
192
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : str ) -> list[int]: '''simple docstring''' __snake_case : Union[str, Any] = int(UpperCAmelCase_ ) # Initialize Result __snake_case : int = [] # Traverse through all denomination for denomination in reversed(UpperCAmelCase_ ): # Find denominations while int(UpperCAmelCase_ ) >= int(UpperCAmelCase_ ): total_value -= int(UpperCAmelCase_ ) answer.append(UpperCAmelCase_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _a : Optional[int]= [] _a : Optional[int]= "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): _a : int= int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) _a : Optional[int]= input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter _a : Tuple= [1, 2, 5, 10, 20, 50, 100, 500, 2_000] _a : List[str]= input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(f'''Following is minimal change for {value}: ''') _a : List[Any]= find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
192
1
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=13 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : str=False , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : List[Any]=5 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]="last" , _UpperCAmelCase : Any=True , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[str]=0 , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_lengths _A = use_token_type_ids _A = use_labels _A = gelu_activation _A = sinusoidal_embeddings _A = causal _A = asm _A = n_langs _A = vocab_size _A = n_special _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = summary_type _A = use_proj _A = scope _A = bos_token_id def lowerCAmelCase_ ( self : str ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_input_lengths: _A = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , 2 ).float() _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase_ ( self : Tuple ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , ): _A = XLMModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase ) _A = model(_UpperCAmelCase , langs=_UpperCAmelCase ) _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , ): _A = XLMWithLMHeadModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , ): _A = XLMForQuestionAnsweringSimple(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) _A = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) _A = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , ): _A = XLMForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) _A = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , ) _A = model( _UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , ) ((_A) , ) = result_with_labels.to_tuple() _A = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) ((_A) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , ): _A = XLMForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) _A = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , ): _A = self.num_labels _A = XLMForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , ): _A = self.num_choices _A = XLMForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] ): _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase : Optional[int] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=False ): _A = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) _A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def lowerCAmelCase_ ( self : Tuple ): _A = XLMModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCAmelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=1 ): self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual( [isinstance(_UpperCAmelCase , _UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(_UpperCAmelCase ) ) self.assertEqual(len(_UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_UpperCAmelCase ): # adds PAD dummy token _A = min_length + idx + 1 _A = min_length + idx + 1 _A = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[int]=1 ): self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual( [isinstance(_UpperCAmelCase , _UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(_UpperCAmelCase ) , ) self.assertEqual(len(_UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_UpperCAmelCase ): # adds PAD dummy token _A = min_length + idx + 1 _A = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_UpperCAmelCase ) , ) pass @slow def lowerCAmelCase_ ( self : Dict ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = XLMModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : str ): _A = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(_UpperCAmelCase ) _A = torch.tensor([[14, 447]] , dtype=torch.long , device=_UpperCAmelCase ) # the president _A = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _A = model.generate(_UpperCAmelCase , do_sample=_UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _UpperCAmelCase )
7
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _a : '''simple docstring''' def __init__( self ,__a ,__a ,__a ) -> Tuple: if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) snake_case : str = img snake_case : str = img.shape[1] snake_case : Union[str, Any] = img.shape[0] snake_case : Optional[int] = dst_width snake_case : List[str] = dst_height snake_case : List[str] = self.src_w / self.dst_w snake_case : int = self.src_h / self.dst_h snake_case : List[Any] = ( np.ones((self.dst_h, self.dst_w, 3) ,np.uinta ) * 255 ) def snake_case_ ( self ) -> int: for i in range(self.dst_h ): for j in range(self.dst_w ): snake_case : Optional[Any] = self.img[self.get_y(__a )][self.get_x(__a )] def snake_case_ ( self ,__a ) -> int: return int(self.ratio_x * x ) def snake_case_ ( self ,__a ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": lowercase, lowercase : Optional[int] = 800, 600 lowercase : Union[str, Any] = imread("""image_data/lena.jpg""", 1) lowercase : int = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
116
0
import tensorflow as tf from ...tf_utils import shape_list class a_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[int] ,snake_case : Union[str, Any] ,snake_case : Any ,snake_case : Any ,snake_case : List[Any] ,snake_case : Optional[Any]=1 ,snake_case : Optional[int]=False ,**snake_case : Optional[Any] ): super().__init__(**snake_case ) SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_proj SCREAMING_SNAKE_CASE =cutoffs + [vocab_size] SCREAMING_SNAKE_CASE =[0] + self.cutoffs SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =self.cutoffs[0] SCREAMING_SNAKE_CASE =len(self.cutoffs ) - 1 SCREAMING_SNAKE_CASE =self.shortlist_size + self.n_clusters SCREAMING_SNAKE_CASE =keep_order SCREAMING_SNAKE_CASE =[] SCREAMING_SNAKE_CASE =[] def _lowerCAmelCase ( self : Dict ,snake_case : Optional[int] ): if self.n_clusters > 0: SCREAMING_SNAKE_CASE =self.add_weight( shape=(self.n_clusters, self.d_embed) ,initializer='zeros' ,trainable=snake_case ,name='cluster_weight' ) SCREAMING_SNAKE_CASE =self.add_weight( shape=(self.n_clusters,) ,initializer='zeros' ,trainable=snake_case ,name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: SCREAMING_SNAKE_CASE =self.add_weight( shape=(self.d_embed, self.d_proj) ,initializer='zeros' ,trainable=snake_case ,name=f'out_projs_._{i}' ,) self.out_projs.append(snake_case ) else: self.out_projs.append(snake_case ) SCREAMING_SNAKE_CASE =self.add_weight( shape=(self.vocab_size, self.d_embed) ,initializer='zeros' ,trainable=snake_case ,name=f'out_layers_._{i}_._weight' ,) SCREAMING_SNAKE_CASE =self.add_weight( shape=(self.vocab_size,) ,initializer='zeros' ,trainable=snake_case ,name=f'out_layers_._{i}_._bias' ,) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE =self.d_embed // (self.div_val**i) SCREAMING_SNAKE_CASE =self.add_weight( shape=(d_emb_i, self.d_proj) ,initializer='zeros' ,trainable=snake_case ,name=f'out_projs_._{i}' ) self.out_projs.append(snake_case ) SCREAMING_SNAKE_CASE =self.add_weight( shape=(r_idx - l_idx, d_emb_i) ,initializer='zeros' ,trainable=snake_case ,name=f'out_layers_._{i}_._weight' ,) SCREAMING_SNAKE_CASE =self.add_weight( shape=(r_idx - l_idx,) ,initializer='zeros' ,trainable=snake_case ,name=f'out_layers_._{i}_._bias' ,) self.out_layers.append((weight, bias) ) super().build(snake_case ) @staticmethod def _lowerCAmelCase ( snake_case : Tuple ,snake_case : List[str] ,snake_case : Any ,snake_case : List[Any]=None ): SCREAMING_SNAKE_CASE =x if proj is not None: SCREAMING_SNAKE_CASE =tf.einsum('ibd,ed->ibe' ,snake_case ,snake_case ) return tf.einsum('ibd,nd->ibn' ,snake_case ,snake_case ) + b @staticmethod def _lowerCAmelCase ( snake_case : Tuple ,snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE =shape_list(snake_case ) SCREAMING_SNAKE_CASE =tf.range(lp_size[0] ,dtype=target.dtype ) SCREAMING_SNAKE_CASE =tf.stack([r, target] ,1 ) return tf.gather_nd(snake_case ,snake_case ) def _lowerCAmelCase ( self : Tuple ,snake_case : Union[str, Any] ,snake_case : Dict ,snake_case : Optional[int]=True ,snake_case : Tuple=False ): SCREAMING_SNAKE_CASE =0 if self.n_clusters == 0: SCREAMING_SNAKE_CASE =self._logit(snake_case ,self.out_layers[0][0] ,self.out_layers[0][1] ,self.out_projs[0] ) if target is not None: SCREAMING_SNAKE_CASE =tf.nn.sparse_softmax_cross_entropy_with_logits(labels=snake_case ,logits=snake_case ) SCREAMING_SNAKE_CASE =tf.nn.log_softmax(snake_case ,axis=-1 ) else: SCREAMING_SNAKE_CASE =shape_list(snake_case ) SCREAMING_SNAKE_CASE =[] SCREAMING_SNAKE_CASE =tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: SCREAMING_SNAKE_CASE =(target >= l_idx) & (target < r_idx) SCREAMING_SNAKE_CASE =tf.where(snake_case ) SCREAMING_SNAKE_CASE =tf.boolean_mask(snake_case ,snake_case ) - l_idx if self.div_val == 1: SCREAMING_SNAKE_CASE =self.out_layers[0][0][l_idx:r_idx] SCREAMING_SNAKE_CASE =self.out_layers[0][1][l_idx:r_idx] else: SCREAMING_SNAKE_CASE =self.out_layers[i][0] SCREAMING_SNAKE_CASE =self.out_layers[i][1] if i == 0: SCREAMING_SNAKE_CASE =tf.concat([cur_W, self.cluster_weight] ,0 ) SCREAMING_SNAKE_CASE =tf.concat([cur_b, self.cluster_bias] ,0 ) SCREAMING_SNAKE_CASE =self._logit(snake_case ,snake_case ,snake_case ,self.out_projs[0] ) SCREAMING_SNAKE_CASE =tf.nn.log_softmax(snake_case ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: SCREAMING_SNAKE_CASE =tf.boolean_mask(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =self._gather_logprob(snake_case ,snake_case ) else: SCREAMING_SNAKE_CASE =self._logit(snake_case ,snake_case ,snake_case ,self.out_projs[i] ) SCREAMING_SNAKE_CASE =tf.nn.log_softmax(snake_case ) SCREAMING_SNAKE_CASE =self.cutoffs[0] + i - 1 # No probability for the head cluster SCREAMING_SNAKE_CASE =head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(snake_case ) if target is not None: SCREAMING_SNAKE_CASE =tf.boolean_mask(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =tf.boolean_mask(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =self._gather_logprob(snake_case ,snake_case ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(snake_case ,-cur_logprob ,shape_list(snake_case ) ) SCREAMING_SNAKE_CASE =tf.concat(snake_case ,axis=-1 ) if target is not None: if return_mean: SCREAMING_SNAKE_CASE =tf.reduce_mean(snake_case ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(snake_case ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(snake_case ,name=self.name ,aggregation='mean' if return_mean else '' ) return out
252
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'encoder-decoder' __UpperCAmelCase = True def __init__( self : Dict ,**snake_case : Any ): super().__init__(**snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" SCREAMING_SNAKE_CASE =kwargs.pop('encoder' ) SCREAMING_SNAKE_CASE =encoder_config.pop('model_type' ) SCREAMING_SNAKE_CASE =kwargs.pop('decoder' ) SCREAMING_SNAKE_CASE =decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE =AutoConfig.for_model(snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =AutoConfig.for_model(snake_case ,**snake_case ) SCREAMING_SNAKE_CASE =True @classmethod def _lowerCAmelCase ( cls : Optional[Any] ,snake_case : PretrainedConfig ,snake_case : PretrainedConfig ,**snake_case : str ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) SCREAMING_SNAKE_CASE =True SCREAMING_SNAKE_CASE =True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE =self.encoder.to_dict() SCREAMING_SNAKE_CASE =self.decoder.to_dict() SCREAMING_SNAKE_CASE =self.__class__.model_type return output
252
1
'''simple docstring''' _lowercase = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
5
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class SCREAMING_SNAKE_CASE : '''simple docstring''' @property def _UpperCamelCase ( self ): '''simple docstring''' return self.get_dummy_input() @property def _UpperCamelCase ( self ): '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , ): '''simple docstring''' snake_case: List[Any] = 4 snake_case: Any = 32 snake_case: Dict = (32, 32) snake_case: str = torch.manual_seed(0 ) snake_case: List[Any] = torch.device(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = (batch_size, num_channels) + sizes snake_case: Optional[Any] = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = {'hidden_states': hidden_states} if include_temb: snake_case: List[str] = 1_28 snake_case: str = randn_tensor((batch_size, temb_channels) , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) if include_res_hidden_states_tuple: snake_case: int = torch.manual_seed(1 ) snake_case: int = (randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ),) if include_encoder_hidden_states: snake_case: List[Any] = floats_tensor((batch_size, 32, 32) ).to(SCREAMING_SNAKE_CASE__ ) if include_skip_sample: snake_case: Dict = randn_tensor(((batch_size, 3) + sizes) , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) return dummy_input def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 1_28, } if self.block_type == "up": snake_case: int = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) snake_case: Optional[Any] = self.dummy_input return init_dict, inputs_dict def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case , snake_case: Optional[Any] = self.prepare_init_args_and_inputs_for_common() snake_case: str = self.block_class(**SCREAMING_SNAKE_CASE__ ) unet_block.to(SCREAMING_SNAKE_CASE__ ) unet_block.eval() with torch.no_grad(): snake_case: int = unet_block(**SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = output[0] self.assertEqual(output.shape , self.output_shape ) snake_case: List[Any] = output[0, -1, -3:, -3:] snake_case: Any = torch.tensor(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) assert torch_all_close(output_slice.flatten() , SCREAMING_SNAKE_CASE__ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Dict = self.prepare_init_args_and_inputs_for_common() snake_case: Optional[Any] = self.block_class(**SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.train() snake_case: List[Any] = model(**SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: str = output[0] snake_case: Optional[Any] = torch.device(SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = randn_tensor(output.shape , device=SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) loss.backward()
329
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=2 , A_=24 , A_=16 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=None , A_=2 , A_=2 , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =patch_size __UpperCamelCase =max_length __UpperCamelCase =num_mel_bins __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =frequency_stride __UpperCamelCase =time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __UpperCamelCase =(self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __UpperCamelCase =(self.max_length - self.patch_size) // self.time_stride + 1 __UpperCamelCase =frequency_out_dimension * time_out_dimension __UpperCamelCase =num_patches + 2 def _a ( self ) -> Tuple: __UpperCamelCase =floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, input_values, labels def _a ( self ) -> Optional[int]: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _a ( self , A_ , A_ , A_ ) -> str: __UpperCamelCase =ASTModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_values': input_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : str = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Dict = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _a ( self ) -> Dict: __UpperCamelCase =ASTModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def _a ( self ) -> Tuple: pass def _a ( self ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['input_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def _a ( self ) -> str: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ASTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) __UpperCamelCase , __UpperCamelCase =torchaudio.load(SCREAMING_SNAKE_CASE__ ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> str: return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def _a ( self ) -> List[str]: __UpperCamelCase =self.default_feature_extractor __UpperCamelCase =ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(A_ ) __UpperCamelCase =self.default_feature_extractor __UpperCamelCase , __UpperCamelCase =prepare_audio() __UpperCamelCase =audio.squeeze().numpy() __UpperCamelCase =feature_extractor(A_ , sampling_rate=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-0.8760, -7.0042, -8.6602] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) )
682
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =False def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if not self.initialized: __UpperCamelCase =RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =True def _a ( self ) -> Optional[Any]: self.retriever.index.init_index() def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_=None ) -> Dict: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def _a ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , A_ , A_ ) -> Optional[int]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase =ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: __UpperCamelCase , __UpperCamelCase =self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _a ( cls , A_ , A_=None , **A_ ) -> List[str]: return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def _a ( cls , A_ , A_ , A_=None , **A_ ) -> str: __UpperCamelCase =kwargs.pop('config' , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) __UpperCamelCase =rag_tokenizer.question_encoder __UpperCamelCase =rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase ='custom' __UpperCamelCase =CustomHFIndex(config.retrieval_vector_size , A_ ) else: __UpperCamelCase =cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
682
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin A : Union[str, Any] = False @skip_mps class UpperCamelCase( _a , _a , _a , unittest.TestCase ): snake_case_ : int = StableDiffusionAttendAndExcitePipeline snake_case_ : List[str] = False snake_case_ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS snake_case_ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) snake_case_ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS snake_case_ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict ) -> int: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] ) -> int: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> str: '''simple docstring''' torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=1 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE , ) __snake_case = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=SCREAMING_SNAKE_CASE , set_alpha_to_one=SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) __snake_case = CLIPTextModel(SCREAMING_SNAKE_CASE ) __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __snake_case = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=0 ) -> Tuple: '''simple docstring''' if str(SCREAMING_SNAKE_CASE ).startswith("mps" ): __snake_case = torch.manual_seed(SCREAMING_SNAKE_CASE ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(SCREAMING_SNAKE_CASE ) __snake_case = __snake_case = { "prompt": "a cat and a frog", "token_indices": [2, 5], "generator": generator, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", "max_iter_to_alter": 2, "thresholds": {0: 0.7}, } return inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' __snake_case = "cpu" __snake_case = self.get_dummy_components() __snake_case = self.pipeline_class(**SCREAMING_SNAKE_CASE ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) __snake_case = self.get_dummy_inputs(SCREAMING_SNAKE_CASE ) __snake_case = pipe(**SCREAMING_SNAKE_CASE ).images __snake_case = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 6_4, 6_4, 3) ) __snake_case = np.array( [0.63905364, 0.62897307, 0.48599017, 0.5133624, 0.5550048, 0.45769516, 0.50326973, 0.5023139, 0.45384496] ) __snake_case = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE , 1e-3 ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class UpperCamelCase( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple ) -> int: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int ) -> List[Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str: '''simple docstring''' __snake_case = torch.manual_seed(5_1 ) __snake_case = StableDiffusionAttendAndExcitePipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , safety_checker=SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa ) pipe.to("cuda" ) __snake_case = "a painting of an elephant with glasses" __snake_case = [5, 7] __snake_case = pipe( prompt=SCREAMING_SNAKE_CASE , token_indices=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE , num_inference_steps=5 , max_iter_to_alter=5 , output_type="numpy" , ).images[0] __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy" ) assert np.abs((expected_image - image).max() ) < 5e-1
371
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A : List[str] = logging.get_logger(__name__) A : List[Any] = {'vocab_file': 'spiece.model'} A : Tuple = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } A : Any = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) A : Tuple = 0 A : str = 1 A : str = 2 A : Union[str, Any] = 3 A : Optional[Any] = 4 class UpperCamelCase( _a ): snake_case_ : Union[str, Any] = VOCAB_FILES_NAMES snake_case_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : Tuple = """left""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Tuple="<s>" , SCREAMING_SNAKE_CASE : Optional[int]="</s>" , SCREAMING_SNAKE_CASE : List[str]="<unk>" , SCREAMING_SNAKE_CASE : List[str]="<sep>" , SCREAMING_SNAKE_CASE : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE : Union[str, Any]="<cls>" , SCREAMING_SNAKE_CASE : str="<mask>" , SCREAMING_SNAKE_CASE : int=["<eop>", "<eod>"] , SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE : Dict , ) -> None: '''simple docstring''' __snake_case = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , additional_special_tokens=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) __snake_case = 3 __snake_case = do_lower_case __snake_case = remove_space __snake_case = keep_accents __snake_case = vocab_file __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return len(self.sp_model ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple: '''simple docstring''' __snake_case = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> str: '''simple docstring''' __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> int: '''simple docstring''' __snake_case = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> int: '''simple docstring''' if self.remove_space: __snake_case = " ".join(inputs.strip().split() ) else: __snake_case = inputs __snake_case = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: __snake_case = unicodedata.normalize("NFKD" , SCREAMING_SNAKE_CASE ) __snake_case = "".join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: __snake_case = outputs.lower() return outputs def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE : str ) -> List[str]: '''simple docstring''' __snake_case = self.preprocess_text(SCREAMING_SNAKE_CASE ) __snake_case = self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) __snake_case = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __snake_case = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __snake_case = cur_pieces[1:] else: __snake_case = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE ) else: new_pieces.append(SCREAMING_SNAKE_CASE ) return new_pieces def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: '''simple docstring''' return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: '''simple docstring''' return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE : int ) -> List[Any]: '''simple docstring''' __snake_case = "".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , " " ).strip() return out_string def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : bool = True , **SCREAMING_SNAKE_CASE : Optional[int] , ) -> str: '''simple docstring''' __snake_case = kwargs.pop("use_source_tokenizer" , SCREAMING_SNAKE_CASE ) __snake_case = self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __snake_case = [] __snake_case = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE ) ) __snake_case = [] sub_texts.append(SCREAMING_SNAKE_CASE ) else: current_sub_text.append(SCREAMING_SNAKE_CASE ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __snake_case = "".join(SCREAMING_SNAKE_CASE ) __snake_case = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __snake_case = self.clean_up_tokenization(SCREAMING_SNAKE_CASE ) return clean_text else: return text def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return ([0] * len(SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] return ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __snake_case = [self.sep_token_id] __snake_case = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , "wb" ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
371
1
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class _UpperCAmelCase : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=0.2 , snake_case_=0.2 ): _snake_case : Optional[Any] = bp_numa _snake_case : List[str] = bp_numa _snake_case : str = bp_numa _snake_case : List[str] = conva_get[:2] _snake_case : Dict = conva_get[2] _snake_case : List[Any] = size_pa _snake_case : Optional[int] = rate_w _snake_case : Dict = rate_t _snake_case : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] _snake_case : Any = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _snake_case : Tuple = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _snake_case : Any = -2 * np.random.rand(self.conva[1] ) + 1 _snake_case : List[str] = -2 * np.random.rand(self.num_bpa ) + 1 _snake_case : int = -2 * np.random.rand(self.num_bpa ) + 1 def lowerCamelCase__ ( self , snake_case_ ): # save model dict with pickle _snake_case : int = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(snake_case_ , "wb" ) as f: pickle.dump(snake_case_ , snake_case_ ) print(F'Model saved: {save_path}' ) @classmethod def lowerCamelCase__ ( cls , snake_case_ ): # read saved model with open(snake_case_ , "rb" ) as f: _snake_case : List[str] = pickle.load(snake_case_ ) # noqa: S301 _snake_case : Tuple = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) _snake_case : str = model_dic.get("size_pooling1" ) _snake_case : Dict = model_dic.get("num_bp1" ) _snake_case : Any = model_dic.get("num_bp2" ) _snake_case : Optional[int] = model_dic.get("num_bp3" ) _snake_case : str = model_dic.get("rate_weight" ) _snake_case : Optional[int] = model_dic.get("rate_thre" ) # create model instance _snake_case : int = CNN(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # modify model parameter _snake_case : int = model_dic.get("w_conv1" ) _snake_case : Any = model_dic.get("wkj" ) _snake_case : str = model_dic.get("vji" ) _snake_case : int = model_dic.get("thre_conv1" ) _snake_case : Any = model_dic.get("thre_bp2" ) _snake_case : List[Any] = model_dic.get("thre_bp3" ) return conv_ins def lowerCamelCase__ ( self , snake_case_ ): return 1 / (1 + np.exp(-1 * x )) def lowerCamelCase__ ( self , snake_case_ ): return round(snake_case_ , 3 ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): # convolution process _snake_case : Any = convs[0] _snake_case : Optional[Any] = convs[1] _snake_case : int = np.shape(snake_case_ )[0] # get the data slice of original image data, data_focus _snake_case : int = [] for i_focus in range(0 , size_data - size_conv + 1 , snake_case_ ): for j_focus in range(0 , size_data - size_conv + 1 , snake_case_ ): _snake_case : Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(snake_case_ ) # calculate the feature map of every single kernel, and saved as list of matrix _snake_case : Optional[int] = [] _snake_case : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(snake_case_ ): _snake_case : int = [] for i_focus in range(len(snake_case_ ) ): _snake_case : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(snake_case_ ) ) _snake_case : int = np.asmatrix(snake_case_ ).reshape( snake_case_ , snake_case_ ) data_featuremap.append(snake_case_ ) # expanding the data slice to One dimenssion _snake_case : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(snake_case_ ) ) _snake_case : Optional[int] = np.asarray(snake_case_ ) return focus_list, data_featuremap def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_="average_pool" ): # pooling process _snake_case : List[str] = len(featuremaps[0] ) _snake_case : List[str] = int(size_map / size_pooling ) _snake_case : Optional[Any] = [] for i_map in range(len(snake_case_ ) ): _snake_case : Union[str, Any] = featuremaps[i_map] _snake_case : Union[str, Any] = [] for i_focus in range(0 , snake_case_ , snake_case_ ): for j_focus in range(0 , snake_case_ , snake_case_ ): _snake_case : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(snake_case_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(snake_case_ ) ) _snake_case : List[Any] = np.asmatrix(snake_case_ ).reshape(snake_case_ , snake_case_ ) featuremap_pooled.append(snake_case_ ) return featuremap_pooled def lowerCamelCase__ ( self , snake_case_ ): # expanding three dimension data to one dimension list _snake_case : List[str] = [] for i in range(len(snake_case_ ) ): _snake_case : Optional[int] = np.shape(data[i] ) _snake_case : Dict = data[i].reshape(1 , shapes[0] * shapes[1] ) _snake_case : Any = data_listed.getA().tolist()[0] data_expanded.extend(snake_case_ ) _snake_case : int = np.asarray(snake_case_ ) return data_expanded def lowerCamelCase__ ( self , snake_case_ ): # expanding matrix to one dimension list _snake_case : Union[str, Any] = np.asarray(snake_case_ ) _snake_case : str = np.shape(snake_case_ ) _snake_case : int = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i_map in range(snake_case_ ): _snake_case : Optional[int] = np.ones((size_map, size_map) ) for i in range(0 , snake_case_ , snake_case_ ): for j in range(0 , snake_case_ , snake_case_ ): _snake_case : Optional[int] = pd_pool[ i_pool ] _snake_case : Dict = i_pool + 1 _snake_case : Optional[Any] = np.multiply( snake_case_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(snake_case_ ) return pd_all def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=bool ): # model traning print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(snake_case_ )) ) print((" - - Shape: Teach_Data ", np.shape(snake_case_ )) ) _snake_case : Any = 0 _snake_case : List[str] = [] _snake_case : int = 1_00_00 while rp < n_repeat and mse >= error_accuracy: _snake_case : List[Any] = 0 print(F'-------------Learning Time {rp}--------------' ) for p in range(len(snake_case_ ) ): # print('------------Learning Image: %d--------------'%p) _snake_case : Dict = np.asmatrix(datas_train[p] ) _snake_case : Optional[Any] = np.asarray(datas_teach[p] ) _snake_case , _snake_case : Tuple = self.convolute( snake_case_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _snake_case : List[str] = self.pooling(snake_case_ , self.size_poolinga ) _snake_case : Union[str, Any] = np.shape(snake_case_ ) _snake_case : Tuple = self._expand(snake_case_ ) _snake_case : Optional[Any] = data_bp_input _snake_case : Dict = np.dot(snake_case_ , self.vji.T ) - self.thre_bpa _snake_case : Any = self.sig(snake_case_ ) _snake_case : List[Any] = np.dot(snake_case_ , self.wkj.T ) - self.thre_bpa _snake_case : List[str] = self.sig(snake_case_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _snake_case : List[str] = np.multiply( (data_teach - bp_outa) , np.multiply(snake_case_ , (1 - bp_outa) ) ) _snake_case : Dict = np.multiply( np.dot(snake_case_ , self.wkj ) , np.multiply(snake_case_ , (1 - bp_outa) ) ) _snake_case : str = np.dot(snake_case_ , self.vji ) _snake_case : int = pd_i_all / (self.size_poolinga * self.size_poolinga) _snake_case : List[Any] = pd_conva_pooled.T.getA().tolist() _snake_case : int = self._calculate_gradient_from_pool( snake_case_ , snake_case_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): _snake_case : int = self._expand_mat(pd_conva_all[k_conv] ) _snake_case : Union[str, Any] = self.rate_weight * np.dot(snake_case_ , snake_case_ ) _snake_case : Optional[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) _snake_case : Tuple = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer _snake_case : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _snake_case : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight _snake_case : Dict = self.thre_bpa - pd_k_all * self.rate_thre _snake_case : List[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _snake_case : Any = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _snake_case : int = rp + 1 _snake_case : Tuple = error_count / patterns all_mse.append(snake_case_ ) def draw_error(): _snake_case : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(snake_case_ , "+-" ) plt.plot(snake_case_ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(snake_case_ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, F' - - Mse: {mse:.6f}') ) if draw_e: draw_error() return mse def lowerCamelCase__ ( self , snake_case_ ): # model predict _snake_case : Dict = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(snake_case_ )) ) for p in range(len(snake_case_ ) ): _snake_case : Union[str, Any] = np.asmatrix(datas_test[p] ) _snake_case , _snake_case : Dict = self.convolute( snake_case_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _snake_case : int = self.pooling(snake_case_ , self.size_poolinga ) _snake_case : str = self._expand(snake_case_ ) _snake_case : Tuple = data_bp_input _snake_case : Dict = bp_outa * self.vji.T - self.thre_bpa _snake_case : List[Any] = self.sig(snake_case_ ) _snake_case : Union[str, Any] = bp_outa * self.wkj.T - self.thre_bpa _snake_case : int = self.sig(snake_case_ ) produce_out.extend(bp_outa.getA().tolist() ) _snake_case : Optional[int] = [list(map(self.do_round , snake_case_ ) ) for each in produce_out] return np.asarray(snake_case_ ) def lowerCamelCase__ ( self , snake_case_ ): # return the data of image after convoluting process so we can check it out _snake_case : Any = np.asmatrix(snake_case_ ) _snake_case , _snake_case : Tuple = self.convolute( snake_case_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _snake_case : List[str] = self.pooling(snake_case_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
87
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( _snake_case , unittest.TestCase): __lowercase : Any = TextToVideoSDPipeline __lowercase : str = TEXT_TO_IMAGE_PARAMS __lowercase : int = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __lowercase : Optional[int] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ]) def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _snake_case : str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) _snake_case : List[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) _snake_case : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _snake_case : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) _snake_case : Tuple = CLIPTextModel(snake_case_ ) _snake_case : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _snake_case : Any = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def lowerCamelCase__ ( self , snake_case_ , snake_case_=0 ): if str(snake_case_ ).startswith("mps" ): _snake_case : str = torch.manual_seed(snake_case_ ) else: _snake_case : Union[str, Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) _snake_case : str = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def lowerCamelCase__ ( self ): _snake_case : int = "cpu" # ensure determinism for the device-dependent torch.Generator _snake_case : Optional[Any] = self.get_dummy_components() _snake_case : Tuple = TextToVideoSDPipeline(**snake_case_ ) _snake_case : List[str] = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) _snake_case : int = self.get_dummy_inputs(snake_case_ ) _snake_case : Union[str, Any] = "np" _snake_case : Dict = sd_pipe(**snake_case_ ).frames _snake_case : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _snake_case : Dict = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCamelCase__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case_ , expected_max_diff=1E-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowerCamelCase__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowerCamelCase__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): return super().test_progress_bar() @slow @skip_mps class _UpperCAmelCase ( unittest.TestCase): def lowerCamelCase__ ( self ): _snake_case : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) _snake_case : int = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) _snake_case : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _snake_case : Tuple = pipe.to("cuda" ) _snake_case : List[Any] = "Spiderman is surfing" _snake_case : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) _snake_case : int = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=25 , output_type="pt" ).frames _snake_case : int = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def lowerCamelCase__ ( self ): _snake_case : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) _snake_case : str = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) _snake_case : int = pipe.to("cuda" ) _snake_case : Any = "Spiderman is surfing" _snake_case : str = torch.Generator(device="cpu" ).manual_seed(0 ) _snake_case : Any = pipe(snake_case_ , generator=snake_case_ , num_inference_steps=2 , output_type="pt" ).frames _snake_case : Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
87
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowercase : Any = logging.get_logger("""transformers.models.speecht5""") def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: hf_model.apply_weight_norm() lowercase : Any = checkpoint['input_conv.weight_g'] lowercase : str = checkpoint['input_conv.weight_v'] lowercase : Union[str, Any] = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowercase : int = checkpoint[f"upsamples.{i}.1.weight_g"] lowercase : List[Any] = checkpoint[f"upsamples.{i}.1.weight_v"] lowercase : List[str] = checkpoint[f"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowercase : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] lowercase : Dict = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] lowercase : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] lowercase : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] lowercase : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] lowercase : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] lowercase : Any = checkpoint['output_conv.1.weight_g'] lowercase : str = checkpoint['output_conv.1.weight_v'] lowercase : int = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , ) -> str: if config_path is not None: lowercase : List[Any] = SpeechTaHifiGanConfig.from_pretrained(UpperCAmelCase_ ) else: lowercase : List[Any] = SpeechTaHifiGanConfig() lowercase : Optional[int] = SpeechTaHifiGan(UpperCAmelCase_ ) lowercase : Union[str, Any] = torch.load(UpperCAmelCase_ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , UpperCAmelCase_ , UpperCAmelCase_ ) lowercase : str = np.load(UpperCAmelCase_ ) lowercase : Tuple = stats[0].reshape(-1 ) lowercase : Union[str, Any] = stats[1].reshape(-1 ) lowercase : Optional[int] = torch.from_numpy(UpperCAmelCase_ ).float() lowercase : List[str] = torch.from_numpy(UpperCAmelCase_ ).float() model.save_pretrained(UpperCAmelCase_ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(UpperCAmelCase_ ) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowercase : str = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
336
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self : int ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]=13 ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : Optional[Any]=224 ,lowerCamelCase__ : int=30 ,lowerCamelCase__ : str=400 ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Tuple=[0.5, 0.5, 0.5] ,lowerCamelCase__ : Optional[int]=[0.5, 0.5, 0.5] ,): '''simple docstring''' _UpperCamelCase : Dict = size if size is not None else {'height': 18, 'width': 18} _UpperCamelCase : List[Any] = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = image_size _UpperCamelCase : Optional[Any] = min_resolution _UpperCamelCase : Dict = max_resolution _UpperCamelCase : Tuple = do_resize _UpperCamelCase : Optional[int] = size _UpperCamelCase : Tuple = do_normalize _UpperCamelCase : str = image_mean _UpperCamelCase : int = image_std def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = ViTImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Dict = EfficientFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'image_std' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'size' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : int ): '''simple docstring''' # Initialize image_processor _UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : Optional[Any] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,Image.Image ) # Test not batched input _UpperCamelCase : int = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched _UpperCamelCase : int = image_processor(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' # Initialize image_processor _UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=lowerCamelCase__ ,numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,np.ndarray ) # Test not batched input _UpperCamelCase : Union[str, Any] = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched _UpperCamelCase : Optional[Any] = image_processor(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor _UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : Any = prepare_image_inputs(self.image_proc_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) # Test not batched input _UpperCamelCase : Dict = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched _UpperCamelCase : Any = image_processor(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,)
195
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCAmelCase : List[Any] = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCAmelCase : Any = 1.054571817E-34 # unit of ℏ : J * s lowerCAmelCase : List[str] = 3E8 # unit of c : m * s^-1 def _A ( A ,A ,A ) -> dict[str, float]: if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: lowercase : Dict = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: lowercase : Optional[int] = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowercase : List[str] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
425
0
def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> list: '''simple docstring''' __lowercase = len(_UpperCAmelCase ) __lowercase = [[0] * n for i in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): __lowercase = y_points[i] for i in range(2 , _UpperCAmelCase ): for j in range(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
321
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = ["""image_processor""", """tokenizer"""] __lowerCAmelCase = """LayoutLMv2ImageProcessor""" __lowerCAmelCase = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase_ , ) __lowercase = kwargs.pop("feature_extractor" ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = True , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor __lowercase = self.image_processor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features["words"] __lowercase = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) # add pixel values __lowercase = features.pop("pixel_values" ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(lowerCAmelCase_ , encoded_inputs["overflow_to_sample_mapping"] ) __lowercase = images return encoded_inputs def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f''' {len(lowerCAmelCase_ )} and {len(lowerCAmelCase_ )}''' ) return images_with_overflow def snake_case__ ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def snake_case__ ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def snake_case__ ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def snake_case__ ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase_ , ) return self.image_processor_class @property def snake_case__ ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase_ , ) return self.image_processor
321
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
109
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A = logging.get_logger(__name__) A = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} A = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } A = { 'abeja/gpt-neox-japanese-2.7b': 2_0_4_8, } def lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ ) -> str: with open(lowerCamelCase__ , 'r' , encoding='utf-8' ) as f: A = json.loads(f.read() ) A = collections.OrderedDict() A = collections.OrderedDict() A = collections.OrderedDict() with open(lowerCamelCase__ , 'r' , encoding='utf-8' ) as f: A = f.readlines() A = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase__ ): A = b A = idx for wd in b: A = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : str = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Optional[Any]="<|endoftext|>" , snake_case : List[str]="<|endoftext|>" , snake_case : Any="<|startoftext|>" , snake_case : Any="<|endoftext|>" , snake_case : Tuple=False , **snake_case : List[str] , ) -> Optional[Any]: '''simple docstring''' super().__init__( unk_token=snake_case , pad_token=snake_case , bos_token=snake_case , eos_token=snake_case , do_clean_text=snake_case , **snake_case , ) if not os.path.isfile(snake_case ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) A = do_clean_text A , A , A , A = load_vocab_and_emoji(snake_case , snake_case ) A = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def A_ ( self : Any ) -> List[str]: '''simple docstring''' return len(self.raw_vocab ) def A_ ( self : str ) -> str: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def A_ ( self : List[str] , snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return self.subword_tokenizer.tokenize(snake_case , clean=self.do_clean_text ) def A_ ( self : int , snake_case : Optional[int] ) -> Dict: '''simple docstring''' return self.vocab.get(snake_case , self.vocab.get(self.unk_token ) ) def A_ ( self : int , snake_case : List[Any] ) -> Tuple: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(snake_case ) def A_ ( self : str , snake_case : int ) -> Optional[Any]: '''simple docstring''' A = ''.join(snake_case ).strip() return out_string def A_ ( self : Optional[int] , snake_case : "Conversation" ) -> List[int]: '''simple docstring''' A = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case , add_special_tokens=snake_case ) + [self.eos_token_id] ) if len(snake_case ) > self.model_max_length: A = input_ids[-self.model_max_length :] return input_ids def A_ ( self : int , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' A = 0 if os.path.isdir(snake_case ): A = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: A = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) A = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) A = token_index writer.write(','.join(snake_case ) + '\n' ) index += 1 with open(snake_case , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , snake_case ) return vocab_file, emoji_file class UpperCAmelCase__ ( UpperCamelCase ): def __init__( self : str , snake_case : Dict , snake_case : Optional[Any] , snake_case : List[Any] ) -> int: '''simple docstring''' A = vocab # same as swe A = ids_to_tokens # same as bpe A = emoji A = np.max([len(snake_case ) for w in self.vocab.keys()] ) A = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) A = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) A = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) A = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) A = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) A = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) A = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' A = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' A = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : List[str] ) -> List[str]: '''simple docstring''' return len(self.ids_to_tokens ) def A_ ( self : Tuple , snake_case : Any ) -> Optional[int]: '''simple docstring''' A = self.content_repattera.sub('<URL>' , snake_case ) A = self.content_repattera.sub('<EMAIL>' , snake_case ) A = self.content_repattera.sub('<TEL>' , snake_case ) A = self.content_repattera.sub('<DATE>' , snake_case ) A = self.content_repattera.sub('<DATE>' , snake_case ) A = self.content_repattera.sub('<PRICE>' , snake_case ) A = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: A = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def A_ ( self : Any , snake_case : int , snake_case : Any=False ) -> Any: '''simple docstring''' A = text.replace(' ' , '<SP>' ) A = text.replace(' ' , '<SP>' ) A = text.replace('\r\n' , '<BR>' ) A = text.replace('\n' , '<BR>' ) A = text.replace('\r' , '<BR>' ) A = text.replace('\t' , '<TAB>' ) A = text.replace('—' , 'ー' ) A = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: A = text.replace(snake_case , snake_case ) if clean: A = self.clean_text(snake_case ) def check_simbol(snake_case : Union[str, Any] ): A = x.encode() if len(snake_case ) == 1 and len(snake_case ) == 2: A = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(snake_case : List[Any] ): A = x.encode() if len(snake_case ) == 1 and len(snake_case ) == 3: A = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe2_8080 and c <= 0xe2_b07f: return True return False A = 0 A = [] while pos < len(snake_case ): A = min(len(snake_case ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 A = [] # (token_id, token, pos) for e in range(snake_case , snake_case , -1 ): A = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case ) > 2: A = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case ) > 0: # the smallest token_id is adopted A , A , A = sorted(snake_case , key=lambda snake_case : x[0] )[0] result.append(snake_case ) A = e else: A = pos + 1 A = text[pos:end] if check_simbol(snake_case ): result.append('<KIGOU>' ) elif checkuae(snake_case ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) A = end return result def A_ ( self : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any]="\n" ) -> List[Any]: '''simple docstring''' A = [] A = [] A = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case ) > 0: words.append(bytearray(snake_case ).decode('utf-8' , errors='replace' ) ) A = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case ) if len(snake_case ) > 0: words.append(bytearray(snake_case ).decode('utf-8' , errors='replace' ) ) A = ''.join(snake_case ) return text
109
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration _lowerCamelCase : Optional[int] = pytest.mark.integration _lowerCamelCase : Dict = {'comet'} _lowerCamelCase : int = importlib.util.find_spec('fairseq') is not None _lowerCamelCase : Optional[Any] = {'code_eval'} _lowerCamelCase : Dict = os.name == 'nt' _lowerCamelCase : List[str] = {'bertscore', 'frugalscore', 'perplexity'} _lowerCamelCase : Optional[int] = importlib.util.find_spec('transformers') is not None def _lowerCAmelCase ( __magic_name__ :str ): @wraps(lowerCamelCase_ ) def wrapper(self :Any , __magic_name__ :Union[str, Any] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self , lowerCamelCase_ ) return wrapper def _lowerCAmelCase ( __magic_name__ :List[str] ): @wraps(lowerCamelCase_ ) def wrapper(self :List[str] , __magic_name__ :Optional[Any] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self , lowerCamelCase_ ) return wrapper def _lowerCAmelCase ( __magic_name__ :Union[str, Any] ): @wraps(lowerCamelCase_ ) def wrapper(self :Union[str, Any] , __magic_name__ :Union[str, Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self , lowerCamelCase_ ) return wrapper def _lowerCAmelCase ( ): UpperCAmelCase_ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @local class snake_case__ ( parameterized.TestCase ): '''simple docstring''' __A = {} __A = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def UpperCamelCase ( self : str , lowerCAmelCase_ : List[Any] ) -> Optional[Any]: UpperCAmelCase_ = '''[...]''' UpperCAmelCase_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , _lowerCamelCase ) ).module_path ) UpperCAmelCase_ = datasets.load.import_main_class(metric_module.__name__ , dataset=_lowerCamelCase ) # check parameters UpperCAmelCase_ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_lowerCamelCase , metric_module.__name__ ): with self.use_local_metrics(): try: UpperCAmelCase_ = doctest.testmod(_lowerCamelCase , verbose=_lowerCamelCase , raise_on_error=_lowerCamelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def UpperCamelCase ( self : int , lowerCAmelCase_ : Tuple ) -> Optional[int]: UpperCAmelCase_ = '''[...]''' UpperCAmelCase_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , _lowerCamelCase ) ).module_path ) # run doctest with self.use_local_metrics(): UpperCAmelCase_ = doctest.testmod(_lowerCamelCase , verbose=_lowerCamelCase , raise_on_error=_lowerCamelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def UpperCamelCase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> Optional[Any]: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_lowerCamelCase ): yield else: yield @contextmanager def UpperCamelCase ( self : Union[str, Any] ) -> Any: def load_local_metric(lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Union[str, Any] ): return load_metric(os.path.join('''metrics''' , _lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase ) with patch('''datasets.load_metric''' ) as mock_load_metric: UpperCAmelCase_ = load_local_metric yield @classmethod def UpperCamelCase ( cls : List[Any] , lowerCAmelCase_ : Dict ) -> str: def wrapper(lowerCAmelCase_ : Any ): UpperCAmelCase_ = contextmanager(_lowerCamelCase ) UpperCAmelCase_ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def _lowerCAmelCase ( __magic_name__ :Optional[int] ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class snake_case__ ( lowerCAmelCase__ ): '''simple docstring''' def UpperCamelCase ( self : Any , lowerCAmelCase_ : int ) -> Optional[int]: assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: UpperCAmelCase_ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def _lowerCAmelCase ( __magic_name__ :Union[str, Any] ): import torch def bert_cos_score_idf(__magic_name__ :List[str] , __magic_name__ :str , *__magic_name__ :int , **__magic_name__ :Optional[int] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowerCamelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: UpperCAmelCase_ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def _lowerCAmelCase ( __magic_name__ :Dict ): def load_from_checkpoint(__magic_name__ :Union[str, Any] ): class snake_case__ : '''simple docstring''' def UpperCamelCase ( self : Optional[Any] , lowerCAmelCase_ : List[str] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : int ) -> Optional[int]: assert len(_lowerCamelCase ) == 2 UpperCAmelCase_ = [0.19, 0.92] return scores, sum(_lowerCamelCase ) / len(_lowerCamelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: UpperCAmelCase_ = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: UpperCAmelCase_ = load_from_checkpoint yield def _lowerCAmelCase ( ): UpperCAmelCase_ = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) UpperCAmelCase_ = '''ERROR''' UpperCAmelCase_ = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(lowerCamelCase_ , match=re.escape(lowerCamelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=lowerCamelCase_ )
121
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=13 ,_lowerCamelCase=7 ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=True ,_lowerCamelCase=99 ,_lowerCamelCase=64 ,_lowerCamelCase=5 ,_lowerCamelCase=4 ,_lowerCamelCase=37 ,_lowerCamelCase="gelu" ,_lowerCamelCase=0.1 ,_lowerCamelCase=0.1 ,_lowerCamelCase=512 ,_lowerCamelCase=16 ,_lowerCamelCase=2 ,_lowerCamelCase=0.0_2 ,_lowerCamelCase=3 ,_lowerCamelCase=4 ,_lowerCamelCase=None ,) -> Dict: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = vocab_size - 1 def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_lowerCamelCase ,initializer_range=self.initializer_range ,pad_token_id=self.pad_token_id ,) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.prepare_config_and_inputs() __lowercase = True return config, input_ids, input_mask, token_labels def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = GPTNeoXModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ) __lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = True __lowercase = GPTNeoXModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = GPTNeoXForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = self.num_labels __lowercase = GPTNeoXForQuestionAnswering(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = self.num_labels __lowercase = GPTNeoXForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[int]: '''simple docstring''' __lowercase = self.num_labels __lowercase = GPTNeoXForTokenClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> int: '''simple docstring''' __lowercase = True __lowercase = GPTNeoXForCausalLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # first forward pass __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,use_cache=_lowerCamelCase ) __lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) ,config.vocab_size ) __lowercase = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and __lowercase = torch.cat([input_ids, next_tokens] ,dim=-1 ) __lowercase = torch.cat([input_mask, next_mask] ,dim=-1 ) __lowercase = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,output_hidden_states=_lowerCamelCase ) __lowercase = output_from_no_past['''hidden_states'''][0] __lowercase = model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,past_key_values=_lowerCamelCase ,output_hidden_states=_lowerCamelCase ,)['''hidden_states'''][0] # select random slice __lowercase = ids_tensor((1,) ,output_from_past.shape[-1] ).item() __lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1E-3 ) ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Dict = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) a : str = (GPTNeoXForCausalLM,) if is_torch_available() else () a : Dict = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) a : Dict = False a : Optional[Any] = False a : Tuple = False a : List[Any] = False def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = GPTNeoXModelTester(self ) __lowercase = ConfigTester(self ,config_class=_lowerCamelCase ,hidden_size=64 ,num_attention_heads=8 ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase = None self.model_tester.create_and_check_model_as_decoder(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def _UpperCAmelCase (self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ids_tensor([1, 10] ,config.vocab_size ) __lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = GPTNeoXModel(_lowerCamelCase ) original_model.to(_lowerCamelCase ) original_model.eval() __lowercase = original_model(_lowerCamelCase ).last_hidden_state __lowercase = original_model(_lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = {'''type''': scaling_type, '''factor''': 1_0.0} __lowercase = GPTNeoXModel(_lowerCamelCase ) scaled_model.to(_lowerCamelCase ) scaled_model.eval() __lowercase = scaled_model(_lowerCamelCase ).last_hidden_state __lowercase = scaled_model(_lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1E-5 ) ) @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: __lowercase = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_lowerCamelCase ) __lowercase = tokenizer('''My favorite food is''' ,return_tensors='''pt''' ).to(_lowerCamelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __lowercase = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' __lowercase = model.generate(**_lowerCamelCase ,do_sample=_lowerCamelCase ,max_new_tokens=20 ) __lowercase = tokenizer.batch_decode(_lowerCamelCase )[0] self.assertEqual(_lowerCamelCase ,_lowerCamelCase )
502
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> int: if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): # update the maximum and minimum subarray products SCREAMING_SNAKE_CASE_ : Optional[Any] = numbers[i] if number < 0: SCREAMING_SNAKE_CASE_ : Dict = min_till_now, max_till_now SCREAMING_SNAKE_CASE_ : List[Any] = max(SCREAMING_SNAKE_CASE , max_till_now * number ) SCREAMING_SNAKE_CASE_ : int = min(SCREAMING_SNAKE_CASE , min_till_now * number ) # update the maximum product found till now SCREAMING_SNAKE_CASE_ : Any = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return max_prod
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__: Dict = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__: List[str] = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__: Union[str, Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys lowerCAmelCase__: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
311
0
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __UpperCAmelCase = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
90
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(__lowerCAmelCase ), magnitude * sin(__lowerCAmelCase )] return [magnitude * cos(radians(__lowerCAmelCase ) ), magnitude * sin(radians(__lowerCAmelCase ) )] def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 10**-1 ) -> bool: '''simple docstring''' lowerCamelCase__ =cross(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ =sum(__lowerCAmelCase ) return abs(__lowerCAmelCase ) < eps if __name__ == "__main__": # Test to check if it works a =array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) a =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg a =array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) a =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg a =array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) a =array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
530
0
"""simple docstring""" from torch import nn def __magic_name__ ( _lowerCamelCase : Union[str, Any] ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
63
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __magic_name__ ( ): __a : Dict = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 2_0, """a """ * 3_0, """b """ * 7], } __a : Optional[Any] = Dataset.from_dict(_lowerCamelCase ) return dataset class SCREAMING_SNAKE_CASE__ ( __snake_case ): def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[int] = get_dataset() __a : List[Any] = make_duplicate_clusters(_lowercase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = get_dataset() __a , __a : Optional[Any] = deduplicate_dataset(_lowercase ) self.assertEqual(len(_lowercase ) , 2 ) print(_lowercase ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , _lowercase )
63
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Optional[Any] = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class a ( a__ ): snake_case__ = '''glpn''' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=64 , _snake_case=10 , _snake_case=-1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = num_channels lowerCAmelCase = num_encoder_blocks lowerCAmelCase = depths lowerCAmelCase = sr_ratios lowerCAmelCase = hidden_sizes lowerCAmelCase = patch_sizes lowerCAmelCase = strides lowerCAmelCase = mlp_ratios lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = drop_path_rate lowerCAmelCase = layer_norm_eps lowerCAmelCase = decoder_hidden_size lowerCAmelCase = max_depth lowerCAmelCase = head_in_index
4
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase_ ( unittest.TestCase ): def _lowercase ( self: Optional[Any]): '''simple docstring''' __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = BlipImageProcessor() __lowerCAmelCase = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""") __lowerCAmelCase = BlipProcessor(_lowercase, _lowercase) processor.save_pretrained(self.tmpdirname) def _lowercase ( self: Optional[Any], **_lowercase: str): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **_lowercase).tokenizer def _lowercase ( self: Dict, **_lowercase: Optional[int]): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname, **_lowercase).image_processor def _lowercase ( self: Dict): '''simple docstring''' shutil.rmtree(self.tmpdirname) def _lowercase ( self: Union[str, Any]): '''simple docstring''' __lowerCAmelCase = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] __lowerCAmelCase = [Image.fromarray(np.moveaxis(_lowercase, 0, -1)) for x in image_inputs] return image_inputs def _lowercase ( self: Optional[Any]): '''simple docstring''' __lowerCAmelCase = BlipProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""", eos_token="""(EOS)""") __lowerCAmelCase = self.get_image_processor(do_normalize=_lowercase, padding_value=1.0) __lowerCAmelCase = BlipProcessor.from_pretrained( self.tmpdirname, bos_token="""(BOS)""", eos_token="""(EOS)""", do_normalize=_lowercase, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, _lowercase) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, _lowercase) def _lowercase ( self: str): '''simple docstring''' __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BlipProcessor(tokenizer=_lowercase, image_processor=_lowercase) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(_lowercase, return_tensors="""np""") __lowerCAmelCase = processor(images=_lowercase, return_tensors="""np""") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def _lowercase ( self: Union[str, Any]): '''simple docstring''' __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BlipProcessor(tokenizer=_lowercase, image_processor=_lowercase) __lowerCAmelCase = """lower newer""" __lowerCAmelCase = processor(text=_lowercase) __lowerCAmelCase = tokenizer(_lowercase, return_token_type_ids=_lowercase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def _lowercase ( self: List[Any]): '''simple docstring''' __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BlipProcessor(tokenizer=_lowercase, image_processor=_lowercase) __lowerCAmelCase = """lower newer""" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=_lowercase, images=_lowercase) self.assertListEqual(list(inputs.keys()), ["""pixel_values""", """input_ids""", """attention_mask"""]) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def _lowercase ( self: Tuple): '''simple docstring''' __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BlipProcessor(tokenizer=_lowercase, image_processor=_lowercase) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(_lowercase) __lowerCAmelCase = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase, _lowercase) def _lowercase ( self: str): '''simple docstring''' __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = BlipProcessor(tokenizer=_lowercase, image_processor=_lowercase) __lowerCAmelCase = """lower newer""" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=_lowercase, images=_lowercase) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()), ["""pixel_values""", """input_ids""", """attention_mask"""])
334
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : def __init__( self: Union[str, Any], _lowercase: str, _lowercase: Optional[Any]=12, _lowercase: Tuple=7, _lowercase: Union[str, Any]=True, _lowercase: Dict=True, _lowercase: List[Any]=True, _lowercase: int=99, _lowercase: List[str]=32, _lowercase: Dict=32, _lowercase: Optional[Any]=2, _lowercase: Optional[Any]=4, _lowercase: List[str]=37, _lowercase: Any=0.1, _lowercase: List[Any]=0.1, _lowercase: List[str]=512, _lowercase: Optional[int]=0.02, _lowercase: Dict=0, _lowercase: str=None, ): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = projection_dim __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = bos_token_id def _lowercase ( self: Dict): '''simple docstring''' __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: __lowerCAmelCase = input_mask.numpy() __lowerCAmelCase , __lowerCAmelCase = input_mask.shape __lowerCAmelCase = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(_lowercase): __lowerCAmelCase = 1 __lowerCAmelCase = 0 __lowerCAmelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_lowercase) def _lowercase ( self: Dict): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def _lowercase ( self: Dict, _lowercase: Union[str, Any], _lowercase: int, _lowercase: List[str]): '''simple docstring''' __lowerCAmelCase = TFBlipTextModel(config=_lowercase) __lowerCAmelCase = model(_lowercase, attention_mask=_lowercase, training=_lowercase) __lowerCAmelCase = model(_lowercase, training=_lowercase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def _lowercase ( self: Optional[int]): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowercase_ ( lowerCAmelCase__ , unittest.TestCase ): __UpperCamelCase = (TFBlipTextModel,) if is_tf_available() else () __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _lowercase ( self: Tuple): '''simple docstring''' __lowerCAmelCase = BlipTextModelTester(self) __lowerCAmelCase = ConfigTester(self, config_class=_lowercase, hidden_size=37) def _lowercase ( self: Optional[Any]): '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self: str): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase) def _lowercase ( self: Any): '''simple docstring''' pass def _lowercase ( self: Tuple): '''simple docstring''' pass @unittest.skip(reason="""Blip does not use inputs_embeds""") def _lowercase ( self: str): '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""") def _lowercase ( self: Dict): '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""") def _lowercase ( self: Optional[Any]): '''simple docstring''' pass @slow def _lowercase ( self: str): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFBlipTextModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) def _lowercase ( self: Optional[int], _lowercase: Dict=True): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=_lowercase)
334
1
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# A__ : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] A__ : str = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] A__ : Dict = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks A__ : str = f"""down_blocks.{i}.resnets.{j}.""" A__ : int = f"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 A__ : Optional[Any] = f"""down_blocks.{i}.attentions.{j}.""" A__ : Any = f"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks A__ : Tuple = f"""up_blocks.{i}.resnets.{j}.""" A__ : List[Any] = f"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 A__ : int = f"""up_blocks.{i}.attentions.{j}.""" A__ : Dict = f"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 A__ : Any = f"""down_blocks.{i}.downsamplers.0.conv.""" A__ : str = f"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 A__ : Tuple = f"""up_blocks.{i}.upsamplers.0.""" A__ : List[Any] = f"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) A__ : int = """mid_block.attentions.0.""" A__ : Any = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): A__ : List[str] = f"""mid_block.resnets.{j}.""" A__ : Tuple = f"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _a ( __UpperCamelCase : Dict ): # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. lowerCAmelCase__ : List[str] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowerCAmelCase__ : str = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowerCAmelCase__ : List[Any] = v.replace(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase__ : Dict = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowerCAmelCase__ : Optional[int] = v.replace(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase__ : Any = v lowerCAmelCase__ : Tuple = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# A__ : Optional[int] = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): A__ : Tuple = f"""encoder.down_blocks.{i}.resnets.{j}.""" A__ : Optional[Any] = f"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: A__ : List[str] = f"""down_blocks.{i}.downsamplers.0.""" A__ : int = f"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) A__ : Optional[int] = f"""up_blocks.{i}.upsamplers.0.""" A__ : Optional[Any] = f"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): A__ : Optional[Any] = f"""decoder.up_blocks.{i}.resnets.{j}.""" A__ : Tuple = f"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): A__ : str = f"""mid_block.resnets.{i}.""" A__ : Optional[int] = f"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) A__ : List[Any] = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def _a ( __UpperCamelCase : int ): # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape ,1 ,1 ) def _a ( __UpperCamelCase : str ): lowerCAmelCase__ : Union[str, Any] = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowerCAmelCase__ : Optional[Any] = v.replace(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase__ : Optional[int] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowerCAmelCase__ : List[Any] = v.replace(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = v lowerCAmelCase__ : Tuple = {v: vae_state_dict[k] for k, v in mapping.items()} lowerCAmelCase__ : int = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f'''mid.attn_1.{weight_name}.weight''' in k: print(f'''Reshaping {k} for SD format''' ) lowerCAmelCase__ : List[str] = reshape_weight_for_sd(__UpperCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# A__ : List[Any] = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] A__ : Dict = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} A__ : str = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp A__ : Tuple = {"""q""": 0, """k""": 1, """v""": 2} def _a ( __UpperCamelCase : List[Any] ): lowerCAmelCase__ : str = {} lowerCAmelCase__ : int = {} lowerCAmelCase__ : Union[str, Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): lowerCAmelCase__ : Any = k[: -len('''.q_proj.weight''' )] lowerCAmelCase__ : str = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: lowerCAmelCase__ : str = [None, None, None] lowerCAmelCase__ : Union[str, Any] = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): lowerCAmelCase__ : Any = k[: -len('''.q_proj.bias''' )] lowerCAmelCase__ : Any = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: lowerCAmelCase__ : Any = [None, None, None] lowerCAmelCase__ : Tuple = v continue lowerCAmelCase__ : Optional[int] = textenc_pattern.sub(lambda __UpperCamelCase : protected[re.escape(m.group(0 ) )] ,__UpperCamelCase ) lowerCAmelCase__ : Tuple = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) lowerCAmelCase__ : Any = textenc_pattern.sub(lambda __UpperCamelCase : protected[re.escape(m.group(0 ) )] ,__UpperCamelCase ) lowerCAmelCase__ : Any = torch.cat(__UpperCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) lowerCAmelCase__ : Dict = textenc_pattern.sub(lambda __UpperCamelCase : protected[re.escape(m.group(0 ) )] ,__UpperCamelCase ) lowerCAmelCase__ : Dict = torch.cat(__UpperCamelCase ) return new_state_dict def _a ( __UpperCamelCase : Optional[int] ): return text_enc_dict if __name__ == "__main__": A__ : List[str] = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) A__ : Any = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors A__ : Union[str, Any] = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") A__ : Tuple = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") A__ : Union[str, Any] = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): A__ : Tuple = load_file(unet_path, device="""cpu""") else: A__ : Dict = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") A__ : int = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): A__ : Any = load_file(vae_path, device="""cpu""") else: A__ : Union[str, Any] = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") A__ : str = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): A__ : Any = load_file(text_enc_path, device="""cpu""") else: A__ : Union[str, Any] = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") A__ : Tuple = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model A__ : str = convert_unet_state_dict(unet_state_dict) A__ : Any = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model A__ : Optional[int] = convert_vae_state_dict(vae_state_dict) A__ : List[Any] = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper A__ : List[Any] = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm A__ : Union[str, Any] = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} A__ : int = convert_text_enc_state_dict_vaa(text_enc_dict) A__ : str = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: A__ : Union[str, Any] = convert_text_enc_state_dict(text_enc_dict) A__ : Dict = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint A__ : Optional[int] = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: A__ : List[Any] = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: A__ : List[Any] = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
233
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' ,['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' ,['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' ,[None, '''v2'''] ) def _a ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : List[str] ): lowerCAmelCase__ : int = hf_hub_url(repo_id=__UpperCamelCase ,path=__UpperCamelCase ,revision=__UpperCamelCase ) assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(__UpperCamelCase )}'''
233
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __snake_case ( lowerCamelCase__ ): '''simple docstring''' def UpperCAmelCase__ ( self : List[str] , A : Dict ): with open(__lowerCamelCase , encoding="""utf-8""" ) as input_file: __snake_case: int = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) __snake_case: Any = input_file.read() __snake_case: Any = regexp.search(__lowerCamelCase ) return match def UpperCAmelCase__ ( self : int , A : Union[str, Any] ): with open(__lowerCamelCase , encoding="""utf-8""" ) as input_file: __snake_case: List[Any] = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) __snake_case: Any = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __snake_case: Tuple = regexp.finditer(__lowerCamelCase ) __snake_case: Union[str, Any] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCAmelCase__ ( self : Tuple ): __snake_case: Any = Path("""./datasets""" ) __snake_case: Tuple = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__lowerCamelCase ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def UpperCAmelCase__ ( self : int ): __snake_case: Tuple = Path("""./datasets""" ) __snake_case: int = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(__lowerCamelCase ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
702
def A__ ( SCREAMING_SNAKE_CASE__ = 1000) -> int: __snake_case , __snake_case: Dict = 1, 1 __snake_case: int = 2 while True: __snake_case: str = 0 __snake_case: Any = fa + fa __snake_case , __snake_case: Tuple = fa, f index += 1 for _ in str(SCREAMING_SNAKE_CASE__): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
155
0
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = MvpTokenizer snake_case_ = MvpTokenizerFast snake_case_ = True snake_case_ = filter_roberta_detectors def lowercase_ ( self ) -> Any: '''simple docstring''' super().setUp() __lowerCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowerCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __lowerCamelCase = {'unk_token': '<unk>'} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def lowercase_ ( self , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowercase_ ( self , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def lowercase_ ( self ) -> List[Any]: '''simple docstring''' return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowerCamelCase = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCamelCase = tokenizer(lowerCamelCase__ , max_length=len(lowerCamelCase__ ) , padding=lowerCamelCase__ , return_tensors='pt' ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __lowerCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that special tokens are reset @require_torch def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCamelCase = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , lowerCamelCase__ ) self.assertIn('attention_mask' , lowerCamelCase__ ) self.assertNotIn('labels' , lowerCamelCase__ ) self.assertNotIn('decoder_attention_mask' , lowerCamelCase__ ) @require_torch def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCamelCase = tokenizer(text_target=lowerCamelCase__ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCamelCase = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'] , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='pt' ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = ['A long paragraph for summarization.'] __lowerCamelCase = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCamelCase = tokenizer(lowerCamelCase__ , text_target=lowerCamelCase__ , return_tensors='pt' ) __lowerCamelCase = inputs['input_ids'] __lowerCamelCase = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowercase_ ( self ) -> int: '''simple docstring''' pass def lowercase_ ( self ) -> Any: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = 'A, <mask> AllenNLP sentence.' __lowerCamelCase = tokenizer_r.encode_plus(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ ) __lowerCamelCase = tokenizer_p.encode_plus(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __lowerCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __lowerCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowerCamelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCamelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
469
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''pixel_values'''] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 255 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) __lowerCamelCase = size if size is not None else {'shortest_edge': 256} __lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) __lowerCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} __lowerCamelCase = get_size_dict(lowerCamelCase__ , param_name='crop_size' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size(lowerCamelCase__ , size=size['shortest_edge'] , default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCamelCase__ , size=(size['height'], size['width']) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ ) -> np.ndarray: '''simple docstring''' return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(lowerCamelCase__ , param_name='crop_size' ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] __lowerCamelCase = {'pixel_values': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowerCamelCase__ ): __lowerCamelCase = target_sizes.numpy() __lowerCamelCase = [] for idx in range(len(lowerCamelCase__ ) ): __lowerCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowerCamelCase__ ) __lowerCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCamelCase__ ) else: __lowerCamelCase = logits.argmax(dim=1 ) __lowerCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
469
1
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( _UpperCAmelCase ): """simple docstring""" lowercase__ : Union[str, Any] = (EulerDiscreteScheduler,) lowercase__ : Any = 10 def snake_case__ ( self : Union[str, Any] , **lowercase : str ) -> Optional[int]: """simple docstring""" __lowercase = { """num_train_timesteps""": 1_100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**lowercase ) return config def snake_case__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase ) def snake_case__ ( self : str ) -> int: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowercase , beta_end=lowercase ) def snake_case__ ( self : Any ) -> List[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase ) def snake_case__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase ) def snake_case__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(lowercase ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(lowercase , lowercase ) __lowercase = model(lowercase , lowercase ) __lowercase = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowercase ) ) __lowercase = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def snake_case__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase = scheduler_class(**lowercase ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(lowercase ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(lowercase , lowercase ) __lowercase = model(lowercase , lowercase ) __lowercase = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowercase ) ) __lowercase = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def snake_case__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase ) __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowercase = sample.to(lowercase ) for t in scheduler.timesteps: __lowercase = scheduler.scale_model_input(lowercase , lowercase ) __lowercase = model(lowercase , lowercase ) __lowercase = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowercase ) ) __lowercase = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def snake_case__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase , use_karras_sigmas=lowercase ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase ) __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowercase = sample.to(lowercase ) for t in scheduler.timesteps: __lowercase = scheduler.scale_model_input(lowercase , lowercase ) __lowercase = model(lowercase , lowercase ) __lowercase = scheduler.step(lowercase , lowercase , lowercase , generator=lowercase ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(lowercase ) ) __lowercase = torch.mean(torch.abs(lowercase ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
715
UpperCamelCase__ = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.355_818, } def UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowercase = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(lowercase__ )}" ) raise ValueError(lowercase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
634
0
'''simple docstring''' from typing import Any class lowerCAmelCase_ : def __init__( self , _UpperCamelCase )-> Union[str, Any]: _A = data _A = None def __repr__( self )-> str: return F'Node({self.data})' class lowerCAmelCase_ : def __init__( self )-> Union[str, Any]: _A = None def __iter__( self )-> Any: _A = self.head while node: yield node.data _A = node.next def __len__( self )-> int: return sum(1 for _ in self ) def __repr__( self )-> str: return "->".join([str(_UpperCamelCase ) for item in self] ) def __getitem__( self , _UpperCamelCase )-> Any: if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _UpperCamelCase , _UpperCamelCase )-> None: if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) _A = self.head for _ in range(_UpperCamelCase ): _A = current.next _A = data def UpperCamelCase ( self , _UpperCamelCase )-> None: self.insert_nth(len(self ) , _UpperCamelCase ) def UpperCamelCase ( self , _UpperCamelCase )-> None: self.insert_nth(0 , _UpperCamelCase ) def UpperCamelCase ( self , _UpperCamelCase , _UpperCamelCase )-> None: if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) _A = Node(_UpperCamelCase ) if self.head is None: _A = new_node elif index == 0: _A = self.head # link new_node to head _A = new_node else: _A = self.head for _ in range(index - 1 ): _A = temp.next _A = temp.next _A = new_node def UpperCamelCase ( self )-> None: # print every node data print(self ) def UpperCamelCase ( self )-> Any: return self.delete_nth(0 ) def UpperCamelCase ( self )-> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def UpperCamelCase ( self , _UpperCamelCase = 0 )-> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) _A = self.head # default first node if index == 0: _A = self.head.next else: _A = self.head for _ in range(index - 1 ): _A = temp.next _A = temp.next _A = temp.next.next return delete_node.data def UpperCamelCase ( self )-> bool: return self.head is None def UpperCamelCase ( self )-> None: _A = None _A = self.head while current: # Store the current node's next node. _A = current.next # Make the current node's next point backwards _A = prev # Make the previous node be the current node _A = current # Make the current node the next node (to progress iteration) _A = next_node # Return prev in order to put the head at the end _A = prev def lowerCamelCase_ ( ) -> None: """simple docstring""" _A = LinkedList() assert linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(__UpperCamelCase ) == i linked_list.insert_nth(__UpperCamelCase , i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(__UpperCamelCase ) == 9 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): _A = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(-8 , 1 ) ) def lowerCamelCase_ ( ) -> None: """simple docstring""" _A = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), 'dlrow olleH', 7, 5_5_5_5, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(1_0 ), None, None, 12.20, ] _A = LinkedList() for i in test_input: linked_list.insert_tail(__UpperCamelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__UpperCamelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _A = linked_list.delete_head() assert result == -9 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _A = linked_list.delete_tail() assert result == 12.2 assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _A = linked_list.delete_nth(1_0 ) assert result is None assert ( str(__UpperCamelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__UpperCamelCase ) assert ( str(__UpperCamelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__UpperCamelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCamelCase_ ( ) -> Dict: """simple docstring""" from doctest import testmod testmod() _A = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(__UpperCamelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) _A = input('Enter New Value: ' ).strip() print('New list:' ) print(__UpperCamelCase ) print(F'length of linked_list is : {len(__UpperCamelCase )}' ) if __name__ == "__main__": main()
292
'''simple docstring''' def lowerCamelCase_ ( __UpperCamelCase : list , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 ) -> int: """simple docstring""" _A = right or len(__UpperCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCamelCase , __UpperCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
292
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" return getitem, k def UpperCamelCase_( __magic_name__ : str , __magic_name__ : Any ): """simple docstring""" return setitem, k, v def UpperCamelCase_( __magic_name__ : Optional[int] ): """simple docstring""" return delitem, k def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : List[Any] , *__magic_name__ : Optional[Any] ): """simple docstring""" try: return fun(__magic_name__ , *__magic_name__ ), None except Exception as e: return None, e a = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def UpperCamelCase_( __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :Tuple = HashMap(initial_block_size=4 ) _lowerCAmelCase :int = {} for _, (fun, *args) in enumerate(__magic_name__ ): _lowerCAmelCase , _lowerCAmelCase :Union[str, Any] = _run_operation(__magic_name__ , __magic_name__ , *__magic_name__ ) _lowerCAmelCase , _lowerCAmelCase :str = _run_operation(__magic_name__ , __magic_name__ , *__magic_name__ ) assert my_res == py_res assert str(__magic_name__ ) == str(__magic_name__ ) assert set(__magic_name__ ) == set(__magic_name__ ) assert len(__magic_name__ ) == len(__magic_name__ ) assert set(my.items() ) == set(py.items() ) def UpperCamelCase_( ): """simple docstring""" def is_public(__magic_name__ : str ) -> bool: return not name.startswith('_' ) _lowerCAmelCase :int = {name for name in dir({} ) if is_public(__magic_name__ )} _lowerCAmelCase :Tuple = {name for name in dir(HashMap() ) if is_public(__magic_name__ )} assert dict_public_names > hash_public_names
382
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""MobileViTFeatureExtractor"""] a = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
382
1
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): _lowercase = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: _lowercase = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def _snake_case ( snake_case__ : Optional[Any] ): A = (images / 2 + 0.5).clamp(0 , 1 ) A = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A = numpy_to_pil(__lowerCAmelCase ) return images def _snake_case ( snake_case__ : Optional[int] ): if images.ndim == 3: A = images[None, ...] A = (images * 255).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images A = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: A = [Image.fromarray(__lowerCAmelCase ) for image in images] return pil_images
91
from __future__ import annotations import numpy as np def __a ( __lowerCAmelCase ) -> Optional[Any]: return np.maximum(0 , __lowerCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
352
0
import re import string import numpy as np import datasets A : List[Any] = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" A : int = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" A : List[str] = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): """simple docstring""" def __A ( self : str ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def __A ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int=None , __magic_name__ : List[Any]=False , __magic_name__ : Union[str, Any]=False , __magic_name__ : int=False , ) -> Any: if regexes_to_ignore is not None: for s in regexes_to_ignore: SCREAMING_SNAKE_CASE_ = np.array([re.sub(lowerCamelCase_ , "" , lowerCamelCase_ ) for x in predictions] ) SCREAMING_SNAKE_CASE_ = np.array([re.sub(lowerCamelCase_ , "" , lowerCamelCase_ ) for x in references] ) else: SCREAMING_SNAKE_CASE_ = np.asarray(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ = np.asarray(lowerCamelCase_ ) if ignore_case: SCREAMING_SNAKE_CASE_ = np.char.lower(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ = np.char.lower(lowerCamelCase_ ) if ignore_punctuation: SCREAMING_SNAKE_CASE_ = string.punctuation.maketrans("" , "" , string.punctuation ) SCREAMING_SNAKE_CASE_ = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_ ) if ignore_numbers: SCREAMING_SNAKE_CASE_ = string.digits.maketrans("" , "" , string.digits ) SCREAMING_SNAKE_CASE_ = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ = np.char.translate(lowerCamelCase_ , table=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ = predictions == references return {"exact_match": np.mean(lowerCamelCase_ ) * 100}
718
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : str = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''pixel_values'''] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 255 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) __lowerCamelCase = size if size is not None else {'shortest_edge': 256} __lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) __lowerCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} __lowerCamelCase = get_size_dict(lowerCamelCase__ , param_name='crop_size' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowerCamelCase = get_resize_output_image_size(lowerCamelCase__ , size=size['shortest_edge'] , default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCamelCase__ , size=(size['height'], size['width']) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ ) -> np.ndarray: '''simple docstring''' return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ) -> str: '''simple docstring''' __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(lowerCamelCase__ , param_name='crop_size' ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] __lowerCamelCase = {'pixel_values': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowerCamelCase__ ): __lowerCamelCase = target_sizes.numpy() __lowerCamelCase = [] for idx in range(len(lowerCamelCase__ ) ): __lowerCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowerCamelCase__ ) __lowerCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCamelCase__ ) else: __lowerCamelCase = logits.argmax(dim=1 ) __lowerCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
469
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> List[str]: """simple docstring""" __lowerCamelCase = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCamelCase = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } __lowerCamelCase = F"""{src_lang}-{tgt_lang}""" __lowerCamelCase = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) __lowerCamelCase = os.path.join(UpperCamelCase__ , 'README.md' ) print(F"""Generating {path}""" ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(UpperCamelCase__ ) # make sure we are under the root of the project __A = Path(__file__).resolve().parent.parent.parent __A = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __A = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
469
1
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> List[Any]: '''simple docstring''' lowerCamelCase__ = WavaVecaForSequenceClassification.from_pretrained(A_ ,config=A_ ) lowerCamelCase__ = downstream_dict['''projector.weight'''] lowerCamelCase__ = downstream_dict['''projector.bias'''] lowerCamelCase__ = downstream_dict['''model.post_net.linear.weight'''] lowerCamelCase__ = downstream_dict['''model.post_net.linear.bias'''] return model def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase__ = WavaVecaForAudioFrameClassification.from_pretrained(A_ ,config=A_ ) lowerCamelCase__ = downstream_dict['''model.linear.weight'''] lowerCamelCase__ = downstream_dict['''model.linear.bias'''] return model def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> Tuple: '''simple docstring''' lowerCamelCase__ = WavaVecaForXVector.from_pretrained(A_ ,config=A_ ) lowerCamelCase__ = downstream_dict['''connector.weight'''] lowerCamelCase__ = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowerCamelCase__ = downstream_dict[ F'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] lowerCamelCase__ = downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias'] lowerCamelCase__ = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] lowerCamelCase__ = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] lowerCamelCase__ = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] lowerCamelCase__ = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] lowerCamelCase__ = downstream_dict['''objective.W'''] return model @torch.no_grad() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Tuple: '''simple docstring''' lowerCamelCase__ = torch.load(A_ ,map_location='''cpu''' ) lowerCamelCase__ = checkpoint['''Downstream'''] lowerCamelCase__ = WavaVecaConfig.from_pretrained(A_ ) lowerCamelCase__ = WavaVecaFeatureExtractor.from_pretrained( A_ ,return_attention_mask=A_ ,do_normalize=A_ ) lowerCamelCase__ = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): lowerCamelCase__ = convert_classification(A_ ,A_ ,A_ ) elif arch.endswith('''ForAudioFrameClassification''' ): lowerCamelCase__ = convert_diarization(A_ ,A_ ,A_ ) elif arch.endswith('''ForXVector''' ): lowerCamelCase__ = convert_xvector(A_ ,A_ ,A_ ) else: raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: lowerCamelCase__ = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(A_ ) hf_model.save_pretrained(A_ ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") _a = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
709
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCAmelCase__(__snake_case ) -> Union[str, Any]: '''simple docstring''' def wrapper(*__snake_case ,**__snake_case ): lowerCamelCase__ = timeit.default_timer() lowerCamelCase__ = func(*__snake_case ,**__snake_case ) lowerCamelCase__ = timeit.default_timer() - starttime return delta lowerCamelCase__ = func.__name__ return wrapper def lowerCAmelCase__(__snake_case ,__snake_case=100 ,__snake_case=None ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = seq_shapes or {} for i in range(__snake_case ): lowerCamelCase__ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__snake_case ,_ArrayXD ): lowerCamelCase__ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__snake_case ,datasets.Value ): if v.dtype == "string": lowerCamelCase__ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCamelCase__ = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(__snake_case ,datasets.Sequence ): while isinstance(__snake_case ,datasets.Sequence ): lowerCamelCase__ = v.feature lowerCamelCase__ = seq_shapes[k] lowerCamelCase__ = np.random.rand(*__snake_case ).astype(v.dtype ) lowerCamelCase__ = data dummy_data.append((i, example) ) return dummy_data def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=100 ,__snake_case=None ) -> str: '''simple docstring''' lowerCamelCase__ = generate_examples(__snake_case ,num_examples=__snake_case ,seq_shapes=__snake_case ) with ArrowWriter(features=__snake_case ,path=__snake_case ) as writer: for key, record in dummy_data: lowerCamelCase__ = features.encode_example(__snake_case ) writer.write(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) lowerCamelCase__ = datasets.Dataset.from_file(filename=__snake_case ,info=datasets.DatasetInfo(features=__snake_case ) ) return dataset
29
0
import string def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> None: for key in range(len(string.ascii_uppercase ) ): _A = '''''' for symbol in message: if symbol in string.ascii_uppercase: _A = string.ascii_uppercase.find(_snake_case ) _A = num - key if num < 0: _A = num + len(string.ascii_uppercase ) _A = translated + string.ascii_uppercase[num] else: _A = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def SCREAMING_SNAKE_CASE_ ( ) -> None: _A = input('''Encrypted message: ''' ) _A = message.upper() decrypt(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
2
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase=None , lowerCAmelCase=None ): if not conversation_id: UpperCAmelCase_ = uuid.uuida() if past_user_inputs is None: UpperCAmelCase_ = [] if generated_responses is None: UpperCAmelCase_ = [] UpperCAmelCase_ = conversation_id UpperCAmelCase_ = past_user_inputs UpperCAmelCase_ = generated_responses UpperCAmelCase_ = text def __eq__( self , lowerCAmelCase ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = False ): if self.new_user_input: if overwrite: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' f'''with: "{text}".''' ) UpperCAmelCase_ = text else: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' f'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: UpperCAmelCase_ = text def A__ ( self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) UpperCAmelCase_ = None def A__ ( self , lowerCAmelCase ): self.generated_responses.append(lowerCAmelCase ) def A__ ( self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): UpperCAmelCase_ = f'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): UpperCAmelCase_ = "user" if is_user else "bot" output += f'''{name} >> {text} \n''' return output @add_end_docstrings( lowercase__, r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ', ) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) if self.tokenizer.pad_token_id is None: UpperCAmelCase_ = self.tokenizer.eos_token def A__ ( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} UpperCAmelCase_ = {} if min_length_for_response is not None: UpperCAmelCase_ = min_length_for_response if minimum_tokens is not None: UpperCAmelCase_ = minimum_tokens if "max_length" in generate_kwargs: UpperCAmelCase_ = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: UpperCAmelCase_ = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , lowerCAmelCase , lowerCAmelCase=0 , **lowerCAmelCase ): UpperCAmelCase_ = super().__call__(lowerCAmelCase , num_workers=lowerCAmelCase , **lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) == 1: return outputs[0] return outputs def A__ ( self , lowerCAmelCase , lowerCAmelCase=32 ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( f'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): UpperCAmelCase_ = self.tokenizer._build_conversation_input_ids(lowerCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version UpperCAmelCase_ = self._legacy_parse_and_tokenize(lowerCAmelCase ) if self.framework == "pt": UpperCAmelCase_ = torch.LongTensor([input_ids] ) elif self.framework == "tf": UpperCAmelCase_ = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def A__ ( self , lowerCAmelCase , lowerCAmelCase=10 , **lowerCAmelCase ): UpperCAmelCase_ = generate_kwargs.get("max_length" , self.model.config.max_length ) UpperCAmelCase_ = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(f'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) UpperCAmelCase_ = max_length - minimum_tokens UpperCAmelCase_ = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: UpperCAmelCase_ = model_inputs["attention_mask"][:, -trim:] UpperCAmelCase_ = model_inputs.pop("conversation" ) UpperCAmelCase_ = max_length UpperCAmelCase_ = self.model.generate(**lowerCAmelCase , **lowerCAmelCase ) if self.model.config.is_encoder_decoder: UpperCAmelCase_ = 1 else: UpperCAmelCase_ = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def A__ ( self , lowerCAmelCase , lowerCAmelCase=True ): UpperCAmelCase_ = model_outputs["output_ids"] UpperCAmelCase_ = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) UpperCAmelCase_ = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(lowerCAmelCase ) return conversation def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = self.tokenizer.eos_token_id UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) if len(lowerCAmelCase ) > self.tokenizer.model_max_length: UpperCAmelCase_ = input_ids[-self.tokenizer.model_max_length :] return input_ids
579
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _lowerCAmelCase ( __magic_name__ :str , __magic_name__ :str , __magic_name__ :Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase_ = quote(__magic_name__ ) return hfh.hf_hub_url(__magic_name__ , __magic_name__ , repo_type='''dataset''' , revision=__magic_name__ )
407
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _lowerCAmelCase ( __magic_name__ :list , __magic_name__ :list , __magic_name__ :list , __magic_name__ :list , __magic_name__ :list ): UpperCAmelCase_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) UpperCAmelCase_ = np.array(__magic_name__ ) UpperCAmelCase_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _lowerCAmelCase ( __magic_name__ :list , __magic_name__ :list , __magic_name__ :list ): UpperCAmelCase_ = (1, 2, 1) UpperCAmelCase_ = (1, 1, 0, 7) UpperCAmelCase_ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) UpperCAmelCase_ = model.fit(disp=__magic_name__ , maxiter=6_0_0 , method='''nm''' ) UpperCAmelCase_ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def _lowerCAmelCase ( __magic_name__ :list , __magic_name__ :list , __magic_name__ :list ): UpperCAmelCase_ = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) UpperCAmelCase_ = regressor.predict(__magic_name__ ) return y_pred[0] def _lowerCAmelCase ( __magic_name__ :list ): train_user.sort() UpperCAmelCase_ = np.percentile(__magic_name__ , 2_5 ) UpperCAmelCase_ = np.percentile(__magic_name__ , 7_5 ) UpperCAmelCase_ = qa - qa UpperCAmelCase_ = qa - (iqr * 0.1) return low_lim def _lowerCAmelCase ( __magic_name__ :list , __magic_name__ :float ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i in list_vote: if i > actual_result: UpperCAmelCase_ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _lowerCamelCase : List[str] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] _lowerCamelCase : Any = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) _lowerCamelCase : Optional[Any] = Normalizer().fit_transform(data_input_df.values) # split data _lowerCamelCase : List[str] = normalize_df[:, 2].tolist() _lowerCamelCase : Dict = normalize_df[:, 0].tolist() _lowerCamelCase : Optional[Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _lowerCamelCase : Union[str, Any] = normalize_df[:, [1, 2]].tolist() _lowerCamelCase : Any = x[: len(x) - 1] _lowerCamelCase : Optional[int] = x[len(x) - 1 :] # for linear regression & sarimax _lowerCamelCase : List[str] = total_date[: len(total_date) - 1] _lowerCamelCase : Any = total_user[: len(total_user) - 1] _lowerCamelCase : Dict = total_match[: len(total_match) - 1] _lowerCamelCase : Any = total_date[len(total_date) - 1 :] _lowerCamelCase : List[str] = total_user[len(total_user) - 1 :] _lowerCamelCase : Any = total_match[len(total_match) - 1 :] # voting system with forecasting _lowerCamelCase : List[str] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _lowerCamelCase : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
407
1
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCamelCase : Union[str, Any] = get_logger(__name__) def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str]=0 ): os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with FSDP.state_dict_type( __lowerCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowerCamelCase__ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowerCamelCase__ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowerCamelCase__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowerCamelCase__ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowerCamelCase__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowerCamelCase__ = os.path.join(__lowerCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) lowerCamelCase__ = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=__lowerCAmelCase , storage_writer=dist_cp.FileSystemWriter(__lowerCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def A__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Dict=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowerCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__lowerCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return lowerCamelCase__ = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowerCamelCase__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) lowerCamelCase__ = torch.load(__lowerCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowerCamelCase__ = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowerCamelCase__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) lowerCamelCase__ = torch.load(__lowerCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowerCamelCase__ = ( os.path.join(__lowerCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) lowerCamelCase__ = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=__lowerCAmelCase , storage_reader=dist_cp.FileSystemReader(__lowerCAmelCase ) , planner=DefaultLoadPlanner() , ) lowerCamelCase__ = state_dict["""model"""] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int=0 ): os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with FSDP.state_dict_type( __lowerCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowerCamelCase__ = FSDP.optim_state_dict(__lowerCAmelCase , __lowerCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowerCamelCase__ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowerCamelCase__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: lowerCamelCase__ = os.path.join(__lowerCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(__lowerCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowerCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowerCamelCase__ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowerCamelCase__ = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowerCamelCase__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) lowerCamelCase__ = torch.load(__lowerCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: lowerCamelCase__ = ( os.path.join(__lowerCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) lowerCamelCase__ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(__lowerCAmelCase ) , ) lowerCamelCase__ = optim_state["""optimizer"""] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) lowerCamelCase__ = FSDP.optim_state_dict_to_load(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) optimizer.load_state_dict(__lowerCAmelCase )
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Tuple = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
1
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __snake_case : '''simple docstring''' UpperCamelCase__ : Any = PegasusConfig UpperCamelCase__ : Optional[int] = {} UpperCamelCase__ : Union[str, Any] = """gelu""" def __init__( self , a_ , a_=13 , a_=7 , a_=True , a_=False , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_=0.1 , a_=0.1 , a_=20 , a_=2 , a_=1 , a_=0 , ): a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = eos_token_id a__ = pad_token_id a__ = bos_token_id def _a ( self ): a__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) a__ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) a__ = np.concatenate([input_ids, eos_tensor] , axis=1 ) a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a__ = prepare_pegasus_inputs_dict(a_ , a_ , a_ ) return config, inputs_dict def _a ( self , a_ , a_ , a_ ): a__ = 20 a__ = model_class_name(a_ ) a__ = model.encode(inputs_dict["""input_ids"""] ) a__ , a__ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) a__ = model.init_cache(decoder_input_ids.shape[0] , a_ , a_ ) a__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) a__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a__ = model.decode( decoder_input_ids[:, :-1] , a_ , decoder_attention_mask=a_ , past_key_values=a_ , decoder_position_ids=a_ , ) a__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) a__ = model.decode( decoder_input_ids[:, -1:] , a_ , decoder_attention_mask=a_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=a_ , ) a__ = model.decode(a_ , a_ ) a__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def _a ( self , a_ , a_ , a_ ): a__ = 20 a__ = model_class_name(a_ ) a__ = model.encode(inputs_dict["""input_ids"""] ) a__ , a__ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) a__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) a__ = model.init_cache(decoder_input_ids.shape[0] , a_ , a_ ) a__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a__ = model.decode( decoder_input_ids[:, :-1] , a_ , decoder_attention_mask=a_ , past_key_values=a_ , decoder_position_ids=a_ , ) a__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) a__ = model.decode( decoder_input_ids[:, -1:] , a_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=a_ , decoder_position_ids=a_ , ) a__ = model.decode(a_ , a_ , decoder_attention_mask=a_ ) a__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def A_ ( __a : Union[str, Any] , __a : List[str] , __a : Tuple , __a : Dict=None , __a : Optional[Any]=None , ): """simple docstring""" if attention_mask is None: a__ = np.not_equal(__a , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: a__ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __snake_case ( SCREAMING_SNAKE_CASE ,unittest.TestCase): '''simple docstring''' UpperCamelCase__ : int = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCamelCase__ : Any = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCamelCase__ : Any = True UpperCamelCase__ : Dict = False UpperCamelCase__ : List[str] = False UpperCamelCase__ : str = False def _a ( self ): a__ = FlaxPegasusModelTester(self ) a__ = ConfigTester(self , config_class=a_ ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(a_ , a_ , a_ ) def _a ( self ): a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(a_ , a_ , a_ ) def _a ( self ): a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a__ = self._prepare_for_class(a_ , a_ ) a__ = model_class(a_ ) @jax.jit def encode_jitted(a_ , a_=None , **a_ ): return model.encode(input_ids=a_ , attention_mask=a_ ) with self.subTest("""JIT Enabled""" ): a__ = encode_jitted(**a_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): a__ = encode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) ) for jitted_output, output in zip(a_ , a_ ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( self ): a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a__ = model_class(a_ ) a__ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) a__ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(a_ , a_ , a_ ): return model.decode( decoder_input_ids=a_ , decoder_attention_mask=a_ , encoder_outputs=a_ , ) with self.subTest("""JIT Enabled""" ): a__ = decode_jitted(**a_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): a__ = decode_jitted(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) ) for jitted_output, output in zip(a_ , a_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _a ( self ): for model_class_name in self.all_model_classes: a__ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=a_ ) a__ = np.ones((1, 1) ) a__ = model(a_ ) self.assertIsNotNone(a_ ) @slow def _a ( self ): a__ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) a__ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) a__ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] a__ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] a__ = tokenizer(a_ , return_tensors="""np""" , truncation=a_ , max_length=512 , padding=a_ ) a__ = model.generate(**a_ , num_beams=2 ).sequences a__ = tokenizer.batch_decode(a_ , skip_special_tokens=a_ ) assert tgt_text == decoded
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
351
0
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : int = 4_000_000 ) -> int: '''simple docstring''' _UpperCAmelCase : Optional[int] = [0, 1] _UpperCAmelCase : Union[str, Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 _UpperCAmelCase : Union[str, Any] = 0 for j in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"{solution() = }")
289
"""simple docstring""" # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class UpperCAmelCase_ : def __init__( self : Optional[Any] , A : List[str] , A : List[str] , A : bool = True , A : bool = False ): _UpperCAmelCase : Dict = scheduler _UpperCAmelCase : str = optimizers if isinstance(A , (list, tuple) ) else [optimizers] _UpperCAmelCase : List[str] = split_batches _UpperCAmelCase : Dict = step_with_optimizer _UpperCAmelCase : Tuple = GradientState() def snake_case_ ( self : Optional[int] , *A : List[Any] , **A : Optional[int] ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*A , **A ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*A , **A ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _UpperCAmelCase : int = AcceleratorState().num_processes for _ in range(A ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*A , **A ) else: self.scheduler.step(*A , **A ) def snake_case_ ( self : Union[str, Any] ): return self.scheduler.get_last_lr() def snake_case_ ( self : str ): return self.scheduler.state_dict() def snake_case_ ( self : str , A : Optional[Any] ): self.scheduler.load_state_dict(A ) def snake_case_ ( self : Tuple ): return self.scheduler.get_lr() def snake_case_ ( self : Optional[int] , *A : List[str] , **A : Optional[Any] ): return self.scheduler.print_lr(*A , **A )
289
1
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml UpperCamelCase__ = NewType('''DataClass''', Any) UpperCamelCase__ = NewType('''DataClassType''', Any) def UpperCAmelCase ( snake_case : Tuple ): if isinstance(snake_case , snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def UpperCAmelCase ( snake_case : list ): _lowerCAmelCase:int = {str(snake_case ): choice for choice in choices} return lambda snake_case : str_to_choice.get(snake_case , snake_case ) def UpperCAmelCase ( *, snake_case : Union[str, List[str]] = None , snake_case : str = None , snake_case : Any = dataclasses.MISSING , snake_case : Callable[[], Any] = dataclasses.MISSING , snake_case : dict = None , **snake_case : Optional[int] , ): if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls _lowerCAmelCase:Tuple = {} if aliases is not None: _lowerCAmelCase:Union[str, Any] = aliases if help is not None: _lowerCAmelCase:Any = help return dataclasses.field(metadata=snake_case , default=snake_case , default_factory=snake_case , **snake_case ) class a__ ( UpperCamelCase_ ): snake_case__ = 42 def __init__( self : List[Any] ,a__ : Union[DataClassType, Iterable[DataClassType]] ,**a__ : Optional[Any]) -> Any: """simple docstring""" if "formatter_class" not in kwargs: _lowerCAmelCase:List[Any] = ArgumentDefaultsHelpFormatter super().__init__(**a__) if dataclasses.is_dataclass(a__): _lowerCAmelCase:int = [dataclass_types] _lowerCAmelCase:List[Any] = list(a__) for dtype in self.dataclass_types: self._add_dataclass_arguments(a__) @staticmethod def __UpperCamelCase ( a__ : ArgumentParser ,a__ : dataclasses.Field) -> str: """simple docstring""" _lowerCAmelCase:Tuple = F'--{field.name}' _lowerCAmelCase:int = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,a__): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''') _lowerCAmelCase:Optional[int] = kwargs.pop('''aliases''' ,[]) if isinstance(a__ ,a__): _lowerCAmelCase:Union[str, Any] = [aliases] _lowerCAmelCase:Any = getattr(field.type ,'''__origin__''' ,field.type) if origin_type is Union or (hasattr(a__ ,'''UnionType''') and isinstance(a__ ,types.UnionType)): if str not in field.type.__args__ and ( len(field.type.__args__) != 2 or type(a__) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F' Problem encountered in field \'{field.name}\'.') if type(a__) not in field.type.__args__: # filter `str` in Union _lowerCAmelCase:int = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] _lowerCAmelCase:Union[str, Any] = getattr(field.type ,'''__origin__''' ,field.type) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) _lowerCAmelCase:int = ( field.type.__args__[0] if isinstance(a__ ,field.type.__args__[1]) else field.type.__args__[1] ) _lowerCAmelCase:Tuple = getattr(field.type ,'''__origin__''' ,field.type) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) _lowerCAmelCase:Union[str, Any] = {} if origin_type is Literal or (isinstance(field.type ,a__) and issubclass(field.type ,a__)): if origin_type is Literal: _lowerCAmelCase:Optional[int] = field.type.__args__ else: _lowerCAmelCase:Dict = [x.value for x in field.type] _lowerCAmelCase:Any = make_choice_type_function(kwargs['''choices''']) if field.default is not dataclasses.MISSING: _lowerCAmelCase:Optional[Any] = field.default else: _lowerCAmelCase:Any = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument _lowerCAmelCase:Tuple = copy(a__) # Hack because type=bool in argparse does not behave as we want. _lowerCAmelCase:Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. _lowerCAmelCase:int = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way _lowerCAmelCase:Tuple = default # This tells argparse we accept 0 or 1 value after --field_name _lowerCAmelCase:Any = '''?''' # This is the value that will get picked if we do --field_name (without value) _lowerCAmelCase:str = True elif isclass(a__) and issubclass(a__ ,a__): _lowerCAmelCase:Dict = field.type.__args__[0] _lowerCAmelCase:Dict = '''+''' if field.default_factory is not dataclasses.MISSING: _lowerCAmelCase:List[Any] = field.default_factory() elif field.default is dataclasses.MISSING: _lowerCAmelCase:str = True else: _lowerCAmelCase:Tuple = field.type if field.default is not dataclasses.MISSING: _lowerCAmelCase:List[Any] = field.default elif field.default_factory is not dataclasses.MISSING: _lowerCAmelCase:Optional[int] = field.default_factory() else: _lowerCAmelCase:str = True parser.add_argument(a__ ,*a__ ,**a__) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): _lowerCAmelCase:Any = False parser.add_argument(F'--no_{field.name}' ,action='''store_false''' ,dest=field.name ,**a__) def __UpperCamelCase ( self : Tuple ,a__ : DataClassType) -> Tuple: """simple docstring""" if hasattr(a__ ,'''_argument_group_name'''): _lowerCAmelCase:Union[str, Any] = self.add_argument_group(dtype._argument_group_name) else: _lowerCAmelCase:int = self try: _lowerCAmelCase:Dict[str, type] = get_type_hints(a__) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''') except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(a__): _lowerCAmelCase:Optional[int] = '''.'''.join(map(a__ ,sys.version_info[:3])) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''') from ex raise for field in dataclasses.fields(a__): if not field.init: continue _lowerCAmelCase:int = type_hints[field.name] self._parse_dataclass_field(a__ ,a__) def __UpperCamelCase ( self : str ,a__ : str=None ,a__ : Union[str, Any]=False ,a__ : Union[str, Any]=True ,a__ : List[str]=None ,a__ : List[str]=None ,) -> Tuple[DataClass, ...]: """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv)): _lowerCAmelCase:str = [] if args_filename: args_files.append(Path(a__)) elif look_for_args_file and len(sys.argv): args_files.append(Path(sys.argv[0]).with_suffix('''.args''')) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values _lowerCAmelCase:Union[str, Any] = ArgumentParser() args_file_parser.add_argument(a__ ,type=a__ ,action='''append''') # Use only remaining args for further parsing (remove the args_file_flag) _lowerCAmelCase , _lowerCAmelCase:int = args_file_parser.parse_known_args(args=a__) _lowerCAmelCase:int = vars(a__).get(args_file_flag.lstrip('''-''') ,a__) if cmd_args_file_paths: args_files.extend([Path(a__) for p in cmd_args_file_paths]) _lowerCAmelCase:List[Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last _lowerCAmelCase:Optional[Any] = file_args + args if args is not None else file_args + sys.argv[1:] _lowerCAmelCase , _lowerCAmelCase:Optional[Any] = self.parse_known_args(args=a__) _lowerCAmelCase:List[Any] = [] for dtype in self.dataclass_types: _lowerCAmelCase:str = {f.name for f in dataclasses.fields(a__) if f.init} _lowerCAmelCase:Any = {k: v for k, v in vars(a__).items() if k in keys} for k in keys: delattr(a__ ,a__) _lowerCAmelCase:str = dtype(**a__) outputs.append(a__) if len(namespace.__dict__) > 0: # additional namespace. outputs.append(a__) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}') return (*outputs,) def __UpperCamelCase ( self : Tuple ,a__ : Dict[str, Any] ,a__ : bool = False) -> Tuple[DataClass, ...]: """simple docstring""" _lowerCAmelCase:Dict = set(args.keys()) _lowerCAmelCase:str = [] for dtype in self.dataclass_types: _lowerCAmelCase:Optional[int] = {f.name for f in dataclasses.fields(a__) if f.init} _lowerCAmelCase:Any = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys()) _lowerCAmelCase:Optional[Any] = dtype(**a__) outputs.append(a__) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(a__)}') return tuple(a__) def __UpperCamelCase ( self : Any ,a__ : str ,a__ : bool = False) -> Tuple[DataClass, ...]: """simple docstring""" with open(Path(a__) ,encoding='''utf-8''') as open_json_file: _lowerCAmelCase:Union[str, Any] = json.loads(open_json_file.read()) _lowerCAmelCase:Optional[Any] = self.parse_dict(a__ ,allow_extra_keys=a__) return tuple(a__) def __UpperCamelCase ( self : str ,a__ : str ,a__ : bool = False) -> Tuple[DataClass, ...]: """simple docstring""" _lowerCAmelCase:str = self.parse_dict(yaml.safe_load(Path(a__).read_text()) ,allow_extra_keys=a__) return tuple(a__)
439
"""simple docstring""" from ...configuration_utils import PretrainedConfig class a__ ( UpperCamelCase_ ): snake_case__ = '''bert-generation''' def __init__( self : Dict ,a__ : str=5_0358 ,a__ : List[str]=1024 ,a__ : int=24 ,a__ : Optional[Any]=16 ,a__ : List[str]=4096 ,a__ : Optional[int]="gelu" ,a__ : str=0.1 ,a__ : Union[str, Any]=0.1 ,a__ : int=512 ,a__ : Dict=0.02 ,a__ : List[Any]=1E-12 ,a__ : List[Any]=0 ,a__ : int=2 ,a__ : str=1 ,a__ : Dict="absolute" ,a__ : int=True ,**a__ : List[str] ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=a__ ,bos_token_id=a__ ,eos_token_id=a__ ,**a__) _lowerCAmelCase:Optional[Any] = vocab_size _lowerCAmelCase:Union[str, Any] = hidden_size _lowerCAmelCase:Any = num_hidden_layers _lowerCAmelCase:int = num_attention_heads _lowerCAmelCase:int = hidden_act _lowerCAmelCase:List[Any] = intermediate_size _lowerCAmelCase:Optional[Any] = hidden_dropout_prob _lowerCAmelCase:int = attention_probs_dropout_prob _lowerCAmelCase:Optional[int] = max_position_embeddings _lowerCAmelCase:Dict = initializer_range _lowerCAmelCase:Union[str, Any] = layer_norm_eps _lowerCAmelCase:int = position_embedding_type _lowerCAmelCase:Tuple = use_cache
439
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Tuple = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : int = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
493
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = TransfoXLTokenizer a = False a = False def lowercase_ ( self : List[str] ) -> List[Any]: super().setUp() SCREAMING_SNAKE_CASE__ = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase_ ( self : int , **__lowerCamelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowercase_ ( self : str , __lowerCamelCase : Dict ) -> str: SCREAMING_SNAKE_CASE__ = '''<unk> UNwanted , running''' SCREAMING_SNAKE_CASE__ = '''<unk> unwanted, running''' return input_text, output_text def lowercase_ ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(__lowerCamelCase , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [0, 4, 8, 7] ) def lowercase_ ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = TransfoXLTokenizer(lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def lowercase_ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = TransfoXLTokenizer(lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = TransfoXLTokenizer(lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' SCREAMING_SNAKE_CASE__ = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowerCamelCase ) , __lowerCamelCase ) def lowercase_ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowerCamelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
493
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class _UpperCamelCase( SCREAMING_SNAKE_CASE ): __A: Union[str, Any] = """falcon""" __A: int = ["""past_key_values"""] def __init__( self : List[Any] , _lowerCamelCase : str=6_50_24 , _lowerCamelCase : Any=45_44 , _lowerCamelCase : Union[str, Any]=32 , _lowerCamelCase : Optional[Any]=71 , _lowerCamelCase : str=1E-5 , _lowerCamelCase : List[str]=0.02 , _lowerCamelCase : str=True , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=False , _lowerCamelCase : Dict=False , _lowerCamelCase : Any=True , _lowerCamelCase : int=True , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : List[Any]=11 , _lowerCamelCase : List[str]=11 , **_lowerCamelCase : List[str] , ): _UpperCAmelCase : Tuple = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase : List[Any] = kwargs.pop("n_embed" , _lowerCamelCase ) _UpperCAmelCase : int = hidden_size if n_embed is None else n_embed _UpperCAmelCase : List[Any] = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Dict = layer_norm_epsilon _UpperCAmelCase : List[str] = initializer_range _UpperCAmelCase : Any = use_cache _UpperCAmelCase : str = hidden_dropout _UpperCAmelCase : Dict = attention_dropout _UpperCAmelCase : Optional[Any] = bos_token_id _UpperCAmelCase : str = eos_token_id _UpperCAmelCase : Optional[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase : Optional[int] = alibi _UpperCAmelCase : Optional[Any] = new_decoder_architecture _UpperCAmelCase : Dict = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase : List[str] = parallel_attn _UpperCAmelCase : List[Any] = bias super().__init__(bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) @property def a__ ( self : List[str] ): return self.hidden_size // self.num_attention_heads @property def a__ ( self : Optional[Any] ): return not self.alibi
328
from __future__ import annotations def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> set[str]: """simple docstring""" _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = set(_SCREAMING_SNAKE_CASE ), [start] while stack: _UpperCAmelCase : Optional[Any] = stack.pop() explored.add(_SCREAMING_SNAKE_CASE ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_SCREAMING_SNAKE_CASE ) return explored __lowerCamelCase = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
328
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : Optional[Any] = logging.get_logger(__name__) _snake_case : str = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """xlm""" a_ = { """hidden_size""": """emb_dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", """n_words""": """vocab_size""", # For backward compatibility } def __init__( self : Tuple , lowerCAmelCase_ : Optional[int]=3_0_1_4_5 , lowerCAmelCase_ : Any=2_0_4_8 , lowerCAmelCase_ : Optional[Any]=1_2 , lowerCAmelCase_ : List[str]=1_6 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=5_1_2 , lowerCAmelCase_ : List[str]=2_0_4_8**-0.5 , lowerCAmelCase_ : List[str]=1e-12 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Optional[Any]="first" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : str=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Tuple=0 , **lowerCAmelCase_ : Optional[int] , ) -> int: __lowerCAmelCase = vocab_size __lowerCAmelCase = emb_dim __lowerCAmelCase = n_layers __lowerCAmelCase = n_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = gelu_activation __lowerCAmelCase = sinusoidal_embeddings __lowerCAmelCase = causal __lowerCAmelCase = asm __lowerCAmelCase = n_langs __lowerCAmelCase = use_lang_emb __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = bos_index __lowerCAmelCase = eos_index __lowerCAmelCase = pad_index __lowerCAmelCase = unk_index __lowerCAmelCase = mask_index __lowerCAmelCase = is_encoder __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = embed_init_std __lowerCAmelCase = init_std __lowerCAmelCase = summary_type __lowerCAmelCase = summary_use_proj __lowerCAmelCase = summary_activation __lowerCAmelCase = summary_proj_to_labels __lowerCAmelCase = summary_first_dropout __lowerCAmelCase = start_n_top __lowerCAmelCase = end_n_top __lowerCAmelCase = mask_token_id __lowerCAmelCase = lang_id if "n_words" in kwargs: __lowerCAmelCase = kwargs['n_words'] super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @property def lowercase ( self : int ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
53
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : int ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Union[str, Any] ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Any ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_, split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Any, lowerCAmelCase_ : Dict ): if issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = text_path elif issubclass(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = [text_path] __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple=("train",) ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Dict ): __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = TextDatasetReader({'train': text_path}, cache_dir=lowerCAmelCase_, keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[Any] ): __lowerCAmelCase = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = TextDatasetReader({'train': text_path}, features=lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : Optional[int] ): if split: __lowerCAmelCase = {split: text_path} else: __lowerCAmelCase = 'train' __lowerCAmelCase = {'train': text_path, 'test': text_path} __lowerCAmelCase = tmp_path / 'cache' __lowerCAmelCase = {'text': 'string'} __lowerCAmelCase = TextDatasetReader(lowerCAmelCase_, cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_, lowerCAmelCase_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
53
1
def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : int ): '''simple docstring''' while second != 0: lowerCamelCase_ = first & second first ^= second lowerCamelCase_ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Optional[Any] = int(input("Enter the first number: ").strip()) lowerCamelCase : List[str] = int(input("Enter the second number: ").strip()) print(F"""{add(first, second) = }""")
720
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' return EnvironmentCommand() class A( UpperCamelCase ): '''simple docstring''' @staticmethod def a__ ( A_ : ArgumentParser ) -> str: """simple docstring""" lowerCamelCase_ = parser.add_parser('env' ) download_parser.set_defaults(func=A_ ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = huggingface_hub.__version__ lowerCamelCase_ = 'not installed' lowerCamelCase_ = 'NA' if is_torch_available(): import torch lowerCamelCase_ = torch.__version__ lowerCamelCase_ = torch.cuda.is_available() lowerCamelCase_ = 'not installed' if is_transformers_available(): import transformers lowerCamelCase_ = transformers.__version__ lowerCamelCase_ = 'not installed' if is_accelerate_available(): import accelerate lowerCamelCase_ = accelerate.__version__ lowerCamelCase_ = 'not installed' if is_xformers_available(): import xformers lowerCamelCase_ = xformers.__version__ lowerCamelCase_ = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(A_ ) ) return info @staticmethod def a__ ( A_ : Dict ) -> Any: """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
651
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( lowerCamelCase__ ,unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = OpenAIGPTTokenizer UpperCAmelCase__ = OpenAIGPTTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = False def __snake_case ( self): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCamelCase : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _lowerCamelCase : Any = dict(zip(a__ , range(len(a__)))) _lowerCamelCase : List[str] = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] _lowerCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) _lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''') as fp: fp.write(json.dumps(a__)) with open(self.merges_file , '''w''') as fp: fp.write('''\n'''.join(a__)) def __snake_case ( self , a__): """simple docstring""" return "lower newer", "lower newer" def __snake_case ( self): """simple docstring""" _lowerCamelCase : Optional[Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file) _lowerCamelCase : Dict = '''lower''' _lowerCamelCase : Optional[Any] = ['''low''', '''er</w>'''] _lowerCamelCase : List[Any] = tokenizer.tokenize(a__) self.assertListEqual(a__ , a__) _lowerCamelCase : Any = tokens + ['''<unk>'''] _lowerCamelCase : Optional[int] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__) , a__) def __snake_case ( self , a__=15): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): _lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(a__ , **a__) # Simple input _lowerCamelCase : Optional[int] = '''This is a simple input''' _lowerCamelCase : Optional[Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] _lowerCamelCase : Optional[int] = ('''This is a simple input''', '''This is a pair''') _lowerCamelCase : List[Any] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding='''max_length''') # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding='''max_length''') # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding='''max_length''' , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding='''max_length''') # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding='''max_length''') # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding='''max_length''' , ) def __snake_case ( self): """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class __A ( lowerCamelCase__ ): """simple docstring""" pass
114
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self): """simple docstring""" _lowerCamelCase : List[Any] = tempfile.mkdtemp() _lowerCamelCase : List[str] = BlipImageProcessor() _lowerCamelCase : Union[str, Any] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') _lowerCamelCase : Any = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') _lowerCamelCase : Any = InstructBlipProcessor(a__ , a__ , a__) processor.save_pretrained(self.tmpdirname) def __snake_case ( self , **a__): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a__).tokenizer def __snake_case ( self , **a__): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a__).image_processor def __snake_case ( self , **a__): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a__).qformer_tokenizer def __snake_case ( self): """simple docstring""" shutil.rmtree(self.tmpdirname) def __snake_case ( self): """simple docstring""" _lowerCamelCase : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] _lowerCamelCase : List[str] = [Image.fromarray(np.moveaxis(a__ , 0 , -1)) for x in image_inputs] return image_inputs def __snake_case ( self): """simple docstring""" _lowerCamelCase : Optional[Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) _lowerCamelCase : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') _lowerCamelCase : str = self.get_image_processor(do_normalize=a__ , padding_value=1.0) _lowerCamelCase : Tuple = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=a__ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , a__) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , a__) self.assertIsInstance(processor.qformer_tokenizer , a__) def __snake_case ( self): """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase : Any = self.get_qformer_tokenizer() _lowerCamelCase : Dict = InstructBlipProcessor( tokenizer=a__ , image_processor=a__ , qformer_tokenizer=a__) _lowerCamelCase : List[Any] = self.prepare_image_inputs() _lowerCamelCase : List[str] = image_processor(a__ , return_tensors='''np''') _lowerCamelCase : List[Any] = processor(images=a__ , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __snake_case ( self): """simple docstring""" _lowerCamelCase : Any = self.get_image_processor() _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : int = self.get_qformer_tokenizer() _lowerCamelCase : Tuple = InstructBlipProcessor( tokenizer=a__ , image_processor=a__ , qformer_tokenizer=a__) _lowerCamelCase : List[Any] = '''lower newer''' _lowerCamelCase : Any = processor(text=a__) _lowerCamelCase : Optional[int] = tokenizer(a__ , return_token_type_ids=a__) _lowerCamelCase : Optional[Any] = qformer_tokenizer(a__ , return_token_type_ids=a__) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __snake_case ( self): """simple docstring""" _lowerCamelCase : List[Any] = self.get_image_processor() _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase : Optional[Any] = self.get_qformer_tokenizer() _lowerCamelCase : List[Any] = InstructBlipProcessor( tokenizer=a__ , image_processor=a__ , qformer_tokenizer=a__) _lowerCamelCase : List[Any] = '''lower newer''' _lowerCamelCase : Tuple = self.prepare_image_inputs() _lowerCamelCase : Tuple = processor(text=a__ , images=a__) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(a__): processor() def __snake_case ( self): """simple docstring""" _lowerCamelCase : int = self.get_image_processor() _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : List[Any] = self.get_qformer_tokenizer() _lowerCamelCase : Optional[Any] = InstructBlipProcessor( tokenizer=a__ , image_processor=a__ , qformer_tokenizer=a__) _lowerCamelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : Tuple = processor.batch_decode(a__) _lowerCamelCase : str = tokenizer.batch_decode(a__) self.assertListEqual(a__ , a__) def __snake_case ( self): """simple docstring""" _lowerCamelCase : List[str] = self.get_image_processor() _lowerCamelCase : Dict = self.get_tokenizer() _lowerCamelCase : str = self.get_qformer_tokenizer() _lowerCamelCase : str = InstructBlipProcessor( tokenizer=a__ , image_processor=a__ , qformer_tokenizer=a__) _lowerCamelCase : str = '''lower newer''' _lowerCamelCase : str = self.prepare_image_inputs() _lowerCamelCase : List[Any] = processor(text=a__ , images=a__) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
114
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 3_2 , snake_case_ = 6_4 , snake_case_ = 2_0 , snake_case_ = 7_6_8 , snake_case_=7_7 , snake_case_=4 , snake_case_ = 0.0 , snake_case_ = "silu" , snake_case_ = None , snake_case_ = None , snake_case_ = "linear" , snake_case_ = "prd" , snake_case_ = None , snake_case_ = None , snake_case_ = None , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Dict = attention_head_dim UpperCAmelCase_ : int = num_attention_heads * attention_head_dim UpperCAmelCase_ : str = additional_embeddings UpperCAmelCase_ : List[Any] = time_embed_dim or inner_dim UpperCAmelCase_ : Tuple = embedding_proj_dim or embedding_dim UpperCAmelCase_ : Union[str, Any] = clip_embed_dim or embedding_dim UpperCAmelCase_ : Tuple = Timesteps(snake_case_ , snake_case_ , 0 ) UpperCAmelCase_ : Tuple = TimestepEmbedding(snake_case_ , snake_case_ , out_dim=snake_case_ , act_fn=snake_case_ ) UpperCAmelCase_ : Union[str, Any] = nn.Linear(snake_case_ , snake_case_ ) if embedding_proj_norm_type is None: UpperCAmelCase_ : Optional[Any] = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ : Dict = nn.LayerNorm(snake_case_ ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ : Tuple = nn.Linear(snake_case_ , snake_case_ ) if encoder_hid_proj_type is None: UpperCAmelCase_ : List[Any] = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ : Tuple = nn.Linear(snake_case_ , snake_case_ ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ : Dict = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case_ ) ) if added_emb_type == "prd": UpperCAmelCase_ : Tuple = nn.Parameter(torch.zeros(1 , 1 , snake_case_ ) ) elif added_emb_type is None: UpperCAmelCase_ : str = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ : Dict = nn.ModuleList( [ BasicTransformerBlock( snake_case_ , snake_case_ , snake_case_ , dropout=snake_case_ , activation_fn='gelu' , attention_bias=snake_case_ , ) for d in range(snake_case_ ) ] ) if norm_in_type == "layer": UpperCAmelCase_ : int = nn.LayerNorm(snake_case_ ) elif norm_in_type is None: UpperCAmelCase_ : List[str] = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ : int = nn.LayerNorm(snake_case_ ) UpperCAmelCase_ : int = nn.Linear(snake_case_ , snake_case_ ) UpperCAmelCase_ : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , snake_case_ , persistent=snake_case_ ) UpperCAmelCase_ : List[Any] = nn.Parameter(torch.zeros(1 , snake_case_ ) ) UpperCAmelCase_ : Any = nn.Parameter(torch.zeros(1 , snake_case_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = {} def fn_recursive_add_processors(snake_case_ , snake_case_ , snake_case_ ): if hasattr(snake_case_ , 'set_processor' ): UpperCAmelCase_ : Any = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , snake_case_ , snake_case_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case_ , snake_case_ , snake_case_ ) return processors def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = len(self.attn_processors.keys() ) if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(snake_case_ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(snake_case_ , snake_case_ , snake_case_ ): if hasattr(snake_case_ , 'set_processor' ): if not isinstance(snake_case_ , snake_case_ ): module.set_processor(snake_case_ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , snake_case_ , snake_case_ ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case_ , snake_case_ , snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = True , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = hidden_states.shape[0] UpperCAmelCase_ : Any = timestep if not torch.is_tensor(snake_case_ ): UpperCAmelCase_ : Any = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(snake_case_ ) and len(timesteps.shape ) == 0: UpperCAmelCase_ : Union[str, Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ : Optional[Any] = timesteps * torch.ones(snake_case_ , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ : List[str] = self.time_proj(snake_case_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ : List[str] = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ : List[Any] = self.time_embedding(snake_case_ ) if self.embedding_proj_norm is not None: UpperCAmelCase_ : Union[str, Any] = self.embedding_proj_norm(snake_case_ ) UpperCAmelCase_ : Tuple = self.embedding_proj(snake_case_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ : Tuple = self.encoder_hidden_states_proj(snake_case_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) UpperCAmelCase_ : Optional[int] = self.proj_in(snake_case_ ) UpperCAmelCase_ : Tuple = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Tuple = 0 if encoder_hidden_states is not None: additional_embeds.append(snake_case_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ : Dict = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ : str = hidden_states[:, None, :] UpperCAmelCase_ : Optional[Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ : Dict = self.prd_embedding.to(hidden_states.dtype ).expand(snake_case_ , -1 , -1 ) additional_embeds.append(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = torch.cat( snake_case_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ : Union[str, Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ : Optional[int] = F.pad( snake_case_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ : List[Any] = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 UpperCAmelCase_ : Dict = F.pad(snake_case_ , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ : List[str] = self.norm_in(snake_case_ ) for block in self.transformer_blocks: UpperCAmelCase_ : List[str] = block(snake_case_ , attention_mask=snake_case_ ) UpperCAmelCase_ : Dict = self.norm_out(snake_case_ ) if self.prd_embedding is not None: UpperCAmelCase_ : Optional[Any] = hidden_states[:, -1] else: UpperCAmelCase_ : List[Any] = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ : List[Any] = self.proj_to_clip_embeddings(snake_case_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=snake_case_ ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Any = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
389
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('xlm-roberta-base' ) UpperCAmelCase_ : Tuple = 'The dog is cute and lives in the garden house' UpperCAmelCase_ : Dict = jnp.array([tokenizer.encode(snake_case_ )] ) UpperCAmelCase_ : str = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase_ : List[str] = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) UpperCAmelCase_ : str = model(snake_case_ )['last_hidden_state'] self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , snake_case_ , atol=1E-3 ) )
389
1
"""simple docstring""" from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets A_ : str = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' A_ : Optional[Any] = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' A_ : List[str] = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def __snake_case ( __A : Union[str, Any] , __A : List[str] ) -> Any: '''simple docstring''' return float((preds == labels).mean() ) def __snake_case ( __A : Union[str, Any] , __A : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = simple_accuracy(__A , __A ) SCREAMING_SNAKE_CASE : Optional[Any] = float(fa_score(y_true=__A , y_pred=__A ) ) return { "accuracy": acc, "f1": fa, } def __snake_case ( __A : List[Any] , __A : str ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = float(pearsonr(__A , __A )[0] ) SCREAMING_SNAKE_CASE : Tuple = float(spearmanr(__A , __A )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def _lowerCAmelCase ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "stsb": return pearson_and_spearman(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
265
"""simple docstring""" from __future__ import annotations def __snake_case ( __A : list[int] ) -> list[int]: '''simple docstring''' if len(__A ) == 0: return array SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = min(__A ), max(__A ) # Compute the variables SCREAMING_SNAKE_CASE : Optional[int] = _max - _min + 1 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: SCREAMING_SNAKE_CASE : List[Any] = i - _min SCREAMING_SNAKE_CASE : Dict = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. SCREAMING_SNAKE_CASE : int = 0 for i in range(__A ): while holes_repeat[i] > 0: SCREAMING_SNAKE_CASE : int = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() A_ : Optional[Any] = input('Enter numbers separated by comma:\n') A_ : Union[str, Any] = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
265
1
from __future__ import annotations def lowerCAmelCase ( UpperCamelCase__ : tuple[int, int] , UpperCamelCase__ : int ) -> list[tuple[int, int]]: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: int = position __SCREAMING_SNAKE_CASE: Optional[int] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __SCREAMING_SNAKE_CASE: Tuple = [] for position in positions: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(UpperCamelCase__ ) return permissible_positions def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] ) -> bool: """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def lowerCAmelCase ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : tuple[int, int] , UpperCamelCase__ : int ) -> bool: """simple docstring""" if is_complete(UpperCamelCase__ ): return True for position in get_valid_pos(UpperCamelCase__ , len(UpperCamelCase__ ) ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Tuple = position if board[y][x] == 0: __SCREAMING_SNAKE_CASE: Union[str, Any] = curr + 1 if open_knight_tour_helper(UpperCamelCase__ , UpperCamelCase__ , curr + 1 ): return True __SCREAMING_SNAKE_CASE: List[Any] = 0 return False def lowerCAmelCase ( UpperCamelCase__ : int ) -> list[list[int]]: """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = [[0 for i in range(UpperCamelCase__ )] for j in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __SCREAMING_SNAKE_CASE: Dict = 1 if open_knight_tour_helper(UpperCamelCase__ , (i, j) , 1 ): return board __SCREAMING_SNAKE_CASE: Union[str, Any] = 0 __SCREAMING_SNAKE_CASE: Optional[int] = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
146
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCAmelCase : Optional[int] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCAmelCase : List[Any] = """main""" # Default branch name lowerCAmelCase : int = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) lowerCAmelCase : str = """aaaaaaa""" # This commit does not exist, so we should 404. lowerCAmelCase : int = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes lowerCAmelCase : Union[str, Any] = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def lowerCAmelCase ( ) -> Dict: """simple docstring""" print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" print('''Bonjour!''' ) yield print('''Au revoir!''' ) class a ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class a ( unittest.TestCase ): @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def snake_case_ ( self ): """simple docstring""" self.assertEqual(find_labels(_lowerCAmelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_lowerCAmelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_lowerCAmelCase ) , ['''start_positions''', '''end_positions'''] ) class a ( __lowercase ): pass self.assertEqual(find_labels(_lowerCAmelCase ) , ['''labels'''] ) @require_tf def snake_case_ ( self ): """simple docstring""" self.assertEqual(find_labels(_lowerCAmelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_lowerCAmelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_lowerCAmelCase ) , ['''start_positions''', '''end_positions'''] ) class a ( __lowercase ): pass self.assertEqual(find_labels(_lowerCAmelCase ) , ['''labels'''] ) @require_flax def snake_case_ ( self ): """simple docstring""" self.assertEqual(find_labels(_lowerCAmelCase ) , [] ) self.assertEqual(find_labels(_lowerCAmelCase ) , [] ) self.assertEqual(find_labels(_lowerCAmelCase ) , [] ) class a ( __lowercase ): pass self.assertEqual(find_labels(_lowerCAmelCase ) , [] )
146
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase_ : List[str] = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
24
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py __SCREAMING_SNAKE_CASE = """src/transformers""" __SCREAMING_SNAKE_CASE = """docs/source/en""" __SCREAMING_SNAKE_CASE = """.""" def __a ( a, a, a ): """simple docstring""" with open(a, "r", encoding="utf-8", newline="\n" ) as f: _a = f.readlines() # Find the start prompt. _a = 0 while not lines[start_index].startswith(a ): start_index += 1 start_index += 1 _a = start_index while not lines[end_index].startswith(a ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | __SCREAMING_SNAKE_CASE = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. __SCREAMING_SNAKE_CASE = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") __SCREAMING_SNAKE_CASE = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __SCREAMING_SNAKE_CASE = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE = direct_transformers_import(TRANSFORMERS_PATH) def __a ( a ): """simple docstring""" _a = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", a ) return [m.group(0 ) for m in matches] def __a ( a, a ): """simple docstring""" _a = 2 if text == "✅" or text == "❌" else len(a ) _a = (width - text_length) // 2 _a = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def __a ( ): """simple docstring""" _a = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _a = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _a = {name: config.replace("Config", "" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _a = collections.defaultdict(a ) _a = collections.defaultdict(a ) _a = collections.defaultdict(a ) _a = collections.defaultdict(a ) _a = collections.defaultdict(a ) # Let's lookup through all transformers object (once). for attr_name in dir(a ): _a = None if attr_name.endswith("Tokenizer" ): _a = slow_tokenizers _a = attr_name[:-9] elif attr_name.endswith("TokenizerFast" ): _a = fast_tokenizers _a = attr_name[:-1_3] elif _re_tf_models.match(a ) is not None: _a = tf_models _a = _re_tf_models.match(a ).groups()[0] elif _re_flax_models.match(a ) is not None: _a = flax_models _a = _re_flax_models.match(a ).groups()[0] elif _re_pt_models.match(a ) is not None: _a = pt_models _a = _re_pt_models.match(a ).groups()[0] if lookup_dict is not None: while len(a ) > 0: if attr_name in model_name_to_prefix.values(): _a = True break # Try again after removing the last word in the name _a = "".join(camel_case_split(a )[:-1] ) # Let's build that table! _a = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _a = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _a = [len(a ) + 2 for c in columns] _a = max([len(a ) for name in model_names] ) + 2 # Build the table per se _a = "|" + "|".join([_center_text(a, a ) for c, w in zip(a, a )] ) + "|\n" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n" _a = {True: "✅", False: "❌"} for name in model_names: _a = model_name_to_prefix[name] _a = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(a, a ) for l, w in zip(a, a )] ) + "|\n" return table def __a ( a=False ): """simple docstring""" _a , _a , _a , _a = _find_text_in_file( filename=os.path.join(a, "index.md" ), start_prompt="<!--This table is updated automatically from the auto modules", end_prompt="<!-- End table-->", ) _a = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(a, "index.md" ), "w", encoding="utf-8", newline="\n" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __SCREAMING_SNAKE_CASE = parser.parse_args() check_model_table(args.fix_and_overwrite)
388
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class snake_case__ : """simple docstring""" def __init__( self : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple=13 , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=99 , __lowerCamelCase : Tuple=32 , __lowerCamelCase : List[str]=5 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : List[str]=37 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : List[Any]=5_12 , __lowerCamelCase : int=16 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : int=3 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=None , ) -> Any: a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : str ) -> Optional[Any]: a = LlamaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) a = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Dict , ) -> Tuple: a = True a = LlamaModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) a = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , ) a = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , ) -> str: a = LlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , ) -> Optional[Any]: a = True a = True a = LlamaForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # first forward pass a = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase , ) a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a = torch.cat([input_ids, next_tokens] , dim=-1 ) a = torch.cat([input_mask, next_mask] , dim=-1 ) a = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["hidden_states"][0] a = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["hidden_states"][0] # select random slice a = ids_tensor((1,) , output_from_past.shape[-1] ).item() a = output_from_no_past[:, -3:, random_slice_idx].detach() a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def __UpperCAmelCase ( self : Optional[Any] ) -> str: a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case__ (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : str = (LlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = ( { """feature-extraction""": LlamaModel, """text-classification""": LlamaForSequenceClassification, """text-generation""": LlamaForCausalLM, """zero-shot""": LlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: a = LlamaModelTester(self ) a = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : int ) -> List[str]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> str: a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: a , a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = input_dict["input_ids"] a = input_ids.ne(1 ).to(__lowerCamelCase ) a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a = LlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: a , a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = "single_label_classification" a = input_dict["input_ids"] a = input_ids.ne(1 ).to(__lowerCamelCase ) a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a = LlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: a , a = self.model_tester.prepare_config_and_inputs_for_common() a = 3 a = "multi_label_classification" a = input_dict["input_ids"] a = input_ids.ne(1 ).to(__lowerCamelCase ) a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) a = LlamaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def __UpperCAmelCase ( self : Dict ) -> Any: pass @parameterized.expand([("linear",), ("dynamic",)] ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Tuple ) -> Union[str, Any]: a , a = self.model_tester.prepare_config_and_inputs_for_common() a = ids_tensor([1, 10] , config.vocab_size ) a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a = LlamaModel(__lowerCamelCase ) original_model.to(__lowerCamelCase ) original_model.eval() a = original_model(__lowerCamelCase ).last_hidden_state a = original_model(__lowerCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a = {"type": scaling_type, "factor": 10.0} a = LlamaModel(__lowerCamelCase ) scaled_model.to(__lowerCamelCase ) scaled_model.eval() a = scaled_model(__lowerCamelCase ).last_hidden_state a = scaled_model(__lowerCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-5 ) ) @require_torch class snake_case__ (unittest.TestCase ): """simple docstring""" @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __UpperCAmelCase ( self : Dict ) -> int: a = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) a = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 a = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off a = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowerCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __UpperCAmelCase ( self : Dict ) -> List[str]: a = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) a = model(torch.tensor(__lowerCamelCase ) ) # Expected mean on dim = -1 a = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off a = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowerCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def __UpperCAmelCase ( self : Any ) -> Tuple: a = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) a = model(torch.tensor(__lowerCamelCase ) ) # Expected mean on dim = -1 a = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off a = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: a = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] a = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) a = model(torch.tensor(__lowerCamelCase ) ) a = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __lowerCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off a = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __lowerCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Model is curently gated" ) @slow def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" a = "Simply put, the theory of relativity states that " a = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) a = tokenizer.encode(__lowerCamelCase , return_tensors="pt" ) a = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=__lowerCamelCase ) # greedy generation outputs a = model.generate(__lowerCamelCase , max_new_tokens=64 , top_p=__lowerCamelCase , temperature=1 , do_sample=__lowerCamelCase ) a = tokenizer.decode(generated_ids[0] , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
662
from __future__ import annotations import time import numpy as np __lowerCAmelCase : List[str] = [8, 5, 9, 7] __lowerCAmelCase : str = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __lowerCAmelCase : Optional[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class snake_case__ : """simple docstring""" def __init__( self : Any , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ) -> None: a = claim_vector a = allocated_resources_table a = maximum_claim_table def __UpperCAmelCase ( self : List[str] ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __UpperCAmelCase ( self : str ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __UpperCAmelCase ( self : Dict ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __UpperCAmelCase ( self : Dict ) -> dict[int, list[int]]: return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def __UpperCAmelCase ( self : Optional[Any] , **__lowerCamelCase : Any ) -> None: a = self.__need() a = self.__allocated_resources_table a = self.__available_resources() a = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: a = False for each_need in need_list: a = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: a = False break if execution: a = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: a = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack a = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def __UpperCAmelCase ( self : Any ) -> str: print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}""" + " ".join(f"""{it:>8}""" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}""" + " ".join(f"""{it:>8}""" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
662
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCAmelCase_ ( lowerCamelCase ): return (data["data"], data["target"]) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Optional[Any] =XGBClassifier() classifier.fit(lowerCamelCase , lowerCamelCase ) return classifier def lowerCAmelCase_ ( ): __magic_name__ : Dict =load_iris() __magic_name__ , __magic_name__ : Union[str, Any] =data_handling(lowerCamelCase ) __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] =train_test_split( lowerCamelCase , lowerCamelCase , test_size=0.2_5 ) __magic_name__ : Any =iris["""target_names"""] # Create an XGBoost Classifier from the training data __magic_name__ : Union[str, Any] =xgboost(lowerCamelCase , lowerCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , display_labels=lowerCamelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
21
import heapq def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase , [-1 * len(lowerCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices __magic_name__ : Tuple =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __magic_name__ : Tuple =heapq.heappop(lowerCamelCase )[1][0] chosen_vertices.add(lowerCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __magic_name__ : Tuple =elem[1][1].index(lowerCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
1
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Union[str, Any] = [] for part_id in partition_order: snake_case_ : Any = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(__UpperCamelCase ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Any = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() snake_case_ : Any = spark.range(1_00 ).repartition(1 ) snake_case_ : int = Spark(__UpperCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : int = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() snake_case_ : Any = spark.range(10 ).repartition(2 ) snake_case_ : int = [1, 0] snake_case_ : int = _generate_iterable_examples(__UpperCamelCase , __UpperCamelCase ) # Reverse the partitions. snake_case_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCamelCase , __UpperCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case_ ,snake_case_ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Union[str, Any] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() snake_case_ : int = spark.range(10 ).repartition(1 ) snake_case_ : List[Any] = SparkExamplesIterable(__UpperCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__UpperCamelCase ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Union[str, Any] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() snake_case_ : List[Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: snake_case_ : Tuple = lambda __a : x.reverse() snake_case_ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCamelCase , [2, 1, 0] ) snake_case_ : Tuple = SparkExamplesIterable(__UpperCamelCase ).shuffle_data_sources(__UpperCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__UpperCamelCase ): snake_case_ ,snake_case_ : int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() snake_case_ : Any = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case_ : List[str] = SparkExamplesIterable(__UpperCamelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCamelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__UpperCamelCase ): snake_case_ ,snake_case_ : List[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case_ : Tuple = SparkExamplesIterable(__UpperCamelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCamelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__UpperCamelCase ): snake_case_ ,snake_case_ : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() snake_case_ : Optional[int] = spark.range(1_00 ).repartition(1 ) snake_case_ : List[Any] = Spark(__UpperCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
713
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _SCREAMING_SNAKE_CASE = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") _SCREAMING_SNAKE_CASE = F'''https://www.google.com/search?q={query}&num=100''' _SCREAMING_SNAKE_CASE = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: _SCREAMING_SNAKE_CASE = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: _SCREAMING_SNAKE_CASE = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
534
0
def a ( A__ : int = 10 , A__ : int = 1000 , A__ : bool = True ) -> int: """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and isinstance(A__ , A__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def a ( A__ : int , A__ : int ) -> int: """simple docstring""" return int((number_a + number_a) / 2 ) def a ( A__ : int , A__ : int , A__ : int ) -> None: """simple docstring""" assert ( isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and isinstance(A__ , A__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(A__ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) _lowercase =lower _lowercase =higher _lowercase =[] while True: _lowercase =get_avg(A__ , A__ ) last_numbers.append(A__ ) if answer(A__ ) == "low": _lowercase =number elif answer(A__ ) == "high": _lowercase =number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def a ( ) -> None: """simple docstring""" _lowercase =int(input('Enter lower value : ' ).strip() ) _lowercase =int(input('Enter high value : ' ).strip() ) _lowercase =int(input('Enter value to guess : ' ).strip() ) guess_the_number(A__ , A__ , A__ ) if __name__ == "__main__": main()
291
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): def A__ ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =1 _lowercase =3 _lowercase =(32, 32) _lowercase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase ) return image @property def A__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _lowercase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) _lowercase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) _lowercase =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase ) @property def A__ ( self ) -> Tuple: '''simple docstring''' def extract(*lowerCAmelCase , **lowerCAmelCase ): class __lowerCAmelCase : def __init__( self ) -> Union[str, Any]: '''simple docstring''' _lowercase =torch.ones([0] ) def A__ ( self , lowerCAmelCase ) -> Dict: '''simple docstring''' self.pixel_values.to(lowerCAmelCase ) return self return Out() return extract def A__ ( self ) -> int: '''simple docstring''' _lowercase ='cpu' # ensure determinism for the device-dependent torch.Generator _lowercase =self.dummy_cond_unet _lowercase =PNDMScheduler(skip_prk_steps=lowerCAmelCase ) _lowercase =self.dummy_vae _lowercase =self.dummy_text_encoder _lowercase =XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) _lowercase =77 _lowercase =self.dummy_image.to(lowerCAmelCase ) _lowercase =init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowercase =AltDiffusionImgaImgPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) _lowercase =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase ) _lowercase =alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) _lowercase ='A painting of a squirrel eating a burger' _lowercase =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) _lowercase =alt_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=lowerCAmelCase , ) _lowercase =output.images _lowercase =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) _lowercase =alt_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=lowerCAmelCase , return_dict=lowerCAmelCase , )[0] _lowercase =image[0, -3:, -3:, -1] _lowercase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase =np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =self.dummy_cond_unet _lowercase =PNDMScheduler(skip_prk_steps=lowerCAmelCase ) _lowercase =self.dummy_vae _lowercase =self.dummy_text_encoder _lowercase =XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) _lowercase =77 _lowercase =self.dummy_image.to(lowerCAmelCase ) # put models in fp16 _lowercase =unet.half() _lowercase =vae.half() _lowercase =bert.half() # make sure here that pndm scheduler skips prk _lowercase =AltDiffusionImgaImgPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) _lowercase =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase ) _lowercase =alt_pipe.to(lowerCAmelCase ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase ) _lowercase ='A painting of a squirrel eating a burger' _lowercase =torch.manual_seed(0 ) _lowercase =alt_pipe( [prompt] , generator=lowerCAmelCase , num_inference_steps=2 , output_type='np' , image=lowerCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def A__ ( self ) -> int: '''simple docstring''' _lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 _lowercase =init_image.resize((760, 504) ) _lowercase ='BAAI/AltDiffusion' _lowercase =AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase , safety_checker=lowerCAmelCase , ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() _lowercase ='A fantasy landscape, trending on artstation' _lowercase =torch.manual_seed(0 ) _lowercase =pipe( prompt=lowerCAmelCase , image=lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=lowerCAmelCase , output_type='np' , ) _lowercase =output.images[0] _lowercase =image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _lowercase =np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def A__ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> str: '''simple docstring''' _lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _lowercase =init_image.resize((768, 512) ) _lowercase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) _lowercase ='BAAI/AltDiffusion' _lowercase =AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase , safety_checker=lowerCAmelCase , ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() _lowercase ='A fantasy landscape, trending on artstation' _lowercase =torch.manual_seed(0 ) _lowercase =pipe( prompt=lowerCAmelCase , image=lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=lowerCAmelCase , output_type='np' , ) _lowercase =output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
291
1
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _UpperCAmelCase = logging.getLogger(__name__) class __magic_name__ ( lowercase_ ): """simple docstring""" _UpperCamelCase = "sequence-classification" def __init__( self , a__ ): if type(a__ ) == dict: _lowerCamelCase = Namespace(**a__ ) _lowerCamelCase = glue_output_modes[hparams.task] _lowerCamelCase = glue_tasks_num_labels[hparams.task] super().__init__(a__ , a__ , self.mode ) def _UpperCAmelCase ( self , **a__ ): return self.model(**a__ ) def _UpperCAmelCase ( self , a__ , a__ ): _lowerCamelCase = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCamelCase = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None _lowerCamelCase = self(**a__ ) _lowerCamelCase = outputs[0] _lowerCamelCase = self.trainer.lr_schedulers[0]['''scheduler'''] _lowerCamelCase = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _UpperCAmelCase ( self ): _lowerCamelCase = self.hparams _lowerCamelCase = processors[args.task]() _lowerCamelCase = processor.get_labels() for mode in ["train", "dev"]: _lowerCamelCase = self._feature_file(a__ ) if os.path.exists(a__ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , a__ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) _lowerCamelCase = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) _lowerCamelCase = convert_examples_to_features( a__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(a__ , a__ ) def _UpperCAmelCase ( self , a__ , a__ , a__ = False ): _lowerCamelCase = '''dev''' if mode == '''test''' else mode _lowerCamelCase = self._feature_file(a__ ) logger.info('''Loading features from cached file %s''' , a__ ) _lowerCamelCase = torch.load(a__ ) _lowerCamelCase = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _lowerCamelCase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _lowerCamelCase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _lowerCamelCase = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _lowerCamelCase = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a__ , a__ , a__ , a__ ) , batch_size=a__ , shuffle=a__ , ) def _UpperCAmelCase ( self , a__ , a__ ): _lowerCamelCase = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _lowerCamelCase = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None _lowerCamelCase = self(**a__ ) _lowerCamelCase , _lowerCamelCase = outputs[:2] _lowerCamelCase = logits.detach().cpu().numpy() _lowerCamelCase = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _UpperCAmelCase ( self , a__ ): _lowerCamelCase = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() _lowerCamelCase = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _lowerCamelCase = np.argmax(a__ , axis=1 ) elif self.hparams.glue_output_mode == "regression": _lowerCamelCase = np.squeeze(a__ ) _lowerCamelCase = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) _lowerCamelCase = [[] for _ in range(out_label_ids.shape[0] )] _lowerCamelCase = [[] for _ in range(out_label_ids.shape[0] )] _lowerCamelCase = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , a__ , a__ )} _lowerCamelCase = dict(results.items() ) _lowerCamelCase = results return ret, preds_list, out_label_list def _UpperCAmelCase ( self , a__ ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self._eval_end(a__ ) _lowerCamelCase = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _UpperCAmelCase ( self , a__ ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = self._eval_end(a__ ) _lowerCamelCase = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _UpperCAmelCase ( a__ , a__ ): BaseTransformer.add_model_specific_args(a__ , a__ ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=a__ , required=a__ , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=a__ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def _lowerCamelCase ( ): """simple docstring""" _lowerCamelCase = argparse.ArgumentParser() add_generic_args(_a , os.getcwd() ) _lowerCamelCase = GLUETransformer.add_model_specific_args(_a , os.getcwd() ) _lowerCamelCase = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _lowerCamelCase = os.path.join( '''./results''' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _lowerCamelCase = GLUETransformer(_a ) _lowerCamelCase = generic_train(_a , _a ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _lowerCamelCase = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=_a ) ) _lowerCamelCase = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_a ) if __name__ == "__main__": main()
297
def _lowerCamelCase ( _a ): """simple docstring""" if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _lowerCamelCase = gray_code_sequence_string(_a ) # # convert them to integers for i in range(len(_a ) ): _lowerCamelCase = int(sequence[i] , 2 ) return sequence def _lowerCamelCase ( _a ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _lowerCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _lowerCamelCase = gray_code_sequence_string(bit_count - 1 ) _lowerCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _lowerCamelCase = '''0''' + smaller_sequence[i] sequence.append(_a ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _lowerCamelCase = '''1''' + smaller_sequence[i] sequence.append(_a ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
297
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''squeezebert/squeezebert-uncased''': 5_1_2, '''squeezebert/squeezebert-mnli''': 5_1_2, '''squeezebert/squeezebert-mnli-headless''': 5_1_2, } __snake_case = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_INIT_CONFIGURATION _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = SqueezeBertTokenizer def __init__( self: Dict,A_: int=None,A_: int=None,A_: List[Any]=True,A_: Any="[UNK]",A_: List[Any]="[SEP]",A_: int="[PAD]",A_: Optional[Any]="[CLS]",A_: List[str]="[MASK]",A_: int=True,A_: Dict=None,**A_: int,): '''simple docstring''' super().__init__( A_,tokenizer_file=A_,do_lower_case=A_,unk_token=A_,sep_token=A_,pad_token=A_,cls_token=A_,mask_token=A_,tokenize_chinese_chars=A_,strip_accents=A_,**A_,) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase',A_ ) != do_lower_case or normalizer_state.get('strip_accents',A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars',A_ ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(A_,normalizer_state.pop('type' ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**A_ ) __UpperCamelCase = do_lower_case def snake_case_ ( self: Dict,A_: Tuple,A_: Union[str, Any]=None ): '''simple docstring''' __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self: Any,A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self: Union[str, Any],A_: str,A_: Optional[str] = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(A_,name=A_ ) return tuple(A_ )
1
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __lowerCAmelCase : str =get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") __lowerCAmelCase : Tuple =get_tests_dir("""fixtures/vocab.json""") __lowerCAmelCase : Tuple =get_tests_dir("""fixtures""") class _A ( unittest.TestCase ): snake_case__ : List[Any] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def A__ ( self ): """simple docstring""" lowercase = 0 def A__ ( self ): """simple docstring""" lowercase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaConfig() lowercase = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) lowercase = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) copyfile(__lowerCAmelCase , os.path.join(__lowerCAmelCase , """vocab.json""" ) ) lowercase = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaFeatureExtractor() lowercase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase = WavaVecaProcessor(__lowerCAmelCase , __lowerCAmelCase ) # save in new folder processor.save_pretrained(__lowerCAmelCase ) # drop `processor_class` in tokenizer with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) as f: lowercase = json.load(__lowerCAmelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """w""" ) as f: f.write(json.dumps(__lowerCAmelCase ) ) lowercase = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaFeatureExtractor() lowercase = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase = WavaVecaProcessor(__lowerCAmelCase , __lowerCAmelCase ) # save in new folder processor.save_pretrained(__lowerCAmelCase ) # drop `processor_class` in feature extractor with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """r""" ) as f: lowercase = json.load(__lowerCAmelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """w""" ) as f: f.write(json.dumps(__lowerCAmelCase ) ) lowercase = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(__lowerCAmelCase ) # copy relevant files copyfile(__lowerCAmelCase , os.path.join(__lowerCAmelCase , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , """w""" ) as f: f.write("""{}""" ) lowercase = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def A__ ( self ): """simple docstring""" with self.assertRaises(__lowerCAmelCase ): lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCAmelCase ): lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__lowerCAmelCase ) lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__lowerCAmelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) lowercase = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) lowercase = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__lowerCAmelCase , use_fast=__lowerCAmelCase ) lowercase = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def A__ ( self ): """simple docstring""" try: AutoConfig.register("""custom""" , __lowerCAmelCase ) AutoFeatureExtractor.register(__lowerCAmelCase , __lowerCAmelCase ) AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) AutoProcessor.register(__lowerCAmelCase , __lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCAmelCase ): AutoProcessor.register(__lowerCAmelCase , __lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase = CustomFeatureExtractor.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase = os.path.join(__lowerCAmelCase , """vocab.txt""" ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase = CustomTokenizer(__lowerCAmelCase ) lowercase = CustomProcessor(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__lowerCAmelCase ) lowercase = AutoProcessor.from_pretrained(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self ): """simple docstring""" class _A ( lowerCAmelCase ): snake_case__ : Optional[Any] = False class _A ( lowerCAmelCase ): snake_case__ : int = False class _A ( lowerCAmelCase ): snake_case__ : List[Any] = 'AutoFeatureExtractor' snake_case__ : List[str] = 'AutoTokenizer' snake_case__ : List[str] = False try: AutoConfig.register("""custom""" , __lowerCAmelCase ) AutoFeatureExtractor.register(__lowerCAmelCase , __lowerCAmelCase ) AutoTokenizer.register(__lowerCAmelCase , slow_tokenizer_class=__lowerCAmelCase ) AutoProcessor.register(__lowerCAmelCase , __lowerCAmelCase ) # If remote code is not set, the default is to use local classes. lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__lowerCAmelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=__lowerCAmelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self ): """simple docstring""" lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def A__ ( self ): """simple docstring""" lowercase = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _A ( unittest.TestCase ): snake_case__ : Dict = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def A__ ( cls ): """simple docstring""" lowercase = TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def A__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def A__ ( self ): """simple docstring""" lowercase = WavaVecaProcessor.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCAmelCase , """test-processor""" ) , push_to_hub=__lowerCAmelCase , use_auth_token=self._token ) lowercase = WavaVecaProcessor.from_pretrained(f'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(new_processor.feature_extractor , __lowerCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A__ ( self ): """simple docstring""" lowercase = WavaVecaProcessor.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowerCAmelCase , """test-processor-org""" ) , push_to_hub=__lowerCAmelCase , use_auth_token=self._token , organization="""valid_org""" , ) lowercase = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase , getattr(new_processor.feature_extractor , __lowerCAmelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def A__ ( self ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase = CustomFeatureExtractor.from_pretrained(__lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase = os.path.join(__lowerCAmelCase , """vocab.txt""" ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase = CustomTokenizer(__lowerCAmelCase ) lowercase = CustomProcessor(__lowerCAmelCase , __lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'{USER}/test-dynamic-processor' , token=self._token ) lowercase = Repository(__lowerCAmelCase , clone_from=f'{USER}/test-dynamic-processor' , token=self._token ) processor.save_pretrained(__lowerCAmelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) ) as f: lowercase = json.load(__lowerCAmelCase ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__lowerCAmelCase , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowerCAmelCase , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowerCAmelCase , """custom_processing.py""" ) ) ) repo.push_to_hub() lowercase = AutoProcessor.from_pretrained(f'{USER}/test-dynamic-processor' , trust_remote_code=__lowerCAmelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
359
0
from __future__ import annotations import time a_ : Tuple = list[tuple[int, int]] a_ : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a_ : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _snake_case : def __init__( self , a , a , a , a , a) -> int: SCREAMING_SNAKE_CASE = pos_x SCREAMING_SNAKE_CASE = pos_y SCREAMING_SNAKE_CASE = (pos_y, pos_x) SCREAMING_SNAKE_CASE = goal_x SCREAMING_SNAKE_CASE = goal_y SCREAMING_SNAKE_CASE = parent class _snake_case : def __init__( self , a , a) -> Dict: SCREAMING_SNAKE_CASE = Node(start[1] , start[0] , goal[1] , goal[0] , a) SCREAMING_SNAKE_CASE = Node(goal[1] , goal[0] , goal[1] , goal[0] , a) SCREAMING_SNAKE_CASE = [self.start] SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self) -> Path | None: while self.node_queue: SCREAMING_SNAKE_CASE = self.node_queue.pop(0) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE = True return self.retrace_path(a) SCREAMING_SNAKE_CASE = self.get_successors(a) for node in successors: self.node_queue.append(a) if not self.reached: return [self.start.pos] return None def SCREAMING_SNAKE_CASE__ ( self , a) -> list[Node]: SCREAMING_SNAKE_CASE = [] for action in delta: SCREAMING_SNAKE_CASE = parent.pos_x + action[1] SCREAMING_SNAKE_CASE = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(a) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(a , a , self.target.pos_y , self.target.pos_x , a)) return successors def SCREAMING_SNAKE_CASE__ ( self , a) -> Path: SCREAMING_SNAKE_CASE = node SCREAMING_SNAKE_CASE = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) SCREAMING_SNAKE_CASE = current_node.parent path.reverse() return path class _snake_case : def __init__( self , a , a) -> Tuple: SCREAMING_SNAKE_CASE = BreadthFirstSearch(a , a) SCREAMING_SNAKE_CASE = BreadthFirstSearch(a , a) SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: SCREAMING_SNAKE_CASE = self.fwd_bfs.node_queue.pop(0) SCREAMING_SNAKE_CASE = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: SCREAMING_SNAKE_CASE = True return self.retrace_bidirectional_path( a , a) SCREAMING_SNAKE_CASE = current_bwd_node SCREAMING_SNAKE_CASE = current_fwd_node SCREAMING_SNAKE_CASE = { self.fwd_bfs: self.fwd_bfs.get_successors(a), self.bwd_bfs: self.bwd_bfs.get_successors(a), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(a) if not self.reached: return [self.fwd_bfs.start.pos] return None def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Path: SCREAMING_SNAKE_CASE = self.fwd_bfs.retrace_path(a) SCREAMING_SNAKE_CASE = self.bwd_bfs.retrace_path(a) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a_ : Union[str, Any] = (0, 0) a_ : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a_ : Optional[Any] = time.time() a_ : Union[str, Any] = BreadthFirstSearch(init, goal) a_ : Optional[Any] = bfs.search() a_ : List[str] = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) a_ : Optional[int] = time.time() a_ : Union[str, Any] = BidirectionalBreadthFirstSearch(init, goal) a_ : List[Any] = bd_bfs.search() a_ : List[str] = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
444
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path a_ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) a_ : list[int] = [ord(letter) for letter in string.ascii_lowercase] a_ : set[int] = {ord(char) for char in VALID_CHARS} a_ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 for keychar, cipherchar in zip(cycle(_UpperCAmelCase) , _UpperCAmelCase): SCREAMING_SNAKE_CASE = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_UpperCAmelCase) return decoded def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] for key in product(_UpperCAmelCase , repeat=3): SCREAMING_SNAKE_CASE = try_key(_UpperCAmelCase , _UpperCAmelCase) if encoded is not None: possibles.append(_UpperCAmelCase) return possibles def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return [possible for possible in possibles if common_word in possible.lower()] def lowerCamelCase__ (_UpperCAmelCase = "p059_cipher.txt"): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = Path(_UpperCAmelCase).parent.joinpath(_UpperCAmelCase).read_text(encoding='utf-8') SCREAMING_SNAKE_CASE = [int(_UpperCAmelCase) for number in data.strip().split(',')] SCREAMING_SNAKE_CASE = filter_valid_chars(_UpperCAmelCase) for common_word in COMMON_WORDS: SCREAMING_SNAKE_CASE = filter_common_word(_UpperCAmelCase , _UpperCAmelCase) if len(_UpperCAmelCase) == 1: break SCREAMING_SNAKE_CASE = possibles[0] return sum(ord(_UpperCAmelCase) for char in decoded_text) if __name__ == "__main__": print(f"""{solution() = }""")
444
1
'''simple docstring''' import os def _UpperCamelCase ()-> Union[str, Any]: '''simple docstring''' __snake_case = os.path.dirname(os.path.realpath(_lowerCamelCase ) ) __snake_case = os.path.join(_lowerCamelCase , '''triangle.txt''' ) with open(_lowerCamelCase ) as f: __snake_case = f.readlines() __snake_case = [] for line in triangle: __snake_case = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(_lowerCamelCase ) ) a.append(_lowerCamelCase ) for i in range(1 , len(_lowerCamelCase ) ): for j in range(len(a[i] ) ): __snake_case = a[i - 1][j] if j != len(a[i - 1] ) else 0 __snake_case = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_lowerCamelCase , _lowerCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
24
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : int , lowerCAmelCase__ : int) -> int: '''simple docstring''' return int((input_a, input_a).count(0) != 0) def SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' assert nand_gate(0 , 0) == 1 assert nand_gate(0 , 1) == 1 assert nand_gate(1 , 0) == 1 assert nand_gate(1 , 1) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
125
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[int] = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
32
from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase__ :int ): '''simple docstring''' a = str(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) == 9 and set(UpperCAmelCase__ ) == set("123456789" ) def UpperCAmelCase__ ( ): '''simple docstring''' for base_num in range(99_99 , 49_99 , -1 ): a = 10_00_02 * base_num if is_9_pandigital(UpperCAmelCase__ ): return candidate for base_num in range(3_33 , 99 , -1 ): a = 1_00_20_03 * base_num if is_9_pandigital(UpperCAmelCase__ ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
32
1
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = RoFormerTokenizer UpperCAmelCase__ = RoFormerTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = True def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: super().setUp() def lowerCamelCase__ ( self : Optional[Any] , **__snake_case : Union[str, Any] ) -> Tuple: return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__snake_case ) def lowerCamelCase__ ( self : Dict , **__snake_case : Optional[int] ) -> List[Any]: return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **__snake_case ) def lowerCamelCase__ ( self : Dict ) -> Tuple: __magic_name__: Dict = """永和服装饰品有限公司,今天天气非常好""" __magic_name__: Union[str, Any] = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: __magic_name__: int = self.get_tokenizer() __magic_name__, __magic_name__: List[Any] = self.get_chinese_input_output_texts() __magic_name__: Any = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) __magic_name__: List[str] = tokens + [tokenizer.unk_token] __magic_name__: Tuple = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowerCamelCase__ ( self : Any ) -> Tuple: __magic_name__: str = self.get_rust_tokenizer() __magic_name__, __magic_name__: Optional[Any] = self.get_chinese_input_output_texts() __magic_name__: Any = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) __magic_name__: List[Any] = tokens + [tokenizer.unk_token] __magic_name__: List[str] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def lowerCamelCase__ ( self : Dict ) -> List[str]: pass def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: pass def lowerCamelCase__ ( self : Union[str, Any] ) -> int: pass
96
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) __lowerCamelCase = None __lowerCamelCase = { '7B': 1_10_08, '13B': 1_38_24, '30B': 1_79_20, '65B': 2_20_16, '70B': 2_86_72, } __lowerCamelCase = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def a ( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]=1 , __UpperCAmelCase : Optional[int]=2_5_6 ) -> List[str]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def a ( __UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: with open(__UpperCAmelCase , """r""" ) as f: return json.load(__UpperCAmelCase ) def a ( __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] ) -> Optional[int]: with open(__UpperCAmelCase , """w""" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def a ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple=True ) -> Tuple: os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) __magic_name__: Any = os.path.join(__UpperCAmelCase , """tmp""" ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) __magic_name__: str = read_json(os.path.join(__UpperCAmelCase , """params.json""" ) ) __magic_name__: Dict = NUM_SHARDS[model_size] __magic_name__: int = params["""n_layers"""] __magic_name__: Optional[Any] = params["""n_heads"""] __magic_name__: Optional[int] = n_heads // num_shards __magic_name__: Optional[int] = params["""dim"""] __magic_name__: Any = dim // n_heads __magic_name__: Optional[Any] = 1_00_00.0 __magic_name__: int = 1.0 / (base ** (torch.arange(0 , __UpperCAmelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: __magic_name__: Dict = params["""n_kv_heads"""] # for GQA / MQA __magic_name__: Optional[Any] = n_heads_per_shard // num_key_value_heads __magic_name__: Union[str, Any] = dim // num_key_value_heads else: # compatibility with other checkpoints __magic_name__: List[Any] = n_heads __magic_name__: Union[str, Any] = n_heads_per_shard __magic_name__: Tuple = dim # permute for sliced rotary def permute(__UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any]=n_heads , __UpperCAmelCase : Tuple=dim , __UpperCAmelCase : Tuple=dim ): return w.view(__UpperCAmelCase , dima // n_heads // 2 , 2 , __UpperCAmelCase ).transpose(1 , 2 ).reshape(__UpperCAmelCase , __UpperCAmelCase ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) __magic_name__: Optional[int] = torch.load(os.path.join(__UpperCAmelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded __magic_name__: List[Any] = [ torch.load(os.path.join(__UpperCAmelCase , f'consolidated.{i:02d}.pth' ) , map_location="""cpu""" ) for i in range(__UpperCAmelCase ) ] __magic_name__: Dict = 0 __magic_name__: Any = {"""weight_map""": {}} for layer_i in range(__UpperCAmelCase ): __magic_name__: Tuple = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded __magic_name__: List[Any] = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. __magic_name__: Dict = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } __magic_name__: Union[str, Any] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for i in range(__UpperCAmelCase ) ] , dim=0 , ).reshape(__UpperCAmelCase , __UpperCAmelCase ) ) __magic_name__: int = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for i in range(__UpperCAmelCase ) ] , dim=0 , ).reshape(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) __magic_name__: Dict = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for i in range(__UpperCAmelCase ) ] , dim=0 , ).reshape(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__: Tuple = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(__UpperCAmelCase )] , dim=1 ) __magic_name__: Optional[int] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(__UpperCAmelCase )] , dim=0 ) __magic_name__: str = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(__UpperCAmelCase )] , dim=1 ) __magic_name__: str = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(__UpperCAmelCase )] , dim=0 ) __magic_name__: Union[str, Any] = inv_freq for k, v in state_dict.items(): __magic_name__: Tuple = filename param_count += v.numel() torch.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) __magic_name__: str = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded __magic_name__: List[Any] = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: __magic_name__: int = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(__UpperCAmelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(__UpperCAmelCase )] , dim=0 ), } for k, v in state_dict.items(): __magic_name__: Tuple = filename param_count += v.numel() torch.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) # Write configs __magic_name__: Optional[Any] = {"""total_size""": param_count * 2} write_json(__UpperCAmelCase , os.path.join(__UpperCAmelCase , """pytorch_model.bin.index.json""" ) ) __magic_name__: Tuple = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 __magic_name__: Union[str, Any] = params["""multiple_of"""] if """multiple_of""" in params else 2_5_6 __magic_name__: Optional[int] = LlamaConfig( hidden_size=__UpperCAmelCase , intermediate_size=compute_intermediate_size(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=__UpperCAmelCase , ) config.save_pretrained(__UpperCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) __magic_name__: Dict = LlamaForCausalLM.from_pretrained(__UpperCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=__UpperCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(__UpperCAmelCase , safe_serialization=__UpperCAmelCase ) shutil.rmtree(__UpperCAmelCase ) def a ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) -> List[Any]: # Initialize the tokenizer based on the `spm` model __magic_name__: Optional[int] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) __magic_name__: Dict = tokenizer_class(__UpperCAmelCase ) tokenizer.save_pretrained(__UpperCAmelCase ) def a ( ) -> Any: __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=__UpperCAmelCase , help="""Whether or not to save using `safetensors`.""" ) __magic_name__: str = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) __magic_name__: List[Any] = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , __UpperCAmelCase ) if __name__ == "__main__": main()
96
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False ): lowerCamelCase_: List[str] = """backbone.""" if is_semantic else """""" lowerCamelCase_: Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", """beit.embeddings.cls_token"""), (f"""{prefix}patch_embed.proj.weight""", """beit.embeddings.patch_embeddings.projection.weight"""), (f"""{prefix}patch_embed.proj.bias""", """beit.embeddings.patch_embeddings.projection.bias"""), (f"""{prefix}pos_embed""", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False ): for i in range(config.num_hidden_layers ): lowerCamelCase_: Union[str, Any] = """backbone.""" if is_semantic else """""" # queries, keys and values lowerCamelCase_: Any = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) lowerCamelCase_: Dict = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) lowerCamelCase_: List[str] = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) lowerCamelCase_: List[str] = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_: List[Any] = q_bias lowerCamelCase_: List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_: Tuple = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_: str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained lowerCamelCase_: List[str] = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) lowerCamelCase_: Union[str, Any] = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) lowerCamelCase_: Optional[int] = gamma_a lowerCamelCase_: Dict = gamma_a def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase_: Union[str, Any] = dct.pop(_UpperCAmelCase ) lowerCamelCase_: Dict = val def UpperCAmelCase_ ( ): lowerCamelCase_: str = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase_: Optional[Any] = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): lowerCamelCase_: Optional[int] = False if """rvlcdip""" in checkpoint_url else True lowerCamelCase_: Tuple = BeitConfig(use_absolute_position_embeddings=_UpperCAmelCase , use_mask_token=_UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: lowerCamelCase_: Optional[int] = 1_0_2_4 lowerCamelCase_: Any = 4_0_9_6 lowerCamelCase_: Optional[Any] = 2_4 lowerCamelCase_: Tuple = 1_6 # labels if "rvlcdip" in checkpoint_url: lowerCamelCase_: List[str] = 1_6 lowerCamelCase_: int = """huggingface/label-files""" lowerCamelCase_: str = """rvlcdip-id2label.json""" lowerCamelCase_: str = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase_: Dict = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase_: Union[str, Any] = idalabel lowerCamelCase_: Dict = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys lowerCamelCase_: Optional[Any] = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location="""cpu""" )["""model"""] lowerCamelCase_: int = create_rename_keys(_UpperCAmelCase , has_lm_head=_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , has_lm_head=_UpperCAmelCase ) # load HuggingFace model lowerCamelCase_: Tuple = BeitForMaskedImageModeling(_UpperCAmelCase ) if has_lm_head else BeitForImageClassification(_UpperCAmelCase ) model.eval() model.load_state_dict(_UpperCAmelCase ) # Check outputs on an image lowerCamelCase_: int = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_UpperCAmelCase ) lowerCamelCase_: Union[str, Any] = prepare_img() lowerCamelCase_: List[str] = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ) lowerCamelCase_: Any = encoding["""pixel_values"""] lowerCamelCase_: str = model(_UpperCAmelCase ) lowerCamelCase_: List[Any] = outputs.logits # verify logits lowerCamelCase_: Dict = [1, 1_6] if """rvlcdip""" in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(_UpperCAmelCase ), "Shape of logits not as expected" Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: if has_lm_head: lowerCamelCase_: Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: lowerCamelCase_: Dict = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) lowercase : Any = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
584
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase : Dict = 1_6 lowercase : Optional[int] = 3_2 def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase = 1_6 ): lowerCamelCase_: List[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase_: List[str] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_: Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_: List[Any] = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_: Optional[int] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_: Optional[int] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_: int = 1_6 elif accelerator.mixed_precision != "no": lowerCamelCase_: List[str] = 8 else: lowerCamelCase_: List[Any] = None return tokenizer.pad( _UpperCAmelCase , padding="""longest""" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase_: int = DataLoader( tokenized_datasets["""train"""] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) lowerCamelCase_: Optional[int] = DataLoader( tokenized_datasets["""validation"""] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase : Any = mocked_dataloaders # noqa: F811 def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _UpperCAmelCase ) == "1": lowerCamelCase_: List[str] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCamelCase_: int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: lowerCamelCase_: Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_: Tuple = config["""lr"""] lowerCamelCase_: Optional[Any] = int(config["""num_epochs"""] ) lowerCamelCase_: int = int(config["""seed"""] ) lowerCamelCase_: Any = int(config["""batch_size"""] ) set_seed(_UpperCAmelCase ) lowerCamelCase_ , lowerCamelCase_: Tuple = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase_: List[Any] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowerCamelCase_: Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase_: Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase_: Optional[Any] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_: Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_: Dict = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_: str = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler lowerCamelCase_: Optional[int] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_: Dict = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCamelCase_: int = os.path.split(_UpperCAmelCase )[-1].split(""".""" )[0] accelerator.init_trackers(_UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCamelCase_: Tuple = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_: Tuple = model(**_UpperCAmelCase ) lowerCamelCase_: Any = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCamelCase_: Dict = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_: Dict = model(**_UpperCAmelCase ) lowerCamelCase_: Tuple = outputs.logits.argmax(dim=-1 ) lowerCamelCase_ , lowerCamelCase_: List[str] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) lowerCamelCase_: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _UpperCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(_UpperCAmelCase ), """epoch""": epoch, } , step=_UpperCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def UpperCAmelCase_ ( ): lowerCamelCase_: Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=_UpperCAmelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) lowerCamelCase_: Union[str, Any] = parser.parse_args() lowerCamelCase_: Optional[Any] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
584
1
def __lowercase ( _UpperCamelCase, _UpperCamelCase = " " ) ->list: """simple docstring""" lowercase : List[str] = [] lowercase : Union[str, Any] = 0 for index, char in enumerate(_UpperCamelCase ): if char == separator: split_words.append(string[last_index:index] ) lowercase : List[str] = index + 1 elif index + 1 == len(_UpperCamelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
319
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __a = logging.get_logger(__name__) __a = {'''vocab_file''': '''vocab.txt'''} __a = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } __a = { '''facebook/esm2_t6_8M_UR50D''': 10_24, '''facebook/esm2_t12_35M_UR50D''': 10_24, } def __lowercase ( _UpperCamelCase ) ->Tuple: """simple docstring""" with open(_UpperCamelCase, '''r''' ) as f: lowercase : List[Any] = f.read().splitlines() return [l.strip() for l in lines] class __SCREAMING_SNAKE_CASE ( A__ ): A : Dict = VOCAB_FILES_NAMES A : List[str] = PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[str] = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<cls>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__="<eos>" , **SCREAMING_SNAKE_CASE__ , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) lowercase : str = load_vocab_file(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = dict(enumerate(self.all_tokens ) ) lowercase : Tuple = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase : Tuple = unk_token lowercase : Optional[Any] = cls_token lowercase : Union[str, Any] = pad_token lowercase : Dict = mask_token lowercase : Dict = eos_token lowercase : Any = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self._id_to_token.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self._token_to_id.get(SCREAMING_SNAKE_CASE__ , self._token_to_id.get(self.unk_token ) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return text.split() def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__=False ): return len(self._id_to_token ) def __lowerCamelCase ( self ): return {token: i for i, token in enumerate(self.all_tokens )} def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self._token_to_id.get(SCREAMING_SNAKE_CASE__ , self._token_to_id.get(self.unk_token ) ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self._id_to_token.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : List[str] = [self.cls_token_id] lowercase : Dict = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase : Tuple = [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] if token_ids_a is not None: mask += [0] * len(SCREAMING_SNAKE_CASE__ ) + [1] return mask def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(SCREAMING_SNAKE_CASE__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __lowerCamelCase ( self ): return self.get_vocab_size(with_added_tokens=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ): return super()._add_tokens(SCREAMING_SNAKE_CASE__ , special_tokens=SCREAMING_SNAKE_CASE__ )
319
1
"""simple docstring""" import sys a :Dict = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def _lowercase ( __lowerCAmelCase = N ) -> int: SCREAMING_SNAKE_CASE__ : int = -sys.maxsize - 1 for i in range(len(__lowerCAmelCase ) - 12 ): SCREAMING_SNAKE_CASE__ : str = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: SCREAMING_SNAKE_CASE__ : Optional[int] = product return largest_product if __name__ == "__main__": print(f'{solution() = }')
12
"""simple docstring""" a :List[str] = [ (1_000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I"), ] def _lowercase ( __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} SCREAMING_SNAKE_CASE__ : List[Any] = 0 SCREAMING_SNAKE_CASE__ : List[str] = 0 while place < len(__lowerCAmelCase ): if (place + 1 < len(__lowerCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Any = [] for arabic, roman in ROMAN: ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : List[str] = divmod(__lowerCAmelCase , __lowerCAmelCase ) result.append(roman * factor ) if number == 0: break return "".join(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
12
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Tuple = emb.weight.shape _lowerCamelCase : List[str] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) _lowerCamelCase : int = emb.weight.data return lin_layer def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = torch.load(_lowerCAmelCase , map_location="cpu" ) _lowerCamelCase : List[Any] = mam_aaa["args"] or mam_aaa["cfg"]["model"] _lowerCamelCase : Optional[Any] = mam_aaa["model"] remove_ignore_keys_(_lowerCAmelCase ) _lowerCamelCase : int = state_dict["encoder.embed_tokens.weight"].shape[0] _lowerCamelCase : str = MaMaaaConfig( vocab_size=_lowerCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) _lowerCamelCase : Optional[int] = state_dict["decoder.embed_tokens.weight"] _lowerCamelCase : List[Any] = MaMaaaForConditionalGeneration(_lowerCAmelCase ) model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : Optional[Any] = parser.parse_args() UpperCAmelCase_ : List[str] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
44
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = 'convbert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=9 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Dict = vocab_size lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : List[str] = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : Dict = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = embedding_size lowercase__ : List[str] = head_ratio lowercase__ : Dict = conv_kernel_size lowercase__ : Dict = num_groups lowercase__ : int = classifier_dropout class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : Union[str, Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ])
12
0
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowercase_ ( __UpperCAmelCase ) -> List[str]: return x + 2 class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = """x = 3""" lowerCAmelCase__ : List[str] = {} lowerCAmelCase__ : str = evaluate(UpperCamelCase , {} , state=UpperCamelCase ) assert result == 3 self.assertDictEqual(UpperCamelCase , {"""x""": 3} ) lowerCAmelCase__ : Dict = """x = y""" lowerCAmelCase__ : List[Any] = {"""y""": 5} lowerCAmelCase__ : str = evaluate(UpperCamelCase , {} , state=UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCamelCase , {"""x""": 5, """y""": 5} ) def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = """y = add_two(x)""" lowerCAmelCase__ : List[Any] = {"""x""": 3} lowerCAmelCase__ : str = evaluate(UpperCamelCase , {"""add_two""": add_two} , state=UpperCamelCase ) assert result == 5 self.assertDictEqual(UpperCamelCase , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase__ : str = evaluate(UpperCamelCase , {} , state=UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = """x = 3""" lowerCAmelCase__ : str = {} lowerCAmelCase__ : Optional[Any] = evaluate(UpperCamelCase , {} , state=UpperCamelCase ) assert result == 3 self.assertDictEqual(UpperCamelCase , {"""x""": 3} ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Dict = """test_dict = {'x': x, 'y': add_two(x)}""" lowerCAmelCase__ : Union[str, Any] = {"""x""": 3} lowerCAmelCase__ : Union[str, Any] = evaluate(UpperCamelCase , {"""add_two""": add_two} , state=UpperCamelCase ) self.assertDictEqual(UpperCamelCase , {"""x""": 3, """y""": 5} ) self.assertDictEqual(UpperCamelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def _lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ : str = """x = 3\ny = 5""" lowerCAmelCase__ : str = {} lowerCAmelCase__ : List[Any] = evaluate(UpperCamelCase , {} , state=UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCamelCase , {"""x""": 3, """y""": 5} ) def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = """text = f'This is x: {x}.'""" lowerCAmelCase__ : Union[str, Any] = {"""x""": 3} lowerCAmelCase__ : Tuple = evaluate(UpperCamelCase , {} , state=UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCamelCase , {"""x""": 3, """text""": """This is x: 3."""} ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowerCAmelCase__ : Dict = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowerCAmelCase__ : int = {"""x""": 3} lowerCAmelCase__ : List[Any] = evaluate(UpperCamelCase , {} , state=UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCamelCase , {"""x""": 3, """y""": 2} ) lowerCAmelCase__ : Tuple = {"""x""": 8} lowerCAmelCase__ : int = evaluate(UpperCamelCase , {} , state=UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCamelCase , {"""x""": 8, """y""": 5} ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[str] = """test_list = [x, add_two(x)]""" lowerCAmelCase__ : Optional[int] = {"""x""": 3} lowerCAmelCase__ : int = evaluate(UpperCamelCase , {"""add_two""": add_two} , state=UpperCamelCase ) self.assertListEqual(UpperCamelCase , [3, 5] ) self.assertDictEqual(UpperCamelCase , {"""x""": 3, """test_list""": [3, 5]} ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[Any] = """y = x""" lowerCAmelCase__ : List[Any] = {"""x""": 3} lowerCAmelCase__ : List[str] = evaluate(UpperCamelCase , {} , state=UpperCamelCase ) assert result == 3 self.assertDictEqual(UpperCamelCase , {"""x""": 3, """y""": 3} ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[str] = """test_list = [x, add_two(x)]\ntest_list[1]""" lowerCAmelCase__ : Dict = {"""x""": 3} lowerCAmelCase__ : List[str] = evaluate(UpperCamelCase , {"""add_two""": add_two} , state=UpperCamelCase ) assert result == 5 self.assertDictEqual(UpperCamelCase , {"""x""": 3, """test_list""": [3, 5]} ) lowerCAmelCase__ : Tuple = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowerCAmelCase__ : Optional[int] = {"""x""": 3} lowerCAmelCase__ : Dict = evaluate(UpperCamelCase , {"""add_two""": add_two} , state=UpperCamelCase ) assert result == 5 self.assertDictEqual(UpperCamelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Tuple = """x = 0\nfor i in range(3):\n x = i""" lowerCAmelCase__ : List[Any] = {} lowerCAmelCase__ : str = evaluate(UpperCamelCase , {"""range""": range} , state=UpperCamelCase ) assert result == 2 self.assertDictEqual(UpperCamelCase , {"""x""": 2, """i""": 2} )
715
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = inspect.getfile(accelerate.test_utils ) lowerCAmelCase__ : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCAmelCase__ : List[str] = test_metrics @require_cpu def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" self.test_metrics.main() @require_multi_gpu def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) lowerCAmelCase__ : str = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
507
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowerCAmelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class a ( __lowercase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): """simple docstring""" super().__init__() self.register_modules( vae=_lowerCAmelCase , text_encoder=_lowerCAmelCase , tokenizer=_lowerCAmelCase , unet=_lowerCAmelCase , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , ) def snake_case_ ( self , _lowerCAmelCase = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __SCREAMING_SNAKE_CASE: Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" self.enable_attention_slicing(_lowerCAmelCase ) @torch.no_grad() def __call__( self , _lowerCAmelCase , _lowerCAmelCase = 512 , _lowerCAmelCase = 512 , _lowerCAmelCase = 50 , _lowerCAmelCase = 7.5 , _lowerCAmelCase = None , _lowerCAmelCase = 1 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "pil" , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = 1 , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: List[Any] = 1 elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Tuple = len(_lowerCAmelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_lowerCAmelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_lowerCAmelCase )}.""" ) # get prompt text embeddings __SCREAMING_SNAKE_CASE: List[str] = self.tokenizer( _lowerCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __SCREAMING_SNAKE_CASE: List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE: Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __SCREAMING_SNAKE_CASE: Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __SCREAMING_SNAKE_CASE: Optional[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: str = text_embeddings.shape __SCREAMING_SNAKE_CASE: Any = text_embeddings.repeat(1 , _lowerCAmelCase , 1 ) __SCREAMING_SNAKE_CASE: Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , _lowerCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __SCREAMING_SNAKE_CASE: str = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE: List[str] if negative_prompt is None: __SCREAMING_SNAKE_CASE: List[str] = [''''''] elif type(_lowerCAmelCase ) is not type(_lowerCAmelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_lowerCAmelCase )} !=""" f""" {type(_lowerCAmelCase )}.""" ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Tuple = [negative_prompt] elif batch_size != len(_lowerCAmelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_lowerCAmelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: __SCREAMING_SNAKE_CASE: Tuple = negative_prompt __SCREAMING_SNAKE_CASE: Optional[Any] = text_input_ids.shape[-1] __SCREAMING_SNAKE_CASE: Union[str, Any] = self.tokenizer( _lowerCAmelCase , padding='''max_length''' , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='''pt''' , ) __SCREAMING_SNAKE_CASE: List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE: Dict = uncond_embeddings.shape[1] __SCREAMING_SNAKE_CASE: List[str] = uncond_embeddings.repeat(_lowerCAmelCase , _lowerCAmelCase , 1 ) __SCREAMING_SNAKE_CASE: List[str] = uncond_embeddings.view(batch_size * num_images_per_prompt , _lowerCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __SCREAMING_SNAKE_CASE: List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __SCREAMING_SNAKE_CASE: List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __SCREAMING_SNAKE_CASE: List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __SCREAMING_SNAKE_CASE: Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __SCREAMING_SNAKE_CASE: List[str] = torch.randn( _lowerCAmelCase , generator=_lowerCAmelCase , device='''cpu''' , dtype=_lowerCAmelCase ).to(self.device ) __SCREAMING_SNAKE_CASE: int = torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device='''cpu''' , dtype=_lowerCAmelCase ).to( self.device ) else: __SCREAMING_SNAKE_CASE: Optional[Any] = torch.randn( _lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = torch.randn(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=_lowerCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __SCREAMING_SNAKE_CASE: Optional[Any] = latents_reference.to(self.device ) __SCREAMING_SNAKE_CASE: List[str] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __SCREAMING_SNAKE_CASE: int = (latents_shape[3] - latents_shape_reference[3]) // 2 __SCREAMING_SNAKE_CASE: Tuple = (latents_shape[2] - latents_shape_reference[2]) // 2 __SCREAMING_SNAKE_CASE: List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __SCREAMING_SNAKE_CASE: str = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __SCREAMING_SNAKE_CASE: Optional[Any] = 0 if dx < 0 else dx __SCREAMING_SNAKE_CASE: Dict = 0 if dy < 0 else dy __SCREAMING_SNAKE_CASE: str = max(-dx , 0 ) __SCREAMING_SNAKE_CASE: Optional[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() __SCREAMING_SNAKE_CASE: Union[str, Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __SCREAMING_SNAKE_CASE: List[str] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __SCREAMING_SNAKE_CASE: Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __SCREAMING_SNAKE_CASE: Dict = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __SCREAMING_SNAKE_CASE: int = {} if accepts_eta: __SCREAMING_SNAKE_CASE: Dict = eta for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE: Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE: int = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) # predict the noise residual __SCREAMING_SNAKE_CASE: str = self.unet(_lowerCAmelCase , _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Tuple = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE: int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE: Tuple = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = 1 / 0.18215 * latents __SCREAMING_SNAKE_CASE: Tuple = self.vae.decode(_lowerCAmelCase ).sample __SCREAMING_SNAKE_CASE: Tuple = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE: Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __SCREAMING_SNAKE_CASE: str = self.feature_extractor(self.numpy_to_pil(_lowerCAmelCase ) , return_tensors='''pt''' ).to( self.device ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[int] = self.safety_checker( images=_lowerCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __SCREAMING_SNAKE_CASE: List[str] = None if output_type == "pil": __SCREAMING_SNAKE_CASE: List[str] = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_lowerCAmelCase , nsfw_content_detected=_lowerCAmelCase )
202
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''data2vec-vision''' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1e-12 , _lowerCAmelCase=224 , _lowerCAmelCase=16 , _lowerCAmelCase=3 , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=False , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=True , _lowerCAmelCase=[3, 5, 7, 11] , _lowerCAmelCase=[1, 2, 3, 6] , _lowerCAmelCase=True , _lowerCAmelCase=0.4 , _lowerCAmelCase=256 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=255 , **_lowerCAmelCase , ): """simple docstring""" super().__init__(**_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: str = hidden_size __SCREAMING_SNAKE_CASE: Tuple = num_hidden_layers __SCREAMING_SNAKE_CASE: Tuple = num_attention_heads __SCREAMING_SNAKE_CASE: int = intermediate_size __SCREAMING_SNAKE_CASE: Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE: int = hidden_dropout_prob __SCREAMING_SNAKE_CASE: str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE: Any = initializer_range __SCREAMING_SNAKE_CASE: Union[str, Any] = layer_norm_eps __SCREAMING_SNAKE_CASE: Optional[Any] = image_size __SCREAMING_SNAKE_CASE: List[str] = patch_size __SCREAMING_SNAKE_CASE: Optional[int] = num_channels __SCREAMING_SNAKE_CASE: List[Any] = use_mask_token __SCREAMING_SNAKE_CASE: Tuple = use_absolute_position_embeddings __SCREAMING_SNAKE_CASE: Any = use_relative_position_bias __SCREAMING_SNAKE_CASE: Dict = use_shared_relative_position_bias __SCREAMING_SNAKE_CASE: Any = layer_scale_init_value __SCREAMING_SNAKE_CASE: List[Any] = drop_path_rate __SCREAMING_SNAKE_CASE: int = use_mean_pooling # decode head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE: Union[str, Any] = out_indices __SCREAMING_SNAKE_CASE: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE: Optional[int] = use_auxiliary_head __SCREAMING_SNAKE_CASE: Optional[Any] = auxiliary_loss_weight __SCREAMING_SNAKE_CASE: Optional[Any] = auxiliary_channels __SCREAMING_SNAKE_CASE: Optional[int] = auxiliary_num_convs __SCREAMING_SNAKE_CASE: Any = auxiliary_concat_input __SCREAMING_SNAKE_CASE: List[str] = semantic_loss_ignore_index class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = version.parse('''1.11''' ) @property def snake_case_ ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case_ ( self ): """simple docstring""" return 1e-4
202
1
import os UpperCAmelCase_ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000} def __magic_name__ ( lowercase ) -> int: """simple docstring""" lowercase_ : Optional[Any] = 0 lowercase_ : Dict = 0 while index < len(lowercase ) - 1: lowercase_ : Optional[Any] = SYMBOLS[numerals[index]] lowercase_ : Tuple = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __magic_name__ ( lowercase ) -> str: """simple docstring""" lowercase_ : int = """""" lowercase_ : Tuple = num // 1000 numerals += m_count * "M" num %= 1000 lowercase_ : int = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowercase_ : Dict = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __magic_name__ ( lowercase = "/p089_roman.txt" ) -> int: """simple docstring""" lowercase_ : Dict = 0 with open(os.path.dirname(lowercase ) + roman_numerals_filename ) as filea: lowercase_ : Optional[int] = filea.readlines() for line in lines: lowercase_ : Optional[Any] = line.strip() lowercase_ : Any = parse_roman_numerals(lowercase ) lowercase_ : List[Any] = generate_roman_numerals(lowercase ) savings += len(lowercase ) - len(lowercase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
436
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __magic_name__ ( lowercase="" ) -> str: """simple docstring""" lowercase_ : Dict = tempfile.mkdtemp() return os.path.join(lowercase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ) -> str: """simple docstring""" lowercase_ : Dict = torch.rand(12, dtype=torch.floataa ) - 0.5 lowercase_ : Union[str, Any] = AgentAudio(snake_case__ ) lowercase_ : Optional[int] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__, agent_type.to_raw(), atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(snake_case__ ) ) # Ensure that the file contains the same value as the original tensor lowercase_ , lowercase_ : Any = sf.read(snake_case__ ) self.assertTrue(torch.allclose(snake_case__, torch.tensor(snake_case__ ), atol=1E-4 ) ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" lowercase_ : Dict = torch.rand(12, dtype=torch.floataa ) - 0.5 lowercase_ : List[str] = get_new_path(suffix=""".wav""" ) sf.write(snake_case__, snake_case__, 1_60_00 ) lowercase_ : int = AgentAudio(snake_case__ ) self.assertTrue(torch.allclose(snake_case__, agent_type.to_raw(), atol=1E-4 ) ) self.assertEqual(agent_type.to_string(), snake_case__ ) @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ) -> List[str]: """simple docstring""" lowercase_ : int = torch.randint(0, 2_56, (64, 64, 3) ) lowercase_ : Dict = AgentImage(snake_case__ ) lowercase_ : Optional[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__, agent_type._tensor, atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw(), Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" lowercase_ : int = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" lowercase_ : Optional[Any] = Image.open(snake_case__ ) lowercase_ : List[str] = AgentImage(snake_case__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" lowercase_ : int = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" lowercase_ : Optional[int] = Image.open(snake_case__ ) lowercase_ : List[Any] = AgentImage(snake_case__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ) -> Any: """simple docstring""" lowercase_ : Optional[int] = """Hey!""" lowercase_ : Tuple = AgentText(snake_case__ ) self.assertEqual(snake_case__, agent_type.to_string() ) self.assertEqual(snake_case__, agent_type.to_raw() ) self.assertEqual(snake_case__, snake_case__ )
436
1
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: float , _lowerCamelCase: int ): if digit_amount > 0: return round(number - int(_lowerCamelCase ) , _lowerCamelCase ) return number - int(_lowerCamelCase ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
578
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCamelCase__ : List[Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( _lowerCamelCase: Any , _lowerCamelCase: Optional[int] , _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : Optional[Any] = UniSpeechSatForSequenceClassification.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = downstream_dict["""projector.weight"""] __SCREAMING_SNAKE_CASE : Union[str, Any] = downstream_dict["""projector.bias"""] __SCREAMING_SNAKE_CASE : List[Any] = downstream_dict["""model.post_net.linear.weight"""] __SCREAMING_SNAKE_CASE : str = downstream_dict["""model.post_net.linear.bias"""] return model def lowerCAmelCase_ ( _lowerCamelCase: Any , _lowerCamelCase: Any , _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : str = UniSpeechSatForAudioFrameClassification.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = downstream_dict["""model.linear.weight"""] __SCREAMING_SNAKE_CASE : List[Any] = downstream_dict["""model.linear.bias"""] return model def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: int , _lowerCamelCase: Optional[int] ): __SCREAMING_SNAKE_CASE : Dict = UniSpeechSatForXVector.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = downstream_dict["""connector.weight"""] __SCREAMING_SNAKE_CASE : List[str] = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __SCREAMING_SNAKE_CASE : List[str] = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __SCREAMING_SNAKE_CASE : Optional[Any] = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __SCREAMING_SNAKE_CASE : Tuple = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] __SCREAMING_SNAKE_CASE : str = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] __SCREAMING_SNAKE_CASE : Any = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] __SCREAMING_SNAKE_CASE : int = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] __SCREAMING_SNAKE_CASE : Tuple = downstream_dict["""objective.W"""] return model @torch.no_grad() def lowerCAmelCase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Tuple , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : int = torch.load(_lowerCamelCase , map_location="""cpu""" ) __SCREAMING_SNAKE_CASE : Tuple = checkpoint["""Downstream"""] __SCREAMING_SNAKE_CASE : List[Any] = UniSpeechSatConfig.from_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( _lowerCamelCase , return_attention_mask=_lowerCamelCase , do_normalize=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): __SCREAMING_SNAKE_CASE : str = convert_classification(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): __SCREAMING_SNAKE_CASE : int = convert_diarization(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) elif arch.endswith("""ForXVector""" ): __SCREAMING_SNAKE_CASE : Union[str, Any] = convert_xvector(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __SCREAMING_SNAKE_CASE : Optional[int] = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(_lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": UpperCamelCase__ : Any = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') UpperCamelCase__ : str = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
578
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowercase__( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self :str ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = 0 def __lowerCAmelCase ( self :int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self :Dict ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[Any] = Path(__UpperCamelCase ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE : List[str] = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self :int ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Tuple = Path(__UpperCamelCase ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE : Optional[int] = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) SCREAMING_SNAKE_CASE : Any = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self :Optional[Any] ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[int] = CLIPConfig() # Create a dummy config file with image_proceesor_type SCREAMING_SNAKE_CASE : List[Any] = Path(__UpperCamelCase ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE : Tuple = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained(__UpperCamelCase ).to_dict() config_dict.pop('''image_processor_type''' ) SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(**__UpperCamelCase ) # save in new folder model_config.save_pretrained(__UpperCamelCase ) config.save_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = AutoImageProcessor.from_pretrained(__UpperCamelCase ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE : str = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : List[Any] = Path(__UpperCamelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) SCREAMING_SNAKE_CASE : Tuple = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowerCAmelCase ( self :Any ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(__UpperCamelCase , revision='''aaaaaa''' ) def __lowerCAmelCase ( self :str ) -> str: '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self :Optional[int] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCamelCase ): SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoImageProcessor.from_pretrained(__UpperCamelCase , trust_remote_code=__UpperCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' try: AutoConfig.register('''custom''' , __UpperCamelCase ) AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCamelCase ): AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : List[Any] = Path(__UpperCamelCase ) / '''preprocessor_config.json''' SCREAMING_SNAKE_CASE : Optional[Any] = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = CustomImageProcessor.from_pretrained(__UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = True try: AutoConfig.register('''custom''' , __UpperCamelCase ) AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE : Union[str, Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__UpperCamelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[Any] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
0
import os from collections.abc import Iterator def UpperCAmelCase_ ( __UpperCAmelCase : str = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__UpperCAmelCase , __UpperCAmelCase ).lstrip('./' ) def UpperCAmelCase_ ( __UpperCAmelCase : Tuple ) -> Optional[Any]: return f"{i * ' '}*" if i else "\n##" def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : str ) -> str: SCREAMING_SNAKE_CASE_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(f"{md_prefix(__UpperCAmelCase )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def UpperCAmelCase_ ( __UpperCAmelCase : str = "." ) -> None: SCREAMING_SNAKE_CASE_ = '' for filepath in sorted(good_file_paths(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = os.path.split(__UpperCAmelCase ) if filepath != old_path: SCREAMING_SNAKE_CASE_ = print_path(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = (filepath.count(os.sep ) + 1) if filepath else 0 SCREAMING_SNAKE_CASE_ = f"{filepath}/{filename}".replace(' ' , '%20' ) SCREAMING_SNAKE_CASE_ = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(f"{md_prefix(__UpperCAmelCase )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md('.')
31
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowercase ( lowerCAmelCase ): _a : UNetaDModel _a : ScoreSdeVeScheduler def __init__( self : Tuple , a : UNetaDModel , a : ScoreSdeVeScheduler ): """simple docstring""" super().__init__() self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self : Union[str, Any] , a : int = 1 , a : int = 2_0_0_0 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[str] = "pil" , a : bool = True , **a : Optional[Any] , ): """simple docstring""" __snake_case : List[Any] =self.unet.config.sample_size __snake_case : Union[str, Any] =(batch_size, 3, img_size, img_size) __snake_case : str =self.unet __snake_case : Any =randn_tensor(a , generator=a ) * self.scheduler.init_noise_sigma __snake_case : Tuple =sample.to(self.device ) self.scheduler.set_timesteps(a ) self.scheduler.set_sigmas(a ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __snake_case : int =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __snake_case : Any =self.unet(a , a ).sample __snake_case : Dict =self.scheduler.step_correct(a , a , generator=a ).prev_sample # prediction step __snake_case : List[Any] =model(a , a ).sample __snake_case : str =self.scheduler.step_pred(a , a , a , generator=a ) __snake_case , __snake_case : str =output.prev_sample, output.prev_sample_mean __snake_case : Optional[int] =sample_mean.clamp(0 , 1 ) __snake_case : Dict =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case : Optional[Any] =self.numpy_to_pil(a ) if not return_dict: return (sample,) return ImagePipelineOutput(images=a )
497
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __lowercase ( a : Any , a : List[Any] ) -> Dict: __snake_case : Any =checkpoint __snake_case : Dict ={} __snake_case : List[Any] =vae_state_dict['''encoder.conv_in.weight'''] __snake_case : List[str] =vae_state_dict['''encoder.conv_in.bias'''] __snake_case : Union[str, Any] =vae_state_dict['''encoder.conv_out.weight'''] __snake_case : Union[str, Any] =vae_state_dict['''encoder.conv_out.bias'''] __snake_case : str =vae_state_dict['''encoder.norm_out.weight'''] __snake_case : str =vae_state_dict['''encoder.norm_out.bias'''] __snake_case : Tuple =vae_state_dict['''decoder.conv_in.weight'''] __snake_case : str =vae_state_dict['''decoder.conv_in.bias'''] __snake_case : List[str] =vae_state_dict['''decoder.conv_out.weight'''] __snake_case : Tuple =vae_state_dict['''decoder.conv_out.bias'''] __snake_case : Union[str, Any] =vae_state_dict['''decoder.norm_out.weight'''] __snake_case : List[str] =vae_state_dict['''decoder.norm_out.bias'''] __snake_case : Tuple =vae_state_dict['''quant_conv.weight'''] __snake_case : List[str] =vae_state_dict['''quant_conv.bias'''] __snake_case : Optional[int] =vae_state_dict['''post_quant_conv.weight'''] __snake_case : Tuple =vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only __snake_case : Union[str, Any] =len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) __snake_case : Union[str, Any] ={ layer_id: [key for key in vae_state_dict if f'''down.{layer_id}''' in key] for layer_id in range(a ) } # Retrieves the keys for the decoder up blocks only __snake_case : List[Any] =len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) __snake_case : List[Any] ={ layer_id: [key for key in vae_state_dict if f'''up.{layer_id}''' in key] for layer_id in range(a ) } for i in range(a ): __snake_case : Any =[key for key in down_blocks[i] if f'''down.{i}''' in key and f'''down.{i}.downsample''' not in key] if f'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: __snake_case : Optional[Any] =vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.weight''' ) __snake_case : Optional[int] =vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.bias''' ) __snake_case : Optional[Any] =renew_vae_resnet_paths(a ) __snake_case : Union[str, Any] ={'''old''': f'''down.{i}.block''', '''new''': f'''down_blocks.{i}.resnets'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : Tuple =[key for key in vae_state_dict if '''encoder.mid.block''' in key] __snake_case : Any =2 for i in range(1 , num_mid_res_blocks + 1 ): __snake_case : Tuple =[key for key in mid_resnets if f'''encoder.mid.block_{i}''' in key] __snake_case : List[str] =renew_vae_resnet_paths(a ) __snake_case : List[str] ={'''old''': f'''mid.block_{i}''', '''new''': f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : int =[key for key in vae_state_dict if '''encoder.mid.attn''' in key] __snake_case : List[Any] =renew_vae_attention_paths(a ) __snake_case : Union[str, Any] ={'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) for i in range(a ): __snake_case : List[Any] =num_up_blocks - 1 - i __snake_case : Dict =[ key for key in up_blocks[block_id] if f'''up.{block_id}''' in key and f'''up.{block_id}.upsample''' not in key ] if f'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: __snake_case : int =vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.weight''' ] __snake_case : Optional[Any] =vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.bias''' ] __snake_case : List[str] =renew_vae_resnet_paths(a ) __snake_case : int ={'''old''': f'''up.{block_id}.block''', '''new''': f'''up_blocks.{i}.resnets'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : Any =[key for key in vae_state_dict if '''decoder.mid.block''' in key] __snake_case : Dict =2 for i in range(1 , num_mid_res_blocks + 1 ): __snake_case : Dict =[key for key in mid_resnets if f'''decoder.mid.block_{i}''' in key] __snake_case : Tuple =renew_vae_resnet_paths(a ) __snake_case : Tuple ={'''old''': f'''mid.block_{i}''', '''new''': f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) __snake_case : Optional[Any] =[key for key in vae_state_dict if '''decoder.mid.attn''' in key] __snake_case : Dict =renew_vae_attention_paths(a ) __snake_case : List[str] ={'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(a , a , a , additional_replacements=[meta_path] , config=a ) conv_attn_to_linear(a ) return new_checkpoint def __lowercase ( a : str , a : str , ) -> Optional[int]: # Only support V1 __snake_case : Union[str, Any] =requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) __snake_case : Union[str, Any] =io.BytesIO(r.content ) __snake_case : Any =OmegaConf.load(a ) __snake_case : Union[str, Any] =512 __snake_case : List[str] ='''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open __snake_case : Any ={} with safe_open(a , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): __snake_case : Optional[int] =f.get_tensor(a ) else: __snake_case : Optional[int] =torch.load(a , map_location=a )['''state_dict'''] # Convert the VAE model. __snake_case : Dict =create_vae_diffusers_config(a , image_size=a ) __snake_case : Union[str, Any] =custom_convert_ldm_vae_checkpoint(a , a ) __snake_case : str =AutoencoderKL(**a ) vae.load_state_dict(a ) vae.save_pretrained(a ) if __name__ == "__main__": UpperCamelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") UpperCamelCase_ : Optional[Any] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
497
1
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self ): """simple docstring""" a__ = inspect.getfile(accelerate.test_utils ) a__ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 a__ = test_metrics @require_cpu def lowercase__ ( self ): """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def lowercase__ ( self ): """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def lowercase__ ( self ): """simple docstring""" self.test_metrics.main() @require_multi_gpu def lowercase__ ( self ): """simple docstring""" print(F'''Found {torch.cuda.device_count()} devices.''' ) a__ = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() )
394
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : int = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __A : Union[str, Any] = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __A : List[Any] = { 'vinai/phobert-base': 2_56, 'vinai/phobert-large': 2_56, } def lowerCAmelCase_ ( a : Optional[int] ): a__ = set() a__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a__ = char a__ = set(a ) return pairs class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE:int = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE:int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , **_a , ): """simple docstring""" super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , **_a , ) a__ = vocab_file a__ = merges_file a__ = {} a__ = 0 a__ = 1 a__ = 2 a__ = 3 self.add_from_file(_a ) a__ = {v: k for k, v in self.encoder.items()} with open(_a , encoding='utf-8' ) as merges_handle: a__ = merges_handle.read().split('\n' )[:-1] a__ = [tuple(merge.split()[:-1] ) for merge in merges] a__ = dict(zip(_a , range(len(_a ) ) ) ) a__ = {} def lowercase__ ( self , _a , _a = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a__ = [self.cls_token_id] a__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , _a , _a = None , _a = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def lowercase__ ( self , _a , _a = None ): """simple docstring""" a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ): """simple docstring""" return len(self.encoder ) def lowercase__ ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self , _a ): """simple docstring""" if token in self.cache: return self.cache[token] a__ = tuple(_a ) a__ = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) a__ = get_pairs(_a ) if not pairs: return token while True: a__ = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float('inf' ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ = bigram a__ = [] a__ = 0 while i < len(_a ): try: a__ = word.index(_a , _a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a__ = j if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ = tuple(_a ) a__ = new_word if len(_a ) == 1: break else: a__ = get_pairs(_a ) a__ = '@@ '.join(_a ) a__ = word[:-4] a__ = word return word def lowercase__ ( self , _a ): """simple docstring""" a__ = [] a__ = re.findall(r'\S+\n?' , _a ) for token in words: split_tokens.extend(list(self.bpe(_a ).split(' ' ) ) ) return split_tokens def lowercase__ ( self , _a ): """simple docstring""" return self.encoder.get(_a , self.encoder.get(self.unk_token ) ) def lowercase__ ( self , _a ): """simple docstring""" return self.decoder.get(_a , self.unk_token ) def lowercase__ ( self , _a ): """simple docstring""" a__ = ' '.join(_a ).replace('@@ ' , '' ).strip() return out_string def lowercase__ ( self , _a , _a = None ): """simple docstring""" if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) a__ = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file , _a ) if os.path.abspath(self.merges_file ) != os.path.abspath(_a ): copyfile(self.merges_file , _a ) return out_vocab_file, out_merge_file def lowercase__ ( self , _a ): """simple docstring""" if isinstance(_a , _a ): try: with open(_a , 'r' , encoding='utf-8' ) as fd: self.add_from_file(_a ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return a__ = f.readlines() for lineTmp in lines: a__ = lineTmp.strip() a__ = line.rfind(' ' ) if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'' ) a__ = line[:idx] a__ = len(self.encoder )
394
1
"""simple docstring""" from collections.abc import Generator from math import sin def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->bytes: if len(SCREAMING_SNAKE_CASE_ ) != 32: raise ValueError('''Input must be of length 32''' ) _lowerCamelCase : Dict = B'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->bytes: if i < 0: raise ValueError('''Input must be non-negative''' ) _lowerCamelCase : List[str] = format(SCREAMING_SNAKE_CASE_ , '''08x''' )[-8:] _lowerCamelCase : Dict = B'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->bytes: _lowerCamelCase : int = B'''''' for char in message: bit_string += format(SCREAMING_SNAKE_CASE_ , '''08b''' ).encode('''utf-8''' ) _lowerCamelCase : Tuple = format(len(SCREAMING_SNAKE_CASE_ ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(SCREAMING_SNAKE_CASE_ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Generator[list[int], None, None]: if len(SCREAMING_SNAKE_CASE_ ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 512 ): _lowerCamelCase : Union[str, Any] = bit_string[pos : pos + 512] _lowerCamelCase : List[str] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->int: if i < 0: raise ValueError('''Input must be non-negative''' ) _lowerCamelCase : int = format(SCREAMING_SNAKE_CASE_ , '''032b''' ) _lowerCamelCase : List[str] = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(SCREAMING_SNAKE_CASE_ , 2 ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->int: return (a + b) % 2**32 def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->int: if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->bytes: _lowerCamelCase : Any = preprocess(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Optional[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _lowerCamelCase : Any = 0x67452301 _lowerCamelCase : Optional[int] = 0xefcdab89 _lowerCamelCase : List[Any] = 0x98badcfe _lowerCamelCase : Dict = 0x10325476 _lowerCamelCase : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(SCREAMING_SNAKE_CASE_ ): _lowerCamelCase : int = aa _lowerCamelCase : Optional[int] = ba _lowerCamelCase : Any = ca _lowerCamelCase : Optional[int] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _lowerCamelCase : Dict = d ^ (b & (c ^ d)) _lowerCamelCase : int = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _lowerCamelCase : Optional[int] = c ^ (d & (b ^ c)) _lowerCamelCase : int = (5 * i + 1) % 16 elif i <= 47: _lowerCamelCase : int = b ^ c ^ d _lowerCamelCase : str = (3 * i + 5) % 16 else: _lowerCamelCase : str = c ^ (b | not_aa(SCREAMING_SNAKE_CASE_ )) _lowerCamelCase : str = (7 * i) % 16 _lowerCamelCase : Tuple = (f + a + added_consts[i] + block_words[g]) % 2**32 _lowerCamelCase : Dict = d _lowerCamelCase : Tuple = c _lowerCamelCase : Optional[int] = b _lowerCamelCase : Union[str, Any] = sum_aa(SCREAMING_SNAKE_CASE_ , left_rotate_aa(SCREAMING_SNAKE_CASE_ , shift_amounts[i] ) ) # Add hashed chunk to running total _lowerCamelCase : Optional[int] = sum_aa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Optional[int] = sum_aa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : str = sum_aa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : List[Any] = sum_aa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : List[Any] = reformat_hex(SCREAMING_SNAKE_CASE_ ) + reformat_hex(SCREAMING_SNAKE_CASE_ ) + reformat_hex(SCREAMING_SNAKE_CASE_ ) + reformat_hex(SCREAMING_SNAKE_CASE_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _UpperCAmelCase ( a_ ): """simple docstring""" def __init__( self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=0 ) -> List[Any]: _lowerCamelCase : Tuple = 1.0 if scale is None else scale _lowerCamelCase : int = 0.0 if loc is None else loc super().__init__(_lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_lowercase )] ) @property def a__ ( self ) -> Dict: return self.base_dist.mean * self.scale + self.loc @property def a__ ( self ) -> List[str]: return self.base_dist.variance * self.scale**2 @property def a__ ( self ) -> Union[str, Any]: return self.variance.sqrt() class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase , _lowercase , _lowercase , **_lowercase ) -> None: super().__init__(**_lowercase ) _lowerCamelCase : Union[str, Any] = args_dim _lowerCamelCase : Union[str, Any] = nn.ModuleList([nn.Linear(_lowercase , _lowercase ) for dim in args_dim.values()] ) _lowerCamelCase : str = domain_map def a__ ( self , _lowercase ) -> Tuple[torch.Tensor]: _lowerCamelCase : Any = [proj(_lowercase ) for proj in self.proj] return self.domain_map(*_lowercase ) class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: super().__init__() _lowerCamelCase : Optional[Any] = function def a__ ( self , _lowercase , *_lowercase ) -> str: return self.function(_lowercase , *_lowercase ) class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = 42 __snake_case = 42 def __init__( self , _lowercase = 1 ) -> None: _lowerCamelCase : int = dim _lowerCamelCase : Optional[int] = {k: dim * self.args_dim[k] for k in self.args_dim} def a__ ( self , _lowercase ) -> Dict: if self.dim == 1: return self.distribution_class(*_lowercase ) else: return Independent(self.distribution_class(*_lowercase ) , 1 ) def a__ ( self , _lowercase , _lowercase = None , _lowercase = None , ) -> Distribution: _lowerCamelCase : Any = self._base_distribution(_lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(_lowercase , loc=_lowercase , scale=_lowercase , event_dim=self.event_dim ) @property def a__ ( self ) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def a__ ( self ) -> int: return len(self.event_shape ) @property def a__ ( self ) -> float: return 0.0 def a__ ( self , _lowercase ) -> nn.Module: return ParameterProjection( in_features=_lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def a__ ( self , *_lowercase ) -> int: raise NotImplementedError() @staticmethod def a__ ( _lowercase ) -> torch.Tensor: return (x + torch.sqrt(torch.square(_lowercase ) + 4.0 )) / 2.0 class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = {"df": 1, "loc": 1, "scale": 1} __snake_case = StudentT @classmethod def a__ ( cls , _lowercase , _lowercase , _lowercase ) -> List[Any]: _lowerCamelCase : int = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) _lowerCamelCase : List[Any] = 2.0 + cls.squareplus(_lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = {"loc": 1, "scale": 1} __snake_case = Normal @classmethod def a__ ( cls , _lowercase , _lowercase ) -> List[Any]: _lowerCamelCase : str = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = {"total_count": 1, "logits": 1} __snake_case = NegativeBinomial @classmethod def a__ ( cls , _lowercase , _lowercase ) -> int: _lowerCamelCase : str = cls.squareplus(_lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def a__ ( self , _lowercase ) -> Distribution: _lowerCamelCase, _lowerCamelCase : int = distr_args if self.dim == 1: return self.distribution_class(total_count=_lowercase , logits=_lowercase ) else: return Independent(self.distribution_class(total_count=_lowercase , logits=_lowercase ) , 1 ) def a__ ( self , _lowercase , _lowercase = None , _lowercase = None ) -> Distribution: _lowerCamelCase, _lowerCamelCase : Optional[int] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
558
0
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowerCAmelCase_ = False try: lowerCAmelCase_ = _is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class snake_case_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCamelCase : str = None , _UpperCamelCase : list = [] ) ->int: snake_case_ = 0 snake_case_ = choices snake_case_ = prompt if sys.platform == "win32": snake_case_ = '''*''' else: snake_case_ = '''➔ ''' def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : str = "" ) ->Dict: if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , _UpperCamelCase ) else: forceWrite(self.choices[index] , _UpperCamelCase ) def snake_case__( self : Optional[int] , _UpperCamelCase : int ) ->List[Any]: if index == self.position: forceWrite(f''' {self.arrow_char} ''' ) self.write_choice(_UpperCamelCase ) else: forceWrite(f''' {self.choices[index]}''' ) reset_cursor() def snake_case__( self : Union[str, Any] , _UpperCamelCase : Direction , _UpperCamelCase : int = 1 ) ->List[Any]: snake_case_ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_UpperCamelCase ) move_cursor(_UpperCamelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def snake_case__( self : Any ) ->List[str]: self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def snake_case__( self : Tuple ) ->str: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def snake_case__( self : Any ) ->int: move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def snake_case__( self : int ) ->Union[str, Any]: move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_UpperCamelCase )] for number in range(1_0 )] ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = int(chr(self.current_selection ) ) snake_case_ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _UpperCamelCase ) else: return else: return def snake_case__( self : Tuple , _UpperCamelCase : int = 0 ) ->List[str]: if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) snake_case_ = default_choice for i in range(len(self.choices ) ): self.print_choice(_UpperCamelCase ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: snake_case_ = int(builtins.input() ) except ValueError: snake_case_ = default_choice else: snake_case_ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(_UpperCamelCase , '''\n''' ) return choice
39
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCamelCase : Optional[Any] = 256 class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Union[str, Any] = ['''melgan'''] def __init__(self : Optional[Any] , A__ : SpectrogramNotesEncoder , A__ : SpectrogramContEncoder , A__ : TaFilmDecoder , A__ : DDPMScheduler , A__ : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: super().__init__() # From MELGAN lowercase = math.log(1e-5 ) # Matches MelGAN training. lowercase = 4.0 # Largest value for most examples lowercase = 1_2_8 self.register_modules( notes_encoder=A__ , continuous_encoder=A__ , decoder=A__ , scheduler=A__ , melgan=A__ , ) def UpperCAmelCase__ (self : Union[str, Any] , A__ : Any , A__ : Tuple=(-1.0, 1.0) , A__ : Any=False ) -> Any: lowercase , lowercase = output_range if clip: lowercase = torch.clip(A__ , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCAmelCase__ (self : Tuple , A__ : Any , A__ : List[str]=(-1.0, 1.0) , A__ : Any=False ) -> str: lowercase , lowercase = input_range lowercase = torch.clip(A__ , A__ , A__ ) if clip else outputs # Scale to [0, 1]. lowercase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCAmelCase__ (self : List[str] , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[Any] ) -> Dict: lowercase = input_tokens > 0 lowercase , lowercase = self.notes_encoder( encoder_input_tokens=A__ , encoder_inputs_mask=A__ ) lowercase , lowercase = self.continuous_encoder( encoder_inputs=A__ , encoder_inputs_mask=A__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCAmelCase__ (self : int , A__ : int , A__ : Optional[int] , A__ : List[Any] ) -> str: lowercase = noise_time if not torch.is_tensor(A__ ): lowercase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A__ ) and len(timesteps.shape ) == 0: lowercase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase = self.decoder( encodings_and_masks=A__ , decoder_input_tokens=A__ , decoder_noise_time=A__ ) return logits @torch.no_grad() def __call__(self : int , A__ : List[List[int]] , A__ : Optional[torch.Generator] = None , A__ : int = 1_0_0 , A__ : bool = True , A__ : str = "numpy" , A__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , A__ : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A__ , A__ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(A__ )}.' ) lowercase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A__ , device=self.device ) for i, encoder_input_tokens in enumerate(A__ ): if i == 0: lowercase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A__ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase = ones lowercase = self.scale_features( A__ , output_range=[-1.0, 1.0] , clip=A__ ) lowercase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A__ , continuous_mask=A__ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A__ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase = self.decode( encodings_and_masks=A__ , input_tokens=A__ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase = self.scheduler.step(A__ , A__ , A__ , generator=A__ ).prev_sample lowercase = self.scale_to_features(A__ , input_range=[-1.0, 1.0] ) lowercase = mel[:1] lowercase = mel.cpu().float().numpy() lowercase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A__ , A__ ) logger.info("Generated segment" , A__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": lowercase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A__ )
310
0
from statistics import mean import numpy as np def __UpperCAmelCase ( a_ , a_ , a_ , a_): snake_case_ = 0 # Number of processes finished snake_case_ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. snake_case_ = [0] * no_of_process # List to include calculation results snake_case_ = [0] * no_of_process # Sort by arrival time. snake_case_ = [burst_time[i] for i in np.argsort(a_)] snake_case_ = [process_name[i] for i in np.argsort(a_)] arrival_time.sort() while no_of_process > finished_process_count: snake_case_ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: snake_case_ = arrival_time[i] snake_case_ = 0 # Index showing the location of the process being performed snake_case_ = 0 # Saves the current response ratio. snake_case_ = 0 for i in range(0 , a_): if finished_process[i] == 0 and arrival_time[i] <= current_time: snake_case_ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: snake_case_ = temp snake_case_ = i # Calculate the turn around time snake_case_ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. snake_case_ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __UpperCAmelCase ( a_ , a_ , a_ , a_): snake_case_ = [0] * no_of_process for i in range(0 , a_): snake_case_ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowercase = 5 lowercase = ["A", "B", "C", "D", "E"] lowercase = [1, 2, 3, 4, 5] lowercase = [1, 2, 3, 4, 5] lowercase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowercase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( f'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' f'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(f'average waiting time : {mean(waiting_time):.5f}') print(f'average turn around time : {mean(turn_around_time):.5f}')
607
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowercase = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self , a , a , a = None , a = None ) -> int: snake_case_ = None snake_case_ = os.path.abspath(os.path.join('examples' , 'by_feature' ) ) snake_case_ = os.path.abspath('examples' ) for item in os.listdir(a ): if item not in EXCLUDE_EXAMPLES: snake_case_ = os.path.join(a , a ) if os.path.isfile(a ) and ".py" in item_path: with self.subTest( tested_script=a , feature_script=a , tested_section='main()' if parser_only else 'training_function()' , ): snake_case_ = compare_against_test( os.path.join(a , a ) , a , a , a ) snake_case_ = '\n'.join(a ) if special_strings is not None: for string in special_strings: snake_case_ = diff.replace(a , '' ) self.assertEqual(a , '' ) def _UpperCamelCase ( self ) -> Optional[Any]: self.one_complete_example('complete_nlp_example.py' , a ) self.one_complete_example('complete_nlp_example.py' , a ) def _UpperCamelCase ( self ) -> Union[str, Any]: snake_case_ = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) ) snake_case_ = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , a , a , a ) self.one_complete_example('complete_cv_example.py' , a , a , a ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = False @classmethod def _UpperCamelCase ( cls ) -> Optional[int]: super().setUpClass() snake_case_ = tempfile.mkdtemp() snake_case_ = os.path.join(cls._tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) snake_case_ = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def _UpperCamelCase ( cls ) -> Optional[Any]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = F''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) ) def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = F''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() snake_case_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) ) def _UpperCamelCase ( self ) -> Optional[Any]: snake_case_ = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} '''.split() snake_case_ = run_command(self._launch_args + testargs , return_stdout=a ) self.assertNotIn('epoch 0:' , a ) self.assertIn('epoch 1:' , a ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} '''.split() snake_case_ = run_command(self._launch_args + testargs , return_stdout=a ) if torch.cuda.is_available(): snake_case_ = torch.cuda.device_count() else: snake_case_ = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , a ) self.assertIn('epoch 1:' , a ) else: self.assertIn('epoch 0:' , a ) self.assertIn('epoch 1:' , a ) @slow def _UpperCamelCase ( self ) -> int: snake_case_ = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ): snake_case_ = run_command(self._launch_args + testargs , return_stdout=a ) snake_case_ = re.findall('({.+})' , a ) snake_case_ = [r for r in results if 'accuracy' in r][-1] snake_case_ = ast.literal_eval(a ) self.assertGreaterEqual(results['accuracy'] , 0.75 ) def _UpperCamelCase ( self ) -> Optional[int]: snake_case_ = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def _UpperCamelCase ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: snake_case_ = F''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(a , 'tracking' ) ) ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs )
607
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = tempfile.mkdtemp() # fmt: off __a = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __a = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) __a = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __a = {'unk_token': '<unk>'} __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase ) ) __a = { 'do_resize': True, 'size': 2_0, 'do_center_crop': True, 'crop_size': 1_8, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } __a = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> Optional[Any]: return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> int: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , **UpperCAmelCase ) -> Optional[Any]: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __a = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = self.get_image_processor() __a = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) __a = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) __a = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) __a = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __a = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __a = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) __a = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.get_image_processor() __a = self.get_tokenizer() __a = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __a = self.prepare_image_inputs() __a = image_processor(UpperCAmelCase , return_tensors='np' ) __a = processor(images=UpperCAmelCase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = self.get_image_processor() __a = self.get_tokenizer() __a = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __a = 'lower newer' __a = processor(text=UpperCAmelCase ) __a = tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = self.get_image_processor() __a = self.get_tokenizer() __a = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __a = 'lower newer' __a = self.prepare_image_inputs() __a = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.get_image_processor() __a = self.get_tokenizer() __a = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a = processor.batch_decode(UpperCAmelCase ) __a = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.get_image_processor() __a = self.get_tokenizer() __a = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) __a = 'lower newer' __a = self.prepare_image_inputs() __a = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
559
import math import sys def lowerCAmelCase( __lowerCamelCase ): if number != int(__lowerCamelCase ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __a = [-1] * (number + 1) __a = 0 for i in range(1 , number + 1 ): __a = sys.maxsize __a = int(math.sqrt(__lowerCamelCase ) ) for j in range(1 , root + 1 ): __a = 1 + answers[i - (j**2)] __a = min(__lowerCamelCase , __lowerCamelCase ) __a = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
559
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( UpperCAmelCase_ , UpperCAmelCase_ ): @register_to_config def __init__( self : str , *, lowerCamelCase__ : int = 4 , lowerCamelCase__ : int = 7_68 , lowerCamelCase__ : int , lowerCamelCase__ : Any , ): """simple docstring""" super().__init__() __UpperCamelCase : Optional[int] = nn.Parameter(torch.zeros(lowerCamelCase__ ) ) # parameters for additional clip time embeddings __UpperCamelCase : List[str] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) # parameters for encoder hidden states __UpperCamelCase : Tuple = clip_extra_context_tokens __UpperCamelCase : List[Any] = nn.Linear( lowerCamelCase__ , self.clip_extra_context_tokens * cross_attention_dim ) __UpperCamelCase : Tuple = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] = nn.LayerNorm(lowerCamelCase__ ) def a ( self : List[Any] , *, lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int ): """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __UpperCamelCase : Tuple = image_embeddings.shape[0] __UpperCamelCase : List[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __UpperCamelCase : Optional[Any] = classifier_free_guidance_embeddings.expand( lowerCamelCase__ , -1 ) __UpperCamelCase : Tuple = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __UpperCamelCase : Tuple = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __UpperCamelCase : Optional[Any] = self.embedding_proj(lowerCamelCase__ ) __UpperCamelCase : Any = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __UpperCamelCase : List[str] = self.clip_extra_context_tokens_proj(lowerCamelCase__ ) __UpperCamelCase : Tuple = clip_extra_context_tokens.reshape(lowerCamelCase__ , -1 , self.clip_extra_context_tokens ) __UpperCamelCase : Union[str, Any] = clip_extra_context_tokens.permute(0 , 2 , 1 ) __UpperCamelCase : int = self.encoder_hidden_states_proj(lowerCamelCase__ ) __UpperCamelCase : Dict = self.text_encoder_hidden_states_norm(lowerCamelCase__ ) __UpperCamelCase : Optional[int] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
515
import fire from utils import calculate_rouge, save_json def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Union[str, Any] ) -> List[str]: __UpperCamelCase : Any = [x.strip() for x in open(__lowerCAmelCase ).readlines()] __UpperCamelCase : Dict = [x.strip() for x in open(__lowerCAmelCase ).readlines()][: len(__lowerCAmelCase )] __UpperCamelCase : Optional[Any] = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) if save_path is not None: save_json(__lowerCAmelCase , __lowerCAmelCase , indent=__lowerCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
515
1
'''simple docstring''' import random def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = num - 1 SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE : List[str] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE : List[Any] = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE : List[Any] = pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if v != 1: SCREAMING_SNAKE_CASE : Tuple = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE : Any = i + 1 SCREAMING_SNAKE_CASE : str = (v**2) % num return True def __A ( lowerCamelCase_ ): """simple docstring""" if num < 2: return False SCREAMING_SNAKE_CASE : List[str] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowerCamelCase_ ) def __A ( lowerCamelCase_ = 10_24 ): """simple docstring""" while True: SCREAMING_SNAKE_CASE : Optional[Any] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowerCamelCase_ ): return num if __name__ == "__main__": __UpperCAmelCase = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
379
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = parent def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return {} def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" SCREAMING_SNAKE_CASE : int = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MarkupLMFeatureExtractor if is_bsa_available() else None def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = MarkupLMFeatureExtractionTester(self ) @property def lowerCamelCase_ ( self : int ): '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class() # Test not batched input SCREAMING_SNAKE_CASE : Optional[int] = get_html_strings()[0] SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(lowerCamelCase_ ) # fmt: off SCREAMING_SNAKE_CASE : Optional[int] = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] SCREAMING_SNAKE_CASE : List[str] = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , lowerCamelCase_ ) self.assertEqual(encoding.xpaths , lowerCamelCase_ ) # Test batched SCREAMING_SNAKE_CASE : str = get_html_strings() SCREAMING_SNAKE_CASE : str = feature_extractor(lowerCamelCase_ ) # fmt: off SCREAMING_SNAKE_CASE : int = expected_nodes + [["""My First Heading""", """My first paragraph."""]] SCREAMING_SNAKE_CASE : List[Any] = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCamelCase_ ) self.assertEqual(encoding.xpaths , lowerCamelCase_ )
379
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) def __lowerCAmelCase ( ): # Get the sagemaker specific mp parameters from smp_options variable. _lowercase: Dict = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. _lowercase: int = json.loads(__magic_name__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. _lowercase: List[str] = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". _lowercase: Dict = json.loads(__magic_name__ ) if not mpi_options.get("sagemaker_mpi_enabled" , __magic_name__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class A ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase : str = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def UpperCAmelCase__ ( self : int): super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , _UpperCamelCase , ) @cached_property def UpperCAmelCase__ ( self : Dict): logger.info("PyTorch: setting up devices") if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch") if self.no_cuda: _lowercase: Optional[Any] = torch.device("cpu") _lowercase: List[str] = 0 elif is_sagemaker_model_parallel_available(): _lowercase: Any = smp.local_rank() _lowercase: Tuple = torch.device("cuda" , _UpperCamelCase) _lowercase: int = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta) _lowercase: str = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK")) _lowercase: Optional[int] = torch.device("cuda" , self.local_rank) _lowercase: Dict = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 _lowercase: int = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. _lowercase: Dict = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta) _lowercase: Optional[Any] = torch.device("cuda" , self.local_rank) _lowercase: str = 1 if device.type == "cuda": torch.cuda.set_device(_UpperCamelCase) return device @property def UpperCAmelCase__ ( self : str): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def UpperCAmelCase__ ( self : Tuple): return not is_sagemaker_model_parallel_available() @property def UpperCAmelCase__ ( self : Tuple): return False
206
_SCREAMING_SNAKE_CASE : dict[tuple[int, int, int], int] = {} def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowercase: Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowercase: Tuple = _calculate(days - 1 , __magic_name__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowercase: Dict = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowercase: Tuple = _calculate(days - 1 , __magic_name__ , 0 ) _lowercase: List[str] = state_late + state_absent + state_ontime _lowercase: Optional[int] = prizestrings return prizestrings def __lowerCAmelCase ( __magic_name__ = 3_0 ): return _calculate(__magic_name__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
206
1
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[str] ) -> str: '''simple docstring''' _A = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' _A = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ).convert('RGB' ) _A = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ), ] ) _A = transform(_snake_case ).unsqueeze(0 ).to(_snake_case ) return image def _snake_case ( _snake_case : List[str] ) -> Dict: '''simple docstring''' if "visual_encoder" in key: _A = re.sub('visual_encoder*' , 'vision_model.encoder' , _snake_case ) if "blocks" in key: _A = re.sub(R'blocks' , 'layers' , _snake_case ) if "attn" in key: _A = re.sub(R'attn' , 'self_attn' , _snake_case ) if "norm1" in key: _A = re.sub(R'norm1' , 'layer_norm1' , _snake_case ) if "norm2" in key: _A = re.sub(R'norm2' , 'layer_norm2' , _snake_case ) if "encoder.norm" in key: _A = re.sub(R'encoder.norm' , 'post_layernorm' , _snake_case ) if "encoder.patch_embed.proj" in key: _A = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , _snake_case ) if "encoder.pos_embed" in key: _A = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , _snake_case ) if "encoder.cls_token" in key: _A = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , _snake_case ) if "self_attn" in key: _A = re.sub(R'self_attn.proj' , 'self_attn.projection' , _snake_case ) return key @torch.no_grad() def _snake_case ( _snake_case : Optional[int] , _snake_case : List[str]=None ) -> Any: '''simple docstring''' if config_path is not None: _A = BlipConfig.from_pretrained(_snake_case ) else: _A = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) _A = BlipForConditionalGeneration(_snake_case ).eval() _A = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' _A = blip_decoder(pretrained=_snake_case , image_size=3_84 , vit='base' ) _A = pt_model.eval() _A = pt_model.state_dict() for key in modified_state_dict.copy(): _A = modified_state_dict.pop(_snake_case ) _A = rename_key(_snake_case ) _A = value hf_model.load_state_dict(_snake_case ) _A = 3_84 _A = load_demo_image(image_size=_snake_case , device='cpu' ) _A = BertTokenizer.from_pretrained('bert-base-uncased' ) _A = tokenizer(['a picture of'] ).input_ids _A = hf_model.generate(_snake_case , _snake_case ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] _A = hf_model.generate(_snake_case ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_snake_case ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _A = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) _A = blip_vqa(pretrained=_snake_case , image_size=_snake_case , vit='base' ) vqa_model.eval() _A = vqa_model.state_dict() for key in modified_state_dict.copy(): _A = modified_state_dict.pop(_snake_case ) _A = rename_key(_snake_case ) _A = value _A = BlipForQuestionAnswering(_snake_case ) hf_vqa_model.load_state_dict(_snake_case ) _A = ['How many dogs are in this image?'] _A = tokenizer(_snake_case , return_tensors='pt' ).input_ids _A = hf_vqa_model.generate(_snake_case , _snake_case ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) _A = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' _A = blip_itm(pretrained=_snake_case , image_size=_snake_case , vit='base' ) itm_model.eval() _A = itm_model.state_dict() for key in modified_state_dict.copy(): _A = modified_state_dict.pop(_snake_case ) _A = rename_key(_snake_case ) _A = value _A = BlipForImageTextRetrieval(_snake_case ) _A = ['A picture of a woman with a dog sitting in a beach'] _A = tokenizer( _snake_case , return_tensors='pt' , padding='max_length' , truncation=_snake_case , max_length=35 , ).input_ids hf_itm_model.load_state_dict(_snake_case ) hf_itm_model.eval() _A = hf_itm_model(_snake_case , _snake_case , use_itm_head=_snake_case ) _A = hf_itm_model(_snake_case , _snake_case , use_itm_head=_snake_case ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') a = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
7
import requests def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = {'Content-Type': 'application/json'} UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase) if response.status_code != 200: UpperCamelCase_ = ( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__lowercase) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
23
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = """▁""" UpperCamelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class a__ ( snake_case__ , unittest.TestCase ): _a : str = BigBirdTokenizer _a : Tuple = BigBirdTokenizerFast _a : Union[str, Any] = True _a : Any = True def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().setUp() __lowerCAmelCase = self.tokenizer_class(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "<s>" __lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(_A ) , 1_0_0_4 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if not self.test_rust_tokenizer: return __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = "I was born in 92000, and this is falsé." __lowerCAmelCase = tokenizer.tokenize(_A ) __lowerCAmelCase = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = tokenizer.encode(_A , add_special_tokens=_A ) __lowerCAmelCase = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = tokenizer.encode(_A ) __lowerCAmelCase = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = BigBirdTokenizer(_A , keep_accents=_A ) __lowerCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(_A , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) __lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = "Hello World!" __lowerCAmelCase = [6_5, 1_8_5_3_6, 2_2_6_0, 1_0_1, 6_6] self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off __lowerCAmelCase = [6_5, 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, 6_6] # noqa: E231 # fmt: on self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @require_torch @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __lowerCAmelCase = list(self.big_tokenizer.get_vocab().keys() )[:1_0] __lowerCAmelCase = " ".join(_A ) __lowerCAmelCase = self.big_tokenizer.encode_plus(_A , return_tensors="pt" , return_token_type_ids=_A ) __lowerCAmelCase = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=_A ) __lowerCAmelCase = BigBirdConfig(attention_type="original_full" ) __lowerCAmelCase = BigBirdModel(_A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_A ) model(**_A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) __lowerCAmelCase = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = {"input_ids": [[6_5, 3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4, 6_6], [6_5, 4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6_5, 4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 6_6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
552
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class a__ : def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=False , _A=True , _A="None" , _A=3 , _A=4 , _A=None , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = relative_attention __lowerCAmelCase = position_biased_input __lowerCAmelCase = pos_att_type __lowerCAmelCase = scope def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDebertaVaModel(config=_A ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = [input_ids, input_mask] __lowerCAmelCase = model(_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDebertaVaForMaskedLM(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFDebertaVaForSequenceClassification(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFDebertaVaForTokenClassification(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDebertaVaForQuestionAnswering(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[Any] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _a : Union[str, Any] = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _a : str = False _a : List[str] = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDebertaVaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(_A ) @require_tf class a__ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) __lowerCAmelCase = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase = model(_A , attention_mask=_A )[0] __lowerCAmelCase = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , _A , atol=1E-4 )
552
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _UpperCAmelCase : str = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , **snake_case_ ): super().__init__(**snake_case_ ) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , '''vision''' ) self.check_model_type(snake_case_ ) def __call__( self , snake_case_ , snake_case_ = None , **snake_case_ , ): if "text_queries" in kwargs: lowercase =kwargs.pop('''text_queries''' ) if isinstance(snake_case_ , (str, Image.Image) ): lowercase ={'''image''': image, '''candidate_labels''': candidate_labels} else: lowercase =image lowercase =super().__call__(snake_case_ , **snake_case_ ) return results def _A( self , **snake_case_ ): lowercase ={} if "threshold" in kwargs: lowercase =kwargs['''threshold'''] if "top_k" in kwargs: lowercase =kwargs['''top_k'''] return {}, {}, postprocess_params def _A( self , snake_case_ ): lowercase =load_image(inputs['''image'''] ) lowercase =inputs['''candidate_labels'''] if isinstance(snake_case_ , snake_case_ ): lowercase =candidate_labels.split(''',''' ) lowercase =torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case_ ): lowercase =self.tokenizer(snake_case_ , return_tensors=self.framework ) lowercase =self.image_processor(snake_case_ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _A( self , snake_case_ ): lowercase =model_inputs.pop('''target_size''' ) lowercase =model_inputs.pop('''candidate_label''' ) lowercase =model_inputs.pop('''is_last''' ) lowercase =self.model(**snake_case_ ) lowercase ={'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def _A( self , snake_case_ , snake_case_=0.1 , snake_case_=None ): lowercase =[] for model_output in model_outputs: lowercase =model_output['''candidate_label'''] lowercase =BaseModelOutput(snake_case_ ) lowercase =self.image_processor.post_process_object_detection( outputs=snake_case_ , threshold=snake_case_ , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): lowercase =outputs['''scores'''][index].item() lowercase =self._get_bounding_box(outputs['''boxes'''][index][0] ) lowercase ={'''score''': score, '''label''': label, '''box''': box} results.append(snake_case_ ) lowercase =sorted(snake_case_ , key=lambda snake_case_ : x["score"] , reverse=snake_case_ ) if top_k: lowercase =results[:top_k] return results def _A( self , snake_case_ ): if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) lowercase , lowercase , lowercase , lowercase =box.int().tolist() lowercase ={ '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
72
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Dict = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'pix2struct_text_model' UpperCamelCase__ = ['past_key_values'] UpperCamelCase__ = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , snake_case_=5_02_44 , snake_case_=7_68 , snake_case_=64 , snake_case_=20_48 , snake_case_=12 , snake_case_=12 , snake_case_=32 , snake_case_=1_28 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=1.0 , snake_case_="gelu_new" , snake_case_=0 , snake_case_=False , snake_case_=0 , snake_case_=1 , snake_case_=False , snake_case_=True , **snake_case_ , ): lowercase =vocab_size lowercase =hidden_size lowercase =d_kv lowercase =d_ff lowercase =num_layers lowercase =num_heads lowercase =relative_attention_num_buckets lowercase =relative_attention_max_distance lowercase =dropout_rate lowercase =layer_norm_epsilon lowercase =initializer_factor lowercase =use_cache lowercase =eos_token_id lowercase =decoder_start_token_id # for backwards compatibility lowercase =dense_act_fn super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , tie_word_embeddings=snake_case_ , is_decoder=snake_case_ , **snake_case_ , ) @classmethod def _A( cls , snake_case_ , **snake_case_ ): cls._set_token_in_kwargs(snake_case_ ) lowercase , lowercase =cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'pix2struct_vision_model' def __init__( self , snake_case_=7_68 , snake_case_=7_68 , snake_case_=20_48 , snake_case_=64 , snake_case_=12 , snake_case_=12 , snake_case_="gelu_new" , snake_case_=1E-6 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=1E-10 , snake_case_=1.0 , snake_case_=40_96 , snake_case_=32 , snake_case_=1_28 , **snake_case_ , ): super().__init__(**snake_case_ ) lowercase =hidden_size lowercase =patch_embed_hidden_size lowercase =d_ff lowercase =dropout_rate lowercase =num_hidden_layers lowercase =num_attention_heads lowercase =initializer_range lowercase =initializer_factor lowercase =attention_dropout lowercase =layer_norm_eps lowercase =dense_act_fn lowercase =seq_len lowercase =relative_attention_num_buckets lowercase =relative_attention_max_distance lowercase =d_kv @classmethod def _A( cls , snake_case_ , **snake_case_ ): cls._set_token_in_kwargs(snake_case_ ) lowercase , lowercase =cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'pix2struct' UpperCamelCase__ = True def __init__( self , snake_case_=None , snake_case_=None , snake_case_=1.0 , snake_case_=0.02 , snake_case_=False , snake_case_=False , snake_case_=True , **snake_case_ , ): super().__init__(tie_word_embeddings=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ ) if text_config is None: lowercase ={} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: lowercase ={} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) lowercase =PixaStructTextConfig(**snake_case_ ) lowercase =PixaStructVisionConfig(**snake_case_ ) lowercase =self.text_config.decoder_start_token_id lowercase =self.text_config.pad_token_id lowercase =self.text_config.eos_token_id lowercase =initializer_factor lowercase =initializer_range lowercase =self.initializer_range lowercase =self.initializer_range lowercase =is_vqa @classmethod def _A( cls , snake_case_ , snake_case_ , **snake_case_ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ ) def _A( self ): lowercase =copy.deepcopy(self.__dict__ ) lowercase =self.text_config.to_dict() lowercase =self.vision_config.to_dict() lowercase =self.__class__.model_type return output
72
1
import math def A__ ( SCREAMING_SNAKE_CASE__ = 100) -> int: __snake_case: Tuple = sum(i * i for i in range(1 , n + 1)) __snake_case: List[Any] = int(math.pow(sum(range(1 , n + 1)) , 2)) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'{solution() = }')
155
def A__ ( SCREAMING_SNAKE_CASE__ = 100) -> int: __snake_case: str = 0 __snake_case: int = 0 for i in range(1 , n + 1): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'{solution() = }')
155
1
"""simple docstring""" import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _SCREAMING_SNAKE_CASE = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main __snake_case = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE , id=SCREAMING_SNAKE_CASE )
163
"""simple docstring""" import argparse import json import subprocess def __a ( a, a ): """simple docstring""" _a = [] _a = ( F'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' " https://api.github.com/repos/huggingface/transformers/actions/runners" ) _a = subprocess.run(a, shell=a, stdout=subprocess.PIPE ) _a = output.stdout.decode("utf-8" ) _a = json.loads(a ) _a = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(a ) # save the result so we can report them on Slack with open("offline_runners.txt", "w" ) as fp: fp.write(json.dumps(a ) ) if len(a ) > 0: _a = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(F'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __a ( a ): """simple docstring""" return values.split("," ) __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) __SCREAMING_SNAKE_CASE = parser.parse_args() get_runner_status(args.target_runners, args.token)
388
0
from __future__ import annotations from random import choice def a_ ( _A ) -> List[Any]: """simple docstring""" return choice(_A ) def a_ ( _A , _A ) -> int: """simple docstring""" snake_case__ = random_pivot(_A ) # partition based on pivot # linear time snake_case__ = [e for e in lst if e < pivot] snake_case__ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_A ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_A ) < k - 1: return kth_number(_A , k - len(_A ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_A , _A ) if __name__ == "__main__": import doctest doctest.testmod()
372
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE( a_ , a_ , unittest.TestCase ): _UpperCAmelCase = StableDiffusionSAGPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = False def lowerCAmelCase_ ( self: int ) -> Any: torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) snake_case__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , ) torch.manual_seed(0 ) snake_case__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) snake_case__ = CLIPTextModel(UpperCamelCase ) snake_case__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: Optional[int]=0 ) -> Union[str, Any]: if str(UpperCamelCase ).startswith('mps' ): snake_case__ = torch.manual_seed(UpperCamelCase ) else: snake_case__ = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def lowerCAmelCase_ ( self: Union[str, Any] ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE( unittest.TestCase ): def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self: Dict ) -> Tuple: snake_case__ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) snake_case__ = sag_pipe.to(UpperCamelCase ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = '.' snake_case__ = torch.manual_seed(0 ) snake_case__ = sag_pipe( [prompt] , generator=UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) snake_case__ = output.images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case__ = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[Any]: snake_case__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) snake_case__ = sag_pipe.to(UpperCamelCase ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = '.' snake_case__ = torch.manual_seed(0 ) snake_case__ = sag_pipe( [prompt] , generator=UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) snake_case__ = output.images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) snake_case__ = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) snake_case__ = sag_pipe.to(UpperCamelCase ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ = '.' snake_case__ = torch.manual_seed(0 ) snake_case__ = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=UpperCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) snake_case__ = output.images assert image.shape == (1, 5_12, 7_68, 3)
372
1