code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __lowerCAmelCase : Any = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
529
'''simple docstring''' import functools def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> int: # Validation if not isinstance(__A , __A ) or not all(isinstance(__A , __A ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(__A ) != 3 or not all(isinstance(__A , __A ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(__A ) == 0: return 0 if min(__A ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(__A ) >= 366: raise ValueError('All days elements should be less than 366' ) _snake_case = set(__A ) @functools.cache def dynamic_programming(__A ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
495
0
def lowerCamelCase__ ( a : List[Any] ) -> int: """simple docstring""" stooge(a , 0 , len(a ) - 1 ) return arr def lowerCamelCase__ ( a : Optional[int] , a : List[str] , a : str ) -> Optional[int]: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: a__ , a__ :Union[str, Any] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: a__ :Any = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(a , a , (h - t) ) # Recursively sort last 2/3 elements stooge(a , i + t , (a) ) # Recursively sort first 2/3 elements stooge(a , a , (h - t) ) if __name__ == "__main__": snake_case__ = input('''Enter numbers separated by a comma:\n''').strip() snake_case__ = [int(item) for item in user_input.split(''',''')] print(stooge_sort(unsorted))
373
import sys from collections import defaultdict class lowerCAmelCase_ : def __init__( self : Optional[int] ) ->Any: """simple docstring""" a__ :Optional[Any] = [] def _snake_case ( self : Optional[Any] , __A : List[Any] ) ->List[str]: """simple docstring""" return self.node_position[vertex] def _snake_case ( self : Optional[Any] , __A : str , __A : Any ) ->Dict: """simple docstring""" a__ :Dict = pos def _snake_case ( self : str , __A : Union[str, Any] , __A : Union[str, Any] , __A : Optional[Any] , __A : Optional[int] ) ->List[Any]: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: a__ :str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: a__ :Optional[int] = 2 * start + 1 else: a__ :List[Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: a__ , a__ :Optional[Any] = heap[smallest_child], positions[smallest_child] a__ , a__ :int = ( heap[start], positions[start], ) a__ , a__ :List[Any] = temp, tempa a__ :Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __A ) self.top_to_bottom(__A , __A , __A , __A ) def _snake_case ( self : List[str] , __A : Any , __A : List[str] , __A : Any , __A : str ) ->Optional[Any]: """simple docstring""" a__ :Optional[Any] = position[index] while index != 0: a__ :str = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: a__ :int = heap[parent] a__ :Optional[Any] = position[parent] self.set_position(position[parent] , __A ) else: a__ :List[Any] = val a__ :List[Any] = temp self.set_position(__A , __A ) break a__ :Union[str, Any] = parent else: a__ :int = val a__ :Dict = temp self.set_position(__A , 0 ) def _snake_case ( self : Tuple , __A : int , __A : int ) ->Union[str, Any]: """simple docstring""" a__ :Tuple = len(__A ) // 2 - 1 for i in range(__A , -1 , -1 ): self.top_to_bottom(__A , __A , len(__A ) , __A ) def _snake_case ( self : List[Any] , __A : List[Any] , __A : int ) ->Optional[Any]: """simple docstring""" a__ :Any = positions[0] a__ :str = sys.maxsize self.top_to_bottom(__A , 0 , len(__A ) , __A ) return temp def lowerCamelCase__ ( a : Any ) -> Union[str, Any]: """simple docstring""" a__ :Tuple = Heap() a__ :List[Any] = [0] * len(a ) a__ :str = [-1] * len(a ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph a__ :Any = [] # Heap of Distance of vertices from their neighboring vertex a__ :int = [] for vertex in range(len(a ) ): distance_tv.append(sys.maxsize ) positions.append(a ) heap.node_position.append(a ) a__ :Tuple = [] a__ :Any = 1 a__ :int = sys.maxsize for neighbor, distance in adjacency_list[0]: a__ :int = 0 a__ :List[str] = distance heap.heapify(a , a ) for _ in range(1 , len(a ) ): a__ :Dict = heap.delete_minimum(a , a ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) a__ :Optional[int] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(a )] ): a__ :List[str] = distance heap.bottom_to_top( a , heap.get_position(a ) , a , a ) a__ :str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > snake_case__ = int(input('''Enter number of edges: ''').strip()) snake_case__ = defaultdict(list) for _ in range(edges_number): snake_case__ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
373
1
import unittest import numpy as np def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray: UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ ) if shape_a[0] != shape_b[0]: UpperCamelCase_: Any = ( 'Expected the same number of rows for A and B. ' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCAmelCase__ ) if shape_b[1] != shape_c[1]: UpperCamelCase_: int = ( 'Expected the same number of columns for B and C. ' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCAmelCase__ ) UpperCamelCase_: Dict = pseudo_inv if a_inv is None: try: UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] ) UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase ) self.assertAlmostEqual(_lowerCamelCase , det_a * det_s ) def _a ( self ): UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
57
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal A_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__) A_ : Optional[Any] = ['names', 'prefix'] A_ : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] A_ : List[Any] = ['encoding_errors', 'on_bad_lines'] A_ : Optional[Any] = ['date_format'] @dataclass class _lowerCAmelCase( datasets.BuilderConfig ): """simple docstring""" a : str ="," a : Optional[str] =None a : Optional[Union[int, List[int], str]] ="infer" a : Optional[List[str]] =None a : Optional[List[str]] =None a : Optional[Union[int, str, List[int], List[str]]] =None a : Optional[Union[List[int], List[str]]] =None a : Optional[str] =None a : bool =True a : Optional[Literal["c", "python", "pyarrow"]] =None a : Dict[Union[int, str], Callable[[Any], Any]] =None a : Optional[list] =None a : Optional[list] =None a : bool =False a : Optional[Union[int, List[int]]] =None a : Optional[int] =None a : Optional[Union[str, List[str]]] =None a : bool =True a : bool =True a : bool =False a : bool =True a : Optional[str] =None a : str ="." a : Optional[str] =None a : str ='"' a : int =0 a : Optional[str] =None a : Optional[str] =None a : Optional[str] =None a : Optional[str] =None a : bool =True a : bool =True a : int =0 a : bool =True a : bool =False a : Optional[str] =None a : int =10000 a : Optional[datasets.Features] =None a : Optional[str] ="strict" a : Literal["error", "warn", "skip"] ="error" a : Optional[str] =None def _a ( self ): if self.delimiter is not None: UpperCamelCase_: Optional[Any] = self.delimiter if self.column_names is not None: UpperCamelCase_: int = self.column_names @property def _a ( self ): UpperCamelCase_: Any = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCAmelCase( datasets.ArrowBasedBuilder ): """simple docstring""" a : Dict =CsvConfig def _a ( self ): return datasets.DatasetInfo(features=self.config.features ) def _a ( self , _lowerCamelCase ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCamelCase_: Tuple = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): UpperCamelCase_: List[Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: str = [files] UpperCamelCase_: Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] UpperCamelCase_: Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = [files] UpperCamelCase_: int = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) ) return splits def _a ( self , _lowerCamelCase ): if self.config.features is not None: UpperCamelCase_: List[Any] = self.config.features.arrow_schema if all(not require_storage_cast(_lowerCamelCase ) for feature in self.config.features.values() ): # cheaper cast UpperCamelCase_: Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCamelCase_: int = table_cast(_lowerCamelCase , _lowerCamelCase ) return pa_table def _a ( self , _lowerCamelCase ): UpperCamelCase_: List[str] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCamelCase_: Dict = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): UpperCamelCase_: Optional[Any] = pd.read_csv(_lowerCamelCase , iterator=_lowerCamelCase , dtype=_lowerCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = pa.Table.from_pandas(_lowerCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' ) raise
57
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowerCAmelCase_ ( _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : str = image.size __SCREAMING_SNAKE_CASE : Optional[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __SCREAMING_SNAKE_CASE : Any = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) __SCREAMING_SNAKE_CASE : int = np.array(_lowerCamelCase ).astype(np.floataa ) / 2_55.0 __SCREAMING_SNAKE_CASE : int = image[None].transpose(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(_lowerCamelCase ) return 2.0 * image - 1.0 class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase__ : VQModel , lowerCAmelCase__ : UNetaDModel , lowerCAmelCase__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): """simple docstring""" super().__init__() self.register_modules(vqvae=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self : Optional[Any] , lowerCAmelCase__ : Union[torch.Tensor, PIL.Image.Image] = None , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1_0_0 , lowerCAmelCase__ : Optional[float] = 0.0 , lowerCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , ): """simple docstring""" if isinstance(lowerCAmelCase__ , PIL.Image.Image ): __SCREAMING_SNAKE_CASE : Dict = 1 elif isinstance(lowerCAmelCase__ , torch.Tensor ): __SCREAMING_SNAKE_CASE : Tuple = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase__ )}" ) if isinstance(lowerCAmelCase__ , PIL.Image.Image ): __SCREAMING_SNAKE_CASE : int = preprocess(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __SCREAMING_SNAKE_CASE : Tuple = (batch_size, self.unet.config.in_channels // 2, height, width) __SCREAMING_SNAKE_CASE : List[Any] = next(self.unet.parameters() ).dtype __SCREAMING_SNAKE_CASE : int = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image.to(device=self.device , dtype=lowerCAmelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase__ , device=self.device ) __SCREAMING_SNAKE_CASE : Any = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __SCREAMING_SNAKE_CASE : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __SCREAMING_SNAKE_CASE : Optional[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __SCREAMING_SNAKE_CASE : int = {} if accepts_eta: __SCREAMING_SNAKE_CASE : str = eta for t in self.progress_bar(lowerCAmelCase__ ): # concat latents and low resolution image in the channel dimension. __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([latents, image] , dim=1 ) __SCREAMING_SNAKE_CASE : Any = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual __SCREAMING_SNAKE_CASE : Any = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # decode the image latents with the VQVAE __SCREAMING_SNAKE_CASE : Dict = self.vqvae.decode(lowerCAmelCase__ ).sample __SCREAMING_SNAKE_CASE : Optional[int] = torch.clamp(lowerCAmelCase__ , -1.0 , 1.0 ) __SCREAMING_SNAKE_CASE : List[Any] = image / 2 + 0.5 __SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : Tuple = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
704
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def lowerCAmelCase_ ( _lowerCamelCase: int ): if hor == 1_28: __SCREAMING_SNAKE_CASE : Any = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") __SCREAMING_SNAKE_CASE : List[Any] = (32, 1_28, 2_56) __SCREAMING_SNAKE_CASE : str = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: __SCREAMING_SNAKE_CASE : Union[str, Any] = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") __SCREAMING_SNAKE_CASE : str = (32, 64, 1_28, 2_56) __SCREAMING_SNAKE_CASE : Tuple = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) __SCREAMING_SNAKE_CASE : Any = model.state_dict() __SCREAMING_SNAKE_CASE : Optional[Any] = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_55_36, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } __SCREAMING_SNAKE_CASE : int = UNetaDModel(**_lowerCamelCase ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) __SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(_lowerCamelCase ) hf_value_function.load_state_dict(_lowerCamelCase ) torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Dict = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 1_28, 2_56), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_55_36, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } __SCREAMING_SNAKE_CASE : Optional[int] = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) __SCREAMING_SNAKE_CASE : Dict = model __SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel(**_lowerCamelCase ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) __SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __SCREAMING_SNAKE_CASE : str = state_dict.pop(_lowerCamelCase ) hf_value_function.load_state_dict(_lowerCamelCase ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
178
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class UpperCAmelCase_ : snake_case__ = 42 snake_case__ = 42 class UpperCAmelCase_ : def __init__( self : Tuple , __UpperCamelCase : int ) -> int: _UpperCamelCase = [[] for _ in range(__A )] _UpperCamelCase = size def __getitem__( self : Optional[Any] , __UpperCamelCase : int ) -> int: return iter(self._graph[vertex] ) @property def _UpperCamelCase ( self : Optional[int] ) -> int: return self._size def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> str: if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(__A , __A ) ) def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : int ) -> Optional[int]: _UpperCamelCase = deque([start_vertex] ) _UpperCamelCase = [None] * self.size _UpperCamelCase = 0 while queue: _UpperCamelCase = queue.popleft() _UpperCamelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCamelCase = current_distance + edge.weight _UpperCamelCase = distances[edge.destination_vertex] if ( isinstance(__A , __A ) and new_distance >= dest_vertex_distance ): continue _UpperCamelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
420
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Union[str, Any] = num_channels __A : Optional[Any] = min_resolution __A : Union[str, Any] = max_resolution __A : Any = do_resize __A : Union[str, Any] = size __A : Optional[int] = do_normalize __A : Dict = image_mean __A : Optional[int] = image_std __A : Tuple = do_rescale __A : Optional[Any] = rescale_factor __A : Tuple = do_pad def lowerCAmelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ): if not batched: __A : Union[str, Any] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Union[str, Any] = image.size else: __A , __A : Optional[int] = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __A : Dict = self.size["""shortest_edge"""] elif w > h: __A : Optional[Any] = self.size["""shortest_edge"""] __A : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __A : Union[str, Any] = self.size["""shortest_edge"""] __A : str = self.size["""shortest_edge"""] else: __A : Any = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Tuple = max(__A , key=lambda __A : item[0] )[0] __A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Tuple = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): __A : Tuple = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_rescale""" ) ) self.assertTrue(hasattr(__A , """do_pad""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __A ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Tuple ): # prepare image and target __A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __A : Any = json.loads(f.read() ) __A : int = {"""image_id""": 3_9769, """annotations""": target} # encode them __A : List[str] = DetaImageProcessor() __A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image, target and masks_path __A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __A : Tuple = json.loads(f.read() ) __A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __A : Any = DetaImageProcessor(format="""coco_panoptic""" ) __A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify masks __A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A ) # verify orig_size __A : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
17
0
import argparse import copy def a_ ( __magic_name__ ) -> Optional[Any]: """simple docstring""" snake_case : List[str] = {} with open(__magic_name__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case : Optional[Any] = [] _list.append([line.split()[1], line.split()[2]] ) snake_case : int = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case : Any = [] _list.append([line.split()[0], line.split()[2]] ) snake_case : str = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def a_ ( __magic_name__ , __magic_name__ ) -> Optional[Any]: """simple docstring""" with open(__magic_name__ ) as f: snake_case : Optional[int] = f.read(1 ) snake_case : List[Any] = start_node snake_case : Any = [] snake_case : List[Any] = start_node snake_case : List[Any] = 0 while visiting not in first_solution: snake_case : Union[str, Any] = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution: snake_case : Union[str, Any] = k[1] snake_case : List[str] = k[0] first_solution.append(__magic_name__ ) snake_case : str = distance_of_first_solution + int(__magic_name__ ) snake_case : List[Any] = best_node first_solution.append(__magic_name__ ) snake_case : int = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case : Union[str, Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def a_ ( __magic_name__ , __magic_name__ ) -> Dict: """simple docstring""" snake_case : Optional[int] = [] for n in solution[1:-1]: snake_case : Any = solution.index(__magic_name__ ) for kn in solution[1:-1]: snake_case : List[Any] = solution.index(__magic_name__ ) if n == kn: continue snake_case : Tuple = copy.deepcopy(__magic_name__ ) snake_case : List[str] = kn snake_case : str = n snake_case : Dict = 0 for k in _tmp[:-1]: snake_case : str = _tmp[_tmp.index(__magic_name__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case : Dict = distance + int(i[1] ) _tmp.append(__magic_name__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case : Tuple = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def a_ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: """simple docstring""" snake_case : int = 1 snake_case : Dict = first_solution snake_case : Union[str, Any] = [] snake_case : List[str] = distance_of_first_solution snake_case : Any = solution while count <= iters: snake_case : Union[str, Any] = find_neighborhood(__magic_name__ , __magic_name__ ) snake_case : int = 0 snake_case : List[str] = neighborhood[index_of_best_solution] snake_case : List[str] = len(__magic_name__ ) - 1 snake_case : List[str] = False while not found: snake_case : Dict = 0 while i < len(__magic_name__ ): if best_solution[i] != solution[i]: snake_case : Optional[Any] = best_solution[i] snake_case : Optional[Any] = solution[i] break snake_case : str = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case : List[str] = True snake_case : str = best_solution[:-1] snake_case : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case : List[Any] = cost snake_case : List[Any] = solution else: snake_case : Tuple = index_of_best_solution + 1 snake_case : int = neighborhood[index_of_best_solution] if len(__magic_name__ ) >= size: tabu_list.pop(0 ) snake_case : List[Any] = count + 1 return best_solution_ever, best_cost def a_ ( __magic_name__=None ) -> List[Any]: """simple docstring""" snake_case : Tuple = generate_neighbours(args.File ) snake_case , snake_case : List[Any] = generate_first_solution( args.File , __magic_name__ ) snake_case , snake_case : List[Any] = tabu_search( __magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": _a : str = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
84
import string import numpy def a_ ( __magic_name__ , __magic_name__ ) -> int: """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , __magic_name__ ) class a_ : A__ : List[Any] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) A__ : List[str] = numpy.vectorize(lambda a : x % 36 ) A__ : Dict = numpy.vectorize(a ) def __init__( self : List[str] , UpperCAmelCase__ : numpy.ndarray ): """simple docstring""" snake_case : int = self.modulus(UpperCAmelCase__ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key snake_case : List[str] = encrypt_key.shape[0] def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : str ): """simple docstring""" return self.key_string.index(UpperCAmelCase__ ) def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : int ): """simple docstring""" return self.key_string[round(UpperCAmelCase__ )] def lowerCAmelCase( self : Optional[Any] ): """simple docstring""" snake_case : List[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: snake_case : Tuple = det % len(self.key_string ) snake_case : Tuple = len(self.key_string ) if greatest_common_divisor(UpperCAmelCase__ , len(self.key_string ) ) != 1: snake_case : List[Any] = ( F"determinant modular {req_l} of encryption key({det}) " F"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(UpperCAmelCase__ ) def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : str ): """simple docstring""" snake_case : Optional[int] = [char for char in text.upper() if char in self.key_string] snake_case : Optional[int] = chars[-1] while len(UpperCAmelCase__ ) % self.break_key != 0: chars.append(UpperCAmelCase__ ) return "".join(UpperCAmelCase__ ) def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : str ): """simple docstring""" snake_case : Optional[int] = self.process_text(text.upper() ) snake_case : Optional[int] = '''''' for i in range(0 , len(UpperCAmelCase__ ) - self.break_key + 1 , self.break_key ): snake_case : int = text[i : i + self.break_key] snake_case : int = [self.replace_letters(UpperCAmelCase__ ) for char in batch] snake_case : Tuple = numpy.array([vec] ).T snake_case : Optional[Any] = self.modulus(self.encrypt_key.dot(UpperCAmelCase__ ) ).T.tolist()[ 0 ] snake_case : Dict = ''''''.join( self.replace_digits(UpperCAmelCase__ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase( self : str ): """simple docstring""" snake_case : Optional[int] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: snake_case : int = det % len(self.key_string ) snake_case : Dict = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: snake_case : Any = i break snake_case : Any = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCAmelCase__ ) ) def lowerCAmelCase( self : Dict , UpperCAmelCase__ : str ): """simple docstring""" snake_case : Any = self.make_decrypt_key() snake_case : Optional[Any] = self.process_text(text.upper() ) snake_case : int = '''''' for i in range(0 , len(UpperCAmelCase__ ) - self.break_key + 1 , self.break_key ): snake_case : Any = text[i : i + self.break_key] snake_case : int = [self.replace_letters(UpperCAmelCase__ ) for char in batch] snake_case : List[str] = numpy.array([vec] ).T snake_case : Optional[Any] = self.modulus(decrypt_key.dot(UpperCAmelCase__ ) ).T.tolist()[0] snake_case : int = ''''''.join( self.replace_digits(UpperCAmelCase__ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def a_ ( ) -> None: """simple docstring""" snake_case : Any = int(input('''Enter the order of the encryption key: ''' ) ) snake_case : List[Any] = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(__magic_name__ ): snake_case : Optional[Any] = [int(__magic_name__ ) for x in input().split()] hill_matrix.append(__magic_name__ ) snake_case : List[str] = HillCipher(numpy.array(__magic_name__ ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) snake_case : int = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": snake_case : List[Any] = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(__magic_name__ ) ) elif option == "2": snake_case : int = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
84
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> Optional[Any]: if config_name_or_path is None: lowerCamelCase_ = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: lowerCamelCase_ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase_ = question_encoder_name_or_path lowerCamelCase_ = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. lowerCamelCase_ = RagConfig.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = AutoConfig.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = AutoConfig.from_pretrained(__UpperCamelCase ) lowerCamelCase_ = gen_config lowerCamelCase_ = question_encoder_config lowerCamelCase_ = model_class.from_pretrained_question_encoder_generator( __UpperCamelCase ,__UpperCamelCase ,config=__UpperCamelCase ) rag_model.save_pretrained(__UpperCamelCase ) # Sanity check. model_class.from_pretrained(__UpperCamelCase ) # Save tokenizers. lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) A_ = parser.parse_args() A_ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
42
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) _snake_case : Tuple = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') _snake_case : Optional[int] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) _snake_case : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) _snake_case : Dict = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) _snake_case : Dict = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions _snake_case : int = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) _snake_case : Any = tf.keras.preprocessing.image.img_to_array(test_image) _snake_case : int = np.expand_dims(test_image, axis=0) _snake_case : Optional[Any] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: _snake_case : str = "Normal" if result[0][0] == 1: _snake_case : str = "Abnormality detected"
441
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : List[str] = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Optional[Any] = "cvt" def __init__( self , __A=3 , __A=[7, 3, 3] , __A=[4, 2, 2] , __A=[2, 1, 1] , __A=[64, 192, 384] , __A=[1, 3, 6] , __A=[1, 2, 10] , __A=[4.0, 4.0, 4.0] , __A=[0.0, 0.0, 0.0] , __A=[0.0, 0.0, 0.0] , __A=[0.0, 0.0, 0.1] , __A=[True, True, True] , __A=[False, False, True] , __A=["dw_bn", "dw_bn", "dw_bn"] , __A=[3, 3, 3] , __A=[1, 1, 1] , __A=[2, 2, 2] , __A=[1, 1, 1] , __A=[1, 1, 1] , __A=0.0_2 , __A=1E-12 , **__A , ) -> List[Any]: super().__init__(**__A ) lowerCAmelCase_ :List[Any] = num_channels lowerCAmelCase_ :int = patch_sizes lowerCAmelCase_ :List[Any] = patch_stride lowerCAmelCase_ :Optional[int] = patch_padding lowerCAmelCase_ :List[Any] = embed_dim lowerCAmelCase_ :int = num_heads lowerCAmelCase_ :Optional[Any] = depth lowerCAmelCase_ :Union[str, Any] = mlp_ratio lowerCAmelCase_ :Optional[int] = attention_drop_rate lowerCAmelCase_ :List[str] = drop_rate lowerCAmelCase_ :int = drop_path_rate lowerCAmelCase_ :int = qkv_bias lowerCAmelCase_ :List[str] = cls_token lowerCAmelCase_ :Union[str, Any] = qkv_projection_method lowerCAmelCase_ :Tuple = kernel_qkv lowerCAmelCase_ :Any = padding_kv lowerCAmelCase_ :List[str] = stride_kv lowerCAmelCase_ :Any = padding_q lowerCAmelCase_ :str = stride_q lowerCAmelCase_ :Optional[int] = initializer_range lowerCAmelCase_ :Optional[Any] = layer_norm_eps
720
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Tuple = "wavlm" def __init__( self , __A=32 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=0.1 , __A=0.0 , __A=0.1 , __A=0.1 , __A=0.0_2 , __A=1E-5 , __A="group" , __A="gelu" , __A=(512, 512, 512, 512, 512, 512, 512) , __A=(5, 2, 2, 2, 2, 2, 2) , __A=(10, 3, 3, 3, 3, 2, 2) , __A=False , __A=128 , __A=16 , __A=320 , __A=800 , __A=False , __A=True , __A=0.0_5 , __A=10 , __A=2 , __A=0.0 , __A=10 , __A=320 , __A=2 , __A=0.1 , __A=100 , __A=256 , __A=256 , __A=0.1 , __A="mean" , __A=False , __A=False , __A=256 , __A=(512, 512, 512, 512, 1500) , __A=(5, 3, 3, 1, 1) , __A=(1, 2, 3, 1, 1) , __A=512 , __A=80 , __A=0 , __A=1 , __A=2 , __A=False , __A=3 , __A=2 , __A=3 , __A=None , **__A , ) -> Any: super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) lowerCAmelCase_ :Any = hidden_size lowerCAmelCase_ :Union[str, Any] = feat_extract_norm lowerCAmelCase_ :Optional[Any] = feat_extract_activation lowerCAmelCase_ :int = list(__A ) lowerCAmelCase_ :Optional[int] = list(__A ) lowerCAmelCase_ :List[Any] = list(__A ) lowerCAmelCase_ :Any = conv_bias lowerCAmelCase_ :int = num_buckets lowerCAmelCase_ :List[str] = max_bucket_distance lowerCAmelCase_ :List[str] = num_conv_pos_embeddings lowerCAmelCase_ :Dict = num_conv_pos_embedding_groups lowerCAmelCase_ :Union[str, Any] = len(self.conv_dim ) lowerCAmelCase_ :Dict = num_hidden_layers lowerCAmelCase_ :List[str] = intermediate_size lowerCAmelCase_ :Optional[int] = hidden_act lowerCAmelCase_ :List[Any] = num_attention_heads lowerCAmelCase_ :Union[str, Any] = hidden_dropout lowerCAmelCase_ :Optional[Any] = attention_dropout lowerCAmelCase_ :List[Any] = activation_dropout lowerCAmelCase_ :Union[str, Any] = feat_proj_dropout lowerCAmelCase_ :Optional[Any] = final_dropout lowerCAmelCase_ :Optional[Any] = layerdrop lowerCAmelCase_ :Union[str, Any] = layer_norm_eps lowerCAmelCase_ :Union[str, Any] = initializer_range lowerCAmelCase_ :List[Any] = num_ctc_classes lowerCAmelCase_ :Tuple = vocab_size lowerCAmelCase_ :List[str] = do_stable_layer_norm lowerCAmelCase_ :Union[str, Any] = use_weighted_layer_sum lowerCAmelCase_ :Optional[int] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ :List[str] = apply_spec_augment lowerCAmelCase_ :Tuple = mask_time_prob lowerCAmelCase_ :Optional[Any] = mask_time_length lowerCAmelCase_ :int = mask_time_min_masks lowerCAmelCase_ :Optional[Any] = mask_feature_prob lowerCAmelCase_ :Optional[int] = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCAmelCase_ :Optional[Any] = num_codevectors_per_group lowerCAmelCase_ :Optional[int] = num_codevector_groups lowerCAmelCase_ :Tuple = contrastive_logits_temperature lowerCAmelCase_ :Tuple = num_negatives lowerCAmelCase_ :str = codevector_dim lowerCAmelCase_ :int = proj_codevector_dim lowerCAmelCase_ :Optional[Any] = diversity_loss_weight # ctc loss lowerCAmelCase_ :Union[str, Any] = ctc_loss_reduction lowerCAmelCase_ :Optional[Any] = ctc_zero_infinity # adapter lowerCAmelCase_ :Union[str, Any] = add_adapter lowerCAmelCase_ :List[str] = adapter_kernel_size lowerCAmelCase_ :Union[str, Any] = adapter_stride lowerCAmelCase_ :Union[str, Any] = num_adapter_layers lowerCAmelCase_ :Tuple = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase_ :str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase_ :List[Any] = list(__A ) lowerCAmelCase_ :List[str] = list(__A ) lowerCAmelCase_ :Optional[int] = list(__A ) lowerCAmelCase_ :Optional[int] = xvector_output_dim @property def __lowerCAmelCase ( self ) -> List[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
256
0
"""simple docstring""" class _a : def __init__( self : Union[str, Any] , _lowercase : int ) -> Dict: snake_case : Optional[Any] = n snake_case : str = [None] * self.n snake_case : List[str] = 0 # index of the first element snake_case : Tuple = 0 snake_case : str = 0 def __len__( self : Union[str, Any] ) -> int: return self.size def __lowercase ( self : Any ) -> bool: return self.size == 0 def __lowercase ( self : Union[str, Any] ) -> Dict: return False if self.is_empty() else self.array[self.front] def __lowercase ( self : Tuple , _lowercase : Union[str, Any] ) -> Union[str, Any]: if self.size >= self.n: raise Exception("QUEUE IS FULL" ) snake_case : Union[str, Any] = data snake_case : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def __lowercase ( self : Union[str, Any] ) -> Dict: if self.size == 0: raise Exception("UNDERFLOW" ) snake_case : Tuple = self.array[self.front] snake_case : List[str] = None snake_case : Any = (self.front + 1) % self.n self.size -= 1 return temp
449
from math import factorial, pi def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_sin() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_sin() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : int = float(_a) SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a)) def lowerCamelCase__ ( _a , _a = 30): if not isinstance(_a , (int, float)): raise ValueError("maclaurin_cos() requires either an int or float for theta") if not isinstance(_a , _a) or accuracy <= 0: raise ValueError("maclaurin_cos() requires a positive int for accuracy") SCREAMING_SNAKE_CASE : str = float(_a) SCREAMING_SNAKE_CASE : Any = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a)) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
25
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ): __a : List[str] = parent __a : int = batch_size __a : List[Any] = seq_length __a : Optional[int] = is_training __a : int = use_attention_mask __a : int = use_token_type_ids __a : int = use_labels __a : Optional[Any] = vocab_size __a : Optional[int] = hidden_size __a : Tuple = num_hidden_layers __a : Dict = num_attention_heads __a : List[str] = intermediate_size __a : int = hidden_act __a : str = hidden_dropout_prob __a : Optional[Any] = attention_probs_dropout_prob __a : Optional[int] = max_position_embeddings __a : int = type_vocab_size __a : int = type_sequence_label_size __a : Optional[int] = initializer_range __a : str = num_choices def _lowerCamelCase ( self ): __a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Dict = None if self.use_attention_mask: __a : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __a : Dict = None if self.use_token_type_ids: __a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : Optional[Any] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self ): __a : int = self.prepare_config_and_inputs() __a : List[Any] = config_and_inputs __a : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self ): __a : Tuple = FlaxAlbertModelTester(self ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : Optional[int] = model_class_name.from_pretrained('''albert-base-v2''' ) __a : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): __a : Dict = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) __a : Optional[int] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __a : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __a : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __a : Tuple = (1, 11, 768) self.assertEqual(output.shape , _UpperCAmelCase ) __a : Dict = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
707
"""simple docstring""" def __A ( a_ :int = 2_00) -> int: __a : int = [1, 2, 5, 10, 20, 50, 1_00, 2_00] __a : List[Any] = [0] * (pence + 1) __a : Tuple = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(a_ , pence + 1 , 1): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
101
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ : Union[str, Any] = logging.get_logger(__name__) a_ : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} a_ : str = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } a_ : str = { 'moussaKam/mbarthez': 10_24, 'moussaKam/barthez': 10_24, 'moussaKam/barthez-orangesum-title': 10_24, } a_ : Tuple = '▁' class _snake_case ( A__ ): _lowercase : Dict = VOCAB_FILES_NAMES _lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , a , a="<s>" , a="</s>" , a="</s>" , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a = None , **a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else mask_token SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(a)) SCREAMING_SNAKE_CASE = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} SCREAMING_SNAKE_CASE = len(self.sp_model) - 1 SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a) if token_ids_a is None: return [1] + ([0] * len(a)) + [1] return [1] + ([0] * len(a)) + [1, 1] + ([0] * len(a)) + [1] def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: return len(self.sp_model) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def SCREAMING_SNAKE_CASE__ ( self , a) -> List[str]: return self.sp_model.encode(a , out_type=a) def SCREAMING_SNAKE_CASE__ ( self , a) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(a) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a) def SCREAMING_SNAKE_CASE__ ( self , a) -> List[Any]: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a) + token SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(a) SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(a) return out_string.strip() def __getstate__( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self , a) -> int: SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]: if not os.path.isdir(a): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return SCREAMING_SNAKE_CASE = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(a) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , a) elif not os.path.isfile(self.vocab_file): with open(a , 'wb') as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(a) return (out_vocab_file,)
73
_lowercase = [0, 2, 4, 6, 8] _lowercase = [1, 3, 5, 7, 9] def lowerCAmelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : list[int] , UpperCamelCase_ : int )-> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 A__ = 0 for digit in range(1_0 ): A__ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , UpperCamelCase_ , UpperCamelCase_ ) return result A__ = 0 for digita in range(1_0 ): A__ = digita if (remainder + digita) % 2 == 0: A__ = ODD_DIGITS else: A__ = EVEN_DIGITS for digita in other_parity_digits: A__ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , UpperCamelCase_ , UpperCamelCase_ , ) return result def lowerCAmelCase__ ( UpperCamelCase_ : int = 9 )-> int: A__ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(UpperCamelCase_ , 0 , [0] * length , UpperCamelCase_ ) return result if __name__ == "__main__": print(F"{solution() = }")
632
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __a = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' for attribute in key.split('''.''' ): UpperCAmelCase_ : Tuple = getattr(_lowercase , _lowercase ) if weight_type is not None: UpperCAmelCase_ : int = getattr(_lowercase , _lowercase ).shape else: UpperCAmelCase_ : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase_ : Union[str, Any] = value elif weight_type == "weight_g": UpperCAmelCase_ : List[Any] = value elif weight_type == "weight_v": UpperCAmelCase_ : Any = value elif weight_type == "bias": UpperCAmelCase_ : Union[str, Any] = value elif weight_type == "running_mean": UpperCAmelCase_ : Tuple = value elif weight_type == "running_var": UpperCAmelCase_ : Optional[int] = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ : List[str] = value elif weight_type == "inv_freq": UpperCAmelCase_ : Optional[int] = value else: UpperCAmelCase_ : Optional[int] = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Any = fairseq_model.state_dict() UpperCAmelCase_ : Any = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase_ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ : List[Any] = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase_ : int = True if "*" in mapped_key: UpperCAmelCase_ : Optional[int] = name.split(_lowercase )[0].split('''.''' )[-2] UpperCAmelCase_ : List[Any] = mapped_key.replace('''*''' , _lowercase ) if "pos_bias_u" in name: UpperCAmelCase_ : Dict = None elif "pos_bias_v" in name: UpperCAmelCase_ : str = None elif "weight_g" in name: UpperCAmelCase_ : Dict = '''weight_g''' elif "weight_v" in name: UpperCAmelCase_ : str = '''weight_v''' elif "bias" in name: UpperCAmelCase_ : str = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ : List[Any] = '''weight''' elif "running_mean" in name: UpperCAmelCase_ : int = '''running_mean''' elif "inv_freq" in name: UpperCAmelCase_ : List[str] = '''inv_freq''' elif "running_var" in name: UpperCAmelCase_ : int = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase_ : Tuple = '''num_batches_tracked''' else: UpperCAmelCase_ : Dict = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase_ : Dict = name.split('''.''' ) UpperCAmelCase_ : List[Any] = int(items[0] ) UpperCAmelCase_ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase_ : List[Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase_ : List[Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase_ : Optional[int] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase_ : List[str] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) @torch.no_grad() def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True ): '''simple docstring''' if config_path is not None: UpperCAmelCase_ : str = WavaVecaConformerConfig.from_pretrained(_lowercase , hidden_act='''swish''' ) else: UpperCAmelCase_ : List[str] = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase_ : Any = '''rotary''' if is_finetuned: if dict_path: UpperCAmelCase_ : Optional[Any] = Dictionary.load(_lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ : Tuple = target_dict.pad_index UpperCAmelCase_ : List[Any] = target_dict.bos_index UpperCAmelCase_ : Tuple = target_dict.eos_index UpperCAmelCase_ : Dict = len(target_dict.symbols ) UpperCAmelCase_ : str = os.path.join(_lowercase , '''vocab.json''' ) if not os.path.isdir(_lowercase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowercase ) ) return os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase_ : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 1 with open(_lowercase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowercase , _lowercase ) UpperCAmelCase_ : Optional[Any] = WavaVecaCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowercase , ) UpperCAmelCase_ : Union[str, Any] = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase_ : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) UpperCAmelCase_ : Optional[int] = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) processor.save_pretrained(_lowercase ) UpperCAmelCase_ : List[str] = WavaVecaConformerForCTC(_lowercase ) else: UpperCAmelCase_ : Union[str, Any] = WavaVecaConformerForPreTraining(_lowercase ) if is_finetuned: UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase_ : Optional[int] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase_ : Union[str, Any] = fairseq.tasks.setup_task(_lowercase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowercase ) UpperCAmelCase_ : Any = model[0].eval() recursively_load_weights(_lowercase , _lowercase , not is_finetuned ) hf_wavavec.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __a = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
300
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __a = logging.get_logger(__name__) if is_vision_available(): import PIL class __a( _a ): """simple docstring""" lowerCAmelCase = ['''pixel_values'''] def __init__( self ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = 1 / 255 ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,**_SCREAMING_SNAKE_CASE ,) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ : List[str] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ,param_name='''crop_size''' ) UpperCAmelCase_ : List[Any] = do_resize UpperCAmelCase_ : List[Any] = size UpperCAmelCase_ : Optional[Any] = resample UpperCAmelCase_ : List[str] = do_center_crop UpperCAmelCase_ : str = crop_size UpperCAmelCase_ : List[str] = do_rescale UpperCAmelCase_ : Any = rescale_factor UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ : Dict = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ : List[str] = do_convert_rgb def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: UpperCAmelCase_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase_ : Tuple = get_resize_output_image_size(_SCREAMING_SNAKE_CASE ,size=size['''shortest_edge'''] ,default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: UpperCAmelCase_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE ,size=(size['''height'''], size['''width''']) ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> Any: return rescale(_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = ChannelDimension.FIRST ,**_SCREAMING_SNAKE_CASE ,) -> PIL.Image.Image: UpperCAmelCase_ : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : Optional[int] = size if size is not None else self.size UpperCAmelCase_ : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name='''size''' ,default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = resample if resample is not None else self.resample UpperCAmelCase_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name='''crop_size''' ,default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[str] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : int = image_std if image_std is not None else self.image_std UpperCAmelCase_ : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ : Dict = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ : List[Any] = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ : Any = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCAmelCase_ : List[str] = [self.resize(image=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCAmelCase_ : str = [self.center_crop(image=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCAmelCase_ : int = [self.rescale(image=_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCAmelCase_ : str = [self.normalize(image=_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ) for image in images] UpperCAmelCase_ : List[str] = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for image in images] UpperCAmelCase_ : int = {'''pixel_values''': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE ,tensor_type=_SCREAMING_SNAKE_CASE )
300
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset UpperCAmelCase_ = random.Random() def __magic_name__ ( lowercase , lowercase=1.0 , lowercase=None , lowercase=None ) -> Optional[int]: """simple docstring""" if rng is None: lowercase_ : Any = global_rng lowercase_ : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, snake_case__, snake_case__=7, snake_case__=4_00, snake_case__=20_00, snake_case__=20_48, snake_case__=1_28, snake_case__=1, snake_case__=5_12, snake_case__=30, snake_case__=4_41_00, ) -> Tuple: """simple docstring""" lowercase_ : List[str] = parent lowercase_ : str = batch_size lowercase_ : Tuple = min_seq_length lowercase_ : Dict = max_seq_length lowercase_ : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase_ : str = spectrogram_length lowercase_ : List[str] = feature_size lowercase_ : Union[str, Any] = num_audio_channels lowercase_ : Union[str, Any] = hop_length lowercase_ : Union[str, Any] = chunk_length lowercase_ : int = sampling_rate def snake_case__ ( self ) -> Dict: """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case__ ( self, snake_case__=False, snake_case__=False ) -> Tuple: """simple docstring""" def _flatten(snake_case__ ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: lowercase_ : Optional[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase_ : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: lowercase_ : int = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase__ ( A_ , unittest.TestCase ): '''simple docstring''' __a : Union[str, Any] = TvltFeatureExtractor def snake_case__ ( self ) -> str: """simple docstring""" lowercase_ : str = TvltFeatureExtractionTester(self ) def snake_case__ ( self ) -> List[str]: """simple docstring""" lowercase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_lowerCamelCase, """spectrogram_length""" ) ) self.assertTrue(hasattr(_lowerCamelCase, """feature_size""" ) ) self.assertTrue(hasattr(_lowerCamelCase, """num_audio_channels""" ) ) self.assertTrue(hasattr(_lowerCamelCase, """hop_length""" ) ) self.assertTrue(hasattr(_lowerCamelCase, """chunk_length""" ) ) self.assertTrue(hasattr(_lowerCamelCase, """sampling_rate""" ) ) def snake_case__ ( self ) -> Dict: """simple docstring""" lowercase_ : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Dict = feat_extract_first.save_pretrained(_lowerCamelCase )[0] check_json_file_has_correct_format(_lowerCamelCase ) lowercase_ : List[Any] = self.feature_extraction_class.from_pretrained(_lowerCamelCase ) lowercase_ : Any = feat_extract_first.to_dict() lowercase_ : List[Any] = feat_extract_second.to_dict() lowercase_ : Optional[int] = dict_first.pop("""mel_filters""" ) lowercase_ : Any = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase ) ) self.assertEqual(_lowerCamelCase, _lowerCamelCase ) def snake_case__ ( self ) -> str: """simple docstring""" lowercase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : List[str] = os.path.join(_lowerCamelCase, """feat_extract.json""" ) feat_extract_first.to_json_file(_lowerCamelCase ) lowercase_ : Optional[int] = self.feature_extraction_class.from_json_file(_lowerCamelCase ) lowercase_ : Any = feat_extract_first.to_dict() lowercase_ : Optional[Any] = feat_extract_second.to_dict() lowercase_ : int = dict_first.pop("""mel_filters""" ) lowercase_ : Union[str, Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase ) ) self.assertEqual(_lowerCamelCase, _lowerCamelCase ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" # Initialize feature_extractor lowercase_ : int = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 lowercase_ : Any = [floats_list((1, x) )[0] for x in range(8_00, 14_00, 2_00 )] lowercase_ : Dict = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input lowercase_ : str = feature_extractor(np_speech_inputs[0], return_tensors="""np""", sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched lowercase_ : Tuple = feature_extractor(_lowerCamelCase, return_tensors="""np""", sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking lowercase_ : Optional[int] = feature_extractor( _lowerCamelCase, return_tensors="""np""", sampling_rate=4_41_00, mask_audio=_lowerCamelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. lowercase_ : Optional[int] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowercase_ : List[str] = np.asarray(_lowerCamelCase ) lowercase_ : Tuple = feature_extractor(_lowerCamelCase, return_tensors="""np""", sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case__ ( self, snake_case__ ) -> Tuple: """simple docstring""" lowercase_ : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""", """clean""", split="""validation""" ) # automatic decoding with librispeech lowercase_ : List[str] = ds.sort("""id""" ).select(range(_lowerCamelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def snake_case__ ( self ) -> Dict: """simple docstring""" lowercase_ : List[str] = self._load_datasamples(1 ) lowercase_ : int = TvltFeatureExtractor() lowercase_ : Optional[int] = feature_extractor(_lowerCamelCase, return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape, (1, 1, 1_92, 1_28) ) lowercase_ : List[str] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2], _lowerCamelCase, atol=1E-4 ) )
458
"""simple docstring""" import numpy as np def _UpperCAmelCase ( __lowerCamelCase : np.ndarray , __lowerCamelCase : np.ndarray , __lowerCamelCase : float = 1E-1_2 , __lowerCamelCase : int = 1_00 , ) -> tuple[float, np.ndarray]: assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[1] # Ensure proper dimensionality. assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__lowerCamelCase ) == np.iscomplexobj(__lowerCamelCase ) _snake_case = np.iscomplexobj(__lowerCamelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__lowerCamelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _snake_case = False _snake_case = 0 _snake_case = 0 _snake_case = 1E1_2 while not convergence: # Multiple matrix by the vector. _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) # Normalize the resulting output vector. _snake_case = w / np.linalg.norm(__lowerCamelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _snake_case = vector.conj().T if is_complex else vector.T _snake_case = np.dot(__lowerCamelCase , np.dot(__lowerCamelCase , __lowerCamelCase ) ) # Check convergence. _snake_case = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _snake_case = True _snake_case = lambda_ if is_complex: _snake_case = np.real(lambda_ ) return lambda_, vector def _UpperCAmelCase ( ) -> None: _snake_case = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _snake_case = np.array([41, 4, 20] ) _snake_case = real_input_matrix.astype(np.complexaaa ) _snake_case = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _snake_case = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _snake_case = real_input_matrix _snake_case = real_vector elif problem_type == "complex": _snake_case = complex_input_matrix _snake_case = complex_vector # Our implementation. _snake_case , _snake_case = power_iteration(__lowerCamelCase , __lowerCamelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _snake_case , _snake_case = np.linalg.eigh(__lowerCamelCase ) # Last eigenvalue is the maximum one. _snake_case = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _snake_case = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__lowerCamelCase ) - np.abs(__lowerCamelCase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
224
0
from __future__ import annotations from collections import deque class __A : def __init__(self , __magic_name__ ): lowerCamelCase__ : list[dict] = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(__magic_name__ ) self.set_fail_transitions() def _snake_case (self , __magic_name__ , __magic_name__ ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _snake_case (self , __magic_name__ ): lowerCamelCase__ : Any = 0 for character in keyword: lowerCamelCase__ : Optional[Any] = self.find_next_state(__magic_name__ , __magic_name__ ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowerCamelCase__ : Tuple = len(self.adlist ) - 1 else: lowerCamelCase__ : Optional[Any] = next_state self.adlist[current_state]["output"].append(__magic_name__ ) def _snake_case (self ): lowerCamelCase__ : deque = deque() for node in self.adlist[0]["next_states"]: q.append(__magic_name__ ) lowerCamelCase__ : Optional[int] = 0 while q: lowerCamelCase__ : Optional[int] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__magic_name__ ) lowerCamelCase__ : Any = self.adlist[r]["""fail_state"""] while ( self.find_next_state(__magic_name__ , self.adlist[child]["""value"""] ) is None and state != 0 ): lowerCamelCase__ : List[Any] = self.adlist[state]["""fail_state"""] lowerCamelCase__ : List[str] = self.find_next_state( __magic_name__ , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[str] = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def _snake_case (self , __magic_name__ ): lowerCamelCase__ : dict = {} # returns a dict with keywords and list of its occurrences lowerCamelCase__ : str = 0 for i in range(len(__magic_name__ ) ): while ( self.find_next_state(__magic_name__ , string[i] ) is None and current_state != 0 ): lowerCamelCase__ : Optional[Any] = self.adlist[current_state]["""fail_state"""] lowerCamelCase__ : Union[str, Any] = self.find_next_state(__magic_name__ , string[i] ) if next_state is None: lowerCamelCase__ : List[Any] = 0 else: lowerCamelCase__ : List[str] = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowerCamelCase__ : Union[str, Any] = [] result[key].append(i - len(__magic_name__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
96
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _A (UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : int , UpperCamelCase : int ) ->np.ndarray: '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.getAffineTransform(UpperCamelCase , UpperCamelCase ) return cva.warpAffine(UpperCamelCase , UpperCamelCase , (rows, cols) ) if __name__ == "__main__": # read original image _lowercase = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value _lowercase = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape _lowercase , _lowercase = gray_img.shape # set different points to rotate image _lowercase = np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa) _lowercase = np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa) _lowercase = np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa) _lowercase = np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa) # add all rotated images in a list _lowercase = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations _lowercase = plt.figure(1) _lowercase = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
96
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,lowerCAmelCase_ : float ) -> float: """simple docstring""" if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,) -> float: """simple docstring""" if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,) -> float: """simple docstring""" if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( lowerCAmelCase_ ,nominal_annual_percentage_rate / 365 ,number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
220
class lowerCAmelCase_ : '''simple docstring''' def __init__( self ): SCREAMING_SNAKE_CASE_ : Optional[int] =0 SCREAMING_SNAKE_CASE_ : str =0 SCREAMING_SNAKE_CASE_ : int ={} def __lowerCamelCase ( self , __UpperCAmelCase ): if vertex not in self.adjacency: SCREAMING_SNAKE_CASE_ : List[Any] ={} self.num_vertices += 1 def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): self.add_vertex(__UpperCAmelCase ) self.add_vertex(__UpperCAmelCase ) if head == tail: return SCREAMING_SNAKE_CASE_ : Dict =weight SCREAMING_SNAKE_CASE_ : int =weight def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.get_edges() for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int =edge edges.remove((tail, head, weight) ) for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ : int =list(edges[i] ) edges.sort(key=lambda __UpperCAmelCase : e[2] ) for i in range(len(__UpperCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: SCREAMING_SNAKE_CASE_ : int =edges[i][2] + 1 for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict =edge SCREAMING_SNAKE_CASE_ : Optional[Any] =weight SCREAMING_SNAKE_CASE_ : Optional[int] =weight def __str__( self ): SCREAMING_SNAKE_CASE_ : int ='' for tail in self.adjacency: for head in self.adjacency[tail]: SCREAMING_SNAKE_CASE_ : List[str] =self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : str =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __lowerCamelCase ( self ): return self.adjacency.keys() @staticmethod def __lowerCamelCase ( __UpperCAmelCase=None , __UpperCAmelCase=None ): SCREAMING_SNAKE_CASE_ : Any =Graph() if vertices is None: SCREAMING_SNAKE_CASE_ : List[str] =[] if edges is None: SCREAMING_SNAKE_CASE_ : Tuple =[] for vertex in vertices: g.add_vertex(__UpperCAmelCase ) for edge in edges: g.add_edge(*__UpperCAmelCase ) return g class lowerCAmelCase_ : '''simple docstring''' def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] ={} SCREAMING_SNAKE_CASE_ : Dict ={} def __len__( self ): return len(self.parent ) def __lowerCamelCase ( self , __UpperCAmelCase ): if item in self.parent: return self.find(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Any =item SCREAMING_SNAKE_CASE_ : Any =0 return item def __lowerCamelCase ( self , __UpperCAmelCase ): if item not in self.parent: return self.make_set(__UpperCAmelCase ) if item != self.parent[item]: SCREAMING_SNAKE_CASE_ : Any =self.find(self.parent[item] ) return self.parent[item] def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple =self.find(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] =self.find(__UpperCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: SCREAMING_SNAKE_CASE_ : int =roota return roota if self.rank[roota] < self.rank[roota]: SCREAMING_SNAKE_CASE_ : List[Any] =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 SCREAMING_SNAKE_CASE_ : Optional[int] =roota return roota return None @staticmethod def __lowerCamelCase ( __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : List[str] =graph.num_vertices SCREAMING_SNAKE_CASE_ : int =Graph.UnionFind() SCREAMING_SNAKE_CASE_ : str =[] while num_components > 1: SCREAMING_SNAKE_CASE_ : List[Any] ={} for vertex in graph.get_vertices(): SCREAMING_SNAKE_CASE_ : List[Any] =-1 SCREAMING_SNAKE_CASE_ : int =graph.get_edges() for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =edge edges.remove((tail, head, weight) ) for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =edge SCREAMING_SNAKE_CASE_ : List[str] =union_find.find(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] =union_find.find(__UpperCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE_ : Tuple =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE_ : int =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] =cheap_edge[vertex] if union_find.find(__UpperCAmelCase ) != union_find.find(__UpperCAmelCase ): union_find.union(__UpperCAmelCase , __UpperCAmelCase ) mst_edges.append(cheap_edge[vertex] ) SCREAMING_SNAKE_CASE_ : str =num_components - 1 SCREAMING_SNAKE_CASE_ : str =Graph.build(edges=__UpperCAmelCase ) return mst
220
1
'''simple docstring''' import requests A = 'YOUR API KEY' def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str = giphy_api_key): lowerCamelCase : Optional[Any] = "+".join(query.split()) lowerCamelCase : Union[str, Any] = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' lowerCamelCase : Union[str, Any] = requests.get(_lowerCAmelCase).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
711
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint A = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } A = { '169M': 768, '430M': 1024, '1B5': 2048, '3B': 2560, '7B': 4096, '14B': 5120, } def UpperCAmelCase ( UpperCAmelCase__ : Any): lowerCamelCase : Any = list(state_dict.keys()) for name in state_dict_keys: lowerCamelCase : List[str] = state_dict.pop(UpperCAmelCase__) # emb -> embedding if name.startswith('emb.'): lowerCamelCase : Dict = name.replace('emb.' , 'embeddings.') # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0'): lowerCamelCase : str = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln') # att -> attention lowerCamelCase : str = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , UpperCAmelCase__) # ffn -> feed_forward lowerCamelCase : List[Any] = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , UpperCAmelCase__) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k'): lowerCamelCase : Any = name.replace('.time_mix_k' , '.time_mix_key') # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v'): lowerCamelCase : str = name.replace('.time_mix_v' , '.time_mix_value') # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r'): lowerCamelCase : List[Any] = name.replace('.time_mix_r' , '.time_mix_receptance') if name != "head.weight": lowerCamelCase : Any = 'rwkv.' + name lowerCamelCase : Any = weight return state_dict def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Dict=None): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.') lowerCamelCase : Dict = 5_02_77 lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b') else: lowerCamelCase : int = PreTrainedTokenizerFast(tokenizer_file=UpperCAmelCase__) lowerCamelCase : List[Any] = len(UpperCAmelCase__) tokenizer.save_pretrained(UpperCAmelCase__) # 2. Build the config lowerCamelCase : Tuple = list(NUM_HIDDEN_LAYERS_MAPPING.keys()) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCamelCase : Union[str, Any] = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.') if size not in possible_sizes: raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''') lowerCamelCase : List[Any] = RwkvConfig( vocab_size=UpperCAmelCase__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(UpperCAmelCase__) # 3. Download model file then convert state_dict lowerCamelCase : Tuple = hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__) lowerCamelCase : Any = torch.load(UpperCAmelCase__ , map_location='cpu') lowerCamelCase : str = convert_state_dict(UpperCAmelCase__) # 4. Split in shards and save lowerCamelCase , lowerCamelCase : Optional[int] = shard_checkpoint(UpperCAmelCase__) for shard_file, shard in shards.items(): torch.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , UpperCAmelCase__)) if index is not None: lowerCamelCase : Dict = os.path.join(UpperCAmelCase__ , UpperCAmelCase__) # Save the index as well with open(UpperCAmelCase__ , 'w' , encoding='utf-8') as f: lowerCamelCase : int = json.dumps(UpperCAmelCase__ , indent=2 , sort_keys=UpperCAmelCase__) + '\n' f.write(UpperCAmelCase__) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.') lowerCamelCase : List[str] = list(shards.keys()) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCamelCase : Dict = torch.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__)) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(UpperCAmelCase__ , UpperCAmelCase__)) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.') lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained(UpperCAmelCase__) model.push_to_hub(UpperCAmelCase__ , max_shard_size='2GB') tokenizer.push_to_hub(UpperCAmelCase__) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) A = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
449
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( __a : Union[dict, list, tuple, torch.Tensor] ): '''simple docstring''' UpperCamelCase__ = [] if isinstance(__a , __a ): for v in tree.values(): shapes.extend(_fetch_dims(__a ) ) elif isinstance(__a , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__a ) ) elif isinstance(__a , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def __magic_name__ ( __a : int , __a : Tuple[int, ...] ): '''simple docstring''' UpperCamelCase__ = [] for d in reversed(__a ): idx.append(flat_idx % d ) UpperCamelCase__ = flat_idx // d return tuple(reversed(__a ) ) @torch.jit.ignore def __magic_name__ ( __a : Sequence[int] , __a : Sequence[int] , __a : Sequence[int] , __a : Optional[Sequence[bool]] = None , __a : Optional[Sequence[bool]] = None , ): '''simple docstring''' def reduce_edge_list(__a : List[bool] ) -> None: UpperCamelCase__ = True for i in range(len(__a ) ): UpperCamelCase__ = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ = l[reversed_idx] if start_edges is None: UpperCamelCase__ = [s == 0 for s in start] reduce_edge_list(__a ) if end_edges is None: UpperCamelCase__ = [e == (d - 1) for e, d in zip(__a , __a )] reduce_edge_list(__a ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__a ) == 0: return [()] elif len(__a ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCamelCase__ = [] UpperCamelCase__ = [] # Dimensions common to start and end can be selected directly for s, e in zip(__a , __a ): if s == e: path_list.append(slice(__a , s + 1 ) ) else: break UpperCamelCase__ = tuple(__a ) UpperCamelCase__ = len(__a ) # start == end, and we're done if divergence_idx == len(__a ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ = start[divergence_idx] return tuple( path + (slice(__a , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ = end[divergence_idx] return tuple( path + (slice(__a , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCamelCase__ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __magic_name__ ( __a : torch.Tensor , __a : int , __a : int , __a : int ): '''simple docstring''' UpperCamelCase__ = t.shape[:no_batch_dims] UpperCamelCase__ = list(_flat_idx_to_idx(__a , __a ) ) # _get_minimal_slice_set is inclusive UpperCamelCase__ = list(_flat_idx_to_idx(flat_end - 1 , __a ) ) # Get an ordered list of slices to perform UpperCamelCase__ = _get_minimal_slice_set( __a , __a , __a , ) UpperCamelCase__ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __magic_name__ ( __a : Callable , __a : Dict[str, Any] , __a : int , __a : int , __a : bool = False , __a : Any = None , __a : bool = False , ): '''simple docstring''' if not (len(__a ) > 0): raise ValueError("""Must provide at least one input""" ) UpperCamelCase__ = [shape[:no_batch_dims] for shape in _fetch_dims(__a )] UpperCamelCase__ = tuple([max(__a ) for s in zip(*__a )] ) def _prep_inputs(__a : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCamelCase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCamelCase__ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCamelCase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCamelCase__ = tensor_tree_map(_prep_inputs , __a ) UpperCamelCase__ = None if _out is not None: UpperCamelCase__ = tensor_tree_map(lambda __a : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCamelCase__ = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__a : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ = 0 UpperCamelCase__ = prepped_outputs for _ in range(__a ): # Chunk the input if not low_mem: UpperCamelCase__ = _select_chunk else: UpperCamelCase__ = partial( _chunk_slice , flat_start=__a , flat_end=min(__a , i + chunk_size ) , no_batch_dims=len(__a ) , ) UpperCamelCase__ = tensor_tree_map(__a , __a ) # Run the layer on the chunk UpperCamelCase__ = layer(**__a ) # Allocate space for the output if out is None: UpperCamelCase__ = tensor_tree_map(lambda __a : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __a ) # Put the chunk in its pre-allocated space if isinstance(__a , __a ): def assign(__a : dict , __a : dict ) -> None: for k, v in da.items(): if isinstance(__a , __a ): assign(__a , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ = da[k] assign(__a , __a ) elif isinstance(__a , __a ): for xa, xa in zip(__a , __a ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ = xa elif isinstance(__a , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size UpperCamelCase__ = tensor_tree_map(lambda __a : t.view(orig_batch_dims + t.shape[1:] ) , __a ) return out class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ = 5_12 , ): UpperCamelCase__ = max_chunk_size UpperCamelCase__ = None UpperCamelCase__ = None def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCamelCase__ = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(SCREAMING_SNAKE_CASE_ ) -> bool: try: with torch.no_grad(): fn(*SCREAMING_SNAKE_CASE_ , chunk_size=SCREAMING_SNAKE_CASE_ ) return True except RuntimeError: return False UpperCamelCase__ = 0 UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ = test_chunk_size(candidates[i] ) if not viable: UpperCamelCase__ = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ = i UpperCamelCase__ = (i + len(SCREAMING_SNAKE_CASE_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = True for aa, aa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert type(SCREAMING_SNAKE_CASE_ ) == type(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )] UpperCamelCase__ = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )] consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: consistent &= aa == aa return consistent def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = True UpperCamelCase__ = tree_map(lambda SCREAMING_SNAKE_CASE_ : a.shape if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) else a , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self._compare_arg_caches(self.cached_arg_data , SCREAMING_SNAKE_CASE_ ) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ = False if not consistent: UpperCamelCase__ = self._determine_favorable_chunk_size( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
513
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') lowerCamelCase_ = parser.parse_args() if args.model_type == "bert": lowerCamelCase_ = BertForMaskedLM.from_pretrained(args.model_name) lowerCamelCase_ = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') lowerCamelCase_ = model.state_dict() lowerCamelCase_ = {} for w in ["word_embeddings", "position_embeddings"]: lowerCamelCase_ = state_dict[f'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: lowerCamelCase_ = state_dict[f'{prefix}.embeddings.LayerNorm.{w}'] lowerCamelCase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCamelCase_ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] lowerCamelCase_ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] lowerCamelCase_ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] lowerCamelCase_ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] lowerCamelCase_ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] lowerCamelCase_ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] lowerCamelCase_ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] lowerCamelCase_ = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 lowerCamelCase_ = state_dict['''cls.predictions.decoder.weight'''] lowerCamelCase_ = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase_ = state_dict[f'cls.predictions.transform.dense.{w}'] lowerCamelCase_ = state_dict[f'cls.predictions.transform.LayerNorm.{w}'] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
513
1
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = tmp_path / 'cache' __a = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_text_dataset(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = tmp_path / 'cache' __a = {'text': 'string'} __a = features.copy() if features else default_expected_features __a = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __a = TextDatasetReader(__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_text_dataset(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = tmp_path / 'cache' __a = {'text': 'string'} __a = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , split=__lowerCamelCase ).read() _check_text_dataset(__lowerCamelCase , __lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if issubclass(__lowerCamelCase , __lowerCamelCase ): __a = text_path elif issubclass(__lowerCamelCase , __lowerCamelCase ): __a = [text_path] __a = tmp_path / 'cache' __a = {'text': 'string'} __a = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_text_dataset(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=("train",) ): assert isinstance(__lowerCamelCase , __lowerCamelCase ) for split in splits: __a = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = tmp_path / 'cache' __a = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a = TextDatasetReader({'train': text_path} , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read() _check_text_datasetdict(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __a = {'text': 'string'} __a = features.copy() if features else default_expected_features __a = ( Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __a = TextDatasetReader({'train': text_path} , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_text_datasetdict(__lowerCamelCase , __lowerCamelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if split: __a = {split: text_path} else: __a = 'train' __a = {'train': text_path, 'test': text_path} __a = tmp_path / 'cache' __a = {'text': 'string'} __a = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read() _check_text_datasetdict(__lowerCamelCase , __lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
246
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class a__ ( unittest.TestCase ): def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=5_6 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Optional[Any]: __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_attention_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_choices __a = rescale_embeddings __a = attention_type __a = use_bias __a = block_size __a = num_random_blocks def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_attention_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class a__ ( __snake_case , unittest.TestCase ): A__ : Dict = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) A__ : int = False A__ : int = False def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: super().test_hidden_states_output() @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: for model_class_name in self.all_model_classes: __a = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __a = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest('JIT Enabled' ): __a = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __a = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1e-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> Dict: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
246
1
def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : Dict ) -> Optional[Any]: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__a ,n - 1 ,__a ) * a) % mod else: _a : Optional[Any] = binary_exponentiation(__a ,n / 2 ,__a ) return (b * b) % mod # a prime number a__ = 701 a__ = 1000000000 a__ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
14
"""simple docstring""" from typing import Any class a__ : def __init__( self : List[str] , UpperCamelCase_ : Any): """simple docstring""" __UpperCAmelCase : str = data __UpperCAmelCase : Optional[Any] = None class a__ : def __init__( self : Any): """simple docstring""" __UpperCAmelCase : Optional[int] = None def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.head while temp is not None: print(temp.data , end=" ") __UpperCAmelCase : Tuple = temp.next print() def a_ ( self : int , UpperCamelCase_ : Any): """simple docstring""" __UpperCAmelCase : List[str] = Node(UpperCamelCase_) __UpperCAmelCase : str = self.head __UpperCAmelCase : Optional[int] = new_node def a_ ( self : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str): """simple docstring""" if node_data_a == node_data_a: return else: __UpperCAmelCase : int = self.head while node_a is not None and node_a.data != node_data_a: __UpperCAmelCase : Tuple = node_a.next __UpperCAmelCase : List[Any] = self.head while node_a is not None and node_a.data != node_data_a: __UpperCAmelCase : Optional[Any] = node_a.next if node_a is None or node_a is None: return __UpperCAmelCase , __UpperCAmelCase : Any = node_a.data, node_a.data if __name__ == "__main__": A = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
77
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ) ->Optional[Any]: '''simple docstring''' __A =ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=_lowercase , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=_lowercase , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=_lowercase ) return parser.parse_args() def A__ ( ) ->Union[str, Any]: '''simple docstring''' __A =parse_args() # Import training_script as a module. __A =Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A =script_fpath.stem __A =importlib.import_module(_lowercase ) # Patch sys.argv __A =[args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
712
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = """bloom""" lowercase_ = ["""past_key_values"""] lowercase_ = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self , lowercase__=2_5_0_8_8_0 , lowercase__=6_4 , lowercase__=2 , lowercase__=8 , lowercase__=1E-5 , lowercase__=0.02 , lowercase__=True , lowercase__=1 , lowercase__=2 , lowercase__=False , lowercase__=0.0 , lowercase__=0.0 , lowercase__=1 , lowercase__=False , **lowercase__ , ): '''simple docstring''' __A =vocab_size # Backward compatibility with n_embed kwarg __A =kwargs.pop('''n_embed''' , lowercase__ ) __A =hidden_size if n_embed is None else n_embed __A =n_layer __A =n_head __A =layer_norm_epsilon __A =initializer_range __A =use_cache __A =pretraining_tp __A =apply_residual_connection_post_layernorm __A =hidden_dropout __A =attention_dropout __A =bos_token_id __A =eos_token_id __A =slow_but_exact super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = version.parse("""1.12""" ) def __init__( self , lowercase__ , lowercase__ = "default" , lowercase__ = None , lowercase__ = False , ): '''simple docstring''' super().__init__(lowercase__ , task=lowercase__ , patching_specs=lowercase__ , use_past=lowercase__ ) if not getattr(self._config , '''pad_token_id''' , lowercase__ ): # TODO: how to do that better? __A =0 @property def __UpperCamelCase ( self ): '''simple docstring''' __A =OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowercase__ , direction='''inputs''' , inverted_values_shape=lowercase__ ) __A ={0: '''batch''', 1: '''past_sequence + sequence'''} else: __A ={0: '''batch''', 1: '''sequence'''} return common_inputs @property def __UpperCamelCase ( self ): '''simple docstring''' return self._config.n_layer @property def __UpperCamelCase ( self ): '''simple docstring''' return self._config.n_head @property def __UpperCamelCase ( self ): '''simple docstring''' return 1E-3 def __UpperCamelCase ( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ): '''simple docstring''' __A =super(lowercase__ , self ).generate_dummy_inputs( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) # We need to order the input in the way they appears in the forward() __A =OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __A , __A =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __A =seqlen + 2 __A =self._config.hidden_size // self.num_attention_heads __A =( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __A =( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __A =[ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(self.num_layers ) ] __A =common_inputs['''attention_mask'''] if self.use_past: __A =ordered_inputs['''attention_mask'''].dtype __A =torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__ )] , dim=1 ) return ordered_inputs @property def __UpperCamelCase ( self ): '''simple docstring''' return 1_3
516
0
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate a : int = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) a : List[str] = [] a : List[Any] = [] a : List[str] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} a : Optional[int] = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", '''emoji''': True, }, } ] a : Optional[Any] = 0 for log in Path().glob('''*.log'''): a : Union[str, Any] = 0 with open(log, '''r''') as f: for line in f: a : int = json.loads(line) if line.get('''nodeid''', '''''') != "": a : str = line['''nodeid'''] if line.get('''duration''', None) is not None: a : Any = F"{line['duration']:.4f}" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) a : Dict = [] log.unlink() a : List[str] = '''''' a : Dict = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" a : Any = [] a : List[str] = {} for test in failed_tests: a : str = test[0].split('''::''') a : Union[str, Any] = data[0].split('''/''')[-1] if data[0] not in filesafailed: a : Union[str, Any] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) a : Optional[Any] = [test[0] for test in failed_table] a : List[Any] = list(set(files)) # Count number of instances in failed_tests a : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) a : Optional[Any] = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: a : List[Any] = '''Too many failed tests, please see the full report in the Action results.''' a : Tuple = len(err) + 1_0 a : Tuple = message[: 3_0_0_0 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: a : Union[str, Any] = '''No failed tests! 🤗''' print(F"## {message}") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient a : int = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": a : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) a : Tuple = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) a : Any = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) a : str = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) a : Optional[int] = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name a : Any = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: a : Dict = row[0] else: a : Any = '''''' a : str = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
555
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : Dict = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def _UpperCamelCase ( _A , _A , _A ) -> Tuple: """simple docstring""" _UpperCAmelCase = state_dict.pop(_A ) _UpperCAmelCase = val def _UpperCamelCase ( _A ) -> str: """simple docstring""" _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _UpperCAmelCase = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) _UpperCAmelCase = value else: _UpperCAmelCase = value return new_state_dict def _UpperCamelCase ( _A ) -> int: """simple docstring""" _UpperCAmelCase = """""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:2_5_6, :] _UpperCAmelCase = in_proj_bias[:2_5_6] _UpperCAmelCase = in_proj_weight[2_5_6:5_1_2, :] _UpperCAmelCase = in_proj_bias[2_5_6:5_1_2] _UpperCAmelCase = in_proj_weight[-2_5_6:, :] _UpperCAmelCase = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:2_5_6, :] _UpperCAmelCase = in_proj_bias[:2_5_6] _UpperCAmelCase = in_proj_weight[2_5_6:5_1_2, :] _UpperCAmelCase = in_proj_bias[2_5_6:5_1_2] _UpperCAmelCase = in_proj_weight[-2_5_6:, :] _UpperCAmelCase = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention _UpperCAmelCase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) _UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCAmelCase = in_proj_weight_cross_attn[:2_5_6, :] _UpperCAmelCase = in_proj_bias_cross_attn[:2_5_6] _UpperCAmelCase = in_proj_weight_cross_attn[2_5_6:5_1_2, :] _UpperCAmelCase = in_proj_bias_cross_attn[2_5_6:5_1_2] _UpperCAmelCase = in_proj_weight_cross_attn[-2_5_6:, :] _UpperCAmelCase = in_proj_bias_cross_attn[-2_5_6:] def _UpperCamelCase ( _A , _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase ,_UpperCAmelCase = image.size _UpperCAmelCase = max(_A , _A ) _UpperCAmelCase = 8_0_0 if """detection""" in checkpoint_url else 1_0_0_0 _UpperCAmelCase = target_max_size / current_max_size _UpperCAmelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _UpperCamelCase ( _A ) -> str: """simple docstring""" _UpperCAmelCase = F.to_tensor(_A ) _UpperCAmelCase = F.normalize(_A , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _UpperCamelCase ( _A , _A , _A ) -> str: """simple docstring""" logger.info("""Converting model...""" ) # load original state dict _UpperCAmelCase = torch.hub.load_state_dict_from_url(_A , map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(_A , _A , _A ) _UpperCAmelCase = rename_backbone_keys(_A ) # query, key and value matrices need special treatment read_in_q_k_v(_A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCAmelCase = """model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _UpperCAmelCase = state_dict.pop(_A ) _UpperCAmelCase = val # create HuggingFace model and load state dict _UpperCAmelCase = TableTransformerConfig( backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: _UpperCAmelCase = 1_5 _UpperCAmelCase = 2 _UpperCAmelCase = {0: """table""", 1: """table rotated"""} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} else: _UpperCAmelCase = 1_2_5 _UpperCAmelCase = 6 _UpperCAmelCase = { 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = DetrImageProcessor( format="""coco_detection""" , max_size=8_0_0 if """detection""" in checkpoint_url else 1_0_0_0 ) _UpperCAmelCase = TableTransformerForObjectDetection(_A ) model.load_state_dict(_A ) model.eval() # verify our conversion _UpperCAmelCase = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" _UpperCAmelCase = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=_A ) _UpperCAmelCase = Image.open(_A ).convert("""RGB""" ) _UpperCAmelCase = normalize(resize(_A , _A ) ).unsqueeze(0 ) _UpperCAmelCase = model(_A ) if "detection" in checkpoint_url: _UpperCAmelCase = (1, 1_5, 3) _UpperCAmelCase = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) _UpperCAmelCase = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: _UpperCAmelCase = (1, 1_2_5, 7) _UpperCAmelCase = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) _UpperCAmelCase = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _A , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _A , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) _UpperCAmelCase = ( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(_A ) image_processor.push_to_hub(_A ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a : int = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
555
1
'''simple docstring''' from collections import deque from .hash_table import HashTable class _lowerCamelCase ( __lowercase ): def __init__( self , *lowerCAmelCase , **lowerCAmelCase ) -> List[str]: super().__init__(*lowerCAmelCase , **lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Optional[Any]= deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= self.values[key] def UpperCamelCase_ ( self ) -> Any: return ( sum(self.charge_factor - len(lowerCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=None ) -> int: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowerCAmelCase ) == 0 ): return key return super()._collision_resolution(lowerCAmelCase , lowerCAmelCase )
706
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = getLogger(__name__) def A__ ( snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : str , snake_case_ : int = 8 , snake_case_ : int = 1_024 , snake_case_ : Union[str, Any]="val" , snake_case_ : Tuple=None , snake_case_ : int=False , snake_case_ : Optional[Any]="summarization" , snake_case_ : Optional[Any]=None , snake_case_ : List[Any]=1 , snake_case_ : Dict = None , snake_case_ : int="" , **snake_case_ : Any , ): SCREAMING_SNAKE_CASE__: List[str]= str(snake_case_ ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=snake_case_ ) SCREAMING_SNAKE_CASE__: str= Path(snake_case_ ) SCREAMING_SNAKE_CASE__: Tuple= save_dir.joinpath(F'rank_{local_rank}_output.json' ) torch.cuda.set_device(snake_case_ ) SCREAMING_SNAKE_CASE__: Tuple= AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda() if fpaa: SCREAMING_SNAKE_CASE__: Dict= model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case_ , snake_case_ ) # update config with task specific params SCREAMING_SNAKE_CASE__: List[Any]= generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: SCREAMING_SNAKE_CASE__: str= num_return_sequences SCREAMING_SNAKE_CASE__: Optional[int]= AutoTokenizer.from_pretrained(snake_case_ ) logger.info(F'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: SCREAMING_SNAKE_CASE__: Dict= tokenizer.model_max_length if prefix is None: SCREAMING_SNAKE_CASE__: List[Any]= prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' SCREAMING_SNAKE_CASE__: Optional[int]= SeqaSeqDataset( snake_case_ , snake_case_ , snake_case_ , max_target_length=1_024 , type_path=snake_case_ , n_obs=snake_case_ , prefix=snake_case_ , **snake_case_ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. SCREAMING_SNAKE_CASE__: Union[str, Any]= ds.make_sortish_sampler(snake_case_ , distributed=snake_case_ , add_extra_examples=snake_case_ , shuffle=snake_case_ ) SCREAMING_SNAKE_CASE__: List[Any]= DataLoader(snake_case_ , sampler=snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn ) SCREAMING_SNAKE_CASE__: List[Any]= [] for batch in tqdm(snake_case_ ): SCREAMING_SNAKE_CASE__: List[Any]= model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=snake_case_ , num_beams=snake_case_ , **snake_case_ , ) SCREAMING_SNAKE_CASE__: int= tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) SCREAMING_SNAKE_CASE__: int= batch['''ids'''] if num_return_sequences > 1: SCREAMING_SNAKE_CASE__: List[Any]= chunks(snake_case_ , snake_case_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case_ ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(snake_case_ , snake_case_ ) return results, sampler.num_replicas def A__ ( ): SCREAMING_SNAKE_CASE__: List[Any]= argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=snake_case_ , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=snake_case_ , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=snake_case_ , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=snake_case_ , default=snake_case_ ) parser.add_argument( '''--type_path''' , type=snake_case_ , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=snake_case_ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case_ , default=8 , required=snake_case_ , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=snake_case_ , default=-1 , required=snake_case_ , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=snake_case_ , default=snake_case_ , required=snake_case_ , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=snake_case_ , default=1 , required=snake_case_ , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=snake_case_ , default=600 , required=snake_case_ , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=snake_case_ , default=snake_case_ , required=snake_case_ ) parser.add_argument('''--tgt_lang''' , type=snake_case_ , default=snake_case_ , required=snake_case_ ) parser.add_argument( '''--prefix''' , type=snake_case_ , required=snake_case_ , default=snake_case_ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) SCREAMING_SNAKE_CASE__: Dict= time.time() SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Dict= parser.parse_known_args() SCREAMING_SNAKE_CASE__: Tuple= parse_numeric_n_bool_cl_kwargs(snake_case_ ) if generate_kwargs and args.local_rank <= 0: print(F'parsed the following generate kwargs: {generate_kwargs}' ) SCREAMING_SNAKE_CASE__: List[Any]= Path(args.save_dir + '''_tmp''' ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking. SCREAMING_SNAKE_CASE__: Dict= list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(F'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. SCREAMING_SNAKE_CASE__: List[str]= {} if args.src_lang is not None: SCREAMING_SNAKE_CASE__: str= args.src_lang if args.tgt_lang is not None: SCREAMING_SNAKE_CASE__: Any= args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case_ ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: str= eval_data_dir( args.data_dir , snake_case_ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=snake_case_ , **snake_case_ , ) if args.local_rank <= 0: SCREAMING_SNAKE_CASE__: str= Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case_ ) SCREAMING_SNAKE_CASE__: Optional[Any]= gather_results_from_each_node(snake_case_ , snake_case_ , args.sync_timeout ) SCREAMING_SNAKE_CASE__: Union[str, Any]= combine_partial_results(snake_case_ ) if args.num_return_sequences > 1: SCREAMING_SNAKE_CASE__: Optional[Any]= save_dir.joinpath('''pseudolabel_results.json''' ) print(F'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(snake_case_ , snake_case_ ) return SCREAMING_SNAKE_CASE__: Union[str, Any]= Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(snake_case_ ) as f: SCREAMING_SNAKE_CASE__: List[str]= [x.rstrip() for x in f.readlines()][: len(snake_case_ )] # Calculate metrics, save metrics, and save _generations.txt SCREAMING_SNAKE_CASE__: Optional[int]= '''translation''' in args.task SCREAMING_SNAKE_CASE__: str= calculate_bleu if calc_bleu else calculate_rouge SCREAMING_SNAKE_CASE__: Dict= '''bleu''' if calc_bleu else '''rouge''' SCREAMING_SNAKE_CASE__: Dict= score_fn(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE__: List[str]= len(snake_case_ ) SCREAMING_SNAKE_CASE__: Dict= time.time() - start_time SCREAMING_SNAKE_CASE__: List[str]= round(runtime / metrics['''n_obs'''] , 4 ) SCREAMING_SNAKE_CASE__: str= num_replicas # TODO(@stas00): add whatever metadata to metrics SCREAMING_SNAKE_CASE__: str= save_dir.joinpath(F'{args.type_path}_{metric_name}.json' ) save_json(snake_case_ , snake_case_ , indent=snake_case_ ) print(snake_case_ ) write_txt_file(snake_case_ , save_dir.joinpath(F'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(snake_case_ , save_dir.joinpath(F'{args.type_path}.target' ) ) else: shutil.rmtree(snake_case_ ) def A__ ( snake_case_ : Optional[int] ): SCREAMING_SNAKE_CASE__: int= [] for partial_result in partial_results: records.extend(snake_case_ ) SCREAMING_SNAKE_CASE__: str= sorted(snake_case_ , key=lambda snake_case_ : x["id"] ) SCREAMING_SNAKE_CASE__: int= [x['''pred'''] for x in records] return preds def A__ ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : int ): # WAIT FOR lots of .json files SCREAMING_SNAKE_CASE__: Optional[int]= time.time() logger.info('''waiting for all nodes to finish''' ) SCREAMING_SNAKE_CASE__: Optional[Any]= None while (time.time() - start_wait) < timeout: SCREAMING_SNAKE_CASE__: List[Any]= list(save_dir.glob('''rank_*.json''' ) ) if len(snake_case_ ) < num_replicas: continue try: # make sure all json files are fully saved SCREAMING_SNAKE_CASE__: Optional[int]= lmap(snake_case_ , snake_case_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
107
0
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class a ( a_ , unittest.TestCase ): snake_case__ = GPTSwaTokenizer snake_case__ = False snake_case__ = True snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = 'This is a test' lowerCAmelCase = 'This is a test' return input_text, output_text def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = '<s>' lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 20_00 ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( _SCREAMING_SNAKE_CASE , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) # fmt: off self.assertListEqual( _SCREAMING_SNAKE_CASE , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertListEqual(tokenizer.encode_fast(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Test that decode_fast returns the input text for text, token_ids in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.decode_fast(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase = {'input_ids': [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='AI-Sweden/gpt-sw3-126m' , sequences=_SCREAMING_SNAKE_CASE , )
4
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : Dict = (DDPMScheduler,) def _SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase = -1 else: lowerCAmelCase = timesteps[i + 1] lowerCAmelCase = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [1_00, 87, 50, 1, 0] lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
284
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _UpperCAmelCase = get_tests_dir("""fixtures""") _UpperCAmelCase = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _UpperCAmelCase = get_tests_dir("""fixtures/dummy-config.json""") class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = 0 def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[str] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A_ : str = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally A_ : Dict = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ).to_dict() config_dict.pop('feature_extractor_type' ) A_ : Dict = WavaVecaFeatureExtractor(**UpperCamelCase__ ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) config.save_pretrained(UpperCamelCase__ ) A_ : Any = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) # make sure private variable is not incorrectly saved A_ : int = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( self ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , 'bert-base is not a local folder and is not a valid model identifier' ): A_ : Any = AutoFeatureExtractor.from_pretrained('bert-base' ) def lowerCAmelCase_ ( self ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): A_ : Optional[Any] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ , revision='aaaaaa' ) def lowerCAmelCase_ ( self ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): A_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def lowerCAmelCase_ ( self ): """simple docstring""" with self.assertRaises(UpperCamelCase__ ): A_ : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A_ : Optional[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=UpperCamelCase__ ) A_ : List[str] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase__ ) A_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def lowerCAmelCase_ ( self ): """simple docstring""" try: AutoConfig.register('custom' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A_ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase__ ) A_ : List[Any] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase_ ( self ): """simple docstring""" class UpperCAmelCase ( lowercase_ ): '''simple docstring''' lowerCamelCase_ = True try: AutoConfig.register('custom' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local A_ : int = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. A_ : List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub A_ : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(UpperCamelCase__ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
710
def UpperCamelCase ( __lowercase : str ,__lowercase : int ): '''simple docstring''' A_ : int = word.split() def justify(__lowercase : list ,__lowercase : int ,__lowercase : int ) -> str: A_ : Optional[Any] = max_width - width A_ : Union[str, Any] = len(__lowercase ) if len(__lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: A_ : Dict = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] A_ : int = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] A_ : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__lowercase ): num_spaces_between_words_list[i] += 1 A_ : Tuple = [] for i in range(__lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__lowercase ) A_ : List[str] = [] A_ : list[str] = [] A_ : Dict = 0 for word in words: if width + len(__lowercase ) + len(__lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__lowercase ) width += len(__lowercase ) else: # justify the line and add it to result answer.append(justify(__lowercase ,__lowercase ,__lowercase ) ) # reset new line and new width A_ , A_ : Any = [word], len(__lowercase ) A_ : int = max_width - width - len(__lowercase ) answer.append(' '.join(__lowercase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
70
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): SCREAMING_SNAKE_CASE = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: SCREAMING_SNAKE_CASE = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase_ = numpy_to_pil(__SCREAMING_SNAKE_CASE ) return images def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: if images.ndim == 3: UpperCAmelCase_ = images[None, ...] UpperCAmelCase_ = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase_ = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase_ = [Image.fromarray(__SCREAMING_SNAKE_CASE ) for image in images] return pil_images
579
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input SCREAMING_SNAKE_CASE = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def snake_case__ ( ) -> Dict: UpperCAmelCase_ = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCAmelCase_ = get_sagemaker_input() else: UpperCAmelCase_ = get_cluster_input() return config def snake_case__ ( __SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: if subparsers is not None: UpperCAmelCase_ = subparsers.add_parser("config" , description=__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ = argparse.ArgumentParser("Accelerate config command" , description=__SCREAMING_SNAKE_CASE ) parser.add_argument( "--config_file" , default=__SCREAMING_SNAKE_CASE , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) return parser def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ = get_user_input() if args.config_file is not None: UpperCAmelCase_ = args.config_file else: if not os.path.isdir(__SCREAMING_SNAKE_CASE ): os.makedirs(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(__SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(__SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def snake_case__ ( ) -> Dict: UpperCAmelCase_ = config_command_parser() UpperCAmelCase_ = parser.parse_args() config_command(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
579
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer _A: Optional[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast _A: str = TaTokenizerFast _A: Union[str, Any] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: Optional[int] = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: Dict = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A: Any = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys _A: Optional[int] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
617
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A: Union[str, Any] = logging.get_logger(__name__) _A: List[str] = { """weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""", } class UpperCAmelCase ( UpperCAmelCase_ ): _A : int = """roc_bert""" def __init__( self , __A=30_522 , __A=768 , __A=12 , __A=12 , __A=3_072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.0_2 , __A=1E-12 , __A=True , __A=0 , __A="absolute" , __A=None , __A=True , __A=True , __A=768 , __A=910 , __A=512 , __A=24_858 , __A=True , **__A , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = type_vocab_size __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = use_cache __UpperCAmelCase = enable_pronunciation __UpperCAmelCase = enable_shape __UpperCAmelCase = pronunciation_embed_dim __UpperCAmelCase = pronunciation_vocab_size __UpperCAmelCase = shape_embed_dim __UpperCAmelCase = shape_vocab_size __UpperCAmelCase = concat_input __UpperCAmelCase = position_embedding_type __UpperCAmelCase = classifier_dropout super().__init__(pad_token_id=__A , **__A )
617
1
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = AutoConfig.from_pretrained(_lowercase ) UpperCamelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowercase ) UpperCamelCase = checkpoints.load_tax_checkpoint(_lowercase ) UpperCamelCase = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": UpperCamelCase = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCamelCase = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): UpperCamelCase = f'layers_{str(_lowercase )}' # Self-Attention UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCamelCase = flax_model.params['''encoder''']['''block'''][str(_lowercase )]['''layer'''] UpperCamelCase = tax_attention_key UpperCamelCase = tax_attention_out UpperCamelCase = tax_attention_query UpperCamelCase = tax_attention_value UpperCamelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase = tax_global_layer_norm if split_mlp_wi: UpperCamelCase = tax_mlp_wi_a UpperCamelCase = tax_mlp_wi_a else: UpperCamelCase = tax_mlp_wi UpperCamelCase = tax_mlp_wo UpperCamelCase = tax_mlp_layer_norm UpperCamelCase = flax_model_encoder_layer_block # Only for layer 0: UpperCamelCase = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCamelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T UpperCamelCase = tax_encoder_global_rel_embedding # Assigning UpperCamelCase = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] UpperCamelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): UpperCamelCase = f'layers_{str(_lowercase )}' # Self-Attention UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] UpperCamelCase = tax_enc_dec_attention_module['''key''']['''kernel'''] UpperCamelCase = tax_enc_dec_attention_module['''out''']['''kernel'''] UpperCamelCase = tax_enc_dec_attention_module['''query''']['''kernel'''] UpperCamelCase = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCamelCase = flax_model.params['''decoder''']['''block'''][str(_lowercase )]['''layer'''] UpperCamelCase = tax_attention_key UpperCamelCase = tax_attention_out UpperCamelCase = tax_attention_query UpperCamelCase = tax_attention_value UpperCamelCase = tax_pre_attention_layer_norm UpperCamelCase = tax_enc_dec_attention_key UpperCamelCase = tax_enc_dec_attention_out UpperCamelCase = tax_enc_dec_attention_query UpperCamelCase = tax_enc_dec_attention_value UpperCamelCase = tax_cross_layer_norm if split_mlp_wi: UpperCamelCase = tax_mlp_wi_a UpperCamelCase = tax_mlp_wi_a else: UpperCamelCase = tax_mlp_wi UpperCamelCase = tax_mlp_wo UpperCamelCase = txa_mlp_layer_norm UpperCamelCase = flax_model_decoder_layer_block # Decoder Normalization UpperCamelCase = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] UpperCamelCase = txa_decoder_norm # Only for layer 0: UpperCamelCase = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCamelCase = tax_decoder_rel_embedding # Token Embeddings UpperCamelCase = tax_model['''target''']['''token_embedder''']['''embedding'''] UpperCamelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCamelCase = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(_lowercase ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
34
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCAmelCase ( __magic_name__ ,__magic_name__=7 )-> Tuple: """simple docstring""" snake_case_ : List[str] = None if token is not None: snake_case_ : List[str] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) snake_case_ : Dict = "636036" snake_case_ : List[str] = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' snake_case_ : Optional[Any] = requests.get(__magic_name__ ,headers=__magic_name__ ).json() return result["workflow_runs"] def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" snake_case_ : str = get_daily_ci_runs(__magic_name__ ) snake_case_ : Optional[int] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": snake_case_ : Dict = workflow_run["id"] break return workflow_run_id def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[Any]: """simple docstring""" snake_case_ : Optional[Any] = get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: snake_case_ : Union[str, Any] = get_artifacts_links(worflow_run_id=__magic_name__ ,token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: snake_case_ : Union[str, Any] = artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ ,artifact_url=__magic_name__ ,output_dir=__magic_name__ ,token=__magic_name__ ) def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[Any]: """simple docstring""" get_last_daily_ci_artifacts(__magic_name__ ,__magic_name__ ,__magic_name__ ) snake_case_ : Union[str, Any] = {} for artifact_name in artifact_names: snake_case_ : Any = os.path.join(__magic_name__ ,F'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): snake_case_ : Tuple = {} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: snake_case_ : Optional[Any] = f.read().decode("UTF-8" ) return results
653
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance lowercase : int = 6378137.0 lowercase : Any = 6356752.314245 lowercase : List[str] = 637_8137 def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A ) -> float: _snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _snake_case = atan((1 - flattening) * tan(radians(__A ) ) ) _snake_case = atan((1 - flattening) * tan(radians(__A ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _snake_case = haversine_distance(__A , __A , __A , __A ) / EQUATORIAL_RADIUS # Intermediate P and Q values _snake_case = (b_lata + b_lata) / 2 _snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _snake_case = (sin(__A ) ** 2) * (cos(__A ) ** 2) _snake_case = cos(sigma / 2 ) ** 2 _snake_case = (sigma - sin(__A )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _snake_case = (cos(__A ) ** 2) * (sin(__A ) ** 2) _snake_case = sin(sigma / 2 ) ** 2 _snake_case = (sigma + sin(__A )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : @staticmethod def lowerCamelCase ( *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class __UpperCAmelCase ( unittest.TestCase ): __lowercase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) _snake_case = [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = object_detector(examples[0] , threshold=0.0 ) _snake_case = len(lowerCAmelCase_ ) self.assertGreater(lowerCAmelCase_ , 0 ) self.assertEqual( lowerCAmelCase_ , [ { 'score': ANY(lowerCAmelCase_ ), 'label': ANY(lowerCAmelCase_ ), 'box': {'xmin': ANY(lowerCAmelCase_ ), 'ymin': ANY(lowerCAmelCase_ ), 'xmax': ANY(lowerCAmelCase_ ), 'ymax': ANY(lowerCAmelCase_ )}, } for i in range(lowerCAmelCase_ ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def lowerCamelCase ( self ): """simple docstring""" pass @require_torch def lowerCamelCase ( self ): """simple docstring""" _snake_case = pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) _snake_case = object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] , ) _snake_case = object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] ] , ) @require_torch @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = pipeline('zero-shot-object-detection' ) _snake_case = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ] , ) _snake_case = object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def lowerCamelCase ( self ): """simple docstring""" pass @require_torch @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = 0.2 _snake_case = pipeline('zero-shot-object-detection' ) _snake_case = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=lowerCAmelCase_ , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, ] , ) @require_torch @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = 2 _snake_case = pipeline('zero-shot-object-detection' ) _snake_case = object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=lowerCAmelCase_ , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, ] , )
542
0
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowerCAmelCase__ :List[str] = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=__UpperCAmelCase , cache_dir=__UpperCAmelCase ) lowerCAmelCase__ :int = [t[-1] for t in os.walk(os.path.join(__UpperCAmelCase , os.listdir(__UpperCAmelCase )[0] , 'snapshots' ) )] lowerCAmelCase__ :Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :int = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=__UpperCAmelCase ) lowerCAmelCase__ :int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCAmelCase__ :List[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase__ :List[Any] = 4 lowerCAmelCase__ :Optional[Any] = jax.device_count() lowerCAmelCase__ :Any = num_samples * [prompt] lowerCAmelCase__ :Optional[Any] = pipeline.prepare_inputs(__UpperCAmelCase ) # shard inputs and rng lowerCAmelCase__ :Optional[Any] = replicate(__UpperCAmelCase ) lowerCAmelCase__ :int = jax.random.split(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Dict = shard(__UpperCAmelCase ) lowerCAmelCase__ :int = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__UpperCAmelCase , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 lowerCAmelCase__ :Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__UpperCAmelCase ) == num_samples def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCAmelCase__ :Optional[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase__ :Any = 5_0 lowerCAmelCase__ :Optional[int] = jax.device_count() lowerCAmelCase__ :Union[str, Any] = num_samples * [prompt] lowerCAmelCase__ :Dict = pipeline.prepare_inputs(__UpperCAmelCase ) # shard inputs and rng lowerCAmelCase__ :Optional[Any] = replicate(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = jax.random.split(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :str = shard(__UpperCAmelCase ) lowerCAmelCase__ :int = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__UpperCAmelCase , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCAmelCase__ :Optional[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase__ :Tuple = 5_0 lowerCAmelCase__ :List[Any] = jax.device_count() lowerCAmelCase__ :Tuple = num_samples * [prompt] lowerCAmelCase__ :str = pipeline.prepare_inputs(__UpperCAmelCase ) # shard inputs and rng lowerCAmelCase__ :List[Any] = replicate(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = jax.random.split(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Tuple = shard(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Any = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) lowerCAmelCase__ :Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCAmelCase__ :Optional[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase__ :Any = 5_0 lowerCAmelCase__ :Optional[int] = jax.device_count() lowerCAmelCase__ :Tuple = num_samples * [prompt] lowerCAmelCase__ :Any = pipeline.prepare_inputs(__UpperCAmelCase ) # shard inputs and rng lowerCAmelCase__ :Any = replicate(__UpperCAmelCase ) lowerCAmelCase__ :Any = jax.random.split(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :int = shard(__UpperCAmelCase ) lowerCAmelCase__ :Dict = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , ) lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , ) lowerCAmelCase__ :int = scheduler.create_state() lowerCAmelCase__ :Tuple = scheduler_state lowerCAmelCase__ :Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCAmelCase__ :List[str] = jax.random.PRNGKey(0 ) lowerCAmelCase__ :Union[str, Any] = 5_0 lowerCAmelCase__ :Any = jax.device_count() lowerCAmelCase__ :Tuple = num_samples * [prompt] lowerCAmelCase__ :List[str] = pipeline.prepare_inputs(__UpperCAmelCase ) # shard inputs and rng lowerCAmelCase__ :Any = replicate(__UpperCAmelCase ) lowerCAmelCase__ :Any = jax.random.split(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = shard(__UpperCAmelCase ) lowerCAmelCase__ :Dict = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__UpperCAmelCase , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowerCAmelCase__ :List[str] = jax.device_count() lowerCAmelCase__ :str = num_samples * [prompt] lowerCAmelCase__ :str = jax.random.split(jax.random.PRNGKey(0 ) , __UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :Any = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=__UpperCAmelCase , ) lowerCAmelCase__ :int = replicate(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = pipeline.prepare_inputs(__UpperCAmelCase ) lowerCAmelCase__ :str = shard(__UpperCAmelCase ) lowerCAmelCase__ :Dict = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCAmelCase__ :Union[str, Any] = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention lowerCAmelCase__ , lowerCAmelCase__ :str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=__UpperCAmelCase , use_memory_efficient_attention=__UpperCAmelCase , ) lowerCAmelCase__ :List[str] = replicate(__UpperCAmelCase ) lowerCAmelCase__ :Dict = pipeline.prepare_inputs(__UpperCAmelCase ) lowerCAmelCase__ :int = shard(__UpperCAmelCase ) lowerCAmelCase__ :int = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) lowerCAmelCase__ :Optional[Any] = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
93
'''simple docstring''' import csv import tweepy # Twitter API credentials __snake_case : Union[str, Any] = '''''' __snake_case : List[Any] = '''''' __snake_case : List[str] = '''''' __snake_case : Any = '''''' def lowerCamelCase__ ( A_ ): # authorize twitter, initialize tweepy UpperCAmelCase_ = tweepy.OAuthHandler(A_ , A_ ) auth.set_access_token(A_ , A_ ) UpperCAmelCase_ = tweepy.API(A_ ) # initialize a list to hold all the tweepy Tweets UpperCAmelCase_ = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCAmelCase_ = api.user_timeline(screen_name=A_ , count=200 ) # save most recent tweets alltweets.extend(A_ ) # save the id of the oldest tweet less one UpperCAmelCase_ = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(A_ ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates UpperCAmelCase_ = api.user_timeline( screen_name=A_ , count=200 , max_id=A_ ) # save most recent tweets alltweets.extend(A_ ) # update the id of the oldest tweet less one UpperCAmelCase_ = alltweets[-1].id - 1 print(F"""...{len(A_ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCAmelCase_ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , "w" ) as f: UpperCAmelCase_ = csv.writer(A_ ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(A_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
660
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( a ): """simple docstring""" UpperCamelCase__ : Tuple =["""image_processor""", """tokenizer"""] UpperCamelCase__ : str ="""ViTImageProcessor""" UpperCamelCase__ : Dict =("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Tuple =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCamelCase__ , ) __UpperCamelCase : Tuple =kwargs.pop('feature_extractor' ) __UpperCamelCase : Union[str, Any] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: __UpperCamelCase : str =self.tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if visual_prompt is not None: __UpperCamelCase : Union[str, Any] =self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if images is not None: __UpperCamelCase : List[Any] =self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if visual_prompt is not None and images is not None: __UpperCamelCase : List[Any] ={ 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: __UpperCamelCase : Dict =image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: __UpperCamelCase : Union[str, Any] ={ 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCamelCase__ ) , tensor_type=lowerCamelCase__ ) def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def __lowercase ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCamelCase__ , ) return self.image_processor_class @property def __lowercase ( self ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCamelCase__ , ) return self.image_processor
704
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) A_ :Dict = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } A_ :List[str] = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } A_ :Dict = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } A_ :Tuple = { '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } A_ :List[str] = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } A_ :int = { '''num_train_timesteps''': 151, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def A ( a_ ) -> Optional[Any]: if isinstance(a_ ,a_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def A ( a_ ,a_ ,a_ ,a_ ,a_=False ) -> Dict: __UpperCamelCase : str =checkpoint[F'{old_prefix}.in_layers.0.weight'] __UpperCamelCase : Optional[Any] =checkpoint[F'{old_prefix}.in_layers.0.bias'] __UpperCamelCase : Dict =checkpoint[F'{old_prefix}.in_layers.2.weight'] __UpperCamelCase : Dict =checkpoint[F'{old_prefix}.in_layers.2.bias'] __UpperCamelCase : int =checkpoint[F'{old_prefix}.emb_layers.1.weight'] __UpperCamelCase : str =checkpoint[F'{old_prefix}.emb_layers.1.bias'] __UpperCamelCase : List[Any] =checkpoint[F'{old_prefix}.out_layers.0.weight'] __UpperCamelCase : List[str] =checkpoint[F'{old_prefix}.out_layers.0.bias'] __UpperCamelCase : str =checkpoint[F'{old_prefix}.out_layers.3.weight'] __UpperCamelCase : Any =checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: __UpperCamelCase : Union[str, Any] =checkpoint[F'{old_prefix}.skip_connection.weight'] __UpperCamelCase : Dict =checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def A ( a_ ,a_ ,a_ ,a_ ,a_=None ) -> int: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] =checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 ,dim=0 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] =checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 ,dim=0 ) __UpperCamelCase : Tuple =checkpoint[F'{old_prefix}.norm.weight'] __UpperCamelCase : Optional[Any] =checkpoint[F'{old_prefix}.norm.bias'] __UpperCamelCase : Union[str, Any] =weight_q.squeeze(-1 ).squeeze(-1 ) __UpperCamelCase : Union[str, Any] =bias_q.squeeze(-1 ).squeeze(-1 ) __UpperCamelCase : Dict =weight_k.squeeze(-1 ).squeeze(-1 ) __UpperCamelCase : Optional[int] =bias_k.squeeze(-1 ).squeeze(-1 ) __UpperCamelCase : str =weight_v.squeeze(-1 ).squeeze(-1 ) __UpperCamelCase : Optional[Any] =bias_v.squeeze(-1 ).squeeze(-1 ) __UpperCamelCase : Tuple =( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) __UpperCamelCase : Union[str, Any] =checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def A ( a_ ,a_ ) -> Union[str, Any]: __UpperCamelCase : Tuple =torch.load(a_ ,map_location='cpu' ) __UpperCamelCase : List[str] ={} __UpperCamelCase : Any =checkpoint['time_embed.0.weight'] __UpperCamelCase : int =checkpoint['time_embed.0.bias'] __UpperCamelCase : Tuple =checkpoint['time_embed.2.weight'] __UpperCamelCase : List[str] =checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: __UpperCamelCase : List[str] =checkpoint['label_emb.weight'] __UpperCamelCase : Tuple =checkpoint['input_blocks.0.0.weight'] __UpperCamelCase : str =checkpoint['input_blocks.0.0.bias'] __UpperCamelCase : Optional[Any] =unet_config['down_block_types'] __UpperCamelCase : Optional[int] =unet_config['layers_per_block'] __UpperCamelCase : int =unet_config['attention_head_dim'] __UpperCamelCase : List[str] =unet_config['block_out_channels'] __UpperCamelCase : Tuple =1 __UpperCamelCase : Union[str, Any] =channels_list[0] for i, layer_type in enumerate(a_ ): __UpperCamelCase : List[Any] =channels_list[i] __UpperCamelCase : Optional[int] =current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(a_ ): __UpperCamelCase : Dict =F'down_blocks.{i}.resnets.{j}' __UpperCamelCase : Any =F'input_blocks.{current_layer}.0' __UpperCamelCase : Any =True if j == 0 and downsample_block_has_skip else False __UpperCamelCase : Optional[int] =convert_resnet(a_ ,a_ ,a_ ,a_ ,has_skip=a_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(a_ ): __UpperCamelCase : Optional[Any] =F'down_blocks.{i}.resnets.{j}' __UpperCamelCase : Union[str, Any] =F'input_blocks.{current_layer}.0' __UpperCamelCase : Any =True if j == 0 and downsample_block_has_skip else False __UpperCamelCase : List[str] =convert_resnet(a_ ,a_ ,a_ ,a_ ,has_skip=a_ ) __UpperCamelCase : Union[str, Any] =F'down_blocks.{i}.attentions.{j}' __UpperCamelCase : Optional[Any] =F'input_blocks.{current_layer}.1' __UpperCamelCase : Optional[Any] =convert_attention( a_ ,a_ ,a_ ,a_ ,a_ ) current_layer += 1 if i != len(a_ ) - 1: __UpperCamelCase : List[Any] =F'down_blocks.{i}.downsamplers.0' __UpperCamelCase : int =F'input_blocks.{current_layer}.0' __UpperCamelCase : str =convert_resnet(a_ ,a_ ,a_ ,a_ ) current_layer += 1 __UpperCamelCase : Optional[Any] =current_channels # hardcoded the mid-block for now __UpperCamelCase : Any ='mid_block.resnets.0' __UpperCamelCase : List[str] ='middle_block.0' __UpperCamelCase : Union[str, Any] =convert_resnet(a_ ,a_ ,a_ ,a_ ) __UpperCamelCase : List[Any] ='mid_block.attentions.0' __UpperCamelCase : Optional[Any] ='middle_block.1' __UpperCamelCase : List[Any] =convert_attention(a_ ,a_ ,a_ ,a_ ,a_ ) __UpperCamelCase : str ='mid_block.resnets.1' __UpperCamelCase : Optional[Any] ='middle_block.2' __UpperCamelCase : int =convert_resnet(a_ ,a_ ,a_ ,a_ ) __UpperCamelCase : List[Any] =0 __UpperCamelCase : Optional[int] =unet_config['up_block_types'] for i, layer_type in enumerate(a_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __UpperCamelCase : Any =F'up_blocks.{i}.resnets.{j}' __UpperCamelCase : Dict =F'output_blocks.{current_layer}.0' __UpperCamelCase : Dict =convert_resnet(a_ ,a_ ,a_ ,a_ ,has_skip=a_ ) current_layer += 1 if i != len(a_ ) - 1: __UpperCamelCase : List[str] =F'up_blocks.{i}.upsamplers.0' __UpperCamelCase : Optional[Any] =F'output_blocks.{current_layer-1}.1' __UpperCamelCase : Union[str, Any] =convert_resnet(a_ ,a_ ,a_ ,a_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __UpperCamelCase : Optional[Any] =F'up_blocks.{i}.resnets.{j}' __UpperCamelCase : Optional[Any] =F'output_blocks.{current_layer}.0' __UpperCamelCase : str =convert_resnet(a_ ,a_ ,a_ ,a_ ,has_skip=a_ ) __UpperCamelCase : Optional[int] =F'up_blocks.{i}.attentions.{j}' __UpperCamelCase : Tuple =F'output_blocks.{current_layer}.1' __UpperCamelCase : str =convert_attention( a_ ,a_ ,a_ ,a_ ,a_ ) current_layer += 1 if i != len(a_ ) - 1: __UpperCamelCase : Optional[Any] =F'up_blocks.{i}.upsamplers.0' __UpperCamelCase : str =F'output_blocks.{current_layer-1}.2' __UpperCamelCase : str =convert_resnet(a_ ,a_ ,a_ ,a_ ) __UpperCamelCase : Any =checkpoint['out.0.weight'] __UpperCamelCase : Any =checkpoint['out.0.bias'] __UpperCamelCase : Optional[Any] =checkpoint['out.2.weight'] __UpperCamelCase : List[Any] =checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": A_ :int = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') A_ :List[Any] = parser.parse_args() A_ :Tuple = strabool(args.class_cond) A_ :List[str] = os.path.basename(args.unet_path) print(f"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: A_ :Optional[int] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A_ :List[Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: A_ :Optional[int] = TEST_UNET_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: A_ :List[str] = None A_ :List[str] = con_pt_to_diffuser(args.unet_path, unet_config) A_ :str = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: A_ :List[str] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: A_ :Optional[int] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A_ :Dict = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") A_ :Optional[Any] = CMStochasticIterativeScheduler(**scheduler_config) A_ :int = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
154
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case__ = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys snake_case__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
583
snake_case__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def lowerCamelCase_ ( ): lowercase : Optional[Any] = input('''Enter message: ''' ) lowercase : Optional[Any] = input('''Enter key [alphanumeric]: ''' ) lowercase : Union[str, Any] = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowercase : str = '''encrypt''' lowercase : Optional[Any] = encrypt_message(UpperCAmelCase_ , UpperCAmelCase_ ) elif mode.lower().startswith('''d''' ): lowercase : str = '''decrypt''' lowercase : Optional[int] = decrypt_message(UpperCAmelCase_ , UpperCAmelCase_ ) print(f'''\n{mode.title()}ed message:''' ) print(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): return translate_message(UpperCAmelCase_ , UpperCAmelCase_ , '''encrypt''' ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): return translate_message(UpperCAmelCase_ , UpperCAmelCase_ , '''decrypt''' ) def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): lowercase : Optional[Any] = [] lowercase : Tuple = 0 lowercase : str = key.upper() for symbol in message: lowercase : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(UpperCAmelCase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(UpperCAmelCase_ ): lowercase : List[str] = 0 else: translated.append(UpperCAmelCase_ ) return "".join(UpperCAmelCase_ ) if __name__ == "__main__": main()
583
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : int =logging.get_logger(__name__) __snake_case : List[Any] ={ 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } __snake_case : Any ={ 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } __snake_case : Optional[int] ={ 'ctrl': 2_5_6, } __snake_case : Optional[int] ={ 'Pregnancy': 1_6_8_6_2_9, 'Christianity': 7_6_7_5, 'Explain': 1_0_6_4_2_3, 'Fitness': 6_3_4_4_0, 'Saving': 6_3_1_6_3, 'Ask': 2_7_1_7_1, 'Ass': 9_5_9_8_5, 'Joke': 1_6_3_5_0_9, 'Questions': 4_5_6_2_2, 'Thoughts': 4_9_6_0_5, 'Retail': 5_2_3_4_2, 'Feminism': 1_6_4_3_3_8, 'Writing': 1_1_9_9_2, 'Atheism': 1_9_2_2_6_3, 'Netflix': 4_8_6_1_6, 'Computing': 3_9_6_3_9, 'Opinion': 4_3_2_1_3, 'Alone': 4_4_9_6_7, 'Funny': 5_8_9_1_7, 'Gaming': 4_0_3_5_8, 'Human': 4_0_8_8, 'India': 1_3_3_1, 'Joker': 7_7_1_3_8, 'Diet': 3_6_2_0_6, 'Legal': 1_1_8_5_9, 'Norman': 4_9_3_9, 'Tip': 7_2_6_8_9, 'Weight': 5_2_3_4_3, 'Movies': 4_6_2_7_3, 'Running': 2_3_4_2_5, 'Science': 2_0_9_0, 'Horror': 3_7_7_9_3, 'Confession': 6_0_5_7_2, 'Finance': 1_2_2_5_0, 'Politics': 1_6_3_6_0, 'Scary': 1_9_1_9_8_5, 'Support': 1_2_6_5_4, 'Technologies': 3_2_5_1_6, 'Teenage': 6_6_1_6_0, 'Event': 3_2_7_6_9, 'Learned': 6_7_4_6_0, 'Notion': 1_8_2_7_7_0, 'Wikipedia': 3_7_5_8_3, 'Books': 6_6_6_5, 'Extract': 7_6_0_5_0, 'Confessions': 1_0_2_7_0_1, 'Conspiracy': 7_5_9_3_2, 'Links': 6_3_6_7_4, 'Narcissus': 1_5_0_4_2_5, 'Relationship': 5_4_7_6_6, 'Relationships': 1_3_4_7_9_6, 'Reviews': 4_1_6_7_1, 'News': 4_2_5_6, 'Translation': 2_6_8_2_0, 'multilingual': 1_2_8_4_0_6, } def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any]): '''simple docstring''' lowerCAmelCase__ : Tuple = set() lowerCAmelCase__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase__ : List[Any] = char lowerCAmelCase__ : Dict = set(lowerCamelCase_) return pairs class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =VOCAB_FILES_NAMES snake_case_ =PRETRAINED_VOCAB_FILES_MAP snake_case_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ =CONTROL_CODES def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase="<unk>" ,**__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__(unk_token=__lowerCamelCase ,**__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase__ : List[str] = json.load(__lowerCamelCase ) lowerCAmelCase__ : int = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase ,encoding='''utf-8''' ) as merges_handle: lowerCAmelCase__ : str = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase__ : Optional[Any] = [tuple(merge.split() ) for merge in merges] lowerCAmelCase__ : int = dict(zip(__lowerCamelCase ,range(len(__lowerCamelCase ) ) ) ) lowerCAmelCase__ : Union[str, Any] = {} @property def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" return len(self.encoder ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" return dict(self.encoder ,**self.added_tokens_encoder ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int: """simple docstring""" if token in self.cache: return self.cache[token] lowerCAmelCase__ : Union[str, Any] = tuple(__lowerCamelCase ) lowerCAmelCase__ : Tuple = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCAmelCase__ : Union[str, Any] = get_pairs(__lowerCamelCase ) if not pairs: return token while True: lowerCAmelCase__ : Optional[Any] = min(__lowerCamelCase ,key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ : int = bigram lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : int = 0 while i < len(__lowerCamelCase ): try: lowerCAmelCase__ : Optional[Any] = word.index(__lowerCamelCase ,__lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ : int = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ : Optional[Any] = tuple(__lowerCamelCase ) lowerCAmelCase__ : Any = new_word if len(__lowerCamelCase ) == 1: break else: lowerCAmelCase__ : Optional[Any] = get_pairs(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = '''@@ '''.join(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = word[:-4] lowerCAmelCase__ : List[Any] = word return word def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = [] lowerCAmelCase__ : int = re.findall(R'''\S+\n?''' ,__lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]: """simple docstring""" return self.encoder.get(__lowerCamelCase ,self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.decoder.get(__lowerCamelCase ,self.unk_token ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Dict = ''' '''.join(__lowerCamelCase ).replace('''@@ ''' ,'''''' ).strip() return out_string def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : Optional[int] = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : List[Any] = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=__lowerCamelCase ,ensure_ascii=__lowerCamelCase ) + '''\n''' ) lowerCAmelCase__ : Optional[Any] = 0 with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase__ : Optional[int] = token_index writer.write(''' '''.join(__lowerCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
719
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __snake_case : List[str] ='tiny-wmt19-en-ru' # Build # borrowed from a test __snake_case : Any =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __snake_case : Union[str, Any] =dict(zip(vocab, range(len(vocab)))) __snake_case : List[Any] =['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[Any] =Path(tmpdirname) __snake_case : int =build_dir / VOCAB_FILES_NAMES['src_vocab_file'] __snake_case : str =build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] __snake_case : Optional[int] =build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) __snake_case : Union[str, Any] =FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __snake_case : Dict =FSMTConfig( langs=['ru', 'en'], src_vocab_size=1_0_0_0, tgt_vocab_size=1_0_0_0, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __snake_case : Optional[Any] =FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test __snake_case : Dict =tokenizer(['Making tiny model'], return_tensors='pt') __snake_case : Dict =tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
90
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE : Union[str, Any] = TypeVar("T") _SCREAMING_SNAKE_CASE : Dict = TypeVar("U") class _snake_case ( Generic[T, U] ): '''simple docstring''' def __init__( self: str , __UpperCamelCase: Optional[int] , __UpperCamelCase: str ) -> Dict: __magic_name__ : int = key __magic_name__ : Optional[Any] = val __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None def __repr__( self: str ) -> str: return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _snake_case ( Generic[T, U] ): '''simple docstring''' def __init__( self: Tuple ) -> None: __magic_name__ : int = DoubleLinkedListNode(_a , _a ) __magic_name__ : str = DoubleLinkedListNode(_a , _a ) __magic_name__ , __magic_name__ : int = self.rear, self.head def __repr__( self: Tuple ) -> str: __magic_name__ : Dict = ["DoubleLinkedList"] __magic_name__ : Optional[Any] = self.head while node.next is not None: rep.append(str(_a ) ) __magic_name__ : Dict = node.next rep.append(str(self.rear ) ) return ",\n ".join(_a ) def lowerCAmelCase__ ( self: Dict , __UpperCamelCase: Optional[Any] ) -> None: __magic_name__ : Optional[Any] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __magic_name__ : Dict = node __magic_name__ : Optional[int] = previous __magic_name__ : Dict = node __magic_name__ : Union[str, Any] = self.rear def lowerCAmelCase__ ( self: Any , __UpperCamelCase: Dict ) -> DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None __magic_name__ : Optional[Any] = node.next __magic_name__ : Union[str, Any] = node.prev __magic_name__ : Tuple = None __magic_name__ : Union[str, Any] = None return node class _snake_case ( Generic[T, U] ): '''simple docstring''' __snake_case = {} def __init__( self: int , __UpperCamelCase: int ) -> Tuple: __magic_name__ : str = DoubleLinkedList() __magic_name__ : Union[str, Any] = capacity __magic_name__ : Optional[Any] = 0 __magic_name__ : Tuple = 0 __magic_name__ : Dict = 0 __magic_name__ : Any = {} def __repr__( self: Union[str, Any] ) -> str: return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self: Any , __UpperCamelCase: List[str] ) -> bool: return key in self.cache def lowerCAmelCase__ ( self: Union[str, Any] , __UpperCamelCase: Optional[Any] ) -> U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 __magic_name__ : List[str] = self.cache[key] __magic_name__ : List[Any] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_a ) return node.val self.miss += 1 return None def lowerCAmelCase__ ( self: List[Any] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Union[str, Any] ) -> None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __magic_name__ : int = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_a ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __magic_name__ : Dict = DoubleLinkedListNode(_a , _a ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __magic_name__ : str = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __magic_name__ : List[str] = value self.list.add(_a ) @classmethod def lowerCAmelCase__ ( cls: Any , __UpperCamelCase: Optional[Any] = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(__UpperCamelCase: int ) -> Callable[..., U]: def cache_decorator_wrapper(*__UpperCamelCase: Tuple ) -> U: if func not in cls.decorator_function_to_instance_map: __magic_name__ : str = LRUCache(_a ) __magic_name__ : Optional[Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __magic_name__ : int = func(*_a ) cls.decorator_function_to_instance_map[func].put(args[0] , _a ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_a , "cache_info" , _a ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
436
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
0
'''simple docstring''' import argparse import os import re __lowercase = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __lowercase = re.compile(R'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings __lowercase = re.compile(R'''\s*\(\s*"(\S[^"]+)"''') def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): with open(_SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase_ : str =f.read() lowerCAmelCase_ : Optional[Any] =content.split('''\n''' ) lowerCAmelCase_ : Optional[Any] =[] lowerCAmelCase_ : List[Any] =0 while line_idx < len(_SCREAMING_SNAKE_CASE ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowerCAmelCase_ : List[str] =len(re.search(R'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 lowerCAmelCase_ : List[Any] =[] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowerCAmelCase_ : Optional[int] =line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowerCAmelCase_ : Optional[Any] =sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : _re_identifier.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(_SCREAMING_SNAKE_CASE ) ) elif "\n".join(_SCREAMING_SNAKE_CASE ) != content: return True def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE = False ): lowerCAmelCase_ : Dict =[os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for f in os.listdir(_SCREAMING_SNAKE_CASE ) if f.endswith('''.py''' )] lowerCAmelCase_ : Dict =[sort_auto_mapping(_SCREAMING_SNAKE_CASE , overwrite=_SCREAMING_SNAKE_CASE ) for fname in fnames] if not overwrite and any(_SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : List[Any] =[f for f, d in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_SCREAMING_SNAKE_CASE )}. Run `make style` to fix' ''' this.''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __lowercase = parser.parse_args() sort_all_auto_mappings(not args.check_only)
708
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : UNetaDModel _UpperCamelCase : ScoreSdeVeScheduler def __init__( self : Union[str, Any] , UpperCamelCase_ : UNetaDModel , UpperCamelCase_ : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 2000 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , **UpperCamelCase_ : Dict , ): lowerCAmelCase_ : Union[str, Any] =self.unet.config.sample_size lowerCAmelCase_ : Dict =(batch_size, 3, img_size, img_size) lowerCAmelCase_ : Dict =self.unet lowerCAmelCase_ : Optional[int] =randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ ) * self.scheduler.init_noise_sigma lowerCAmelCase_ : Any =sample.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase_ ) self.scheduler.set_sigmas(UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase_ : Optional[Any] =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase_ : int =self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample lowerCAmelCase_ : List[str] =self.scheduler.step_correct(UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # prediction step lowerCAmelCase_ : Any =model(UpperCamelCase_ , UpperCamelCase_ ).sample lowerCAmelCase_ : Tuple =self.scheduler.step_pred(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple =output.prev_sample, output.prev_sample_mean lowerCAmelCase_ : Tuple =sample_mean.clamp(0 , 1 ) lowerCAmelCase_ : int =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ : Optional[Any] =self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCamelCase_ )
305
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = KandinskyVaaPriorPipeline snake_case_ = ["prompt"] snake_case_ = ["prompt", "negative_prompt"] snake_case_ = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] snake_case_ = False @property def A_ ( self : Optional[Any] ): return 32 @property def A_ ( self : Tuple ): return 32 @property def A_ ( self : Optional[Any] ): return self.time_input_dim @property def A_ ( self : str ): return self.time_input_dim * 4 @property def A_ ( self : Tuple ): return 100 @property def A_ ( self : List[Any] ): snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def A_ ( self : Any ): torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_ ) @property def A_ ( self : Optional[int] ): torch.manual_seed(0 ) snake_case_ = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } snake_case_ = PriorTransformer(**lowercase_ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 snake_case_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def A_ ( self : Any ): torch.manual_seed(0 ) snake_case_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) snake_case_ = CLIPVisionModelWithProjection(lowercase_ ) return model @property def A_ ( self : Union[str, Any] ): snake_case_ = CLIPImageProcessor( crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor def A_ ( self : Any ): snake_case_ = self.dummy_prior snake_case_ = self.dummy_image_encoder snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_image_processor snake_case_ = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , ) snake_case_ = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def A_ ( self : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : List[str]=0 ): if str(lowercase_ ).startswith('''mps''' ): snake_case_ = torch.manual_seed(lowercase_ ) else: snake_case_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) snake_case_ = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def A_ ( self : Optional[Any] ): snake_case_ = '''cpu''' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**lowercase_ ) snake_case_ = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case_ = pipe(**self.get_dummy_inputs(lowercase_ ) ) snake_case_ = output.image_embeds snake_case_ = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] snake_case_ = image[0, -10:] snake_case_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) snake_case_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def A_ ( self : Any ): snake_case_ = torch_device == '''cpu''' snake_case_ = True snake_case_ = False self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , ) @skip_mps def A_ ( self : Union[str, Any] ): snake_case_ = torch_device == '''cpu''' snake_case_ = False self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
640
'''simple docstring''' from ....utils import logging a : Optional[int] = logging.get_logger(__name__) class a ( _lowerCamelCase ): def __init__( self : int , lowercase_ : Tuple , lowercase_ : Any=None , lowercase_ : List[Any]=2048 ): snake_case_ = config.__dict__ snake_case_ = modal_hidden_size if num_labels: snake_case_ = num_labels
640
1
'''simple docstring''' from collections.abc import Generator def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : Tuple = 0, 1 while True: UpperCamelCase__ : Union[str, Any] = b, a + b yield b def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ = 1_0_0_0 ): UpperCamelCase__ : Optional[int] = 1 UpperCamelCase__ : Optional[int] = fibonacci_generator() while len(str(next(UpperCamelCase__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
701
class _lowerCamelCase : """simple docstring""" def __init__( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : Union[str, Any] = '''''' UpperCamelCase__ : int = '''''' UpperCamelCase__ : Optional[int] = [] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: UpperCamelCase__ : Union[str, Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: UpperCamelCase__ : int = self.__min_dist_top_down_dp(__SCREAMING_SNAKE_CASE , n - 1 ) UpperCamelCase__ : Tuple = self.__min_dist_top_down_dp(m - 1 , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) UpperCamelCase__ : Optional[int] = 1 + min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self.dp[m][n] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ : Union[str, Any] = worda UpperCamelCase__ : Any = worda UpperCamelCase__ : List[str] = [[-1 for _ in range(len(__SCREAMING_SNAKE_CASE ) )] for _ in range(len(__SCREAMING_SNAKE_CASE ) )] return self.__min_dist_top_down_dp(len(__SCREAMING_SNAKE_CASE ) - 1 , len(__SCREAMING_SNAKE_CASE ) - 1 ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase__ : int = worda UpperCamelCase__ : List[str] = worda UpperCamelCase__ : int = len(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty UpperCamelCase__ : List[Any] = j elif j == 0: # second string is empty UpperCamelCase__ : Union[str, Any] = i elif worda[i - 1] == worda[j - 1]: # last characters are equal UpperCamelCase__ : List[Any] = self.dp[i - 1][j - 1] else: UpperCamelCase__ : Union[str, Any] = self.dp[i][j - 1] UpperCamelCase__ : str = self.dp[i - 1][j] UpperCamelCase__ : Union[str, Any] = self.dp[i - 1][j - 1] UpperCamelCase__ : List[Any] = 1 + min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self.dp[m][n] if __name__ == "__main__": lowerCamelCase =EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() lowerCamelCase =input("Enter the first string: ").strip() lowerCamelCase =input("Enter the second string: ").strip() print() print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
462
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case ( UpperCamelCase_ ): def __lowercase( self : List[str] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : List[Any] = 8 # DPR tok SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE__ : Dict = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(a_ , exist_ok=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(a_ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok SCREAMING_SNAKE_CASE__ : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE__ : Any = dict(zip(a_ , range(len(a_ ) ) ) ) SCREAMING_SNAKE_CASE__ : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(a_ , exist_ok=a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(a_ , BART_VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(a_ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a_ ) ) def __lowercase( self : Union[str, Any] )-> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __lowercase( self : Union[str, Any] )-> DPRContextEncoderTokenizer: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __lowercase( self : List[Any] )-> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def __lowercase( self : str )-> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowercase( self : str )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __lowercase( self : List[str] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_dataset() SCREAMING_SNAKE_CASE__ : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: SCREAMING_SNAKE_CASE__ : Any = dataset SCREAMING_SNAKE_CASE__ : int = RagRetriever( a_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __lowercase( self : Tuple , a_ : bool )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_dataset() SCREAMING_SNAKE_CASE__ : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(self.tmpdirname , 'dataset' ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(self.tmpdirname , 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) ) del dataset SCREAMING_SNAKE_CASE__ : Union[str, Any] = RagRetriever( a_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = RagRetriever( a_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , a_ ) , ) return retriever def __lowercase( self : Any )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' ) SCREAMING_SNAKE_CASE__ : List[str] = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(a_ , open(a_ , 'wb' ) ) SCREAMING_SNAKE_CASE__ : Any = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) SCREAMING_SNAKE_CASE__ : int = RagRetriever( a_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __lowercase( self : Tuple )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = retriever.retrieve(a_ , n_docs=a_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(a_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , a_ ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase( self : List[str] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: SCREAMING_SNAKE_CASE__ : int = self.get_dummy_dataset() retriever.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RagRetriever.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : List[Any] = retriever.retrieve(a_ , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = 1 SCREAMING_SNAKE_CASE__ : int = self.get_dummy_custom_hf_index_retriever(from_disk=a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = retriever.retrieve(a_ , n_docs=a_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(a_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , a_ ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase( self : Optional[int] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=a_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = RagRetriever.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Optional[Any] = retriever.retrieve(a_ , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = retriever.retrieve(a_ , n_docs=a_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(a_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , a_ ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase( self : Dict )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=a_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RagRetriever.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Any = retriever.retrieve(a_ , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase( self : str )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : Tuple = self.get_dummy_legacy_index_retriever() SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = retriever.retrieve(a_ , n_docs=a_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(a_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) , a_ ) self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase( self : Dict )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RagRetriever.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = retriever.retrieve(a_ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __lowercase( self : int )-> Tuple: """simple docstring""" import torch SCREAMING_SNAKE_CASE__ : List[Any] = 1 SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE__ : Optional[Any] = [[5, 7], [10, 11]] SCREAMING_SNAKE_CASE__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = retriever(a_ , a_ , prefix=retriever.config.generator.prefix , n_docs=a_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(a_ , a_ ) self.assertIsInstance(a_ , a_ ) self.assertIsInstance(a_ , np.ndarray ) SCREAMING_SNAKE_CASE__ : int = retriever( a_ , a_ , prefix=retriever.config.generator.prefix , n_docs=a_ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(a_ , torch.Tensor ) self.assertIsInstance(a_ , torch.Tensor ) self.assertIsInstance(a_ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __lowercase( self : List[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dpr_ctx_encoder_tokenizer() SCREAMING_SNAKE_CASE__ : Dict = 1 SCREAMING_SNAKE_CASE__ : int = self.get_dummy_custom_hf_index_retriever(from_disk=a_ ) retriever.set_ctx_encoder_tokenizer(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [[5, 7], [10, 11]] SCREAMING_SNAKE_CASE__ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : int = retriever(a_ , a_ , prefix=retriever.config.generator.prefix , n_docs=a_ ) self.assertEqual( len(a_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , a_ ) # check for doc token related keys in dictionary.
85
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) SCREAMING_SNAKE_CASE__ : Optional[int] = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = "Hello world! cécé herlolip" SCREAMING_SNAKE_CASE__ : Dict = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def _a ( lowercase__ : List[str] , lowercase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = BertAbsConfig( temp_dir='.' , finetune_bert=lowercase__ , large=lowercase__ , share_emb=lowercase__ , use_bert_emb=lowercase__ , encoder='bert' , max_pos=5_12 , enc_layers=6 , enc_hidden_size=5_12 , enc_heads=8 , enc_ff_size=5_12 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_68 , dec_heads=8 , dec_ff_size=20_48 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.load(lowercase__ , lambda lowercase__ , lowercase__ : storage ) SCREAMING_SNAKE_CASE__ : Any = AbsSummarizer(lowercase__ , torch.device('cpu' ) , lowercase__ ) original.eval() SCREAMING_SNAKE_CASE__ : List[Any] = BertAbsSummarizer(lowercase__ , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) SCREAMING_SNAKE_CASE__ : Any = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(lowercase__ )) ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor(lowercase__ ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(lowercase__ )) ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor(lowercase__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass SCREAMING_SNAKE_CASE__ : int = encoder_input_ids SCREAMING_SNAKE_CASE__ : Any = decoder_input_ids SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Optional[Any] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE__ : Optional[Any] = original(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = original.generator(lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = new_model( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )[0] SCREAMING_SNAKE_CASE__ : List[Any] = new_model.generator(lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(lowercase__ ) ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
85
1
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__UpperCAmelCase ) , 'Tatoeba directory does not exist.' ) class _lowercase ( unittest.TestCase ): @cached_property def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : int = tempfile.mkdtemp() return TatoebaConverter(save_dir=UpperCAmelCase_ ) @slow def _UpperCamelCase ( self ) -> Union[str, Any]: self.resolver.convert_models(['heb-eng'] ) @slow def _UpperCamelCase ( self ) -> int: lowerCamelCase , lowerCamelCase : Any = self.resolver.write_model_card('opus-mt-he-en' , dry_run=UpperCAmelCase_ ) assert mmeta["long_pair"] == "heb-eng"
133
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( __UpperCAmelCase , unittest.TestCase ): lowercase_ = KandinskyInpaintPipeline lowercase_ = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowercase_ = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowercase_ = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase_ = False @property def _UpperCamelCase ( self ) -> List[str]: return 32 @property def _UpperCamelCase ( self ) -> Any: return 32 @property def _UpperCamelCase ( self ) -> Any: return self.time_input_dim @property def _UpperCamelCase ( self ) -> List[Any]: return self.time_input_dim * 4 @property def _UpperCamelCase ( self ) -> str: return 100 @property def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def _UpperCamelCase ( self ) -> Any: torch.manual_seed(0 ) lowerCamelCase : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowerCamelCase : List[Any] = MultilingualCLIP(UpperCAmelCase_ ) lowerCamelCase : List[Any] = text_encoder.eval() return text_encoder @property def _UpperCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) lowerCamelCase : List[Any] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase : Tuple = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def _UpperCamelCase ( self ) -> List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCamelCase : Any = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Any = self.dummy_text_encoder lowerCamelCase : List[str] = self.dummy_tokenizer lowerCamelCase : int = self.dummy_unet lowerCamelCase : Union[str, Any] = self.dummy_movq lowerCamelCase : List[str] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCAmelCase_ , ) lowerCamelCase : List[Any] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ) -> Tuple: lowerCamelCase : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCAmelCase_ ) # create init_image lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase : Dict = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert('RGB' ).resize((256, 256) ) # create mask lowerCamelCase : Optional[Any] = np.ones((64, 64) , dtype=np.floataa ) lowerCamelCase : Union[str, Any] = 0 if str(UpperCAmelCase_ ).startswith('mps' ): lowerCamelCase : Optional[int] = torch.manual_seed(UpperCAmelCase_ ) else: lowerCamelCase : Dict = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCamelCase : List[str] = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : Any = 'cpu' lowerCamelCase : List[Any] = self.get_dummy_components() lowerCamelCase : List[str] = self.pipeline_class(**UpperCAmelCase_ ) lowerCamelCase : Tuple = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : int = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) lowerCamelCase : int = output.images lowerCamelCase : Union[str, Any] = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] lowerCamelCase : Any = image[0, -3:, -3:, -1] lowerCamelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowerCamelCase : Dict = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def _UpperCamelCase ( self ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def _UpperCamelCase ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase : Union[str, Any] = np.ones((768, 768) , dtype=np.floataa ) lowerCamelCase : Optional[Any] = 0 lowerCamelCase : Optional[int] = 'a hat' lowerCamelCase : Dict = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) lowerCamelCase : Optional[int] = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase , lowerCamelCase : Tuple = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCamelCase : Optional[Any] = pipeline( UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) lowerCamelCase : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
133
1
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCamelCase_ = numpy.array([0, 0]) lowerCamelCase_ = numpy.array([0.5, 0.8_660_254]) lowerCamelCase_ = numpy.array([1, 0]) lowerCamelCase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __lowerCamelCase ( a_ : list[numpy.ndarray] , a_ : int ) -> list[numpy.ndarray]: __SCREAMING_SNAKE_CASE :str = initial_vectors for _ in range(a_ ): __SCREAMING_SNAKE_CASE :List[Any] = iteration_step(a_ ) return vectors def __lowerCamelCase ( a_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: __SCREAMING_SNAKE_CASE :Any = [] for i, start_vector in enumerate(vectors[:-1] ): __SCREAMING_SNAKE_CASE :Dict = vectors[i + 1] new_vectors.append(a_ ) __SCREAMING_SNAKE_CASE :Dict = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __lowerCamelCase ( a_ : numpy.ndarray , a_ : float ) -> numpy.ndarray: __SCREAMING_SNAKE_CASE :str = numpy.radians(a_ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = numpy.cos(a_ ), numpy.sin(a_ ) __SCREAMING_SNAKE_CASE :int = numpy.array(((c, -s), (s, c)) ) return numpy.dot(a_ , a_ ) def __lowerCamelCase ( a_ : list[numpy.ndarray] ) -> None: __SCREAMING_SNAKE_CASE :Tuple = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = zip(*a_ ) plt.plot(a_ , a_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
498
"""simple docstring""" def __lowerCamelCase ( a_ : list , a_ : int , a_ : int = 0 , a_ : int = 0 ) -> int: __SCREAMING_SNAKE_CASE :Union[str, Any] = right or len(a_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(a_ , a_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
498
1
import re import string import numpy as np import datasets __UpperCamelCase : List[str] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __UpperCamelCase : Optional[Any] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __UpperCamelCase : Union[str, Any] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowercase__ ( datasets.Metric): def __A ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def __A ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Union[str, Any]=False , ): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: SCREAMING_SNAKE_CASE : int = np.array([re.sub(UpperCamelCase__ , '''''' , UpperCamelCase__ ) for x in predictions] ) SCREAMING_SNAKE_CASE : List[Any] = np.array([re.sub(UpperCamelCase__ , '''''' , UpperCamelCase__ ) for x in references] ) else: SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = np.asarray(UpperCamelCase__ ) if ignore_case: SCREAMING_SNAKE_CASE : Dict = np.char.lower(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = np.char.lower(UpperCamelCase__ ) if ignore_punctuation: SCREAMING_SNAKE_CASE : Optional[int] = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) SCREAMING_SNAKE_CASE : List[str] = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) if ignore_numbers: SCREAMING_SNAKE_CASE : Any = string.digits.maketrans('''''' , '''''' , string.digits ) SCREAMING_SNAKE_CASE : Tuple = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = predictions == references return {"exact_match": np.mean(UpperCamelCase__ ) * 100}
715
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Dict = None __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Union[str, Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ["""input_ids""", """attention_mask"""] UpperCamelCase_ = TaTokenizer UpperCamelCase_ = [] def __init__( self : str , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : Optional[int]="<pad>" , UpperCamelCase__ : Optional[Any]=100 , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : str , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE : List[str] = [f"""<extra_id_{i}>""" for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens SCREAMING_SNAKE_CASE : int = len(set(filter(lambda UpperCamelCase__ : bool('''extra_id_''' in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : int = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : str = extra_ids @staticmethod def __A ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: SCREAMING_SNAKE_CASE : List[str] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase__ , ) return max_model_length def __A ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : Any = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def __A ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: SCREAMING_SNAKE_CASE : Tuple = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self : Any , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(r'''<extra_id_\d+>''' , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self : List[Any] ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
34
0
"""simple docstring""" from statistics import mean, stdev def a__ ( lowerCAmelCase , lowerCAmelCase = 3 ) -> list: UpperCAmelCase__ : Dict = min(lowerCAmelCase ) UpperCAmelCase__ : List[str] = max(lowerCAmelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase ) for x in data] def a__ ( lowerCAmelCase , lowerCAmelCase = 3 ) -> list: UpperCAmelCase__ : List[Any] = mean(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = stdev(lowerCAmelCase ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase ) for x in data]
182
"""simple docstring""" import math def a__ ( lowerCAmelCase ) -> list[int]: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Union[str, Any] = 2 UpperCAmelCase__ : List[Any] = int(math.sqrt(lowerCAmelCase ) ) # Size of every segment UpperCAmelCase__ : Dict = [True] * (end + 1) UpperCAmelCase__ : str = [] while start <= end: if temp[start] is True: in_prime.append(lowerCAmelCase ) for i in range(start * start , end + 1 , lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = False start += 1 prime += in_prime UpperCAmelCase__ : Optional[Any] = end + 1 UpperCAmelCase__ : Dict = min(2 * end , lowerCAmelCase ) while low <= n: UpperCAmelCase__ : Optional[int] = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase__ : Optional[int] = math.floor(low / each ) * each if t < low: t += each for j in range(lowerCAmelCase , high + 1 , lowerCAmelCase ): UpperCAmelCase__ : int = False for j in range(len(lowerCAmelCase ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase__ : Dict = high + 1 UpperCAmelCase__ : int = min(high + end , lowerCAmelCase ) return prime print(sieve(10**6))
182
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : str = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'canine' def __init__( self , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=16384 , lowerCamelCase=16 , lowerCamelCase=0.02 , lowerCamelCase=1E-1_2 , lowerCamelCase=0 , lowerCamelCase=0xe_000 , lowerCamelCase=0xe_001 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase=8 , lowerCamelCase=16384 , lowerCamelCase=128 , **lowerCamelCase , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) snake_case__ : List[str] = max_position_embeddings snake_case__ : Dict = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Union[str, Any] = intermediate_size snake_case__ : List[str] = hidden_act snake_case__ : Dict = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : Any = initializer_range snake_case__ : str = type_vocab_size snake_case__ : Any = layer_norm_eps # Character config: snake_case__ : Union[str, Any] = downsampling_rate snake_case__ : Dict = upsampling_kernel_size snake_case__ : Tuple = num_hash_functions snake_case__ : List[str] = num_hash_buckets snake_case__ : List[str] = local_transformer_stride
694
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = "▁" _lowerCAmelCase : Dict = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} _lowerCAmelCase : Dict = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } _lowerCAmelCase : str = {"vinai/bartpho-syllable": 1_0_2_4} class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token snake_case__ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) snake_case__ : int = vocab_file snake_case__ : Optional[Any] = monolingual_vocab_file snake_case__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility snake_case__ : Dict = {} snake_case__ : Union[str, Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : List[str] = cnt cnt += 1 with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): snake_case__ : Optional[int] = line.strip().split()[0] snake_case__ : List[Any] = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : Any = len(self.fairseq_tokens_to_ids ) snake_case__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: """simple docstring""" snake_case__ : int = self.__dict__.copy() snake_case__ : Any = None snake_case__ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ : Dict = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : str = [self.cls_token_id] snake_case__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : List[str] = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ) -> Optional[int]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : int = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = ''''''.join(lowerCamelCase ).replace(lowerCamelCase , ''' ''' ).strip() return out_string def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : Optional[int] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , '''wb''' ) as fi: snake_case__ : Dict = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowerCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
694
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowercase_ : Union[str, Any] = logging.getLogger(__name__) class _lowerCamelCase ( UpperCamelCase_ ): def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ) -> List[Any]: super().__init__( lowerCAmelCase , question_encoder_tokenizer=lowerCAmelCase , generator_tokenizer=lowerCAmelCase , index=lowerCAmelCase , init_retrieval=lowerCAmelCase , ) SCREAMING_SNAKE_CASE__: str= None def UpperCamelCase_ ( self , lowerCAmelCase ) -> Union[str, Any]: logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually SCREAMING_SNAKE_CASE__: Any= self._infer_socket_ifname() # avoid clash with the NCCL port SCREAMING_SNAKE_CASE__: Any= str(distributed_port + 1 ) SCREAMING_SNAKE_CASE__: int= dist.new_group(ranks=lowerCAmelCase , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCamelCase_ ( self ) -> List[str]: return dist.get_rank(group=self.process_group ) == 0 def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=torch.floataa ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: str= torch.empty(lowerCAmelCase , dtype=lowerCAmelCase ) dist.scatter(lowerCAmelCase , src=0 , scatter_list=lowerCAmelCase , group=self.process_group ) return target_tensor def UpperCamelCase_ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: List[Any]= psutil.net_if_addrs() # a hacky way to deal with varying network interface names SCREAMING_SNAKE_CASE__: int= next((addr for addr in addrs if addr.startswith('''e''' )) , lowerCAmelCase ) return ifname def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[str]= self._main_retrieve(lowerCAmelCase , lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase ) # distributed training SCREAMING_SNAKE_CASE__: List[str]= dist.get_world_size(group=self.process_group ) # gather logic SCREAMING_SNAKE_CASE__: Union[str, Any]= None if self._is_main(): SCREAMING_SNAKE_CASE__: List[Any]= [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCAmelCase )] dist.gather(torch.tensor(lowerCAmelCase ) , dst=0 , gather_list=lowerCAmelCase , group=self.process_group ) # scatter logic SCREAMING_SNAKE_CASE__: Any= question_hidden_states.shape[0] SCREAMING_SNAKE_CASE__: Optional[Any]= [] SCREAMING_SNAKE_CASE__: str= [] if self._is_main(): assert len(lowerCAmelCase ) == world_size SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Tuple= self._main_retrieve(torch.cat(lowerCAmelCase ).numpy() , lowerCAmelCase ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[Any]= torch.tensor(lowerCAmelCase ), torch.tensor(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= self._chunk_tensor(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= self._chunk_tensor(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= self._scattered(lowerCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) SCREAMING_SNAKE_CASE__: Union[str, Any]= self._scattered(lowerCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase )
64
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ ): _UpperCAmelCase ='''pixel_values''' _UpperCAmelCase =False _UpperCAmelCase =TimmBackboneConfig def __init__( self: Union[str, Any] , a: Union[str, Any] , **a: Tuple) ->Optional[Any]: '''simple docstring''' requires_backends(self , "timm") super().__init__(a) a_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name.") if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""") if hasattr(a , "out_features") and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") a_ = getattr(a , "use_pretrained_backbone" , a) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") # We just take the final layer by default. This matches the default for the transformers models. a_ = config.out_indices if getattr(a , "out_indices" , a) is not None else (-1,) a_ = timm.create_model( config.backbone , pretrained=a , features_only=config.features_only , in_chans=config.num_channels , out_indices=a , **a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a_ = self._backbone.return_layers a_ = {layer["module"]: str(a) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(a) @classmethod def _lowerCAmelCase ( cls: Tuple , a: Optional[Any] , *a: Optional[Any] , **a: str) ->List[Any]: '''simple docstring''' requires_backends(cls , ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig a_ = kwargs.pop("config" , TimmBackboneConfig()) a_ = kwargs.pop("use_timm_backbone" , a) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones") a_ = kwargs.pop("num_channels" , config.num_channels) a_ = kwargs.pop("features_only" , config.features_only) a_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone) a_ = kwargs.pop("out_indices" , config.out_indices) a_ = TimmBackboneConfig( backbone=a , num_channels=a , features_only=a , use_pretrained_backbone=a , out_indices=a , ) return super()._from_config(a , **a) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' pass def _lowerCAmelCase ( self: Tuple , a: List[Any] , a: Any=None , a: Dict=None , a: Optional[int]=None , **a: int) ->Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment") if output_hidden_states: # We modify the return layers to include all the stages of the backbone a_ = self._all_layers a_ = self._backbone(a , **a) a_ = self._return_layers a_ = tuple(hidden_states[i] for i in self.out_indices) else: a_ = self._backbone(a , **a) a_ = None a_ = tuple(a) a_ = tuple(a) if hidden_states is not None else None if not return_dict: a_ = (feature_maps,) if output_hidden_states: a_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=a , hidden_states=a , attentions=a)
685
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowerCamelCase__ ( __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = SwinConfig(image_size=1_92 ) if "base" in model_name: _UpperCamelCase = 6 _UpperCamelCase = 1_28 _UpperCamelCase = (2, 2, 18, 2) _UpperCamelCase = (4, 8, 16, 32) elif "large" in model_name: _UpperCamelCase = 12 _UpperCamelCase = 1_92 _UpperCamelCase = (2, 2, 18, 2) _UpperCamelCase = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) _UpperCamelCase = window_size _UpperCamelCase = embed_dim _UpperCamelCase = depths _UpperCamelCase = num_heads return config def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" if "encoder.mask_token" in name: _UpperCamelCase = name.replace('''encoder.mask_token''', '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: _UpperCamelCase = name.replace('''encoder.patch_embed.proj''', '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: _UpperCamelCase = name.replace('''encoder.patch_embed.norm''', '''embeddings.norm''' ) if "attn.proj" in name: _UpperCamelCase = name.replace('''attn.proj''', '''attention.output.dense''' ) if "attn" in name: _UpperCamelCase = name.replace('''attn''', '''attention.self''' ) if "norm1" in name: _UpperCamelCase = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name: _UpperCamelCase = name.replace('''norm2''', '''layernorm_after''' ) if "mlp.fc1" in name: _UpperCamelCase = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: _UpperCamelCase = name.replace('''mlp.fc2''', '''output.dense''' ) if name == "encoder.norm.weight": _UpperCamelCase = "layernorm.weight" if name == "encoder.norm.bias": _UpperCamelCase = "layernorm.bias" if "decoder" in name: pass else: _UpperCamelCase = "swin." + name return name def lowerCamelCase__ ( __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): _UpperCamelCase = orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if "attn_mask" in key: pass elif "qkv" in key: _UpperCamelCase = key.split('''.''' ) _UpperCamelCase = int(key_split[2] ) _UpperCamelCase = int(key_split[4] ) _UpperCamelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCamelCase = val[:dim, :] _UpperCamelCase = val[ dim : dim * 2, : ] _UpperCamelCase = val[-dim:, :] else: _UpperCamelCase = val[ :dim ] _UpperCamelCase = val[ dim : dim * 2 ] _UpperCamelCase = val[ -dim: ] else: _UpperCamelCase = val return orig_state_dict def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" _UpperCamelCase = torch.load(__SCREAMING_SNAKE_CASE, map_location='''cpu''' )["model"] _UpperCamelCase = get_swin_config(__SCREAMING_SNAKE_CASE ) _UpperCamelCase = SwinForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) model.eval() _UpperCamelCase = convert_state_dict(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) _UpperCamelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCamelCase = ViTImageProcessor(size={'''height''': 1_92, '''width''': 1_92} ) _UpperCamelCase = Image.open(requests.get(__SCREAMING_SNAKE_CASE, stream=__SCREAMING_SNAKE_CASE ).raw ) _UpperCamelCase = image_processor(images=__SCREAMING_SNAKE_CASE, return_tensors='''pt''' ) with torch.no_grad(): _UpperCamelCase = model(**__SCREAMING_SNAKE_CASE ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _a = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
703
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _a = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] _a = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] _a = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _a = F"""down_blocks.{i}.resnets.{j}.""" _a = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _a = F"""down_blocks.{i}.attentions.{j}.""" _a = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _a = F"""up_blocks.{i}.resnets.{j}.""" _a = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _a = F"""up_blocks.{i}.attentions.{j}.""" _a = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _a = F"""down_blocks.{i}.downsamplers.0.conv.""" _a = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _a = F"""up_blocks.{i}.upsamplers.0.""" _a = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _a = """mid_block.attentions.0.""" _a = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _a = F"""mid_block.resnets.{j}.""" _a = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _UpperCamelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v _UpperCamelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _a = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): _a = F"""encoder.down_blocks.{i}.resnets.{j}.""" _a = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _a = F"""down_blocks.{i}.downsamplers.0.""" _a = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _a = F"""up_blocks.{i}.upsamplers.0.""" _a = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _a = F"""decoder.up_blocks.{i}.resnets.{j}.""" _a = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _a = F"""mid_block.resnets.{i}.""" _a = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _a = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" return w.reshape(*w.shape, 1, 1 ) def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v _UpperCamelCase = {v: vae_state_dict[k] for k, v in mapping.items()} _UpperCamelCase = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'''mid.attn_1.{weight_name}.weight''' in k: print(F'''Reshaping {k} for SD format''' ) _UpperCamelCase = reshape_weight_for_sd(__snake_case ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _a = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] _a = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _a = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _a = {"""q""": 0, """k""": 1, """v""": 2} def lowerCamelCase__ ( __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = {} _UpperCamelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): _UpperCamelCase = k[: -len('''.q_proj.weight''' )] _UpperCamelCase = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: _UpperCamelCase = [None, None, None] _UpperCamelCase = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): _UpperCamelCase = k[: -len('''.q_proj.bias''' )] _UpperCamelCase = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: _UpperCamelCase = [None, None, None] _UpperCamelCase = v continue _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = torch.cat(__snake_case ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = torch.cat(__snake_case ) return new_state_dict def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return text_enc_dict if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) _a = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _a = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") _a = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") _a = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _a = load_file(unet_path, device="""cpu""") else: _a = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") _a = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): _a = load_file(vae_path, device="""cpu""") else: _a = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") _a = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): _a = load_file(text_enc_path, device="""cpu""") else: _a = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") _a = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model _a = convert_unet_state_dict(unet_state_dict) _a = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _a = convert_vae_state_dict(vae_state_dict) _a = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _a = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _a = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} _a = convert_text_enc_state_dict_vaa(text_enc_dict) _a = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: _a = convert_text_enc_state_dict(text_enc_dict) _a = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _a = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _a = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _a = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
78
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Union[str, Any] = (UnCLIPScheduler,) def __UpperCamelCase (self , **lowercase__ ): snake_case_ : Optional[int] = { """num_train_timesteps""": 10_00, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**lowercase__ ) return config def __UpperCamelCase (self ): for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase__ ) def __UpperCamelCase (self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowercase__ ) def __UpperCamelCase (self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase__ ) def __UpperCamelCase (self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowercase__ ) def __UpperCamelCase (self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowercase__ ) def __UpperCamelCase (self ): for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowercase__ , prev_timestep=lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = self.scheduler_classes[0] snake_case_ : Union[str, Any] = self.get_scheduler_config(variance_type="""fixed_small_log""" ) snake_case_ : str = scheduler_class(**lowercase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.9994987 ) ) < 1e-5 def __UpperCamelCase (self ): snake_case_ : Tuple = self.scheduler_classes[0] snake_case_ : Optional[int] = self.get_scheduler_config(variance_type="""learned_range""" ) snake_case_ : int = scheduler_class(**lowercase__ ) snake_case_ : Tuple = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowercase__ ) - -10.1712790 < 1e-5 assert scheduler._get_variance(4_87 , predicted_variance=lowercase__ ) - -5.7998052 < 1e-5 assert scheduler._get_variance(9_99 , predicted_variance=lowercase__ ) - -0.0010011 < 1e-5 def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = self.scheduler_classes[0] snake_case_ : Dict = self.get_scheduler_config() snake_case_ : List[str] = scheduler_class(**lowercase__ ) snake_case_ : Tuple = scheduler.timesteps snake_case_ : Any = self.dummy_model() snake_case_ : List[Any] = self.dummy_sample_deter snake_case_ : Any = torch.manual_seed(0 ) for i, t in enumerate(lowercase__ ): # 1. predict noise residual snake_case_ : Optional[Any] = model(lowercase__ , lowercase__ ) # 2. predict previous mean of sample x_t-1 snake_case_ : int = scheduler.step(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ ).prev_sample snake_case_ : str = pred_prev_sample snake_case_ : Optional[Any] = torch.sum(torch.abs(lowercase__ ) ) snake_case_ : Dict = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def __UpperCamelCase (self ): snake_case_ : Any = self.scheduler_classes[0] snake_case_ : List[str] = self.get_scheduler_config() snake_case_ : Union[str, Any] = scheduler_class(**lowercase__ ) scheduler.set_timesteps(25 ) snake_case_ : Optional[Any] = scheduler.timesteps snake_case_ : Tuple = self.dummy_model() snake_case_ : List[str] = self.dummy_sample_deter snake_case_ : str = torch.manual_seed(0 ) for i, t in enumerate(lowercase__ ): # 1. predict noise residual snake_case_ : Optional[int] = model(lowercase__ , lowercase__ ) if i + 1 == timesteps.shape[0]: snake_case_ : str = None else: snake_case_ : str = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 snake_case_ : Dict = scheduler.step( lowercase__ , lowercase__ , lowercase__ , prev_timestep=lowercase__ , generator=lowercase__ ).prev_sample snake_case_ : Optional[int] = pred_prev_sample snake_case_ : Dict = torch.sum(torch.abs(lowercase__ ) ) snake_case_ : Optional[Any] = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def __UpperCamelCase (self ): pass def __UpperCamelCase (self ): pass
480
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a_ = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
480
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = "" UpperCAmelCase__ : Optional[int] = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , _a = None , _a = None , **_a , ) -> str: super().__init__(self , **_a ) _a : List[Any] = repo_info _a : Optional[int] = token _a : Tuple = None def __lowercase ( self ) -> Any: if self.dir_cache is None: _a : int = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _a : Optional[Any] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_a ): {'''name''': str(_a ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __lowercase ( self , _a , _a = "rb" , **_a , ) -> Tuple: if not isinstance(self.repo_info , _a ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) _a : Dict = hf_hub_url(self.repo_info.id , _a , revision=self.repo_info.sha ) return fsspec.open( _a , mode=_a , headers=get_authentication_headers_for_url(_a , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def __lowercase ( self , _a , **_a ) -> Tuple: self._get_dirs() _a : Optional[int] = self._strip_protocol(_a ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_a ) def __lowercase ( self , _a , _a=False , **_a ) -> Tuple: self._get_dirs() _a : Optional[Any] = PurePosixPath(path.strip('''/''' ) ) _a : Union[str, Any] = {} for p, f in self.dir_cache.items(): _a : Optional[Any] = PurePosixPath(p.strip('''/''' ) ) _a : List[Any] = p.parent if root == path: _a : Dict = f _a : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
578
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets a__ = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' a__ = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' a__ = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> Any: if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def __lowercase ( self , _a , _a , _a = CHRF.CHAR_ORDER , _a = CHRF.WORD_ORDER , _a = CHRF.BETA , _a = False , _a = False , _a = False , ) -> Union[str, Any]: _a : int = len(references[0] ) if any(len(_a ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a : int = [[refs[i] for refs in references] for i in range(_a )] _a : str = CHRF(_a , _a , _a , _a , _a , _a ) _a : Optional[Any] = sb_chrf.corpus_score(_a , _a ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
578
1
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( a__ : float ,a__ : int ) -> float: __A : Dict = u for i in range(1 ,lowercase__ ): __A : List[Any] = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Union[str, Any] = int(input("""enter the numbers of values: """ ) ) __A : List[str] = [] for _ in range(lowercase__ ): y.append([] ) for i in range(lowercase__ ): for j in range(lowercase__ ): y[i].append(lowercase__ ) __A : str = 0 print("""enter the values of parameters in a list: """ ) __A : Dict = list(map(lowercase__ ,input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(lowercase__ ): __A : Optional[int] = float(input() ) __A : Tuple = int(input("""enter the value to interpolate: """ ) ) __A : int = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 ,lowercase__ ): for j in range(n - i ): __A : Union[str, Any] = y[j + 1][i - 1] - y[j][i - 1] __A : List[str] = y[0][0] for i in range(1 ,lowercase__ ): summ += (ucal(lowercase__ ,lowercase__ ) * y[0][i]) / math.factorial(lowercase__ ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
17
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCAmelCase_ : def __snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : int ): raise NotImplementedError() def __snake_case ( self : Union[str, Any] ): raise NotImplementedError() class lowerCAmelCase_ ( snake_case__ ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : "AutoTokenizer" , SCREAMING_SNAKE_CASE_ : bool = False , **SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCAmelCase__ = tokenizer lowerCAmelCase__ = skip_prompt lowerCAmelCase__ = decode_kwargs # variables used in the streaming process lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = True def __snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : List[str] ): if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: lowerCAmelCase__ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowerCAmelCase__ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowerCAmelCase__ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): lowerCAmelCase__ = text[self.print_len :] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 # If the last token is a CJK character, we print the characters. elif len(SCREAMING_SNAKE_CASE_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowerCAmelCase__ = text[self.print_len :] self.print_len += len(SCREAMING_SNAKE_CASE_ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowerCAmelCase__ = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(SCREAMING_SNAKE_CASE_ ) self.on_finalized_text(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[Any] ): # Flush the cache, if it exists if len(self.token_cache ) > 0: lowerCAmelCase__ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowerCAmelCase__ = text[self.print_len :] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 else: lowerCAmelCase__ = '''''' lowerCAmelCase__ = True self.on_finalized_text(SCREAMING_SNAKE_CASE_ , stream_end=SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ): print(SCREAMING_SNAKE_CASE_ , flush=SCREAMING_SNAKE_CASE_ , end='''''' if not stream_end else None ) def __snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False class lowerCAmelCase_ ( snake_case__ ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : "AutoTokenizer" , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[float] = None , **SCREAMING_SNAKE_CASE_ : List[str] ): super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = Queue() lowerCAmelCase__ = None lowerCAmelCase__ = timeout def __snake_case ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ): self.text_queue.put(SCREAMING_SNAKE_CASE_ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Optional[int] ): return self def __snake_case ( self : int ): lowerCAmelCase__ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
668
0
'''simple docstring''' lowerCAmelCase__ : List[str] = tuple[float, float, float] lowerCAmelCase__ : Union[str, Any] = tuple[float, float, float] def _a ( __lowerCAmelCase : Pointad , __lowerCAmelCase : Pointad ): """simple docstring""" snake_case__ : Tuple = end_pointa[0] - end_pointa[0] snake_case__ : Dict = end_pointa[1] - end_pointa[1] snake_case__ : List[str] = end_pointa[2] - end_pointa[2] return (x, y, z) def _a ( __lowerCAmelCase : Vectorad , __lowerCAmelCase : Vectorad ): """simple docstring""" snake_case__ : List[Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i snake_case__ : Any = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j snake_case__ : int = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _a ( __lowerCAmelCase : Vectorad , __lowerCAmelCase : int ): """simple docstring""" return tuple(round(_lowercase , _lowercase ) for x in vector ) == (0, 0, 0) def _a ( __lowerCAmelCase : Pointad , __lowerCAmelCase : Pointad , __lowerCAmelCase : Pointad , __lowerCAmelCase : int = 10 ): """simple docstring""" snake_case__ : str = create_vector(_lowercase , _lowercase ) snake_case__ : List[Any] = create_vector(_lowercase , _lowercase ) return is_zero_vector(get_ad_vectors_cross(_lowercase , _lowercase ) , _lowercase )
709
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a : """simple docstring""" def __init__( self : Any , snake_case_ : str , snake_case_ : Optional[Any]=1_3 , snake_case_ : int=7 , snake_case_ : int=True , snake_case_ : Optional[Any]=True , snake_case_ : Dict=True , snake_case_ : int=True , snake_case_ : Optional[Any]=9_9 , snake_case_ : int=6_4 , snake_case_ : Dict=5 , snake_case_ : List[Any]=4 , snake_case_ : Union[str, Any]=3_7 , snake_case_ : Dict="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Dict=0.1 , snake_case_ : Any=5_1_2 , snake_case_ : Any=1_6 , snake_case_ : Any=2 , snake_case_ : Dict=0.0_2 , snake_case_ : List[str]=3 , snake_case_ : Optional[int]=4 , snake_case_ : str=None , ): '''simple docstring''' snake_case__ : List[Any] = parent snake_case__ : int = batch_size snake_case__ : Dict = seq_length snake_case__ : int = is_training snake_case__ : Optional[Any] = use_input_mask snake_case__ : Optional[Any] = use_token_type_ids snake_case__ : Dict = use_labels snake_case__ : int = vocab_size snake_case__ : Any = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : int = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : Optional[int] = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : Any = type_sequence_label_size snake_case__ : str = initializer_range snake_case__ : List[str] = num_labels snake_case__ : Dict = num_choices snake_case__ : Union[str, Any] = scope snake_case__ : List[Any] = vocab_size - 1 def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Optional[int] = None if self.use_input_mask: snake_case__ : int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Dict = self.get_config() return config, input_ids, input_mask, token_labels def __magic_name__ ( self : List[Any] ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : List[str] = True return config, input_ids, input_mask, token_labels def __magic_name__ ( self : Tuple , snake_case_ : Any , snake_case_ : str , snake_case_ : str ): '''simple docstring''' snake_case__ : Any = GPTNeoXModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ ) snake_case__ : int = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : List[Any] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Optional[int] ): '''simple docstring''' snake_case__ : Union[str, Any] = True snake_case__ : Tuple = GPTNeoXModel(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Any , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : List[Any] ): '''simple docstring''' snake_case__ : Union[str, Any] = GPTNeoXForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Optional[int] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[str] ): '''simple docstring''' snake_case__ : Dict = self.num_labels snake_case__ : List[Any] = GPTNeoXForQuestionAnswering(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Any = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Dict ): '''simple docstring''' snake_case__ : str = self.num_labels snake_case__ : List[str] = GPTNeoXForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : Dict , snake_case_ : Optional[int] ): '''simple docstring''' snake_case__ : Any = self.num_labels snake_case__ : Any = GPTNeoXForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Tuple ): '''simple docstring''' snake_case__ : Optional[Any] = True snake_case__ : Union[str, Any] = GPTNeoXForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() # first forward pass snake_case__ : int = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) snake_case__ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , output_hidden_states=snake_case_ ) snake_case__ : Union[str, Any] = output_from_no_past['''hidden_states'''][0] snake_case__ : str = model( snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )['''hidden_states'''][0] # select random slice snake_case__ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : str = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = config_and_inputs snake_case__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : Optional[int] = GPTNeoXModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=snake_case_ , hidden_size=6_4 , num_attention_heads=8 ) def __magic_name__ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def __magic_name__ ( self : Any ): '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __magic_name__ ( self : Optional[int] , snake_case_ : Optional[Any] ): '''simple docstring''' snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = ids_tensor([1, 1_0] , config.vocab_size ) snake_case__ : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Tuple = GPTNeoXModel(snake_case_ ) original_model.to(snake_case_ ) original_model.eval() snake_case__ : Any = original_model(snake_case_ ).last_hidden_state snake_case__ : List[str] = original_model(snake_case_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Optional[Any] = {'''type''': scaling_type, '''factor''': 1_0.0} snake_case__ : Optional[Any] = GPTNeoXModel(snake_case_ ) scaled_model.to(snake_case_ ) scaled_model.eval() snake_case__ : Optional[int] = scaled_model(snake_case_ ).last_hidden_state snake_case__ : List[str] = scaled_model(snake_case_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Dict = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: snake_case__ : str = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case_ ) snake_case__ : Tuple = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(snake_case_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case__ : List[str] = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' snake_case__ : Optional[int] = model.generate(**snake_case_ , do_sample=snake_case_ , max_new_tokens=2_0 ) snake_case__ : Tuple = tokenizer.batch_decode(snake_case_ )[0] self.assertEqual(snake_case_ , snake_case_ )
502
0
import math import sys import cva import numpy as np def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : float ): # For applying gaussian function for each element in matrix. __UpperCAmelCase : int = math.sqrt(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ): __UpperCAmelCase : List[Any] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : float ): # Creates a gaussian kernel of given dimension. __UpperCAmelCase : Union[str, Any] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __lowerCamelCase ): for j in range(0 , __lowerCamelCase ): __UpperCAmelCase : str = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : int , ): __UpperCAmelCase : Optional[Any] = np.zeros(img.shape ) __UpperCAmelCase : int = get_gauss_kernel(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Tuple = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __UpperCAmelCase : int = get_slice(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = img_s - img_s[kernel_size // 2, kernel_size // 2] __UpperCAmelCase : Optional[Any] = vec_gaussian(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Any = np.multiply(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : str = np.multiply(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = np.sum(__lowerCamelCase ) / np.sum(__lowerCamelCase ) __UpperCAmelCase : List[Any] = val return imga def lowerCamelCase__ ( __lowerCamelCase : list ): __UpperCAmelCase : List[str] = args[1] if args[1:] else """../image_data/lena.jpg""" __UpperCAmelCase : Optional[Any] = float(args[2] ) if args[2:] else 1.0 __UpperCAmelCase : Dict = float(args[3] ) if args[3:] else 1.0 if args[4:]: __UpperCAmelCase : Optional[int] = int(args[4] ) __UpperCAmelCase : List[str] = kernel_size + abs(kernel_size % 2 - 1 ) else: __UpperCAmelCase : int = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a ,a ,a ,a : Optional[Any] = parse_args(sys.argv) a : Optional[int] = cva.imread(filename, 0) cva.imshow("input image", img) a : int = img / 255 a : Union[str, Any] = out.astype("float32") a : Any = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Optional[int] = out * 255 a : Union[str, Any] = np.uinta(out) cva.imshow("output image", out) cva.waitKey(0) cva.destroyAllWindows()
63
'''simple docstring''' import random from typing import Any def __A ( a_ : list ): for _ in range(len(a_ ) ): lowerCAmelCase : List[Any] = random.randint(0 ,len(a_ ) - 1 ) lowerCAmelCase : Tuple = random.randint(0 ,len(a_ ) - 1 ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = data[b], data[a] return data if __name__ == "__main__": lowerCAmelCase = [0, 1, 2, 3, 4, 5, 6, 7] lowerCAmelCase = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
525
0
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger UpperCamelCase__ = get_logger(__name__) class _UpperCAmelCase : def __init__( self : List[str] , a : Optional[str] = None ): '''simple docstring''' lowercase_ : Union[str, Any] = ( os.path.join(a , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowercase_ : List[str] = Extractor def lowerCAmelCase__ ( self : str , a : str ): '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowercase_ : Union[str, Any] = os.path.abspath(a ) return os.path.join(self.extract_dir , hash_url_to_filename(a ) ) def lowerCAmelCase__ ( self : Union[str, Any] , a : str , a : bool ): '''simple docstring''' return force_extract or ( not os.path.isfile(a ) and not (os.path.isdir(a ) and os.listdir(a )) ) def lowerCAmelCase__ ( self : List[Any] , a : str , a : bool = False ): '''simple docstring''' lowercase_ : List[Any] = self.extractor.infer_extractor_format(a ) if not extractor_format: return input_path lowercase_ : str = self._get_output_path(a ) if self._do_extract(a , a ): self.extractor.extract(a , a , a ) return output_path class _UpperCAmelCase ( snake_case ): @classmethod @abstractmethod def lowerCAmelCase__ ( cls : Tuple , a : Union[Path, str] , **a : List[Any] ): '''simple docstring''' ... @staticmethod @abstractmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' ... class _UpperCAmelCase ( snake_case , snake_case ): __lowerCamelCase: List[bytes] = [] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : int ): '''simple docstring''' with open(a , "rb" ) as f: return f.read(a ) @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] , a : Union[Path, str] , a : bytes = b"" ): '''simple docstring''' if not magic_number: lowercase_ : int = max(len(a ) for cls_magic_number in cls.magic_numbers ) try: lowercase_ : List[Any] = cls.read_magic_number(a , a ) except OSError: return False return any(magic_number.startswith(a ) for cls_magic_number in cls.magic_numbers ) class _UpperCAmelCase ( snake_case ): @classmethod def lowerCAmelCase__ ( cls : Optional[int] , a : Union[Path, str] , **a : Optional[Any] ): '''simple docstring''' return tarfile.is_tarfile(a ) @staticmethod def lowerCAmelCase__ ( a : List[str] , a : int ): '''simple docstring''' def resolved(a : str ) -> str: return os.path.realpath(os.path.abspath(a ) ) def badpath(a : str , a : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(a , a ) ).startswith(a ) def badlink(a : Any , a : str ) -> bool: # Links are interpreted relative to the directory containing the link lowercase_ : Optional[int] = resolved(os.path.join(a , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=a ) lowercase_ : List[str] = resolved(a ) for finfo in members: if badpath(finfo.name , a ): logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" ) elif finfo.issym() and badlink(a , a ): logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" ) elif finfo.islnk() and badlink(a , a ): logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" ) else: yield finfo @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' os.makedirs(a , exist_ok=a ) lowercase_ : List[str] = tarfile.open(a ) tar_file.extractall(a , members=TarExtractor.safemembers(a , a ) ) tar_file.close() class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Union[str, Any] = [b'\x1F\x8B'] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' with gzip.open(a , "rb" ) as gzip_file: with open(a , "wb" ) as extracted_file: shutil.copyfileobj(a , a ) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: str = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def lowerCAmelCase__ ( cls : Union[str, Any] , a : Union[Path, str] , a : bytes = b"" ): '''simple docstring''' if super().is_extractable(a , magic_number=a ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(a , "rb" ) as fp: lowercase_ : Optional[int] = _EndRecData(a ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowercase_ : int = fp.read(a ) # CD is where we expect it to be if len(a ) == sizeCentralDir: lowercase_ : Union[str, Any] = struct.unpack(a , a ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' os.makedirs(a , exist_ok=a ) with zipfile.ZipFile(a , "r" ) as zip_file: zip_file.extractall(a ) zip_file.close() class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[str] = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' with lzma.open(a ) as compressed_file: with open(a , "wb" ) as extracted_file: shutil.copyfileobj(a , a ) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Optional[int] = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError("Please pip install rarfile" ) import rarfile os.makedirs(a , exist_ok=a ) lowercase_ : Union[str, Any] = rarfile.RarFile(a ) rf.extractall(a ) rf.close() class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Any = [b'\x28\xb5\x2F\xFD'] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError("Please pip install zstandard" ) import zstandard as zstd lowercase_ : Union[str, Any] = zstd.ZstdDecompressor() with open(a , "rb" ) as ifh, open(a , "wb" ) as ofh: dctx.copy_stream(a , a ) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Dict = [b'\x42\x5A\x68'] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' with bza.open(a , "rb" ) as compressed_file: with open(a , "wb" ) as extracted_file: shutil.copyfileobj(a , a ) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Union[str, Any] = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError("Please pip install py7zr" ) import pyazr os.makedirs(a , exist_ok=a ) with pyazr.SevenZipFile(a , "r" ) as archive: archive.extractall(a ) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[Any] = [b'\x04\x22\x4D\x18'] @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ): '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError("Please pip install lz4" ) import lza.frame with lza.frame.open(a , "rb" ) as compressed_file: with open(a , "wb" ) as extracted_file: shutil.copyfileobj(a , a ) class _UpperCAmelCase : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __lowerCamelCase: Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCAmelCase__ ( cls : Any ): '''simple docstring''' return max( len(a ) for extractor in cls.extractors.values() if issubclass(a , a ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCAmelCase__ ( a : Union[Path, str] , a : int ): '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(a , magic_number_length=a ) except OSError: return b"" @classmethod def lowerCAmelCase__ ( cls : int , a : Union[Path, str] , a : bool = False ): '''simple docstring''' warnings.warn( "Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'infer_extractor_format' instead." , category=a , ) lowercase_ : str = cls.infer_extractor_format(a ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Union[Path, str] ): # <Added version="2.4.0"/> '''simple docstring''' lowercase_ : Any = cls._get_magic_number_max_length() lowercase_ : Any = cls._read_magic_number(a , a ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(a , magic_number=a ): return extractor_format @classmethod def lowerCAmelCase__ ( cls : List[str] , a : Union[Path, str] , a : Union[Path, str] , a : Optional[str] = None , a : Optional[BaseExtractor] = "deprecated" , ): '''simple docstring''' os.makedirs(os.path.dirname(a ) , exist_ok=a ) # Prevent parallel extractions lowercase_ : int = str(Path(a ).with_suffix(".lock" ) ) with FileLock(a ): shutil.rmtree(a , ignore_errors=a ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(a , a ): # passed as positional arg warnings.warn( "Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. " "Use 'extractor_format' instead." , category=a , ) lowercase_ : Union[str, Any] = extractor if extractor != "deprecated" else extractor_format else: lowercase_ : Any = cls.extractors[extractor_format] return extractor.extract(a , a ) else: warnings.warn( "Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an " "exception in 3.0.0." , category=a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(a ): return extractor.extract(a , a )
640
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 200 ): """simple docstring""" lowercase_ : Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200] lowercase_ : str = [0] * (pence + 1) lowercase_ : Dict = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_UpperCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
640
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : List[Any] = ShapEImgaImgPipeline UpperCAmelCase__ : str = ["image"] UpperCAmelCase__ : int = ["image"] UpperCAmelCase__ : Optional[int] = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase__ : Tuple = False @property def snake_case_ ( self ) -> Union[str, Any]: return 32 @property def snake_case_ ( self ) -> str: return 32 @property def snake_case_ ( self ) -> int: return self.time_input_dim * 4 @property def snake_case_ ( self ) -> Optional[int]: return 8 @property def snake_case_ ( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, ) UpperCamelCase : List[Any] = CLIPVisionModel(SCREAMING_SNAKE_CASE_ ) return model @property def snake_case_ ( self ) -> str: UpperCamelCase : Dict = CLIPImageProcessor( crop_size=224, do_center_crop=SCREAMING_SNAKE_CASE_, do_normalize=SCREAMING_SNAKE_CASE_, do_resize=SCREAMING_SNAKE_CASE_, image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], resample=3, size=224, ) return image_processor @property def snake_case_ ( self ) -> Any: torch.manual_seed(0 ) UpperCamelCase : Dict = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } UpperCamelCase : Any = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def snake_case_ ( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCamelCase : Dict = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } UpperCamelCase : List[Any] = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def snake_case_ ( self ) -> Dict: UpperCamelCase : Dict = self.dummy_prior UpperCamelCase : Tuple = self.dummy_image_encoder UpperCamelCase : Optional[Any] = self.dummy_image_processor UpperCamelCase : Any = self.dummy_renderer UpperCamelCase : Optional[int] = HeunDiscreteScheduler( beta_schedule='exp', num_train_timesteps=1024, prediction_type='sample', use_karras_sigmas=SCREAMING_SNAKE_CASE_, clip_sample=SCREAMING_SNAKE_CASE_, clip_sample_range=1.0, ) UpperCamelCase : Optional[int] = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> List[Any]: UpperCamelCase : Any = floats_tensor((1, 3, 64, 64), rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = 'cpu' UpperCamelCase : List[str] = self.get_dummy_components() UpperCamelCase : List[str] = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[int] = output.images[0] UpperCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase : Any = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> List[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = torch_device == 'cpu' UpperCamelCase : Any = True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=SCREAMING_SNAKE_CASE_, relax_max_difference=SCREAMING_SNAKE_CASE_, ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Union[str, Any] = self.get_dummy_components() UpperCamelCase : Tuple = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = 1 UpperCamelCase : Optional[Any] = 2 UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase : str = batch_size * [inputs[key]] UpperCamelCase : Any = pipe(**SCREAMING_SNAKE_CASE_, num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> str: UpperCamelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) UpperCamelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) UpperCamelCase : Optional[int] = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) UpperCamelCase : List[str] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) UpperCamelCase : int = pipe( SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='np', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
40
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" if not isinstance(A , A ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(A ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(A ) == 1: return True lowercase__ = series[1] - series[0] for index in range(len(A ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _SCREAMING_SNAKE_CASE (A ) -> float: """simple docstring""" if not isinstance(A , A ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(A ) == 0: raise ValueError('''Input list must be a non empty list''' ) lowercase__ = 0 for val in series: answer += val return answer / len(A ) if __name__ == "__main__": import doctest doctest.testmod()
460
0
from math import pow, sqrt def a ( *SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" UpperCamelCase : Tuple = len(SCREAMING_SNAKE_CASE_ ) > 0 and all(value > 0.0 for value in values ) return result def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
643
import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = W_supports['''sizes'''].tolist() UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item() UpperCamelCase : Any = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : Tuple = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : str = p_start UpperCamelCase : Optional[int] = p_end return p_starts, p_ends
643
1
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __A ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = jnp.floataa def lowerCamelCase__ ( self : str ) -> int: __magic_name__: str = [] __magic_name__: Any = [] for i in range(self.num_layers ): __magic_name__: str = self.in_channels if i == 0 else self.out_channels __magic_name__: Optional[int] = FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __magic_name__: List[str] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __magic_name__: Any = resnets __magic_name__: str = attentions if self.add_downsample: __magic_name__: List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , __snake_case : List[Any] , __snake_case : Any , __snake_case : Dict , __snake_case : List[str]=True ) -> str: __magic_name__: str = () for resnet, attn in zip(self.resnets , self.attentions ): __magic_name__: Optional[Any] = resnet(__snake_case , __snake_case , deterministic=__snake_case ) __magic_name__: Union[str, Any] = attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __magic_name__: Any = self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __A ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = 1 UpperCAmelCase__ = True UpperCAmelCase__ = jnp.floataa def lowerCamelCase__ ( self : str ) -> Optional[int]: __magic_name__: Optional[Any] = [] for i in range(self.num_layers ): __magic_name__: str = self.in_channels if i == 0 else self.out_channels __magic_name__: Tuple = FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __magic_name__: Union[str, Any] = resnets if self.add_downsample: __magic_name__: str = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , __snake_case : int , __snake_case : List[str] , __snake_case : List[Any]=True ) -> Dict: __magic_name__: Optional[Any] = () for resnet in self.resnets: __magic_name__: Optional[int] = resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __magic_name__: List[str] = self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __A ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = jnp.floataa def lowerCamelCase__ ( self : int ) -> int: __magic_name__: Optional[int] = [] __magic_name__: Any = [] for i in range(self.num_layers ): __magic_name__: int = self.in_channels if (i == self.num_layers - 1) else self.out_channels __magic_name__: Any = self.prev_output_channel if i == 0 else self.out_channels __magic_name__: Dict = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __magic_name__: int = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __magic_name__: List[str] = resnets __magic_name__: List[str] = attentions if self.add_upsample: __magic_name__: str = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , __snake_case : int , __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Dict=True ) -> List[Any]: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __magic_name__: Any = res_hidden_states_tuple[-1] __magic_name__: Optional[int] = res_hidden_states_tuple[:-1] __magic_name__: Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __magic_name__: Optional[Any] = resnet(__snake_case , __snake_case , deterministic=__snake_case ) __magic_name__: str = attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __magic_name__: Optional[Any] = self.upsamplers_a(__snake_case ) return hidden_states class __A ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = 1 UpperCAmelCase__ = True UpperCAmelCase__ = jnp.floataa def lowerCamelCase__ ( self : int ) -> Union[str, Any]: __magic_name__: Any = [] for i in range(self.num_layers ): __magic_name__: List[str] = self.in_channels if (i == self.num_layers - 1) else self.out_channels __magic_name__: List[Any] = self.prev_output_channel if i == 0 else self.out_channels __magic_name__: List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __magic_name__: Any = resnets if self.add_upsample: __magic_name__: List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int]=True ) -> int: for resnet in self.resnets: # pop res hidden states __magic_name__: List[Any] = res_hidden_states_tuple[-1] __magic_name__: Dict = res_hidden_states_tuple[:-1] __magic_name__: Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __magic_name__: Optional[int] = resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __magic_name__: Optional[Any] = self.upsamplers_a(__snake_case ) return hidden_states class __A ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = jnp.floataa def lowerCamelCase__ ( self : Dict ) -> Dict: # there is always at least one resnet __magic_name__: Tuple = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __magic_name__: str = [] for _ in range(self.num_layers ): __magic_name__: List[Any] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __magic_name__: Tuple = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __magic_name__: Optional[Any] = resnets __magic_name__: int = attentions def __call__( self : str , __snake_case : Tuple , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Optional[Any]=True ) -> int: __magic_name__: Optional[Any] = self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __magic_name__: Optional[Any] = attn(__snake_case , __snake_case , deterministic=__snake_case ) __magic_name__: str = resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
96
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[Any] = """gptsan-japanese""" snake_case : Any = [ """past_key_values""", ] snake_case : str = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __lowerCAmelCase=36000 , __lowerCAmelCase=1280 , __lowerCAmelCase=1024 , __lowerCAmelCase=8192 , __lowerCAmelCase=4096 , __lowerCAmelCase=128 , __lowerCAmelCase=10 , __lowerCAmelCase=0 , __lowerCAmelCase=16 , __lowerCAmelCase=16 , __lowerCAmelCase=128 , __lowerCAmelCase=0.0 , __lowerCAmelCase=1E-5 , __lowerCAmelCase=False , __lowerCAmelCase=0.0 , __lowerCAmelCase="float32" , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=0.002 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=35998 , __lowerCAmelCase=35995 , __lowerCAmelCase=35999 , **__lowerCAmelCase , ): UpperCamelCase__ = vocab_size UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = d_model UpperCamelCase__ = d_ff UpperCamelCase__ = d_ext UpperCamelCase__ = d_spout UpperCamelCase__ = num_switch_layers UpperCamelCase__ = num_ext_layers UpperCamelCase__ = num_switch_layers + num_ext_layers UpperCamelCase__ = num_heads UpperCamelCase__ = num_experts UpperCamelCase__ = expert_capacity UpperCamelCase__ = dropout_rate UpperCamelCase__ = layer_norm_epsilon UpperCamelCase__ = router_bias UpperCamelCase__ = router_jitter_noise UpperCamelCase__ = router_dtype UpperCamelCase__ = router_ignore_padding_tokens UpperCamelCase__ = output_hidden_states UpperCamelCase__ = output_attentions UpperCamelCase__ = initializer_factor UpperCamelCase__ = output_router_logits UpperCamelCase__ = use_cache super().__init__( separator_token_id=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
619
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
720
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCamelCase( SCREAMING_SNAKE_CASE ): __A: Optional[Any] = ["""image_processor""", """tokenizer"""] __A: List[str] = """CLIPImageProcessor""" __A: Dict = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : str , _lowerCamelCase : List[str]=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str ): _UpperCAmelCase : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _lowerCamelCase , ) _UpperCAmelCase : Optional[Any] = kwargs.pop("feature_extractor" ) _UpperCAmelCase : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self : Any , _lowerCamelCase : List[str]=None , _lowerCamelCase : str=None , _lowerCamelCase : Optional[int]=None , **_lowerCamelCase : Union[str, Any] ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _UpperCAmelCase : Union[str, Any] = self.tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if images is not None: _UpperCAmelCase : Any = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if text is not None and images is not None: _UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase ) def a__ ( self : Union[str, Any] , *_lowerCamelCase : List[Any] , **_lowerCamelCase : List[str] ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def a__ ( self : Union[str, Any] , *_lowerCamelCase : List[str] , **_lowerCamelCase : str ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def a__ ( self : Any ): _UpperCAmelCase : Union[str, Any] = self.tokenizer.model_input_names _UpperCAmelCase : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a__ ( self : Union[str, Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _lowerCamelCase , ) return self.image_processor_class @property def a__ ( self : int ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _lowerCamelCase , ) return self.image_processor
328
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : List[str] = """naver-clova-ix/donut-base-finetuned-docvqa""" __SCREAMING_SNAKE_CASE : Any = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) __SCREAMING_SNAKE_CASE : Optional[int] = """document_qa""" __SCREAMING_SNAKE_CASE : int = AutoProcessor __SCREAMING_SNAKE_CASE : Any = VisionEncoderDecoderModel __SCREAMING_SNAKE_CASE : Optional[Any] = ["""image""", """text"""] __SCREAMING_SNAKE_CASE : Optional[int] = ["""text"""] def __init__( self : Any , *__UpperCamelCase : str , **__UpperCamelCase : str ): if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : str , __UpperCamelCase : "Image" , __UpperCamelCase : str ): _UpperCAmelCase = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" _UpperCAmelCase = task_prompt.replace("{user_input}" , __UpperCamelCase ) _UpperCAmelCase = self.pre_processor.tokenizer( __UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors="pt" ).input_ids _UpperCAmelCase = self.pre_processor(__UpperCamelCase , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCAmelCase__ ( self : int , __UpperCamelCase : str ): return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__UpperCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__UpperCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__UpperCamelCase , ).sequences def UpperCAmelCase__ ( self : Any , __UpperCamelCase : List[Any] ): _UpperCAmelCase = self.pre_processor.batch_decode(__UpperCamelCase )[0] _UpperCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) _UpperCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) _UpperCAmelCase = re.sub(r"<.*?>" , "" , __UpperCamelCase , count=1 ).strip() # remove first task start token _UpperCAmelCase = self.pre_processor.tokenajson(__UpperCamelCase ) return sequence["answer"]
684
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder): def _snake_case ( self )-> str: return datasets.DatasetInfo( features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=_SCREAMING_SNAKE_CASE , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Union[str, Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[int]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder): def _snake_case ( self )-> str: return datasets.DatasetInfo( features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=_SCREAMING_SNAKE_CASE , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} ) ] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( ) ->Dict: """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] def __UpperCamelCase ( ) ->Dict: """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )] class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): @require_beam def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase_ =DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) lowerCamelCase_ =builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _snake_case ( self )-> str: import apache_beam as beam lowerCamelCase_ =beam.io.parquetio.WriteToParquet lowerCamelCase_ =len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase_ =DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner="""DirectRunner""" ) with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock: lowerCamelCase_ =partial(_SCREAMING_SNAKE_CASE , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( _SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) ) lowerCamelCase_ =builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _SCREAMING_SNAKE_CASE ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset @require_beam def _snake_case ( self )-> Dict: with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase_ =DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _snake_case ( self )-> List[str]: lowerCamelCase_ =len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowerCamelCase_ =NestedBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner="""DirectRunner""" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) ) lowerCamelCase_ =builder.as_dataset() self.assertEqual(dset["""train"""].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) ) del dset
75
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A : Union[str, Any] = logging.get_logger(__name__) __A : Optional[Any] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Union[str, Any] = "deta" _UpperCamelCase:int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=900 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.2_5 , **_SCREAMING_SNAKE_CASE , )-> str: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCamelCase_ =CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =backbone_config.pop("""model_type""" ) lowerCamelCase_ =CONFIG_MAPPING[backbone_model_type] lowerCamelCase_ =config_class.from_dict(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =backbone_config lowerCamelCase_ =num_queries lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =d_model lowerCamelCase_ =encoder_ffn_dim lowerCamelCase_ =encoder_layers lowerCamelCase_ =encoder_attention_heads lowerCamelCase_ =decoder_ffn_dim lowerCamelCase_ =decoder_layers lowerCamelCase_ =decoder_attention_heads lowerCamelCase_ =dropout lowerCamelCase_ =attention_dropout lowerCamelCase_ =activation_dropout lowerCamelCase_ =activation_function lowerCamelCase_ =init_std lowerCamelCase_ =init_xavier_std lowerCamelCase_ =encoder_layerdrop lowerCamelCase_ =auxiliary_loss lowerCamelCase_ =position_embedding_type # deformable attributes lowerCamelCase_ =num_feature_levels lowerCamelCase_ =encoder_n_points lowerCamelCase_ =decoder_n_points lowerCamelCase_ =two_stage lowerCamelCase_ =two_stage_num_proposals lowerCamelCase_ =with_box_refine lowerCamelCase_ =assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowerCamelCase_ =class_cost lowerCamelCase_ =bbox_cost lowerCamelCase_ =giou_cost # Loss coefficients lowerCamelCase_ =mask_loss_coefficient lowerCamelCase_ =dice_loss_coefficient lowerCamelCase_ =bbox_loss_coefficient lowerCamelCase_ =giou_loss_coefficient lowerCamelCase_ =eos_coefficient lowerCamelCase_ =focal_alpha super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _snake_case ( self )-> int: return self.encoder_attention_heads @property def _snake_case ( self )-> int: return self.d_model def _snake_case ( self )-> str: lowerCamelCase_ =copy.deepcopy(self.__dict__ ) lowerCamelCase_ =self.backbone_config.to_dict() lowerCamelCase_ =self.__class__.model_type return output
75
1
import numpy as np def UpperCamelCase ( _a , _a , _a , _a , _a ) -> List[Any]: '''simple docstring''' lowercase_ :Optional[Any] = int(np.ceil((x_end - xa) / h ) ) lowercase_ :List[str] = np.zeros((n + 1,) ) lowercase_ :List[str] = ya lowercase_ :Any = xa for k in range(_a ): lowercase_ :int = f(_a , y[k] ) lowercase_ :List[str] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowercase_ :Optional[Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowercase_ :Tuple = f(x + h , y[k] + h * ka ) lowercase_ :Dict = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
257
# Lint as: python3 import itertools import os import re SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(r"([A-Z]+)([A-Z][a-z])") SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(r"([a-z\d])([A-Z])") SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r"(?<!_)_(?!_)") SCREAMING_SNAKE_CASE : Tuple = re.compile(r"(_{2,})") SCREAMING_SNAKE_CASE : Any = r"^\w+(\.\w+)*$" SCREAMING_SNAKE_CASE : Any = r"<>:/\|?*" def UpperCamelCase ( _a ) -> Any: '''simple docstring''' lowercase_ :List[str] = _uppercase_uppercase_re.sub(R'''\1_\2''' , _a ) lowercase_ :Optional[int] = _lowercase_uppercase_re.sub(R'''\1_\2''' , _a ) return name.lower() def UpperCamelCase ( _a ) -> Dict: '''simple docstring''' lowercase_ :List[str] = _single_underscore_re.split(_a ) lowercase_ :Tuple = [_multiple_underscores_re.split(_a ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_a ) if n != '''''' ) def UpperCamelCase ( _a ) -> Optional[int]: '''simple docstring''' if os.path.basename(_a ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(_a ) def UpperCamelCase ( _a , _a ) -> Optional[Any]: '''simple docstring''' if os.path.basename(_a ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , _a ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(_a )}-{split}" def UpperCamelCase ( _a , _a , _a , _a=None ) -> List[Any]: '''simple docstring''' lowercase_ :List[str] = filename_prefix_for_split(_a , _a ) if filetype_suffix: prefix += f".{filetype_suffix}" lowercase_ :List[Any] = os.path.join(_a , _a ) return f"{filepath}*" def UpperCamelCase ( _a , _a , _a , _a=None , _a=None ) -> List[Any]: '''simple docstring''' lowercase_ :Union[str, Any] = filename_prefix_for_split(_a , _a ) lowercase_ :Any = os.path.join(_a , _a ) if shard_lengths: lowercase_ :str = len(_a ) lowercase_ :Tuple = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(_a )] if filetype_suffix: lowercase_ :Any = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowercase_ :Tuple = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
257
1
"""simple docstring""" import math def _lowercase ( _SCREAMING_SNAKE_CASE : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowercase ( _SCREAMING_SNAKE_CASE : int = 10001 ) -> int: '''simple docstring''' try: __A : str = int(_SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) __A : list[int] = [] __A : Dict = 2 while len(_SCREAMING_SNAKE_CASE ) < nth: if is_prime(_SCREAMING_SNAKE_CASE ): primes.append(_SCREAMING_SNAKE_CASE ) num += 1 else: num += 1 return primes[len(_SCREAMING_SNAKE_CASE ) - 1] if __name__ == "__main__": print(F'{solution() = }')
237
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase : Tuple =logging.get_logger(__name__) lowerCamelCase : Union[str, Any] ={ '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __snake_case( A_ ): '''simple docstring''' _UpperCAmelCase = "umt5" _UpperCAmelCase = ["past_key_values"] def __init__( self , __lowerCamelCase=250112 , __lowerCamelCase=512 , __lowerCamelCase=64 , __lowerCamelCase=1024 , __lowerCamelCase=8 , __lowerCamelCase=None , __lowerCamelCase=6 , __lowerCamelCase=32 , __lowerCamelCase=128 , __lowerCamelCase=0.1 , __lowerCamelCase=1e-6 , __lowerCamelCase=1.0 , __lowerCamelCase="gated-gelu" , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase="T5Tokenizer" , __lowerCamelCase=True , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=0 , **__lowerCamelCase , ): '''simple docstring''' super().__init__( is_encoder_decoder=__lowerCamelCase , tokenizer_class=__lowerCamelCase , tie_word_embeddings=__lowerCamelCase , pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , ) __A : Union[str, Any] = vocab_size __A : Any = d_model __A : str = d_kv __A : List[Any] = d_ff __A : Union[str, Any] = num_layers __A : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __A : Union[str, Any] = num_heads __A : str = relative_attention_num_buckets __A : Union[str, Any] = relative_attention_max_distance __A : int = dropout_rate __A : int = layer_norm_epsilon __A : int = initializer_factor __A : List[Any] = feed_forward_proj __A : str = use_cache __A : str = self.feed_forward_proj.split('-' ) __A : str = act_info[-1] __A : Any = act_info[0] == 'gated' if len(__lowerCamelCase ) > 1 and act_info[0] != "gated" or len(__lowerCamelCase ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __A : Optional[int] = 'gelu_new' @property def _a ( self ): '''simple docstring''' return self.d_model @property def _a ( self ): '''simple docstring''' return self.num_heads @property def _a ( self ): '''simple docstring''' return self.num_layers class __snake_case( A_ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _a ( self ): '''simple docstring''' __A : List[Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __A : int = 'past_encoder_sequence + sequence' __A : List[str] = {0: 'batch'} __A : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __A : List[str] = {0: 'batch', 1: 'decoder_sequence'} __A : str = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _a ( self ): '''simple docstring''' return 13 @property def _a ( self ): '''simple docstring''' return 5e-4
237
1
'''simple docstring''' def _a (lowercase__ : str , lowercase__ : str ) -> float: """simple docstring""" def get_matched_characters(lowercase__ : str , lowercase__ : str ) -> str: __snake_case = [] __snake_case = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __snake_case = int(max(0 , i - limit ) ) __snake_case = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowercase__ ) __snake_case = f'{_stra[0:_stra.index(lowercase__ )]} {_stra[_stra.index(lowercase__ ) + 1:]}' return "".join(lowercase__ ) # matching characters __snake_case = get_matched_characters(lowercase__ , lowercase__ ) __snake_case = get_matched_characters(lowercase__ , lowercase__ ) __snake_case = len(lowercase__ ) # transposition __snake_case = ( len([(ca, ca) for ca, ca in zip(lowercase__ , lowercase__ ) if ca != ca] ) // 2 ) if not match_count: __snake_case = 0.0 else: __snake_case = ( 1 / 3 * ( match_count / len(lowercase__ ) + match_count / len(lowercase__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __snake_case = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
56
import os import numpy import onnx def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = a.name SCREAMING_SNAKE_CASE_ : Dict = b.name SCREAMING_SNAKE_CASE_ : str = '' SCREAMING_SNAKE_CASE_ : Optional[Any] = '' SCREAMING_SNAKE_CASE_ : Optional[Any] = a == b SCREAMING_SNAKE_CASE_ : str = name_a SCREAMING_SNAKE_CASE_ : str = name_b return res def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : Dict ) -> Optional[int]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCamelCase_ , lowerCamelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCamelCase_ , lowerCamelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict ) -> List[Any]: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(model.graph.initializer ) SCREAMING_SNAKE_CASE_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i SCREAMING_SNAKE_CASE_ : List[str] = inits[i].name SCREAMING_SNAKE_CASE_ : str = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = os.path.dirname(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = os.path.basename(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = onnx.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : Any = list(model.graph.initializer ) SCREAMING_SNAKE_CASE_ : int = set() SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : int = 0 for i in range(len(lowerCamelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCamelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCamelCase_ ) dup_set.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = inits[j].data_type SCREAMING_SNAKE_CASE_ : str = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , lowerCamelCase_ ) total_reduced_size += mem_size SCREAMING_SNAKE_CASE_ : int = inits[i].name SCREAMING_SNAKE_CASE_ : List[Any] = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 10_24 / 10_24 / 10_24 , 'GB' ) SCREAMING_SNAKE_CASE_ : int = sorted(lowerCamelCase_ ) _remove_dup_initializers_from_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'optimized_' + model_file_name SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) onnx.save(lowerCamelCase_ , lowerCamelCase_ ) return new_model
105
0
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class _a ( __a ): """simple docstring""" A_ = 42 class _a ( __a , __a ): """simple docstring""" A_ = True @register_to_config def __init__( self : List[Any] , lowercase_ : int = 3 , lowercase_ : int = 3 , lowercase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowercase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowercase_ : Tuple[int] = (64,) , lowercase_ : int = 1 , lowercase_ : str = "silu" , lowercase_ : int = 4 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : float = 0.1_8_2_1_5 , ): '''simple docstring''' super().__init__() # pass init params to Encoder lowercase_ = Encoder( in_channels=lowercase_ , out_channels=lowercase_ , down_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , double_z=lowercase_ , ) # pass init params to Decoder lowercase_ = Decoder( in_channels=lowercase_ , out_channels=lowercase_ , up_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , norm_num_groups=lowercase_ , act_fn=lowercase_ , ) lowercase_ = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) lowercase_ = nn.Convad(lowercase_ , lowercase_ , 1 ) lowercase_ = False lowercase_ = False # only relevant if vae tiling is enabled lowercase_ = self.config.sample_size lowercase_ = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) lowercase_ = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) lowercase_ = 0.2_5 def lowerCamelCase__ ( self : int , lowercase_ : List[str] , lowercase_ : List[Any]=False ): '''simple docstring''' if isinstance(lowercase_ , (Encoder, Decoder) ): lowercase_ = value def lowerCamelCase__ ( self : Dict , lowercase_ : bool = True ): '''simple docstring''' lowercase_ = use_tiling def lowerCamelCase__ ( self : Any ): '''simple docstring''' self.enable_tiling(lowercase_ ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = True def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase__ ( self : Any ): '''simple docstring''' lowercase_ = {} def fn_recursive_add_processors(lowercase_ : str , lowercase_ : torch.nn.Module , lowercase_ : Dict[str, AttentionProcessor] ): if hasattr(lowercase_ , """set_processor""" ): lowercase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , lowercase_ , lowercase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowercase_ , lowercase_ , lowercase_ ) return processors def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' lowercase_ = len(self.attn_processors.keys() ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(lowercase_ )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowercase_ : str , lowercase_ : torch.nn.Module , lowercase_ : List[Any] ): if hasattr(lowercase_ , """set_processor""" ): if not isinstance(lowercase_ , lowercase_ ): module.set_processor(lowercase_ ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , lowercase_ , lowercase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowercase_ , lowercase_ , lowercase_ ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCamelCase__ ( self : Tuple , lowercase_ : torch.FloatTensor , lowercase_ : bool = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowercase_ , return_dict=lowercase_ ) if self.use_slicing and x.shape[0] > 1: lowercase_ = [self.encoder(lowercase_ ) for x_slice in x.split(1 )] lowercase_ = torch.cat(lowercase_ ) else: lowercase_ = self.encoder(lowercase_ ) lowercase_ = self.quant_conv(lowercase_ ) lowercase_ = DiagonalGaussianDistribution(lowercase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowercase_ ) def lowerCamelCase__ ( self : Any , lowercase_ : torch.FloatTensor , lowercase_ : bool = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowercase_ , return_dict=lowercase_ ) lowercase_ = self.post_quant_conv(lowercase_ ) lowercase_ = self.decoder(lowercase_ ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) @apply_forward_hook def lowerCamelCase__ ( self : Dict , lowercase_ : torch.FloatTensor , lowercase_ : bool = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: lowercase_ = [self._decode(lowercase_ ).sample for z_slice in z.split(1 )] lowercase_ = torch.cat(lowercase_ ) else: lowercase_ = self._decode(lowercase_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowercase_ ) def lowerCamelCase__ ( self : Tuple , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : Union[str, Any] ): '''simple docstring''' lowercase_ = min(a.shape[2] , b.shape[2] , lowercase_ ) for y in range(lowercase_ ): lowercase_ = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCamelCase__ ( self : Optional[int] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : str ): '''simple docstring''' lowercase_ = min(a.shape[3] , b.shape[3] , lowercase_ ) for x in range(lowercase_ ): lowercase_ = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCamelCase__ ( self : Tuple , lowercase_ : torch.FloatTensor , lowercase_ : bool = True ): '''simple docstring''' lowercase_ = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) lowercase_ = int(self.tile_latent_min_size * self.tile_overlap_factor ) lowercase_ = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. lowercase_ = [] for i in range(0 , x.shape[2] , lowercase_ ): lowercase_ = [] for j in range(0 , x.shape[3] , lowercase_ ): lowercase_ = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] lowercase_ = self.encoder(lowercase_ ) lowercase_ = self.quant_conv(lowercase_ ) row.append(lowercase_ ) rows.append(lowercase_ ) lowercase_ = [] for i, row in enumerate(lowercase_ ): lowercase_ = [] for j, tile in enumerate(lowercase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowercase_ = self.blend_v(rows[i - 1][j] , lowercase_ , lowercase_ ) if j > 0: lowercase_ = self.blend_h(row[j - 1] , lowercase_ , lowercase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowercase_ , dim=3 ) ) lowercase_ = torch.cat(lowercase_ , dim=2 ) lowercase_ = DiagonalGaussianDistribution(lowercase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowercase_ ) def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : torch.FloatTensor , lowercase_ : bool = True ): '''simple docstring''' lowercase_ = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) lowercase_ = int(self.tile_sample_min_size * self.tile_overlap_factor ) lowercase_ = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. lowercase_ = [] for i in range(0 , z.shape[2] , lowercase_ ): lowercase_ = [] for j in range(0 , z.shape[3] , lowercase_ ): lowercase_ = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] lowercase_ = self.post_quant_conv(lowercase_ ) lowercase_ = self.decoder(lowercase_ ) row.append(lowercase_ ) rows.append(lowercase_ ) lowercase_ = [] for i, row in enumerate(lowercase_ ): lowercase_ = [] for j, tile in enumerate(lowercase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: lowercase_ = self.blend_v(rows[i - 1][j] , lowercase_ , lowercase_ ) if j > 0: lowercase_ = self.blend_h(row[j - 1] , lowercase_ , lowercase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowercase_ , dim=3 ) ) lowercase_ = torch.cat(lowercase_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def lowerCamelCase__ ( self : Tuple , lowercase_ : torch.FloatTensor , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[torch.Generator] = None , ): '''simple docstring''' lowercase_ = sample lowercase_ = self.encode(lowercase_ ).latent_dist if sample_posterior: lowercase_ = posterior.sample(generator=lowercase_ ) else: lowercase_ = posterior.mode() lowercase_ = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
603
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __snake_case = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __snake_case = logging.getLogger() def A_ ( ) ->List[str]: lowercase_ = argparse.ArgumentParser() parser.add_argument("""-f""" ) lowercase_ = parser.parse_args() return args.f def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="eval" ) ->Optional[int]: lowercase_ = os.path.join(SCREAMING_SNAKE_CASE_ , f"""{split}_results.json""" ) if os.path.exists(SCREAMING_SNAKE_CASE_ ): with open(SCREAMING_SNAKE_CASE_ , """r""" ) as f: return json.load(SCREAMING_SNAKE_CASE_ ) raise ValueError(f"""can't find {path}""" ) __snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _a ( __a ): """simple docstring""" def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_flax_glue.main() lowercase_ = get_results(lowercase_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_clm_flax.main() lowercase_ = get_results(lowercase_ ) self.assertLess(result["""eval_perplexity"""] , 100 ) @slow def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_summarization_flax.main() lowercase_ = get_results(lowercase_ , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 10 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_mlm_flax.main() lowercase_ = get_results(lowercase_ ) self.assertLess(result["""eval_perplexity"""] , 42 ) @slow def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_ta_mlm_flax.main() lowercase_ = get_results(lowercase_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.4_2 ) @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' lowercase_ = 7 if get_gpu_count() > 1 else 2 lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_flax_ner.main() lowercase_ = get_results(lowercase_ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def lowerCamelCase__ ( self : Any ): '''simple docstring''' lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(lowercase_ , """argv""" , lowercase_ ): run_qa.main() lowercase_ = get_results(lowercase_ ) self.assertGreaterEqual(result["""eval_f1"""] , 30 ) self.assertGreaterEqual(result["""eval_exact"""] , 30 )
603
1
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowercase__ ( A_ ): __UpperCAmelCase = 42 __UpperCAmelCase = jnp.floataa __UpperCAmelCase = True def UpperCamelCase_ ( self) -> str: super().setup() _lowerCamelCase : Optional[int] = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> int: _lowerCamelCase : Optional[int] = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class lowercase__ ( A_ ): __UpperCAmelCase = FlaxBigBirdForNaturalQuestionsModule def _snake_case ( __snake_case : Tuple , __snake_case : str , __snake_case : List[str] , __snake_case : Dict , __snake_case : Tuple , __snake_case : List[Any] ): """simple docstring""" def cross_entropy(__snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[int]=None ): _lowerCamelCase : Optional[int] = logits.shape[-1] _lowerCamelCase : Any = (labels[..., None] == jnp.arange(__snake_case )[None]).astype("""f4""" ) _lowerCamelCase : Any = jax.nn.log_softmax(__snake_case , axis=-1 ) _lowerCamelCase : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _lowerCamelCase : int = reduction(__snake_case ) return loss _lowerCamelCase : int = partial(__snake_case , reduction=jnp.mean ) _lowerCamelCase : int = cross_entropy(__snake_case , __snake_case ) _lowerCamelCase : int = cross_entropy(__snake_case , __snake_case ) _lowerCamelCase : List[str] = cross_entropy(__snake_case , __snake_case ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowercase__ : __UpperCAmelCase = "google/bigbird-roberta-base" __UpperCAmelCase = 3000 __UpperCAmelCase = 10500 __UpperCAmelCase = 128 __UpperCAmelCase = 3 __UpperCAmelCase = 1 __UpperCAmelCase = 5 # tx_args __UpperCAmelCase = 3e-5 __UpperCAmelCase = 0.0 __UpperCAmelCase = 20000 __UpperCAmelCase = 0.0_0_9_5 __UpperCAmelCase = "bigbird-roberta-natural-questions" __UpperCAmelCase = "training-expt" __UpperCAmelCase = "data/nq-training.jsonl" __UpperCAmelCase = "data/nq-validation.jsonl" def UpperCamelCase_ ( self) -> Optional[int]: os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = os.path.join(self.base_dir , self.save_dir) _lowerCamelCase : Tuple = self.batch_size_per_device * jax.device_count() @dataclass class lowercase__ : __UpperCAmelCase = 42 __UpperCAmelCase = 4096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE) -> Optional[int]: _lowerCamelCase : Dict = self.collate_fn(SCREAMING_SNAKE_CASE) _lowerCamelCase : int = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) return batch def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> List[str]: _lowerCamelCase , _lowerCamelCase : Any = self.fetch_inputs(features["""input_ids"""]) _lowerCamelCase : Dict = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> int: _lowerCamelCase : List[str] = [self._fetch_inputs(SCREAMING_SNAKE_CASE) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> Dict: _lowerCamelCase : List[Any] = [1 for _ in range(len(SCREAMING_SNAKE_CASE))] while len(SCREAMING_SNAKE_CASE) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def _snake_case ( __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Union[str, Any]=None ): """simple docstring""" if seed is not None: _lowerCamelCase : Optional[Any] = dataset.shuffle(seed=__snake_case ) for i in range(len(__snake_case ) // batch_size ): _lowerCamelCase : int = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__snake_case ) @partial(jax.pmap , axis_name="""batch""" ) def _snake_case ( __snake_case : Any , __snake_case : List[str] , **__snake_case : Tuple ): """simple docstring""" def loss_fn(__snake_case : str ): _lowerCamelCase : List[Any] = model_inputs.pop("""start_labels""" ) _lowerCamelCase : Optional[Any] = model_inputs.pop("""end_labels""" ) _lowerCamelCase : List[str] = model_inputs.pop("""pooled_labels""" ) _lowerCamelCase : Optional[Any] = state.apply_fn(**__snake_case , params=__snake_case , dropout_rng=__snake_case , train=__snake_case ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = outputs return state.loss_fn( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _lowerCamelCase , _lowerCamelCase : List[Any] = jax.random.split(__snake_case ) _lowerCamelCase : Any = jax.value_and_grad(__snake_case ) _lowerCamelCase , _lowerCamelCase : Any = grad_fn(state.params ) _lowerCamelCase : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) _lowerCamelCase : Tuple = jax.lax.pmean(__snake_case , """batch""" ) _lowerCamelCase : int = state.apply_gradients(grads=__snake_case ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def _snake_case ( __snake_case : Any , **__snake_case : int ): """simple docstring""" _lowerCamelCase : Any = model_inputs.pop("""start_labels""" ) _lowerCamelCase : Any = model_inputs.pop("""end_labels""" ) _lowerCamelCase : Any = model_inputs.pop("""pooled_labels""" ) _lowerCamelCase : Optional[Any] = state.apply_fn(**__snake_case , params=state.params , train=__snake_case ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = outputs _lowerCamelCase : Tuple = state.loss_fn(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) _lowerCamelCase : str = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class lowercase__ ( train_state.TrainState ): __UpperCAmelCase = struct.field(pytree_node=A_ ) @dataclass class lowercase__ : __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = None def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None) -> Optional[int]: _lowerCamelCase : Tuple = model.params _lowerCamelCase : Any = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE , tx=SCREAMING_SNAKE_CASE , loss_fn=SCREAMING_SNAKE_CASE , ) if ckpt_dir is not None: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = restore_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } _lowerCamelCase , _lowerCamelCase : Optional[Any] = build_tx(**SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = train_state.TrainState( step=SCREAMING_SNAKE_CASE , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE , tx=SCREAMING_SNAKE_CASE , opt_state=SCREAMING_SNAKE_CASE , ) _lowerCamelCase : List[Any] = args _lowerCamelCase : Optional[Any] = data_collator _lowerCamelCase : Optional[Any] = lr _lowerCamelCase : Optional[Any] = params _lowerCamelCase : Optional[Any] = jax_utils.replicate(SCREAMING_SNAKE_CASE) return state def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Union[str, Any]: _lowerCamelCase : Dict = self.args _lowerCamelCase : List[str] = len(SCREAMING_SNAKE_CASE) // args.batch_size _lowerCamelCase : Optional[Any] = jax.random.PRNGKey(0) _lowerCamelCase : List[Any] = jax.random.split(SCREAMING_SNAKE_CASE , jax.device_count()) for epoch in range(args.max_epochs): _lowerCamelCase : Tuple = jnp.array(0 , dtype=jnp.floataa) _lowerCamelCase : Tuple = get_batched_dataset(SCREAMING_SNAKE_CASE , args.batch_size , seed=SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = 0 for batch in tqdm(SCREAMING_SNAKE_CASE , total=SCREAMING_SNAKE_CASE , desc=F'Running EPOCH-{epoch}'): _lowerCamelCase : Union[str, Any] = self.data_collator(SCREAMING_SNAKE_CASE) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.train_step_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: _lowerCamelCase : Optional[int] = jax_utils.unreplicate(state.step) _lowerCamelCase : int = running_loss.item() / i _lowerCamelCase : Tuple = self.scheduler_fn(state_step - 1) _lowerCamelCase : Optional[Any] = self.evaluate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE)) self.logger.log(SCREAMING_SNAKE_CASE , commit=SCREAMING_SNAKE_CASE) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[Any]: _lowerCamelCase : Optional[int] = get_batched_dataset(SCREAMING_SNAKE_CASE , self.args.batch_size) _lowerCamelCase : Dict = len(SCREAMING_SNAKE_CASE) // self.args.batch_size _lowerCamelCase : str = jnp.array(0 , dtype=jnp.floataa) _lowerCamelCase : int = 0 for batch in tqdm(SCREAMING_SNAKE_CASE , total=SCREAMING_SNAKE_CASE , desc="""Evaluating ... """): _lowerCamelCase : int = self.data_collator(SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = self.val_step_fn(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[str]: _lowerCamelCase : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE) print(F'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE) print("""DONE""") def _snake_case ( __snake_case : Any , __snake_case : Any ): """simple docstring""" print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(__snake_case , """flax_model.msgpack""" ) , """rb""" ) as f: _lowerCamelCase : Dict = from_bytes(state.params , f.read() ) with open(os.path.join(__snake_case , """opt_state.msgpack""" ) , """rb""" ) as f: _lowerCamelCase : str = from_bytes(state.opt_state , f.read() ) _lowerCamelCase : Optional[Any] = joblib.load(os.path.join(__snake_case , """args.joblib""" ) ) _lowerCamelCase : Optional[int] = joblib.load(os.path.join(__snake_case , """data_collator.joblib""" ) ) with open(os.path.join(__snake_case , """training_state.json""" ) , """r""" ) as f: _lowerCamelCase : str = json.load(__snake_case ) _lowerCamelCase : Tuple = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def _snake_case ( __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Any ): """simple docstring""" _lowerCamelCase : List[Any] = num_train_steps - warmup_steps _lowerCamelCase : Optional[int] = optax.linear_schedule(init_value=__snake_case , end_value=__snake_case , transition_steps=__snake_case ) _lowerCamelCase : List[str] = optax.linear_schedule(init_value=__snake_case , end_value=1E-7 , transition_steps=__snake_case ) _lowerCamelCase : Optional[Any] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case ( __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Dict ): """simple docstring""" def weight_decay_mask(__snake_case : Union[str, Any] ): _lowerCamelCase : Any = traverse_util.flatten_dict(__snake_case ) _lowerCamelCase : List[Any] = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(__snake_case ) _lowerCamelCase : List[str] = scheduler_fn(__snake_case , __snake_case , __snake_case , __snake_case ) _lowerCamelCase : str = optax.adamw(learning_rate=__snake_case , weight_decay=__snake_case , mask=__snake_case ) return tx, lr
88
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = StableDiffusionSAGPipeline UpperCAmelCase__ = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ = False def __lowercase( self ) -> Dict: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __UpperCamelCase = CLIPTextModel(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> Any: if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: __UpperCamelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def __lowercase( self ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase( self ) -> Dict: __UpperCamelCase = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) __UpperCamelCase = sag_pipe.to(_SCREAMING_SNAKE_CASE ) sag_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = '.' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = sag_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCamelCase = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowercase( self ) -> int: __UpperCamelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __UpperCamelCase = sag_pipe.to(_SCREAMING_SNAKE_CASE ) sag_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = '.' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = sag_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCamelCase = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowercase( self ) -> List[Any]: __UpperCamelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __UpperCamelCase = sag_pipe.to(_SCREAMING_SNAKE_CASE ) sag_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = '.' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = sag_pipe( [prompt] , width=768 , height=512 , generator=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) __UpperCamelCase = output.images assert image.shape == (1, 512, 768, 3)
383
0
'''simple docstring''' import string def _SCREAMING_SNAKE_CASE( snake_case_ : str ) ->str: '''simple docstring''' _lowercase : str = '''''' for i in sequence: _lowercase : Tuple = ord(snake_case_ ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def _SCREAMING_SNAKE_CASE( snake_case_ : str ) ->str: '''simple docstring''' _lowercase : Tuple = string.ascii_letters _lowercase : Optional[int] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(snake_case_ )] if c in letters else c for c in sequence ) def _SCREAMING_SNAKE_CASE( ) ->None: '''simple docstring''' from timeit import timeit print('''Running performance benchmarks...''' ) _lowercase : List[str] = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=snake_case_ )} seconds" ) print(F"> atbash(): {timeit('atbash(printable)' , setup=snake_case_ )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
411
'''simple docstring''' from math import factorial def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int ) ->int: '''simple docstring''' # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(snake_case_ ) // (factorial(snake_case_ ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', f'''4 for group projects, there are {combinations(40, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f'''are {combinations(10, 3)} ways that first, second and''', 'third place can be awarded.', )
411
1
def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if index == number_of_items: return 0 A_ = 0 A_ = 0 A_ = knapsack(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , index + 1 ) if weights[index] <= max_weight: A_ = values[index] + knapsack( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , max_weight - weights[index] , index + 1 ) return max(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
141
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase ): __magic_name__ : int = MODEL_FOR_MASKED_LM_MAPPING __magic_name__ : Dict = TF_MODEL_FOR_MASKED_LM_MAPPING def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) A_ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser'''}, ] , ) A_ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser''', }, ] , ) A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) A_ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''}, ] , ) A_ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''}, ] , ) A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, ] , ) A_ = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ [ { '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() A_ = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(a__ , a__ ) @slow @require_torch def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(a__ ) @slow @require_tf def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(a__ ) def lowerCAmelCase_ ( self , a__ ) -> Tuple: '''simple docstring''' A_ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(a__ ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_08, '''token''': 6_1_0, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_07, '''token''': 1_5_7_3, '''token_str''': ''' Chris'''}, ] , ) A_ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(a__ ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_51, '''token''': 2_2_0_1, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_14, '''token''': 1_2_7_9_0, '''token_str''': ''' Lyon''', }, ] , ) A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(a__ ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_00, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_00, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) A_ = None A_ = None self.run_pipeline_test(a__ , [] ) @require_tf def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) A_ = None A_ = None self.run_pipeline_test(a__ , [] ) def lowerCAmelCase_ ( self , a__ , a__ , a__ ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = [ F"This is another {tokenizer.mask_token} test", ] return fill_masker, examples def lowerCAmelCase_ ( self , a__ , a__ ) -> Any: '''simple docstring''' A_ = fill_masker.tokenizer A_ = fill_masker.model A_ = fill_masker( F"This is a {tokenizer.mask_token}" , ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = fill_masker([F"This is a {tokenizer.mask_token}"] ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = fill_masker([F"This is a {tokenizer.mask_token}", F"Another {tokenizer.mask_token} great test."] ) self.assertEqual( a__ , [ [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], ] , ) with self.assertRaises(a__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(a__ ): fill_masker('''This is''' ) self.run_test_top_k(a__ , a__ ) self.run_test_targets(a__ , a__ ) self.run_test_top_k_targets(a__ , a__ ) self.fill_mask_with_duplicate_targets_and_top_k(a__ , a__ ) self.fill_mask_with_multiple_masks(a__ , a__ ) def lowerCAmelCase_ ( self , a__ , a__ ) -> List[Any]: '''simple docstring''' A_ = tokenizer.get_vocab() A_ = sorted(vocab.keys() )[:2] # Pipeline argument A_ = FillMaskPipeline(model=a__ , tokenizer=a__ , targets=a__ ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , a__ ) A_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(a__ ) ) # Call argument A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , a__ ) A_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(a__ ) ) # Score equivalence A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ ) A_ = [top_mask['''token_str'''] for top_mask in outputs] A_ = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a__ ) == set(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ ) A_ = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) # Raises with invalid with self.assertRaises(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=[''''''] ) with self.assertRaises(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets='''''' ) def lowerCAmelCase_ ( self , a__ , a__ ) -> int: '''simple docstring''' A_ = FillMaskPipeline(model=a__ , tokenizer=a__ , top_k=2 ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) def lowerCAmelCase_ ( self , a__ , a__ ) -> str: '''simple docstring''' A_ = tokenizer.get_vocab() A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) # top_k=2, ntargets=3 A_ = sorted(vocab.keys() )[:3] A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=2 , targets=a__ ) # If we use the most probably targets, and filter differently, we should still # have the same results A_ = [el['''token_str'''] for el in sorted(a__ , key=lambda a__ : x["score"] , reverse=a__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a__ ).issubset(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=3 , targets=a__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) def lowerCAmelCase_ ( self , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = tokenizer.get_vocab() # String duplicates + id duplicates A_ = sorted(vocab.keys() )[:3] A_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] A_ = fill_masker(F"My name is {tokenizer.mask_token}" , targets=a__ , top_k=1_0 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(a__ ) , 3 ) def lowerCAmelCase_ ( self , a__ , a__ ) -> List[Any]: '''simple docstring''' A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = fill_masker( F"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( a__ , [ [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], ] , )
141
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy _a : Union[str, Any] = logging.get_logger(__name__) _a : Tuple = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } _a : str = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } _a : Union[str, Any] = { 'jukebox': 512, } class a_ ( a ): A__ : str = VOCAB_FILES_NAMES A__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_LYRIC_TOKENS_SIZES A__ : int = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int=["v3", "v2", "v2"] , UpperCAmelCase__ : Tuple=512 , UpperCAmelCase__ : Any=5 , UpperCAmelCase__ : Optional[Any]="<|endoftext|>" , **UpperCAmelCase__ : Dict , ): """simple docstring""" snake_case : List[str] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else unk_token super().__init__( unk_token=UpperCAmelCase__ , n_genres=UpperCAmelCase__ , version=UpperCAmelCase__ , max_n_lyric_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , ) snake_case : Union[str, Any] = version snake_case : Union[str, Any] = max_n_lyric_tokens snake_case : List[str] = n_genres with open(UpperCAmelCase__ , encoding='''utf-8''' ) as vocab_handle: snake_case : Tuple = json.load(UpperCAmelCase__ ) with open(UpperCAmelCase__ , encoding='''utf-8''' ) as vocab_handle: snake_case : Union[str, Any] = json.load(UpperCAmelCase__ ) with open(UpperCAmelCase__ , encoding='''utf-8''' ) as vocab_handle: snake_case : Union[str, Any] = json.load(UpperCAmelCase__ ) snake_case : Optional[Any] = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: snake_case : Optional[Any] = oov.replace(r'''\-\'''' , r'''\-+\'''' ) snake_case : List[str] = regex.compile(UpperCAmelCase__ ) snake_case : Tuple = {v: k for k, v in self.artists_encoder.items()} snake_case : Union[str, Any] = {v: k for k, v in self.genres_encoder.items()} snake_case : Tuple = {v: k for k, v in self.lyrics_encoder.items()} @property def lowerCAmelCase( self : str ): """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def lowerCAmelCase( self : List[Any] ): """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ): """simple docstring""" snake_case : str = [self.artists_encoder.get(UpperCAmelCase__ , 0 ) for artist in list_artists] for genres in range(len(UpperCAmelCase__ ) ): snake_case : Optional[int] = [self.genres_encoder.get(UpperCAmelCase__ , 0 ) for genre in list_genres[genres]] snake_case : Optional[int] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : List[Any] = [[self.lyrics_encoder.get(UpperCAmelCase__ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def lowerCAmelCase( self : List[Any] , UpperCAmelCase__ : str ): """simple docstring""" return list(UpperCAmelCase__ ) def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Optional[Any] ): """simple docstring""" snake_case , snake_case , snake_case : Tuple = self.prepare_for_tokenization(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) snake_case : Optional[int] = self._tokenize(UpperCAmelCase__ ) return artist, genre, lyrics def lowerCAmelCase( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False ): """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : List[str] = artists[idx].lower() snake_case : Optional[Any] = [genres[idx].lower()] else: snake_case : List[Any] = self._normalize(artists[idx] ) + '''.v2''' snake_case : int = [ self._normalize(UpperCAmelCase__ ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : Any = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) snake_case : int = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' snake_case : Dict = {vocab[index]: index + 1 for index in range(len(UpperCAmelCase__ ) )} snake_case : List[str] = 0 snake_case : Tuple = len(UpperCAmelCase__ ) + 1 snake_case : Optional[int] = self.vocab snake_case : Optional[int] = {v: k for k, v in self.vocab.items()} snake_case : int = '''''' else: snake_case : Dict = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) snake_case : int = self._run_strip_accents(UpperCAmelCase__ ) snake_case : List[str] = lyrics.replace('''\\''' , '''\n''' ) snake_case : List[str] = self.out_of_vocab.sub('''''' , UpperCAmelCase__ ), [], [] return artists, genres, lyrics def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : str ): """simple docstring""" snake_case : Optional[Any] = unicodedata.normalize('''NFD''' , UpperCAmelCase__ ) snake_case : Any = [] for char in text: snake_case : int = unicodedata.category(UpperCAmelCase__ ) if cat == "Mn": continue output.append(UpperCAmelCase__ ) return "".join(UpperCAmelCase__ ) def lowerCAmelCase( self : Optional[Any] , UpperCAmelCase__ : str ): """simple docstring""" snake_case : Optional[Any] = ( [chr(UpperCAmelCase__ ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(UpperCAmelCase__ ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(UpperCAmelCase__ ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) snake_case : Optional[Any] = frozenset(UpperCAmelCase__ ) snake_case : Dict = re.compile(r'''_+''' ) snake_case : int = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) snake_case : List[Any] = pattern.sub('''_''' , UpperCAmelCase__ ).strip('''_''' ) return text def lowerCAmelCase( self : Dict , UpperCAmelCase__ : List[str] ): """simple docstring""" return " ".join(UpperCAmelCase__ ) def lowerCAmelCase( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : bool = False ): """simple docstring""" # Convert to TensorType if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): snake_case : List[str] = TensorType(UpperCAmelCase__ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf snake_case : Dict = tf.constant snake_case : List[str] = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch snake_case : str = torch.tensor snake_case : List[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Optional[Any] = _is_jax else: snake_case : int = np.asarray snake_case : Union[str, Any] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Optional[int] = [inputs] if not is_tensor(UpperCAmelCase__ ): snake_case : Union[str, Any] = as_tensor(UpperCAmelCase__ ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any]="" , UpperCAmelCase__ : int="pt" ): """simple docstring""" snake_case : Optional[Any] = [0, 0, 0] snake_case : Optional[int] = [artist] * len(self.version ) snake_case : Any = [genres] * len(self.version ) snake_case , snake_case , snake_case : Dict = self.tokenize(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) snake_case , snake_case , snake_case : List[Any] = self._convert_token_to_id(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) snake_case : Union[str, Any] = [-INFINITY] * len(full_tokens[-1] ) snake_case : Optional[Any] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=UpperCAmelCase__ ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def lowerCAmelCase( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return snake_case : Tuple = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=UpperCAmelCase__ ) ) snake_case : Any = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=UpperCAmelCase__ ) ) snake_case : Optional[Any] = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=UpperCAmelCase__ ) ) return (artists_file, genres_file, lyrics_file) def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ): """simple docstring""" snake_case : List[str] = self.artists_decoder.get(UpperCAmelCase__ ) snake_case : int = [self.genres_decoder.get(UpperCAmelCase__ ) for genre in genres_index] snake_case : int = [self.lyrics_decoder.get(UpperCAmelCase__ ) for character in lyric_index] return artist, genres, lyrics
84
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def a_ ( __magic_name__ ) -> List[Any]: """simple docstring""" if "cls_token" in name: snake_case : Tuple = name.replace('''cls_token''' , '''vit.embeddings.cls_token''' ) if "mask_token" in name: snake_case : Optional[int] = name.replace('''mask_token''' , '''decoder.mask_token''' ) if "decoder_pos_embed" in name: snake_case : List[str] = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: snake_case : List[str] = name.replace('''pos_embed''' , '''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: snake_case : List[Any] = name.replace('''patch_embed.proj''' , '''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: snake_case : int = name.replace('''patch_embed.norm''' , '''vit.embeddings.norm''' ) if "decoder_blocks" in name: snake_case : int = name.replace('''decoder_blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: snake_case : Optional[Any] = name.replace('''blocks''' , '''vit.encoder.layer''' ) if "attn.proj" in name: snake_case : str = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: snake_case : Any = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: snake_case : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: snake_case : Tuple = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case : Tuple = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: snake_case : Dict = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: snake_case : Dict = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: snake_case : Dict = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: snake_case : Optional[int] = name.replace('''norm.weight''' , '''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: snake_case : List[str] = name.replace('''norm.bias''' , '''vit.layernorm.bias''' ) return name def a_ ( __magic_name__ , __magic_name__ ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case : Union[str, Any] = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: snake_case : Optional[int] = key.split('''.''' ) snake_case : int = int(key_split[1] ) if "decoder_blocks" in key: snake_case : List[str] = config.decoder_hidden_size snake_case : List[Any] = '''decoder.decoder_layers.''' if "weight" in key: snake_case : str = val[:dim, :] snake_case : Optional[Any] = val[dim : dim * 2, :] snake_case : Any = val[-dim:, :] elif "bias" in key: snake_case : Optional[Any] = val[:dim] snake_case : List[Any] = val[dim : dim * 2] snake_case : List[Any] = val[-dim:] else: snake_case : Optional[int] = config.hidden_size snake_case : Tuple = '''vit.encoder.layer.''' if "weight" in key: snake_case : Optional[Any] = val[:dim, :] snake_case : str = val[dim : dim * 2, :] snake_case : Union[str, Any] = val[-dim:, :] elif "bias" in key: snake_case : Tuple = val[:dim] snake_case : int = val[dim : dim * 2] snake_case : Optional[Any] = val[-dim:] else: snake_case : Optional[Any] = val return orig_state_dict def a_ ( __magic_name__ , __magic_name__ ) -> Any: """simple docstring""" snake_case : List[str] = ViTMAEConfig() if "large" in checkpoint_url: snake_case : str = 1_024 snake_case : Tuple = 4_096 snake_case : Optional[Any] = 24 snake_case : List[Any] = 16 elif "huge" in checkpoint_url: snake_case : Tuple = 14 snake_case : int = 1_280 snake_case : Dict = 5_120 snake_case : Tuple = 32 snake_case : Optional[Any] = 16 snake_case : Optional[Any] = ViTMAEForPreTraining(__magic_name__ ) snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''model'''] snake_case : int = ViTMAEImageProcessor(size=config.image_size ) snake_case : Dict = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() snake_case : Tuple = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' snake_case : List[Any] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) snake_case : Dict = ViTMAEImageProcessor(size=config.image_size ) snake_case : str = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) snake_case : Union[str, Any] = model(**__magic_name__ ) snake_case : Optional[Any] = outputs.logits if "large" in checkpoint_url: snake_case : Any = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: snake_case : List[Any] = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: snake_case : Dict = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__magic_name__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _a : str = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
84
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for attribute in key.split('''.''' ): lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase__ = None for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ = True elif name.split('''.''' )[0] == "proj": lowercase__ = fairseq_model.proj lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] lowercase__ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowercase__ = '''weight_g''' elif "weight_v" in name: lowercase__ = '''weight_v''' elif "bias" in name: lowercase__ = '''bias''' elif "weight" in name: lowercase__ = '''weight''' else: lowercase__ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'Unused weights: {unused_weights}' ) return proj_weight def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = full_name.split('''conv_layers.''' )[-1] lowercase__ = name.split('''.''' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: lowercase__ = f.readlines() lowercase__ = [line.split(''' ''' )[0] for line in lines] lowercase__ = len(SCREAMING_SNAKE_CASE ) lowercase__ = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ = SpeechaTextaConfig.from_pretrained( SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE ) lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowercase__ = model[0].eval() # set weights for wav2vec2 encoder lowercase__ = WavaVecaModel(SCREAMING_SNAKE_CASE ) lowercase__ = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) lowercase__ = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) # set output linear layer unexpected_keys.remove('''embed_out''' ) lowercase__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowercase__ = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) lowercase__ = False # add projection layer lowercase__ = nn.Parameter(projection_layer.weight ) lowercase__ = nn.Parameter(projection_layer.bias ) lowercase__ = create_vocab_dict(SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) , '''w''' ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ = hf_wavavec.config.to_dict() lowercase__ = tokenizer.pad_token_id lowercase__ = tokenizer.bos_token_id lowercase__ = tokenizer.eos_token_id lowercase__ = '''speech_to_text_2''' lowercase__ = '''wav2vec2''' lowercase__ = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_0224, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') lowerCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
43
'''simple docstring''' from __future__ import annotations class _a : '''simple docstring''' def __init__( self ,__a = 0 ) -> str: snake_case : List[Any] = key def snake_case_ ( self ,__a ,__a ) -> list[str]: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) snake_case : Tuple = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__a ) ^ key ) for ch in content] def snake_case_ ( self ,__a ,__a ) -> list[str]: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) snake_case : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__a ) ^ key ) for ch in content] def snake_case_ ( self ,__a ,__a = 0 ) -> str: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) snake_case : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned snake_case : List[str] = """""" for ch in content: ans += chr(ord(__a ) ^ key ) return ans def snake_case_ ( self ,__a ,__a = 0 ) -> str: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) snake_case : Any = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned snake_case : List[str] = """""" for ch in content: ans += chr(ord(__a ) ^ key ) return ans def snake_case_ ( self ,__a ,__a = 0 ) -> bool: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) try: with open(__a ) as fin, open("""encrypt.out""" ,"""w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__a ,__a ) ) except OSError: return False return True def snake_case_ ( self ,__a ,__a ) -> bool: assert isinstance(__a ,__a ) and isinstance(__a ,__a ) try: with open(__a ) as fin, open("""decrypt.out""" ,"""w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__a ,__a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
116
0
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=[30, 30] , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=None , snake_case__=8 , snake_case__=10 , ): lowerCAmelCase : str = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : List[Any] = image_size lowerCAmelCase : List[Any] = patch_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : int = is_training lowerCAmelCase : Optional[Any] = use_labels lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = type_sequence_label_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : str = num_labels lowerCAmelCase : Any = scope lowerCAmelCase : Dict = n_targets lowerCAmelCase : Tuple = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCAmelCase : List[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCAmelCase : int = num_patches + 1 + self.num_detection_tokens def lowercase ( self ): lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCAmelCase : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCAmelCase : Optional[int] = [] for i in range(self.batch_size ): lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=snake_case__ ) lowerCAmelCase : List[str] = torch.rand(self.n_targets , 4 , device=snake_case__ ) labels.append(snake_case__ ) lowerCAmelCase : Any = self.get_config() return config, pixel_values, labels def lowercase ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Any = YolosModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = YolosForObjectDetection(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(pixel_values=snake_case__ ) lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCAmelCase : str = model(pixel_values=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def lowercase ( self ): lowerCAmelCase : List[str] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = config_and_inputs lowerCAmelCase : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): _lowerCamelCase : str = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCamelCase : str = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Union[str, Any] = False def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ): lowerCAmelCase : Any = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCAmelCase : Optional[Any] = [] for i in range(self.model_tester.batch_size ): lowerCAmelCase : List[str] = {} lowerCAmelCase : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=snake_case__ , dtype=torch.long ) lowerCAmelCase : Any = torch.ones( self.model_tester.n_targets , 4 , device=snake_case__ , dtype=torch.float ) labels.append(snake_case__ ) lowerCAmelCase : str = labels return inputs_dict def lowercase ( self ): lowerCAmelCase : int = YolosModelTester(self ) lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def lowercase ( self ): self.config_tester.run_common_tests() def lowercase ( self ): # YOLOS does not use inputs_embeds pass def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[Any] = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase ( self ): lowerCAmelCase , lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Union[str, Any] = True # in YOLOS, the seq_len is different lowerCAmelCase : Any = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCAmelCase : List[str] = True lowerCAmelCase : Optional[Any] = False lowerCAmelCase : int = True lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Any = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase : str = True lowerCAmelCase : List[str] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Any = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCAmelCase : Optional[int] = len(snake_case__ ) # Check attention is always last and order is fine lowerCAmelCase : Tuple = True lowerCAmelCase : Any = True lowerCAmelCase : Any = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : List[str] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Dict = 1 self.assertEqual(out_len + added_hidden_states , len(snake_case__ ) ) lowerCAmelCase : Optional[Any] = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase ( self ): def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : str = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Optional[Any] = outputs.hidden_states lowerCAmelCase : Dict = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # YOLOS has a different seq_length lowerCAmelCase : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase , lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Any = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase ( self ): lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*snake_case__ ) @slow def lowercase ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[Any] = YolosModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __UpperCamelCase ( ) -> Dict: """simple docstring""" lowerCAmelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def lowercase ( self ): return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def lowercase ( self ): lowerCAmelCase : Optional[int] = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(snake_case__ ) lowerCAmelCase : Optional[Any] = self.default_image_processor lowerCAmelCase : List[Any] = prepare_img() lowerCAmelCase : List[Any] = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase : Optional[int] = model(inputs.pixel_values ) # verify outputs lowerCAmelCase : Optional[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Any = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=snake_case__ , ) lowerCAmelCase : Dict = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , snake_case__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , snake_case__ , atol=1e-4 ) ) # verify postprocessing lowerCAmelCase : Tuple = image_processor.post_process_object_detection( snake_case__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCAmelCase : Dict = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(snake_case__ ) lowerCAmelCase : int = [75, 75, 17, 63, 17] lowerCAmelCase : str = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(snake_case__ ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , snake_case__ , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , snake_case__ ) self.assertTrue(torch.allclose(results['boxes'][0, :] , snake_case__ ) )
646
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( _A : Dict ) -> int: """simple docstring""" lowerCAmelCase : Tuple = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any: """simple docstring""" lowerCAmelCase : str = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase : Optional[int] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') ) return token def __UpperCamelCase ( ) -> int: """simple docstring""" lowerCAmelCase : List[Any] = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]: """simple docstring""" lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json' lowerCAmelCase : Tuple = 10_00 lowerCAmelCase : str = 'huggingface/label-files' lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase : List[str] = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCAmelCase : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase : Any = [2, 2, 20] lowerCAmelCase : List[str] = [3, 12, 16] lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24] lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A ) lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCAmelCase : Optional[Any] = image_size lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) ) lowerCAmelCase : str = OrderedDict() lowerCAmelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A ) lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A ) lowerCAmelCase : List[str] = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _lowerCAmelCase : str = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
646
1
import numpy as np class A : def __init__( self: Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ =(0, 0) UpperCAmelCase_ =None UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 def __eq__( self: List[Any] , _lowerCAmelCase: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.position == cell.position def lowerCAmelCase__ ( self: int ) -> Optional[int]: '''simple docstring''' print(self.position ) class A : def __init__( self: Dict , _lowerCAmelCase: Optional[int]=(5, 5) ) -> Dict: '''simple docstring''' UpperCAmelCase_ =np.zeros(_lowerCAmelCase ) UpperCAmelCase_ =world_size[0] UpperCAmelCase_ =world_size[1] def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' print(self.w ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =[ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase_ =cell.position[0] UpperCAmelCase_ =cell.position[1] UpperCAmelCase_ =[] for n in neughbour_cord: UpperCAmelCase_ =current_x + n[0] UpperCAmelCase_ =current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase_ =Cell() UpperCAmelCase_ =(x, y) UpperCAmelCase_ =cell neighbours.append(_lowerCAmelCase ) return neighbours def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase_ =[] UpperCAmelCase_ =[] _open.append(lowercase__ ) while _open: UpperCAmelCase_ =np.argmin([n.f for n in _open] ) UpperCAmelCase_ =_open[min_f] _closed.append(_open.pop(lowercase__ ) ) if current == goal: break for n in world.get_neigbours(lowercase__ ): for c in _closed: if c == n: continue UpperCAmelCase_ =current.g + 1 UpperCAmelCase_ , UpperCAmelCase_ =n.position UpperCAmelCase_ , UpperCAmelCase_ =goal.position UpperCAmelCase_ =(ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase_ =n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowercase__ ) UpperCAmelCase_ =[] while current.parent is not None: path.append(current.position ) UpperCAmelCase_ =current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __lowercase : List[Any] =Gridworld() # Start position and goal __lowercase : List[Any] =Cell() __lowercase : List[Any] =(0, 0) __lowercase : str =Cell() __lowercase : Tuple =(4, 4) print(f"""path from {start.position} to {goal.position}""") __lowercase : str =astar(world, start, goal) # Just for visual reasons. for i in s: __lowercase : Optional[int] =1 print(world.w)
54
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = None , **snake_case_ , ) -> Dict: '''simple docstring''' super().__init__( snake_case_ , split=snake_case_ , features=snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ , streaming=snake_case_ , num_proc=snake_case_ , **snake_case_ , ) __lowercase = path_or_paths if isinstance(snake_case_ , snake_case_ ) else {self.split: path_or_paths} __lowercase = Text( cache_dir=snake_case_ , data_files=snake_case_ , features=snake_case_ , **snake_case_ , ) def A ( self ) -> int: '''simple docstring''' if self.streaming: __lowercase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowercase = None __lowercase = None __lowercase = None __lowercase = None self.builder.download_and_prepare( download_config=snake_case_ , download_mode=snake_case_ , verification_mode=snake_case_ , base_path=snake_case_ , num_proc=self.num_proc , ) __lowercase = self.builder.as_dataset( split=self.split , verification_mode=snake_case_ , in_memory=self.keep_in_memory ) return dataset
639
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets a_ = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" a_ = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" a_ = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = False, ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): snake_case_ : int = new_id # turn into Numpy arrays snake_case_ : int = np.array(__SCREAMING_SNAKE_CASE ) snake_case_ : Any = np.array(__SCREAMING_SNAKE_CASE ) if reduce_labels: snake_case_ : str = 2_5_5 snake_case_ : str = label - 1 snake_case_ : List[Any] = 2_5_5 snake_case_ : Union[str, Any] = label != ignore_index snake_case_ : Dict = np.not_equal(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = pred_label[mask] snake_case_ : Any = np.array(__SCREAMING_SNAKE_CASE )[mask] snake_case_ : List[str] = pred_label[pred_label == label] snake_case_ : int = np.histogram(__SCREAMING_SNAKE_CASE, bins=__SCREAMING_SNAKE_CASE, range=(0, num_labels - 1) )[0] snake_case_ : Tuple = np.histogram(__SCREAMING_SNAKE_CASE, bins=__SCREAMING_SNAKE_CASE, range=(0, num_labels - 1) )[0] snake_case_ : List[Any] = np.histogram(__SCREAMING_SNAKE_CASE, bins=__SCREAMING_SNAKE_CASE, range=(0, num_labels - 1) )[0] snake_case_ : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = False, ): """simple docstring""" snake_case_ : List[Any] = np.zeros((num_labels,), dtype=np.floataa ) snake_case_ : List[str] = np.zeros((num_labels,), dtype=np.floataa ) snake_case_ : int = np.zeros((num_labels,), dtype=np.floataa ) snake_case_ : int = np.zeros((num_labels,), dtype=np.floataa ) for result, gt_seg_map in zip(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): snake_case_ : int = intersect_and_union( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = False, ): """simple docstring""" snake_case_ : Tuple = total_intersect_and_union( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) # compute metrics snake_case_ : Union[str, Any] = {} snake_case_ : int = total_area_intersect.sum() / total_area_label.sum() snake_case_ : str = total_area_intersect / total_area_union snake_case_ : Union[str, Any] = total_area_intersect / total_area_label snake_case_ : List[str] = np.nanmean(__SCREAMING_SNAKE_CASE ) snake_case_ : str = np.nanmean(__SCREAMING_SNAKE_CASE ) snake_case_ : Any = all_acc snake_case_ : Union[str, Any] = iou snake_case_ : Tuple = acc if nan_to_num is not None: snake_case_ : str = {metric: np.nan_to_num(__SCREAMING_SNAKE_CASE, nan=__SCREAMING_SNAKE_CASE ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def snake_case__ ( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), }) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ): snake_case_ : Optional[Any] = mean_iou( results=lowercase_ , gt_seg_maps=lowercase_ , num_labels=lowercase_ , ignore_index=lowercase_ , nan_to_num=lowercase_ , label_map=lowercase_ , reduce_labels=lowercase_ , ) return iou_result
710
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a_ = "src/diffusers" a_ = "." # This is to make sure the diffusers module imported is the one in the repo. a_ = importlib.util.spec_from_file_location( "diffusers", os.path.join(DIFFUSERS_PATH, "__init__.py"), submodule_search_locations=[DIFFUSERS_PATH], ) a_ = spec.loader.load_module() def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" return line.startswith(__SCREAMING_SNAKE_CASE ) or len(__SCREAMING_SNAKE_CASE ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$", __SCREAMING_SNAKE_CASE ) is not None def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Optional[int] = object_name.split("." ) snake_case_ : Dict = 0 # First let's find the module where our object lives. snake_case_ : int = parts[i] while i < len(__SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE, f'{module}.py' ) ): i += 1 if i < len(__SCREAMING_SNAKE_CASE ): snake_case_ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE, parts[i] ) if i >= len(__SCREAMING_SNAKE_CASE ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(__SCREAMING_SNAKE_CASE, f'{module}.py' ), "r", encoding="utf-8", newline="\n" ) as f: snake_case_ : str = f.readlines() # Now let's find the class / func in the code! snake_case_ : Any = "" snake_case_ : Optional[Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(__SCREAMING_SNAKE_CASE ) and re.search(rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__SCREAMING_SNAKE_CASE ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). snake_case_ : Union[str, Any] = line_index while line_index < len(__SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index], __SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case_ : Dict = lines[start_index:line_index] return "".join(__SCREAMING_SNAKE_CASE ) a_ = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)") a_ = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)") a_ = re.compile(R"<FILL\s+[^>]*>") def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : str = code.split("\n" ) snake_case_ : Union[str, Any] = 0 while idx < len(__SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__SCREAMING_SNAKE_CASE ): return re.search(r"^(\s*)\S", lines[idx] ).groups()[0] return "" def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Optional[Any] = len(get_indent(__SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: snake_case_ : Optional[Any] = f'class Bla:\n{code}' snake_case_ : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=__SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = black.format_str(__SCREAMING_SNAKE_CASE, mode=__SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ : Optional[Any] = style_docstrings_in_code(__SCREAMING_SNAKE_CASE ) return result[len("class Bla:\n" ) :] if has_indent else result def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE=False ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE, "r", encoding="utf-8", newline="\n" ) as f: snake_case_ : List[Any] = f.readlines() snake_case_ : str = [] snake_case_ : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__SCREAMING_SNAKE_CASE ): snake_case_ : Union[str, Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = search.groups() snake_case_ : int = find_code_in_diffusers(__SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = get_indent(__SCREAMING_SNAKE_CASE ) snake_case_ : Dict = line_index + 1 if indent == theoretical_indent else line_index + 2 snake_case_ : Dict = theoretical_indent snake_case_ : Tuple = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. snake_case_ : str = True while line_index < len(__SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(__SCREAMING_SNAKE_CASE ): break snake_case_ : Dict = lines[line_index] snake_case_ : List[Any] = _should_continue(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) and re.search(f'^{indent}# End copy', __SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case_ : Optional[int] = lines[start_index:line_index] snake_case_ : Optional[Any] = "".join(__SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies snake_case_ : int = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__SCREAMING_SNAKE_CASE ) is None] snake_case_ : Dict = "\n".join(__SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(__SCREAMING_SNAKE_CASE ) > 0: snake_case_ : Union[str, Any] = replace_pattern.replace("with", "" ).split("," ) snake_case_ : Optional[Any] = [_re_replace_pattern.search(__SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue snake_case_ , snake_case_ , snake_case_ : Optional[Any] = pattern.groups() snake_case_ : Optional[int] = re.sub(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": snake_case_ : List[Any] = re.sub(obja.lower(), obja.lower(), __SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = re.sub(obja.upper(), obja.upper(), __SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line snake_case_ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) snake_case_ : Optional[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: snake_case_ : List[str] = lines[:start_index] + [theoretical_code] + lines[line_index:] snake_case_ : List[str] = start_index + 1 if overwrite and len(__SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(__SCREAMING_SNAKE_CASE, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(__SCREAMING_SNAKE_CASE ) return diffs def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE = False ): """simple docstring""" snake_case_ : List[str] = glob.glob(os.path.join(__SCREAMING_SNAKE_CASE, "**/*.py" ), recursive=__SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = [] for filename in all_files: snake_case_ : Tuple = is_copy_consistent(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(__SCREAMING_SNAKE_CASE ) > 0: snake_case_ : str = "\n".join(__SCREAMING_SNAKE_CASE ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") a_ = parser.parse_args() check_copies(args.fix_and_overwrite)
92
0
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : List[Any] = WavaVecaPhonemeCTCTokenizer a__ : int = False def _lowercase (self : Optional[Any] ): super().setUp() UpperCAmelCase_ = ( "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " "əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ " "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(" " ) UpperCAmelCase_ = dict(zip(__a , range(len(__a ) ) ) ) UpperCAmelCase_ = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) def _lowercase (self : List[str] , __a : Dict , __a : str=False , __a : Union[str, Any]=20 , __a : str=5 ): UpperCAmelCase_ = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__a )) for i in range(len(__a ) )] UpperCAmelCase_ = list(filter(lambda __a : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__a ) , __a ) ) if max_length is not None and len(__a ) > max_length: UpperCAmelCase_ = toks[:max_length] if min_length is not None and len(__a ) < min_length and len(__a ) > 0: while len(__a ) < min_length: UpperCAmelCase_ = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase_ = [t[0] for t in toks] # Ensure consistency UpperCAmelCase_ = tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) if " " not in output_txt and len(__a ) > 1: UpperCAmelCase_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__a ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__a ) ) if with_prefix_space: UpperCAmelCase_ = " " + output_txt UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) return output_txt, output_ids def _lowercase (self : Optional[Any] , **__a : Optional[int] ): kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) # check adding a single token tokenizer.add_tokens("xxx" ) UpperCAmelCase_ = tokenizer("m xxx ɪ" , do_phonemize=__a ).input_ids self.assertEqual(__a , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"] ) UpperCAmelCase_ = tokenizer("m aaa ɪ ccc" , do_phonemize=__a ).input_ids self.assertEqual(__a , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa UpperCAmelCase_ = tokenizer("maɪ c" , do_phonemize=__a ).input_ids self.assertEqual(__a , [3, 200] ) # mai should be <unk> (=3) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) UpperCAmelCase_ = "Hello how are you" UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" ) self.assertEqual(__a , "h ə l oʊ h aʊ ɑːɹ j uː" ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) UpperCAmelCase_ = "Hello how are you" UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" ) self.assertEqual(tokenizer(__a ).input_ids , tokenizer(__a , do_phonemize=__a ).input_ids ) def _lowercase (self : int ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) UpperCAmelCase_ = "Hello how are you" UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" ) UpperCAmelCase_ = tokenizer.decode(tokenizer(__a ).input_ids ) self.assertEqual(__a , __a ) def _lowercase (self : List[str] ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) UpperCAmelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] UpperCAmelCase_ = tokenizer.decode(sample_ids[0] ) UpperCAmelCase_ = tokenizer.batch_decode(__a ) self.assertEqual(__a , batch_tokens[0] ) self.assertEqual(__a , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) def _lowercase (self : str ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) UpperCAmelCase_ = "Hello how are you" UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" ) self.assertEqual(__a , "h ə l oʊ | h aʊ | ɑːɹ | j uː |" ) def _lowercase (self : Any ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) UpperCAmelCase_ = "Hello how are you" UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" ) self.assertEqual(tokenizer(__a ).input_ids , tokenizer(__a , do_phonemize=__a ).input_ids ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off UpperCAmelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter UpperCAmelCase_ = tokenizer.decode(sample_ids[0] ) UpperCAmelCase_ = tokenizer.batch_decode(__a ) self.assertEqual(__a , batch_tokens[0] ) self.assertEqual(__a , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) # decode with no word_del_token filter UpperCAmelCase_ = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__a ) UpperCAmelCase_ = tokenizer.batch_decode(__a , filter_word_delimiter_token=__a ) self.assertEqual(__a , batch_tokens[0] ) self.assertEqual(__a , ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"] ) def _lowercase (self : str ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) UpperCAmelCase_ = "Hello how are you" UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" ) UpperCAmelCase_ = tokenizer.decode(tokenizer(__a ).input_ids , filter_word_delimiter_token=__a ) self.assertEqual(__a , __a ) def _lowercase (self : Any ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) UpperCAmelCase_ = "Hello how are you" UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" ) UpperCAmelCase_ = tokenizer.decode(tokenizer(__a ).input_ids , filter_word_delimiter_token=__a ) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |" )] ).strip() , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token=__a ) UpperCAmelCase_ = "Hello how are you" UpperCAmelCase_ = tokenizer(__a , phonemizer_lang="en-us" ).input_ids UpperCAmelCase_ = tokenizer(__a , phonemizer_lang="fr-fr" ).input_ids self.assertNotEqual(__a , __a ) UpperCAmelCase_ = tokenizer.decode(__a ) UpperCAmelCase_ = tokenizer.decode(__a ) self.assertEqual(__a , "h ə l oʊ h aʊ ɑːɹ j uː" ) self.assertEqual(__a , "ɛ l o h aʊ a ʁ j u" ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) UpperCAmelCase_ = "Hello how Are you" UpperCAmelCase_ = "hello how are you" UpperCAmelCase_ = tokenizer(__a ).input_ids UpperCAmelCase_ = tokenizer(__a ).input_ids self.assertEqual(__a , __a ) def _lowercase (self : Tuple ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) tokenizer.add_tokens(["!", "?"] ) tokenizer.add_special_tokens({"cls_token": "$$$"} ) # fmt: off UpperCAmelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on UpperCAmelCase_ = tokenizer.batch_decode(__a ) self.assertEqual(__a , ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"] ) @staticmethod def _lowercase (__a : Tuple , __a : Optional[int] ): UpperCAmelCase_ = [d[key] for d in offsets] return retrieved_list def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.get_tokenizer(word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" UpperCAmelCase_ = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on UpperCAmelCase_ = tokenizer.decode(__a , output_char_offsets=__a , filter_word_delimiter_token=__a ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("text" in outputs ) self.assertTrue("char_offsets" in outputs ) self.assertTrue(isinstance(__a , __a ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"] , "char" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "char" ) , ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "start_offset" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "end_offset" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.get_tokenizer(word_delimiter_token="|" ) def check_list_tuples_equal(__a : str , __a : List[Any] ): self.assertTrue(isinstance(__a , __a ) ) self.assertTrue(isinstance(outputs_list[0] , __a ) ) # transform list to ModelOutput UpperCAmelCase_ = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["text"] , outputs_batch_a["text"] ) def recursive_check(__a : Optional[Any] , __a : Optional[Any] ): if isinstance(__a , __a ): [recursive_check(__a , __a ) for la, la in zip(__a , __a )] self.assertEqual(__a , __a ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"] , outputs_batch_a["char_offsets"] ) # fmt: off UpperCAmelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char UpperCAmelCase_ = tokenizer.batch_decode(__a , output_char_offsets=__a ) UpperCAmelCase_ = [tokenizer.decode(__a , output_char_offsets=__a ) for ids in sample_ids] check_list_tuples_equal(__a , __a ) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes" ) def _lowercase (self : Union[str, Any] ): pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes" ) def _lowercase (self : Union[str, Any] ): pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency" ) def _lowercase (self : Optional[Any] ): pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing" ) def _lowercase (self : Optional[Any] ): pass def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = len(__a ) self.assertNotEqual(__a , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCAmelCase_ = ["aaaaa bbbbbb", "cccccccccdddddddd"] UpperCAmelCase_ = tokenizer.add_tokens(__a ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = len(__a ) self.assertNotEqual(__a , 0 ) self.assertEqual(__a , __a ) self.assertEqual(__a , len(__a ) ) self.assertEqual(__a , all_size + len(__a ) ) UpperCAmelCase_ = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__a ) self.assertGreaterEqual(len(__a ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) UpperCAmelCase_ = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} UpperCAmelCase_ = tokenizer.add_special_tokens(__a ) UpperCAmelCase_ = tokenizer.vocab_size UpperCAmelCase_ = len(__a ) self.assertNotEqual(__a , 0 ) self.assertEqual(__a , __a ) self.assertEqual(__a , len(__a ) ) self.assertEqual(__a , all_size_a + len(__a ) ) UpperCAmelCase_ = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__a ) self.assertGreaterEqual(len(__a ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def _lowercase (self : List[str] ): pass @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def _lowercase (self : int ): pass def _lowercase (self : Any ): # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. UpperCAmelCase_ = self.get_tokenizers(fast=__a , do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase_ = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] UpperCAmelCase_ = tokenizer.convert_tokens_to_string(__a ) self.assertIsInstance(output["text"] , __a )
78
'''simple docstring''' import random def lowerCAmelCase_ ( __A : int ): '''simple docstring''' snake_case: Optional[int] = num - 1 snake_case: List[str] = 0 while s % 2 == 0: snake_case: Union[str, Any] = s // 2 t += 1 for _ in range(5 ): snake_case: Union[str, Any] = random.randrange(2 , num - 1 ) snake_case: Tuple = pow(__A , __A , __A ) if v != 1: snake_case: Union[str, Any] = 0 while v != (num - 1): if i == t - 1: return False else: snake_case: int = i + 1 snake_case: int = (v**2) % num return True def lowerCAmelCase_ ( __A : int ): '''simple docstring''' if num < 2: return False snake_case: List[Any] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__A ) def lowerCAmelCase_ ( __A : int = 10_24 ): '''simple docstring''' while True: snake_case: Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__A ): return num if __name__ == "__main__": __UpperCAmelCase = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
329
0
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowercase__ : int ): __lowercase : Optional[int] = parent def snake_case ( self : Dict ): return {} def snake_case__ ( ) ->Dict: """simple docstring""" __lowercase : Any = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" __lowercase : Tuple = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = MarkupLMFeatureExtractor if is_bsa_available() else None def snake_case ( self : List[str] ): __lowercase : Tuple = MarkupLMFeatureExtractionTester(self ) @property def snake_case ( self : Union[str, Any] ): return self.feature_extract_tester.prepare_feat_extract_dict() def snake_case ( self : Union[str, Any] ): # Initialize feature_extractor __lowercase : Tuple = self.feature_extraction_class() # Test not batched input __lowercase : Optional[Any] = get_html_strings()[0] __lowercase : Any = feature_extractor(lowercase__ ) # fmt: off __lowercase : str = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] __lowercase : int = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes , lowercase__ ) self.assertEqual(encoding.xpaths , lowercase__ ) # Test batched __lowercase : Any = get_html_strings() __lowercase : int = feature_extractor(lowercase__ ) # fmt: off __lowercase : Dict = expected_nodes + [["My First Heading", "My first paragraph."]] __lowercase : Union[str, Any] = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowercase__ ) self.assertEqual(encoding.xpaths , lowercase__ )
712
"""simple docstring""" from __future__ import annotations import math def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->list: """simple docstring""" if len(_lowerCamelCase ) != 2 or len(a[0] ) != 2 or len(_lowerCamelCase ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) __lowercase : Tuple = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->Dict: """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_lowerCamelCase ) ) ] def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->Tuple: """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_lowerCamelCase ) ) ] def snake_case__ ( _lowerCamelCase ) ->tuple[list, list, list, list]: """simple docstring""" if len(_lowerCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) __lowercase : Tuple = len(_lowerCamelCase ) __lowercase : Any = matrix_length // 2 __lowercase : Dict = [[a[i][j] for j in range(_lowerCamelCase, _lowerCamelCase )] for i in range(_lowerCamelCase )] __lowercase : List[str] = [ [a[i][j] for j in range(_lowerCamelCase, _lowerCamelCase )] for i in range(_lowerCamelCase, _lowerCamelCase ) ] __lowercase : Union[str, Any] = [[a[i][j] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase )] __lowercase : List[str] = [[a[i][j] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase, _lowerCamelCase )] return top_left, top_right, bot_left, bot_right def snake_case__ ( _lowerCamelCase ) ->tuple[int, int]: """simple docstring""" return len(_lowerCamelCase ), len(matrix[0] ) def snake_case__ ( _lowerCamelCase ) ->None: """simple docstring""" print("\n".join(str(_lowerCamelCase ) for line in matrix ) ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->list: """simple docstring""" if matrix_dimensions(_lowerCamelCase ) == (2, 2): return default_matrix_multiplication(_lowerCamelCase, _lowerCamelCase ) __lowercase ,__lowercase ,__lowercase ,__lowercase : Optional[Any] = split_matrix(_lowerCamelCase ) __lowercase ,__lowercase ,__lowercase ,__lowercase : Any = split_matrix(_lowerCamelCase ) __lowercase : str = actual_strassen(_lowerCamelCase, matrix_subtraction(_lowerCamelCase, _lowerCamelCase ) ) __lowercase : Dict = actual_strassen(matrix_addition(_lowerCamelCase, _lowerCamelCase ), _lowerCamelCase ) __lowercase : Union[str, Any] = actual_strassen(matrix_addition(_lowerCamelCase, _lowerCamelCase ), _lowerCamelCase ) __lowercase : Any = actual_strassen(_lowerCamelCase, matrix_subtraction(_lowerCamelCase, _lowerCamelCase ) ) __lowercase : List[Any] = actual_strassen(matrix_addition(_lowerCamelCase, _lowerCamelCase ), matrix_addition(_lowerCamelCase, _lowerCamelCase ) ) __lowercase : Optional[int] = actual_strassen(matrix_subtraction(_lowerCamelCase, _lowerCamelCase ), matrix_addition(_lowerCamelCase, _lowerCamelCase ) ) __lowercase : Optional[Any] = actual_strassen(matrix_subtraction(_lowerCamelCase, _lowerCamelCase ), matrix_addition(_lowerCamelCase, _lowerCamelCase ) ) __lowercase : str = matrix_addition(matrix_subtraction(matrix_addition(_lowerCamelCase, _lowerCamelCase ), _lowerCamelCase ), _lowerCamelCase ) __lowercase : Dict = matrix_addition(_lowerCamelCase, _lowerCamelCase ) __lowercase : int = matrix_addition(_lowerCamelCase, _lowerCamelCase ) __lowercase : Union[str, Any] = matrix_subtraction(matrix_subtraction(matrix_addition(_lowerCamelCase, _lowerCamelCase ), _lowerCamelCase ), _lowerCamelCase ) # construct the new matrix from our 4 quadrants __lowercase : Optional[int] = [] for i in range(len(_lowerCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(_lowerCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->list: """simple docstring""" if matrix_dimensions(_lowerCamelCase )[1] != matrix_dimensions(_lowerCamelCase )[0]: __lowercase : int = ( "Unable to multiply these matrices, please check the dimensions.\n" F'Matrix A: {matrixa}\n' F'Matrix B: {matrixa}' ) raise Exception(_lowerCamelCase ) __lowercase : List[Any] = matrix_dimensions(_lowerCamelCase ) __lowercase : Tuple = matrix_dimensions(_lowerCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowercase : int = max(*_lowerCamelCase, *_lowerCamelCase ) __lowercase : Any = int(math.pow(2, math.ceil(math.loga(_lowerCamelCase ) ) ) ) __lowercase : Dict = matrixa __lowercase : str = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, _lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1], _lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1], _lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __lowercase : Dict = actual_strassen(_lowerCamelCase, _lowerCamelCase ) # Removing the additional zeros for i in range(0, _lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1], _lowerCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": __A : int = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] __A : Union[str, Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
281
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_a ) class a_ (_a ): __lowerCAmelCase : str = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __lowerCAmelCase : ClassVar[Features] = Features({"""audio""": Audio()} ) __lowerCAmelCase : ClassVar[Features] = Features({"""labels""": ClassLabel} ) __lowerCAmelCase : str = "audio" __lowerCAmelCase : str = "labels" def __UpperCamelCase ( self , snake_case_ ): if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , snake_case_ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) _lowerCAmelCase : str = copy.deepcopy(self ) _lowerCAmelCase : str = self.label_schema.copy() _lowerCAmelCase : List[str] = features[self.label_column] _lowerCAmelCase : List[str] = label_schema return task_template @property def __UpperCamelCase ( self ): return { self.audio_column: "audio", self.label_column: "labels", }
384
'''simple docstring''' import os from datetime import datetime as dt from github import Github UpperCamelCase_ = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def _UpperCAmelCase ( ) -> List[Any]: _lowerCAmelCase : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) _lowerCAmelCase : Any = g.get_repo("""huggingface/diffusers""" ) _lowerCAmelCase : Tuple = repo.get_issues(state="""open""" ) for issue in open_issues: _lowerCAmelCase : Union[str, Any] = sorted(issue.get_comments() , key=lambda _lowerCamelCase : i.created_at , reverse=_lowerCamelCase ) _lowerCAmelCase : List[Any] = comments[0] if len(_lowerCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
384
1
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list: if len(_UpperCAmelCase ) < 2: return collection def circle_sort_util(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : Union[str, Any] = False if low == high: return swapped lowerCamelCase__ : Dict = low lowerCamelCase__ : int = high while left < right: if collection[left] > collection[right]: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = ( collection[right], collection[left], ) lowerCamelCase__ : Union[str, Any] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowerCamelCase__ , lowerCamelCase__ : Tuple = ( collection[right + 1], collection[left], ) lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Union[str, Any] = low + int((high - low) / 2 ) lowerCamelCase__ : Any = circle_sort_util(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = circle_sort_util(_UpperCAmelCase , mid + 1 , _UpperCAmelCase ) return swapped or left_swap or right_swap lowerCamelCase__ : int = True while is_not_sorted is True: lowerCamelCase__ : List[str] = circle_sort_util(_UpperCAmelCase , 0 , len(_UpperCAmelCase ) - 1 ) return collection if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() _UpperCAmelCase : Dict = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
188
_UpperCAmelCase : str = """Tobias Carryer""" from time import time class lowerCAmelCase : def __init__( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : str=int(time() ) ) -> Optional[int]: # noqa: B008 lowerCamelCase__ : List[Any] = multiplier lowerCamelCase__ : Tuple = increment lowerCamelCase__ : int = modulo lowerCamelCase__ : Any = seed def A_ ( self : Optional[int] ) -> List[Any]: lowerCamelCase__ : List[str] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. _UpperCAmelCase : List[Any] = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31) while True: print(lcg.next_number())
188
1
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __snake_case ( _lowercase ,_lowercase = "cpu" ,_lowercase = None ): """simple docstring""" UpperCamelCase = torch.load(_lowercase ,map_location=_lowercase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_lowercase ,torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) UpperCamelCase = v.half() if save_path is None: # overwrite src_path UpperCamelCase = src_path torch.save(_lowercase ,_lowercase ) if __name__ == "__main__": fire.Fire(convert)
34
from ... import PretrainedConfig lowercase : Dict = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : List[str] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowercase : Union[str, Any] = 'nezha' def __init__( self , __UpperCamelCase=2_11_28 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=64 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=0.1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , **__UpperCamelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) __UpperCamelCase : int = vocab_size __UpperCamelCase : int = hidden_size __UpperCamelCase : Tuple = num_hidden_layers __UpperCamelCase : Tuple = num_attention_heads __UpperCamelCase : Optional[int] = hidden_act __UpperCamelCase : List[str] = intermediate_size __UpperCamelCase : Union[str, Any] = hidden_dropout_prob __UpperCamelCase : Tuple = attention_probs_dropout_prob __UpperCamelCase : Optional[int] = max_position_embeddings __UpperCamelCase : str = max_relative_position __UpperCamelCase : List[str] = type_vocab_size __UpperCamelCase : Dict = initializer_range __UpperCamelCase : Optional[int] = layer_norm_eps __UpperCamelCase : int = classifier_dropout __UpperCamelCase : List[str] = use_cache
327
0
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class __lowerCAmelCase ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 , lowerCAmelCase__=False , **lowerCAmelCase__ ): super().__init__(**_A ) _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : Optional[Any] = d_embed _UpperCAmelCase : Optional[Any] = d_proj _UpperCAmelCase : Any = cutoffs + [vocab_size] _UpperCAmelCase : List[Any] = [0] + self.cutoffs _UpperCAmelCase : Optional[int] = div_val _UpperCAmelCase : Optional[int] = self.cutoffs[0] _UpperCAmelCase : Dict = len(self.cutoffs ) - 1 _UpperCAmelCase : Optional[int] = self.shortlist_size + self.n_clusters _UpperCAmelCase : Dict = keep_order _UpperCAmelCase : int = [] _UpperCAmelCase : Dict = [] def snake_case_ (self , lowerCAmelCase__ ): if self.n_clusters > 0: _UpperCAmelCase : Union[str, Any] = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=_A , name="""cluster_weight""" ) _UpperCAmelCase : Tuple = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=_A , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: _UpperCAmelCase : Tuple = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=_A , name=F"out_projs_._{i}" , ) self.out_projs.append(_A ) else: self.out_projs.append(_A ) _UpperCAmelCase : Optional[Any] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=_A , name=F"out_layers_._{i}_._weight" , ) _UpperCAmelCase : Optional[Any] = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=_A , name=F"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase : Tuple = self.d_embed // (self.div_val**i) _UpperCAmelCase : str = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=_A , name=F"out_projs_._{i}" ) self.out_projs.append(_A ) _UpperCAmelCase : List[str] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=_A , name=F"out_layers_._{i}_._weight" , ) _UpperCAmelCase : Tuple = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=_A , name=F"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) super().build(_A ) @staticmethod def snake_case_ (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): _UpperCAmelCase : Tuple = x if proj is not None: _UpperCAmelCase : str = tf.einsum("""ibd,ed->ibe""" , _A , _A ) return tf.einsum("""ibd,nd->ibn""" , _A , _A ) + b @staticmethod def snake_case_ (lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = shape_list(_A ) _UpperCAmelCase : Dict = tf.range(lp_size[0] , dtype=target.dtype ) _UpperCAmelCase : str = tf.stack([r, target] , 1 ) return tf.gather_nd(_A , _A ) def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=True , lowerCAmelCase__=False ): _UpperCAmelCase : Any = 0 if self.n_clusters == 0: _UpperCAmelCase : Any = self._logit(_A , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: _UpperCAmelCase : Union[str, Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_A , logits=_A ) _UpperCAmelCase : Optional[Any] = tf.nn.log_softmax(_A , axis=-1 ) else: _UpperCAmelCase : str = shape_list(_A ) _UpperCAmelCase : int = [] _UpperCAmelCase : str = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: _UpperCAmelCase : Optional[int] = (target >= l_idx) & (target < r_idx) _UpperCAmelCase : List[str] = tf.where(_A ) _UpperCAmelCase : List[Any] = tf.boolean_mask(_A , _A ) - l_idx if self.div_val == 1: _UpperCAmelCase : Union[str, Any] = self.out_layers[0][0][l_idx:r_idx] _UpperCAmelCase : List[Any] = self.out_layers[0][1][l_idx:r_idx] else: _UpperCAmelCase : Optional[Any] = self.out_layers[i][0] _UpperCAmelCase : List[str] = self.out_layers[i][1] if i == 0: _UpperCAmelCase : Dict = tf.concat([cur_W, self.cluster_weight] , 0 ) _UpperCAmelCase : Optional[Any] = tf.concat([cur_b, self.cluster_bias] , 0 ) _UpperCAmelCase : Tuple = self._logit(_A , _A , _A , self.out_projs[0] ) _UpperCAmelCase : Tuple = tf.nn.log_softmax(_A ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: _UpperCAmelCase : Any = tf.boolean_mask(_A , _A ) _UpperCAmelCase : List[Any] = self._gather_logprob(_A , _A ) else: _UpperCAmelCase : Dict = self._logit(_A , _A , _A , self.out_projs[i] ) _UpperCAmelCase : List[Any] = tf.nn.log_softmax(_A ) _UpperCAmelCase : Optional[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster _UpperCAmelCase : int = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_A ) if target is not None: _UpperCAmelCase : List[Any] = tf.boolean_mask(_A , _A ) _UpperCAmelCase : List[Any] = tf.boolean_mask(_A , _A ) _UpperCAmelCase : Tuple = self._gather_logprob(_A , _A ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_A , -cur_logprob , shape_list(_A ) ) _UpperCAmelCase : Optional[Any] = tf.concat(_A , axis=-1 ) if target is not None: if return_mean: _UpperCAmelCase : Any = tf.reduce_mean(_A ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_A ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_A , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
714
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') lowerCAmelCase_ : int = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) snake_case : bool = field( default=__a , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) snake_case : bool = field( default=__a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class __lowerCAmelCase : snake_case : Optional[str] = field(default=__a , metadata={"""help""": """The input training data file (a text file)."""} ) snake_case : Optional[str] = field( default=__a , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) snake_case : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) snake_case : Optional[int] = field( default=__a , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) snake_case : Optional[int] = field( default=__a , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case : bool = field( default=__a , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) snake_case : Optional[int] = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) snake_case : Optional[int] = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def snake_case_ (self ): if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __lowerCAmelCase : snake_case : PreTrainedTokenizerBase snake_case : Union[bool, str, PaddingStrategy] = True snake_case : Optional[int] = None snake_case : Optional[int] = None def __call__(self , lowerCAmelCase__ ): _UpperCAmelCase : List[str] = """label""" if """label""" in features[0].keys() else """labels""" _UpperCAmelCase : Union[str, Any] = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : Union[str, Any] = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["""input_ids"""] ) _UpperCAmelCase : Any = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : Dict = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten _UpperCAmelCase : Optional[int] = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : Any = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _UpperCAmelCase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Any = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : List[str] = data_args.validation_file _UpperCAmelCase : Optional[Any] = data_args.train_file.split(""".""" )[-1] _UpperCAmelCase : List[Any] = load_dataset( lowerCAmelCase_ , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCAmelCase : Tuple = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Tuple = [f"ending{i}" for i in range(4 )] _UpperCAmelCase : str = """sent1""" _UpperCAmelCase : List[str] = """sent2""" if data_args.max_seq_length is None: _UpperCAmelCase : str = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) _UpperCAmelCase : Any = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _UpperCAmelCase : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCAmelCase_ ): _UpperCAmelCase : Any = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Optional[Any] = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(lowerCAmelCase_ ) ] # Flatten out _UpperCAmelCase : Dict = list(chain(*lowerCAmelCase_ ) ) _UpperCAmelCase : Dict = list(chain(*lowerCAmelCase_ ) ) # Tokenize _UpperCAmelCase : Optional[int] = tokenizer( lowerCAmelCase_ , lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) _UpperCAmelCase : List[Any] = raw_datasets["""train"""] if data_args.max_train_samples is not None: _UpperCAmelCase : Tuple = min(len(lowerCAmelCase_ ) , data_args.max_train_samples ) _UpperCAmelCase : int = train_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): _UpperCAmelCase : Optional[int] = train_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) _UpperCAmelCase : Any = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: _UpperCAmelCase : List[Any] = min(len(lowerCAmelCase_ ) , data_args.max_eval_samples ) _UpperCAmelCase : Tuple = eval_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): _UpperCAmelCase : Tuple = eval_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator _UpperCAmelCase : List[str] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCAmelCase_ ): _UpperCAmelCase , _UpperCAmelCase : List[str] = eval_predictions _UpperCAmelCase : Dict = np.argmax(lowerCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Union[str, Any] = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : Optional[Any] = last_checkpoint _UpperCAmelCase : str = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : List[str] = train_result.metrics _UpperCAmelCase : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) _UpperCAmelCase : Any = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""train""" , lowerCAmelCase_ ) trainer.save_metrics("""train""" , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def __A ( lowerCAmelCase_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
156
0
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def snake_case_ ( __snake_case : Optional[int]) -> Any: if is_torch_version('''<''' , '''2.0.0''') or not hasattr(SCREAMING_SNAKE_CASE_ , '''_dynamo'''): return False return isinstance(SCREAMING_SNAKE_CASE_ , torch._dynamo.eval_frame.OptimizedModule) def snake_case_ ( __snake_case : List[str] , __snake_case : bool = True) -> Optional[int]: lowerCAmelCase_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCAmelCase_ = is_compiled_module(SCREAMING_SNAKE_CASE_) if is_compiled: lowerCAmelCase_ = model lowerCAmelCase_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowerCAmelCase_ = model.module if not keep_fpaa_wrapper: lowerCAmelCase_ = getattr(SCREAMING_SNAKE_CASE_ , '''forward''') lowerCAmelCase_ = model.__dict__.pop('''_original_forward''' , SCREAMING_SNAKE_CASE_) if original_forward is not None: while hasattr(SCREAMING_SNAKE_CASE_ , '''__wrapped__'''): lowerCAmelCase_ = forward.__wrapped__ if forward == original_forward: break lowerCAmelCase_ = forward if getattr(SCREAMING_SNAKE_CASE_ , '''_converted_to_transformer_engine''' , SCREAMING_SNAKE_CASE_): convert_model(SCREAMING_SNAKE_CASE_ , to_transformer_engine=SCREAMING_SNAKE_CASE_) if is_compiled: lowerCAmelCase_ = model lowerCAmelCase_ = compiled_model return model def snake_case_ ( ) -> Any: PartialState().wait_for_everyone() def snake_case_ ( __snake_case : List[Any] , __snake_case : List[Any]) -> List[Any]: if PartialState().distributed_type == DistributedType.TPU: xm.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif PartialState().local_process_index == 0: torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @contextmanager def snake_case_ ( **__snake_case : Optional[int]) -> Union[str, Any]: for key, value in kwargs.items(): lowerCAmelCase_ = str(SCREAMING_SNAKE_CASE_) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def snake_case_ ( __snake_case : Any) -> Optional[Any]: if not hasattr(SCREAMING_SNAKE_CASE_ , '''__qualname__''') and not hasattr(SCREAMING_SNAKE_CASE_ , '''__name__'''): lowerCAmelCase_ = getattr(SCREAMING_SNAKE_CASE_ , '''__class__''' , SCREAMING_SNAKE_CASE_) if hasattr(SCREAMING_SNAKE_CASE_ , '''__qualname__'''): return obj.__qualname__ if hasattr(SCREAMING_SNAKE_CASE_ , '''__name__'''): return obj.__name__ return str(SCREAMING_SNAKE_CASE_) def snake_case_ ( __snake_case : List[str] , __snake_case : List[Any]) -> str: for key, value in source.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowerCAmelCase_ = destination.setdefault(SCREAMING_SNAKE_CASE_ , {}) merge_dicts(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else: lowerCAmelCase_ = value return destination def snake_case_ ( __snake_case : int = None) -> Union[str, Any]: if port is None: lowerCAmelCase_ = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s: return s.connect_ex(('''localhost''', port)) == 0
274
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' for char in word: lowercase__ : int = ord(SCREAMING_SNAKE_CASE_ ) if not _is_chinese_char(SCREAMING_SNAKE_CASE_ ): return 0 return 1 def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' lowercase__ : Optional[Any] = set() for token in tokens: lowercase__ : Any = len(SCREAMING_SNAKE_CASE_ ) > 1 and is_chinese(SCREAMING_SNAKE_CASE_ ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[int] = list(SCREAMING_SNAKE_CASE_ ) return word_list def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : set() ): '''simple docstring''' if not chinese_word_set: return bert_tokens lowercase__ : int = max([len(SCREAMING_SNAKE_CASE_ ) for w in chinese_word_set] ) lowercase__ : Union[str, Any] = bert_tokens lowercase__ , lowercase__ : int = 0, len(SCREAMING_SNAKE_CASE_ ) while start < end: lowercase__ : Any = True if is_chinese(bert_word[start] ): lowercase__ : Dict = min(end - start , SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ , 1 , -1 ): lowercase__ : List[str] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowercase__ : Optional[Any] = '##' + bert_word[j] lowercase__ : Optional[int] = start + i lowercase__ : Union[str, Any] = False break if single_word: start += 1 return bert_word def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : LTP , SCREAMING_SNAKE_CASE_ : BertTokenizer ): '''simple docstring''' lowercase__ : Any = [] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 100 ): lowercase__ : List[str] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['cws'] ).cws lowercase__ : Tuple = [get_chinese_word(SCREAMING_SNAKE_CASE_ ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE_ ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) lowercase__ : str = [] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 100 ): lowercase__ : Any = bert_tokenizer(lines[i : i + 100] , add_special_tokens=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) lowercase__ : Union[str, Any] = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ : int = [] for id in input_ids: lowercase__ : List[Any] = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) input_tokens.append(SCREAMING_SNAKE_CASE_ ) lowercase__ : Dict = add_sub_symbol(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ : int = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE_ ): if token[:2] == "##": lowercase__ : Any = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE_ ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE_ ) ): ref_id.append(SCREAMING_SNAKE_CASE_ ) ref_ids.append(SCREAMING_SNAKE_CASE_ ) assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) return ref_ids def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: lowercase__ : str = f.readlines() lowercase__ : Optional[Any] = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase__ : List[str] = LTP(args.ltp ) # faster in GPU device lowercase__ : List[Any] = BertTokenizer.from_pretrained(args.bert ) lowercase__ : Tuple = prepare_ref(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: lowercase__ : Dict = [json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) snake_case_ = parser.parse_args() main(args)
164
0
"""simple docstring""" def snake_case ( UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ) -> List[str]: if height >= 1: move_tower(height - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) move_disk(UpperCamelCase__ , UpperCamelCase__ ) move_tower(height - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def snake_case ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ) -> Tuple: print("""moving disk from""" , UpperCamelCase__ , """to""" , UpperCamelCase__ ) def snake_case ( ) -> Dict: lowerCamelCase : Dict = int(input("""Height of hanoi: """ ).strip() ) move_tower(UpperCamelCase__ , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
705
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class A__ : """simple docstring""" def __init__( self: List[str] , __a: List[str] , __a: Dict=13 , __a: Tuple=7 , __a: Dict=False , __a: str=True , __a: List[Any]=False , __a: Dict=True , __a: Any=33 , __a: Optional[Any]=32 , __a: List[Any]=5 , __a: Any=4 , __a: Dict=37 , __a: str="gelu" , __a: str=0.1 , __a: int=0.1 , __a: Optional[int]=512 , __a: List[Any]=16 , __a: int=2 , __a: int=0.02 , __a: Optional[int]=3 , __a: str=4 , __a: Tuple=None , )-> Tuple: lowerCamelCase : Union[str, Any] = parent lowerCamelCase : Tuple = batch_size lowerCamelCase : Any = seq_length lowerCamelCase : Any = is_training lowerCamelCase : Tuple = use_input_mask lowerCamelCase : int = use_token_type_ids lowerCamelCase : List[str] = use_labels lowerCamelCase : Optional[int] = vocab_size lowerCamelCase : Tuple = hidden_size lowerCamelCase : List[str] = num_hidden_layers lowerCamelCase : Optional[int] = num_attention_heads lowerCamelCase : Optional[Any] = intermediate_size lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : Union[str, Any] = hidden_dropout_prob lowerCamelCase : Optional[Any] = attention_probs_dropout_prob lowerCamelCase : Any = max_position_embeddings lowerCamelCase : str = type_vocab_size lowerCamelCase : List[Any] = type_sequence_label_size lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : Union[str, Any] = num_labels lowerCamelCase : Optional[Any] = num_choices lowerCamelCase : Any = scope def a__ ( self: Optional[int] )-> List[Any]: lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Dict = None if self.use_input_mask: lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase : Any = None lowerCamelCase : int = None lowerCamelCase : Union[str, Any] = None if self.use_labels: lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase : List[str] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self: Tuple )-> Union[str, Any]: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a__ ( self: List[Any] , __a: List[str] , __a: str , __a: Tuple , __a: List[str] , __a: List[str] , __a: str )-> int: lowerCamelCase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() lowerCamelCase : int = model(__a , attention_mask=__a ) lowerCamelCase : str = model(__a ) lowerCamelCase : Optional[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self: int , __a: Union[str, Any] , __a: Optional[int] , __a: List[str] , __a: str , __a: List[str] , __a: Tuple )-> int: lowerCamelCase : str = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() lowerCamelCase : List[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self: List[str] , __a: List[Any] , __a: List[str] , __a: int , __a: Union[str, Any] , __a: List[Any] , __a: Tuple )-> List[str]: lowerCamelCase : Tuple = self.num_labels lowerCamelCase : Dict = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() lowerCamelCase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self: Optional[int] )-> Optional[int]: lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Tuple = config_and_inputs lowerCamelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__ ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : Any =False snake_case__ : Dict =( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) snake_case__ : Dict =() snake_case__ : Optional[int] =( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : Any =True def a__ ( self: Optional[int] )-> Optional[int]: lowerCamelCase : Optional[Any] = EsmModelTester(self ) lowerCamelCase : Any = ConfigTester(self , config_class=__a , hidden_size=37 ) def a__ ( self: List[Any] )-> Optional[Any]: self.config_tester.run_common_tests() def a__ ( self: int )-> Optional[Any]: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def a__ ( self: Tuple )-> Any: lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase : Tuple = type self.model_tester.create_and_check_model(*__a ) def a__ ( self: List[str] )-> Tuple: lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def a__ ( self: int )-> Optional[Any]: lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def a__ ( self: Any )-> List[Any]: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : int = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def a__ ( self: str )-> List[str]: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase : Union[str, Any] = EsmEmbeddings(config=__a ) lowerCamelCase : List[str] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) lowerCamelCase : Union[str, Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) lowerCamelCase : Optional[Any] = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def a__ ( self: Optional[int] )-> int: lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()[0] lowerCamelCase : Any = EsmEmbeddings(config=__a ) lowerCamelCase : Dict = torch.empty(2 , 4 , 30 ) lowerCamelCase : List[Any] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] lowerCamelCase : Any = torch.as_tensor([expected_single_positions, expected_single_positions] ) lowerCamelCase : List[str] = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def a__ ( self: Any )-> Optional[Any]: pass @unittest.skip("""Esm does not support embedding resizing""" ) def a__ ( self: Dict )-> Dict: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a__ ( self: List[str] )-> Dict: pass @require_torch class A__ ( __lowercase): """simple docstring""" @slow def a__ ( self: Any )-> Union[str, Any]: with torch.no_grad(): lowerCamelCase : Union[str, Any] = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() lowerCamelCase : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase : Tuple = model(__a )[0] lowerCamelCase : Dict = 33 lowerCamelCase : List[str] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) lowerCamelCase : Tuple = torch.tensor( [[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) ) @slow def a__ ( self: Dict )-> str: with torch.no_grad(): lowerCamelCase : Any = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() lowerCamelCase : Optional[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase : Any = model(__a )[0] # compare the actual values for a slice. lowerCamelCase : Tuple = torch.tensor( [[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
42
0
'''simple docstring''' import random from typing import Any def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" for _ in range(len(lowerCamelCase_ ) ): lowerCAmelCase__ : Dict = random.randint(0 , len(lowerCamelCase_ ) - 1 ) lowerCAmelCase__ : Union[str, Any] = random.randint(0 , len(lowerCamelCase_ ) - 1 ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": snake_case = [0, 1, 2, 3, 4, 5, 6, 7] snake_case = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
378
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case = logging.get_logger(__name__) snake_case = {"""vocab_file""": """spiece.model"""} snake_case = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } snake_case = { """AI-Sweden/gpt-sw3-126m""": 20_48, """AI-Sweden/gpt-sw3-350m""": 20_48, """AI-Sweden/gpt-sw3-1.6b""": 20_48, """AI-Sweden/gpt-sw3-6.7b""": 20_48, """AI-Sweden/gpt-sw3-20b""": 20_48, } class lowerCAmelCase ( UpperCamelCase_ ): A_ : Dict = VOCAB_FILES_NAMES A_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , a__ : Any , a__ : Dict=False , a__ : List[Any]=False , a__ : Dict=False , a__ : Any=None , a__ : Tuple=None , a__ : str=None , a__ : Optional[int]=None , a__ : Optional[Dict[str, Any]] = None , **a__ : Union[str, Any] , ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ : List[str] = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) lowerCAmelCase__ : Dict = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCAmelCase__ : Tuple = "<|endoftext|>" if eos_token is None else eos_token lowerCAmelCase__ : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCAmelCase__ : List[str] = unk_token if pad_token is None else pad_token lowerCAmelCase__ : Any = eos_token if bos_token is None else bos_token else: lowerCAmelCase__ : str = "<pad>" if pad_token is None else pad_token lowerCAmelCase__ : Union[str, Any] = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , pad_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) lowerCAmelCase__ : Dict = do_lower_case lowerCAmelCase__ : Union[str, Any] = remove_space lowerCAmelCase__ : Any = keep_accents lowerCAmelCase__ : List[str] = vocab_file lowerCAmelCase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a__ ) # Used for whitespace normalization in input texts # fmt : off lowerCAmelCase__ : List[str] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCAmelCase__ : Dict = re.compile( F'''[{''.join(map(a__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]''' ) def __getstate__( self : str ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.__dict__.copy() lowerCAmelCase__ : List[str] = None return state def __setstate__( self : List[Any] , a__ : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Tuple = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ : int = {} lowerCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _A ( self : str ): '''simple docstring''' return len(self.sp_model ) def _A ( self : List[str] , a__ : str ): '''simple docstring''' lowerCAmelCase__ : str = self.non_printing_characters_re.sub("" , a__ ) # Normalize whitespaces lowerCAmelCase__ : int = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization lowerCAmelCase__ : Tuple = unicodedata.normalize("NFC" , a__ ) return text def _A ( self : str , a__ : str , **a__ : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.preprocess_text(a__ ) return self.sp_model.encode(a__ , out_type=a__ ) def _A ( self : List[str] , a__ : str ): '''simple docstring''' return self.sp_model.PieceToId(a__ ) def _A ( self : Optional[int] , a__ : int ): '''simple docstring''' return self.sp_model.IdToPiece(a__ ) @staticmethod def _A ( a__ : str ): '''simple docstring''' return out_string def _A ( self : int , a__ : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Tuple = "" lowerCAmelCase__ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Dict = [] else: current_sub_tokens.append(a__ ) lowerCAmelCase__ : Dict = False out_string += self.sp_model.decode(a__ ) return out_string def _A ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _A ( self : str , a__ : str , a__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase__ : List[str] = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , "wb" ) as fi: lowerCAmelCase__ : int = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,) def _A ( self : List[Any] , a__ : Union[str, List[str]] , a__ : Union[str, bool] = False ): '''simple docstring''' if isinstance(a__ , a__ ): lowerCAmelCase__ : int = self.preprocess_text(a__ ) lowerCAmelCase__ : Dict = self.sp_model.encode(a__ ) else: lowerCAmelCase__ : Union[str, Any] = [self.preprocess_text(a__ ) for t in text] lowerCAmelCase__ : Optional[int] = self.sp_model.encode(a__ ) if return_tensors is True or return_tensors == "pt": lowerCAmelCase__ : Union[str, Any] = torch.tensor(a__ ) return token_ids def _A ( self : Dict , a__ : Union[int, List[int]] ): '''simple docstring''' return self.sp_model.decode(a__ ) def _A ( self : int , a__ : "Conversation" ): '''simple docstring''' lowerCAmelCase__ : Any = [F'''User: {text}''' if is_user else F'''Bot: {text}''' for is_user, text in conversation.iter_texts()] lowerCAmelCase__ : List[str] = ( F'''{self.eos_token}{self.bos_token}''' + F'''{self.bos_token}'''.join(a__ ) + F'''{self.bos_token}Bot:''' ) return self.encode(text=a__ )
378
1
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=18 , lowerCAmelCase=30 , lowerCAmelCase=4_00 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=False , ): """simple docstring""" snake_case = size if size is not None else {'''height''': 20, '''width''': 20} snake_case = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} snake_case = parent snake_case = batch_size snake_case = num_channels snake_case = image_size snake_case = min_resolution snake_case = max_resolution snake_case = do_resize snake_case = size snake_case = do_center_crop snake_case = crop_size snake_case = do_normalize snake_case = image_mean snake_case = image_std snake_case = do_reduce_labels def snake_case ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCAmelCase__ ( ) -> Any: """simple docstring""" snake_case = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) snake_case = Image.open(dataset[0]['file'] ) snake_case = Image.open(dataset[1]['file'] ) return image, map def lowerCAmelCase__ ( ) -> Tuple: """simple docstring""" snake_case = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) snake_case = Image.open(ds[0]['file'] ) snake_case = Image.open(ds[1]['file'] ) snake_case = Image.open(ds[2]['file'] ) snake_case = Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Dict = BeitImageProcessor if is_vision_available() else None def snake_case ( self ): """simple docstring""" snake_case = BeitImageProcessingTester(self ) @property def snake_case ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): """simple docstring""" snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'center_crop' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase__ , 'image_std' ) ) def snake_case ( self ): """simple docstring""" snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels , UpperCamelCase__ ) snake_case = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=UpperCamelCase__ ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels , UpperCamelCase__ ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case = image_processing(UpperCamelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def snake_case ( self ): """simple docstring""" snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case = image_processing(UpperCamelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def snake_case ( self ): """simple docstring""" snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case = image_processing(UpperCamelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def snake_case ( self ): """simple docstring""" snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) snake_case = [] for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input snake_case = image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 ) # Test batched snake_case = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 ) # Test not batched input (PIL images) snake_case = prepare_semantic_single_inputs() snake_case = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 ) # Test batched input (PIL images) snake_case = prepare_semantic_batch_inputs() snake_case = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 ) def snake_case ( self ): """simple docstring""" snake_case = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 snake_case = prepare_semantic_single_inputs() snake_case = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 1_50 ) snake_case = True snake_case = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_55 )
711
"""simple docstring""" import os import string import sys SCREAMING_SNAKE_CASE__ = 1 << 8 SCREAMING_SNAKE_CASE__ = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } SCREAMING_SNAKE_CASE__ = KEYMAP["up"] SCREAMING_SNAKE_CASE__ = KEYMAP["left"] if sys.platform == "win32": SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): SCREAMING_SNAKE_CASE__ = ord(str(i)) def lowerCAmelCase__ ( ) -> List[Any]: """simple docstring""" if os.name == "nt": import msvcrt snake_case = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_UpperCamelCase ) == 0: # Read the keystroke snake_case = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_UpperCamelCase ) if ord(_UpperCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) snake_case = chr(KEYMAP['esc'] ) except KeyError: snake_case = cha[1] else: snake_case = ch.decode(_UpperCamelCase ) else: snake_case = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case = sys.stdin.fileno() snake_case = termios.tcgetattr(_UpperCamelCase ) try: tty.setraw(_UpperCamelCase ) snake_case = sys.stdin.read(1 ) finally: termios.tcsetattr(_UpperCamelCase , termios.TCSADRAIN , _UpperCamelCase ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: """simple docstring""" snake_case = get_raw_chars() if ord(_UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_UpperCamelCase ) == KEYMAP["esc"]: snake_case = get_raw_chars() if ord(_UpperCamelCase ) == KEYMAP["mod_int"]: snake_case = get_raw_chars() if ord(_UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_UpperCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
104
0
import argparse import os import re _lowercase : List[Any] ='''src/diffusers''' # Pattern that looks at the indentation in a line. _lowercase : Optional[Any] =re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. _lowercase : Optional[Any] =re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. _lowercase : Tuple =re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _lowercase : Union[str, Any] =re.compile(R'''\[([^\]]+)\]''') def A__ ( lowercase: Any ) -> Tuple: A : Optional[int] =_re_indent.search(lowercase ) return "" if search is None else search.groups()[0] def A__ ( lowercase: str, lowercase: List[str]="", lowercase: List[Any]=None, lowercase: str=None ) -> Union[str, Any]: A : Tuple =0 A : List[str] =code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(lowercase ): index += 1 A : int =['\n'.join(lines[:index] )] else: A : Optional[Any] =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). A : str =[lines[index]] index += 1 while index < len(lowercase ) and (end_prompt is None or not lines[index].startswith(lowercase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(lowercase ) ) if index < len(lowercase ) - 1: A : Dict =[lines[index + 1]] index += 1 else: A : Union[str, Any] =[] else: blocks.append('\n'.join(lowercase ) ) A : Union[str, Any] =[lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase ) > 0: blocks.append('\n'.join(lowercase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase ): blocks.append('\n'.join(lines[index:] ) ) return blocks def A__ ( lowercase: str ) -> Optional[Any]: def _inner(lowercase: Union[str, Any] ): return key(lowercase ).lower().replace('_', '' ) return _inner def A__ ( lowercase: int, lowercase: Optional[int]=None ) -> int: # If no key is provided, we use a noop. def noop(lowercase: List[str] ): return x if key is None: A : Dict =noop # Constants are all uppercase, they go first. A : Any =[obj for obj in objects if key(lowercase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. A : Union[str, Any] =[obj for obj in objects if key(lowercase )[0].isupper() and not key(lowercase ).isupper()] # Functions begin with a lowercase, they go last. A : Dict =[obj for obj in objects if not key(lowercase )[0].isupper()] A : Optional[Any] =ignore_underscore(lowercase ) return sorted(lowercase, key=lowercase ) + sorted(lowercase, key=lowercase ) + sorted(lowercase, key=lowercase ) def A__ ( lowercase: List[Any] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(lowercase: Dict ): A : Any =match.groups()[0] if "," not in imports: return F'[{imports}]' A : str =[part.strip().replace('"', '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A : int =keys[:-1] return "[" + ", ".join([F'"{k}"' for k in sort_objects(lowercase )] ) + "]" A : Any =import_statement.split('\n' ) if len(lowercase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. A : Union[str, Any] =2 if lines[1].strip() == '[' else 1 A : List[Any] =[(i, _re_strip_line.search(lowercase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] A : Dict =sort_objects(lowercase, key=lambda lowercase : x[1] ) A : Optional[int] =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: A : int =_re_bracket_content.sub(_replace, lines[1] ) else: A : Any =[part.strip().replace('"', '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A : str =keys[:-1] A : Optional[Any] =get_indent(lines[1] ) + ', '.join([F'"{k}"' for k in sort_objects(lowercase )] ) return "\n".join(lowercase ) else: # Finally we have to deal with imports fitting on one line A : Any =_re_bracket_content.sub(_replace, lowercase ) return import_statement def A__ ( lowercase: List[str], lowercase: List[Any]=True ) -> List[Any]: with open(lowercase, 'r' ) as f: A : Optional[Any] =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 A : Optional[Any] =split_code_in_indented_blocks( lowercase, start_prompt='_import_structure = {', end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1, len(lowercase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. A : Dict =main_blocks[block_idx] A : Any =block.split('\n' ) # Get to the start of the imports. A : List[Any] =0 while line_idx < len(lowercase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: A : List[str] =len(lowercase ) else: line_idx += 1 if line_idx >= len(lowercase ): continue # Ignore beginning and last line: they don't contain anything. A : Any ='\n'.join(block_lines[line_idx:-1] ) A : str =get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. A : Union[str, Any] =split_code_in_indented_blocks(lowercase, indent_level=lowercase ) # We have two categories of import key: list or _import_structure[key].append/extend A : List[Any] =_re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. A : List[str] =[(pattern.search(lowercase ).groups()[0] if pattern.search(lowercase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. A : Tuple =[(i, key) for i, key in enumerate(lowercase ) if key is not None] A : Union[str, Any] =[x[0] for x in sorted(lowercase, key=lambda lowercase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. A : List[Any] =0 A : Optional[int] =[] for i in range(len(lowercase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: A : Dict =sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowercase ) count += 1 # And we put our main block back together with its first and last line. A : Tuple ='\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase ): if check_only: return True else: print(F'Overwriting {file}.' ) with open(lowercase, 'w' ) as f: f.write('\n'.join(lowercase ) ) def A__ ( lowercase: Optional[Any]=True ) -> List[str]: A : str =[] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: A : List[str] =sort_imports(os.path.join(lowercase, '__init__.py' ), check_only=lowercase ) if result: A : Optional[Any] =[os.path.join(lowercase, '__init__.py' )] if len(lowercase ) > 0: raise ValueError(F'Would overwrite {len(lowercase )} files, run `make style`.' ) if __name__ == "__main__": _lowercase : str =argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') _lowercase : str =parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
305
_lowercase : str =''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _lowercase : List[str] =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _lowercase : int ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
305
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowercase_ = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } lowercase_ = { 'google/realm-cc-news-pretrained-embedder': 5_1_2, 'google/realm-cc-news-pretrained-encoder': 5_1_2, 'google/realm-cc-news-pretrained-scorer': 5_1_2, 'google/realm-cc-news-pretrained-openqa': 5_1_2, 'google/realm-orqa-nq-openqa': 5_1_2, 'google/realm-orqa-nq-reader': 5_1_2, 'google/realm-orqa-wq-openqa': 5_1_2, 'google/realm-orqa-wq-reader': 5_1_2, } lowercase_ = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = RealmTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ) -> str: '''simple docstring''' super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) _lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase =getattr(lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase =do_lower_case _lowercase =strip_accents _lowercase =tokenize_chinese_chars _lowercase =normalizer_class(**lowerCAmelCase ) _lowercase =do_lower_case def A__ ( self , lowerCAmelCase , **lowerCAmelCase ) -> Optional[int]: '''simple docstring''' _lowercase =PaddingStrategy.MAX_LENGTH _lowercase =text _lowercase =kwargs.pop('text_pair' , lowerCAmelCase ) _lowercase =kwargs.pop('return_tensors' , lowerCAmelCase ) _lowercase ={ 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(lowerCAmelCase ): if batch_text_pair is not None: _lowercase =batch_text_pair[idx] else: _lowercase =None _lowercase =super().__call__(lowerCAmelCase , lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) _lowercase =encoded_candidates.get('input_ids' ) _lowercase =encoded_candidates.get('attention_mask' ) _lowercase =encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(lowerCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowerCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowerCAmelCase ) _lowercase ={key: item for key, item in output_data.items() if len(lowerCAmelCase ) != 0} return BatchEncoding(lowerCAmelCase , tensor_type=lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ) -> Tuple: '''simple docstring''' _lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> List[int]: '''simple docstring''' _lowercase =[self.sep_token_id] _lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' _lowercase =self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
380
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def a ( A__ : Tuple ) -> Any: """simple docstring""" _lowercase =model.config _lowercase =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) _lowercase =MBartConfig( is_decoder=A__ , is_encoder_decoder=A__ , add_cross_attention=A__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=A__ , add_final_layer_norm=A__ , ) return encoder_config, decoder_config def a ( A__ : Union[str, Any] ) -> str: """simple docstring""" if "encoder.model" in name: _lowercase =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: _lowercase =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: _lowercase =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: _lowercase ='encoder.' + name if "attn.proj" in name: _lowercase =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: _lowercase =name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowercase =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowercase =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowercase =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": _lowercase ='encoder.layernorm.weight' if name == "encoder.norm.bias": _lowercase ='encoder.layernorm.bias' return name def a ( A__ : Optional[Any] , A__ : List[Any] ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): _lowercase =orig_state_dict.pop(A__ ) if "qkv" in key: _lowercase =key.split('.' ) _lowercase =int(key_split[3] ) _lowercase =int(key_split[5] ) _lowercase =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowercase =val[:dim, :] _lowercase =val[dim : dim * 2, :] _lowercase =val[-dim:, :] else: _lowercase =val[:dim] _lowercase =val[dim : dim * 2] _lowercase =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _lowercase =val return orig_state_dict def a ( A__ : str , A__ : List[str]=None , A__ : List[Any]=False ) -> List[str]: """simple docstring""" _lowercase =DonutModel.from_pretrained(A__ ).eval() # load HuggingFace model _lowercase , _lowercase =get_configs(A__ ) _lowercase =DonutSwinModel(A__ ) _lowercase =MBartForCausalLM(A__ ) _lowercase =VisionEncoderDecoderModel(encoder=A__ , decoder=A__ ) model.eval() _lowercase =original_model.state_dict() _lowercase =convert_state_dict(A__ , A__ ) model.load_state_dict(A__ ) # verify results on scanned document _lowercase =load_dataset('hf-internal-testing/example-documents' ) _lowercase =dataset['test'][0]['image'].convert('RGB' ) _lowercase =XLMRobertaTokenizerFast.from_pretrained(A__ , from_slow=A__ ) _lowercase =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) _lowercase =DonutProcessor(A__ , A__ ) _lowercase =processor(A__ , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _lowercase ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' _lowercase ='When is the coffee break?' _lowercase =task_prompt.replace('{user_input}' , A__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _lowercase ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _lowercase ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _lowercase ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _lowercase ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _lowercase ='hello world' else: raise ValueError('Model name not supported' ) _lowercase =original_model.decoder.tokenizer(A__ , add_special_tokens=A__ , return_tensors='pt' )[ 'input_ids' ] _lowercase =original_model.encoder.model.patch_embed(A__ ) _lowercase , _lowercase =model.encoder.embeddings(A__ ) assert torch.allclose(A__ , A__ , atol=1e-3 ) # verify encoder hidden states _lowercase =original_model.encoder(A__ ) _lowercase =model.encoder(A__ ).last_hidden_state assert torch.allclose(A__ , A__ , atol=1e-2 ) # verify decoder hidden states _lowercase =original_model(A__ , A__ , A__ ).logits _lowercase =model(A__ , decoder_input_ids=A__ ).logits assert torch.allclose(A__ , A__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) processor.save_pretrained(A__ ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) lowercase_ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
380
1
def snake_case_ () -> List[str]: return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] __UpperCAmelCase = generate_large_matrix() __UpperCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def snake_case_ (__A : list[list[int]] ) -> List[Any]: assert all(row == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for row in grid ) assert all(list(_UpperCAmelCase ) == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for col in zip(*_UpperCAmelCase ) ) def snake_case_ (__A : list[int] ) -> Tuple: __lowerCAmelCase : Dict = 0 __lowerCAmelCase : Dict = len(_UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __lowerCAmelCase : Optional[int] = (left + right) // 2 __lowerCAmelCase : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __lowerCAmelCase : Any = mid + 1 else: __lowerCAmelCase : Union[str, Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_UpperCAmelCase ) def snake_case_ (__A : list[list[int]] ) -> Optional[int]: __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : Optional[Any] = len(grid[0] ) for i in range(len(_UpperCAmelCase ) ): __lowerCAmelCase : List[str] = find_negative_index(grid[i][:bound] ) total += bound return (len(_UpperCAmelCase ) * len(grid[0] )) - total def snake_case_ (__A : list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def snake_case_ (__A : list[list[int]] ) -> Dict: __lowerCAmelCase : Any = 0 for row in grid: for i, number in enumerate(_UpperCAmelCase ): if number < 0: total += len(_UpperCAmelCase ) - i break return total def snake_case_ () -> str: from timeit import timeit print("""Running benchmarks""" ) __lowerCAmelCase : List[Any] = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __lowerCAmelCase : Tuple = timeit(f'''{func}(grid=grid)''' , setup=_UpperCAmelCase , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
651
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping __UpperCamelCase : Optional[Any] = tuple[int, int] class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = vertices lowerCAmelCase = { (min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase = weight def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Graph({min(self.vertices )} , {} ) lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase = edge lowerCAmelCase = weight subgraph.add_edge(_snake_case , _snake_case ) return subgraph def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ): lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 with open(_UpperCAmelCase ) as f: lowerCAmelCase = f.read().strip().split('\n' ) lowerCAmelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowerCAmelCase = graph.prims_algorithm() lowerCAmelCase = sum(graph.edges.values() ) lowerCAmelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
4
0
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" ,[ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] ,) def _A ( A ,A ) -> Optional[Any]: lowercase = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" ,"w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" ,"w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" ,"w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) lowercase = DatasetInfosDict.from_directory(lowerCAmelCase__ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 4_2 @pytest.mark.parametrize( "dataset_info" ,[ DatasetInfo(), DatasetInfo( description="foo" ,features=Features({"a": Value("int32" )} ) ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train"}] ,download_size=4_2 ,), ] ,) def _A ( A ,A ) -> Dict: lowercase = str(lowerCAmelCase__ ) dataset_info.write_to_directory(lowerCAmelCase__ ) lowercase = DatasetInfo.from_directory(lowerCAmelCase__ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCAmelCase__ ,"dataset_info.json" ) ) def _A ( ) -> Dict: lowercase = DatasetInfo( description="foo" ,citation="bar" ,homepage="https://foo.bar" ,license="CC0" ,features=Features({"a": Value("int32" )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train", "num_examples": 4_2}] ,download_checksums={} ,download_size=1_3_3_7 ,post_processing_size=4_4_2 ,dataset_size=1_2_3_4 ,size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 ,) lowercase = dataset_info._to_yaml_dict() assert sorted(lowerCAmelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) ) lowercase = yaml.safe_dump(lowerCAmelCase__ ) lowercase = yaml.safe_load(lowerCAmelCase__ ) assert dataset_info_yaml_dict == reloaded def _A ( ) -> Any: lowercase = DatasetInfo() lowercase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" ,[ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" ,features=Features({"a": Value("int32" )} ) ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train"}] ,download_size=4_2 ,) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=4_2 ), "v2": DatasetInfo(dataset_size=1_3_3_7 ), } ), ] ,) def _A ( A ,A ) -> Dict: lowercase = str(lowerCAmelCase__ ) dataset_infos_dict.write_to_directory(lowerCAmelCase__ ) lowercase = DatasetInfosDict.from_directory(lowerCAmelCase__ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): lowercase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml lowercase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCAmelCase__ ,"README.md" ) )
706
'''simple docstring''' def _A ( A ,A ,A ,A ,A ) -> int: if index == number_of_items: return 0 lowercase : Optional[int] = 0 lowercase : Union[str, Any] = 0 lowercase : Dict = knapsack(A ,A ,A ,A ,index + 1 ) if weights[index] <= max_weight: lowercase : List[str] = values[index] + knapsack( A ,A ,A ,max_weight - weights[index] ,index + 1 ) return max(A ,A ) if __name__ == "__main__": import doctest doctest.testmod()
425
0
def _lowerCamelCase ( __lowerCamelCase ) -> list: '''simple docstring''' UpperCAmelCase__ : List[Any] = [0] * len(__lowerCamelCase ) for i in range(1 , len(__lowerCamelCase ) ): # use last results for better performance - dynamic programming UpperCAmelCase__ : List[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCAmelCase__ : List[str] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCAmelCase__ : int = j return prefix_result def _lowerCamelCase ( __lowerCamelCase ) -> int: '''simple docstring''' return max(prefix_function(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
79
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[str] = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
602
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} UpperCAmelCase_ : List[Any] = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } UpperCAmelCase_ : List[Any] = { "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( )-> Optional[Any]: """simple docstring""" A__ = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) A__ = bs[:] A__ = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 A__ = [chr(_A ) for n in cs] return dict(zip(_A , _A ) ) def UpperCamelCase ( _A : int )-> List[str]: """simple docstring""" A__ = set() A__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ = char return pairs class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : Dict = VOCAB_FILES_NAMES lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__="replace" , UpperCAmelCase__="<s>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="<s>" , UpperCAmelCase__="<unk>" , UpperCAmelCase__="<pad>" , UpperCAmelCase__="<mask>" , UpperCAmelCase__=False , **UpperCAmelCase__ , ): A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else bos_token A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else eos_token A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else sep_token A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else cls_token A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else unk_token A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , **UpperCAmelCase__ , ) with open(UpperCAmelCase__ , encoding="utf-8" ) as vocab_handle: A__ = json.load(UpperCAmelCase__ ) A__ = {v: k for k, v in self.encoder.items()} A__ = errors # how to handle errors in decoding A__ = bytes_to_unicode() A__ = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase__ , encoding="utf-8" ) as merges_handle: A__ = merges_handle.read().split("\n" )[1:-1] A__ = [tuple(merge.split() ) for merge in bpe_merges] A__ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) A__ = {} A__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A__ = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __A ( self ): return len(self.encoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , UpperCAmelCase__ ): if token in self.cache: return self.cache[token] A__ = tuple(UpperCAmelCase__ ) A__ = get_pairs(UpperCAmelCase__ ) if not pairs: return token while True: A__ = min(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : self.bpe_ranks.get(UpperCAmelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ = bigram A__ = [] A__ = 0 while i < len(UpperCAmelCase__ ): try: A__ = word.index(UpperCAmelCase__ , UpperCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ = j if word[i] == first and i < len(UpperCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ = tuple(UpperCAmelCase__ ) A__ = new_word if len(UpperCAmelCase__ ) == 1: break else: A__ = get_pairs(UpperCAmelCase__ ) A__ = " ".join(UpperCAmelCase__ ) A__ = word return word def __A ( self , UpperCAmelCase__ ): A__ = [] for token in re.findall(self.pat , UpperCAmelCase__ ): A__ = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase__ ).split(" " ) ) return bpe_tokens def __A ( self , UpperCAmelCase__ ): return self.encoder.get(UpperCAmelCase__ , self.encoder.get(self.unk_token ) ) def __A ( self , UpperCAmelCase__ ): return self.decoder.get(UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ ): A__ = "".join(UpperCAmelCase__ ) A__ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) + "\n" ) A__ = 0 with open(UpperCAmelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) A__ = token_index writer.write(" ".join(UpperCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ = [self.cls_token_id] A__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] + ([0] * len(UpperCAmelCase__ )) + [1] def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=False , **UpperCAmelCase__ ): A__ = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase__ ) > 0 and not text[0].isspace()): A__ = " " + text return (text, kwargs)
232
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : List[Any] = FlaxAutoencoderKL @property def __A ( self ): A__ = 4 A__ = 3 A__ = (32, 32) A__ = jax.random.PRNGKey(0 ) A__ = jax.random.uniform(UpperCAmelCase__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __A ( self ): A__ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } A__ = self.dummy_input return init_dict, inputs_dict
232
1
'''simple docstring''' class UpperCamelCase__ : # Public class to implement a graph """simple docstring""" def __init__( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : str = row UpperCAmelCase : Optional[Any] = col UpperCAmelCase : List[str] = graph def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Any = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase : int = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase : int = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , snake_case ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , snake_case ) def A_ ( self ): # And finally, count all islands. '''simple docstring''' UpperCAmelCase : Tuple = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase : List[Any] = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(snake_case , snake_case , snake_case ) count += 1 return count
679
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' def get_masked_lm_array(__magic_name__ ): UpperCAmelCase : Tuple = F"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase : List[str] = tf.train.load_variable(__magic_name__ , __magic_name__ ) if "kernel" in name: UpperCAmelCase : str = array.transpose() return torch.from_numpy(__magic_name__ ) def get_encoder_array(__magic_name__ ): UpperCAmelCase : List[Any] = F"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase : Optional[Any] = tf.train.load_variable(__magic_name__ , __magic_name__ ) if "kernel" in name: UpperCAmelCase : str = array.transpose() return torch.from_numpy(__magic_name__ ) def get_encoder_layer_array(__magic_name__ , __magic_name__ ): UpperCAmelCase : Union[str, Any] = F"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase : int = tf.train.load_variable(__magic_name__ , __magic_name__ ) if "kernel" in name: UpperCAmelCase : Optional[int] = array.transpose() return torch.from_numpy(__magic_name__ ) def get_encoder_attention_layer_array(__magic_name__ , __magic_name__ , __magic_name__ ): UpperCAmelCase : Tuple = F"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase : List[str] = tf.train.load_variable(__magic_name__ , __magic_name__ ) UpperCAmelCase : int = array.reshape(__magic_name__ ) if "kernel" in name: UpperCAmelCase : Optional[Any] = array.transpose() return torch.from_numpy(__magic_name__ ) print(F"Loading model based on config from {config_path}..." ) UpperCAmelCase : Optional[Any] = BertConfig.from_json_file(__magic_name__ ) UpperCAmelCase : Optional[Any] = BertForMaskedLM(__magic_name__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): UpperCAmelCase : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention UpperCAmelCase : BertSelfAttention = layer.attention.self UpperCAmelCase : List[Any] = get_encoder_attention_layer_array( __magic_name__ , "_query_dense/kernel" , self_attn.query.weight.data.shape ) UpperCAmelCase : Tuple = get_encoder_attention_layer_array( __magic_name__ , "_query_dense/bias" , self_attn.query.bias.data.shape ) UpperCAmelCase : int = get_encoder_attention_layer_array( __magic_name__ , "_key_dense/kernel" , self_attn.key.weight.data.shape ) UpperCAmelCase : Optional[int] = get_encoder_attention_layer_array( __magic_name__ , "_key_dense/bias" , self_attn.key.bias.data.shape ) UpperCAmelCase : Tuple = get_encoder_attention_layer_array( __magic_name__ , "_value_dense/kernel" , self_attn.value.weight.data.shape ) UpperCAmelCase : str = get_encoder_attention_layer_array( __magic_name__ , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output UpperCAmelCase : BertSelfOutput = layer.attention.output UpperCAmelCase : str = get_encoder_attention_layer_array( __magic_name__ , "_output_dense/kernel" , self_output.dense.weight.data.shape ) UpperCAmelCase : Union[str, Any] = get_encoder_attention_layer_array( __magic_name__ , "_output_dense/bias" , self_output.dense.bias.data.shape ) UpperCAmelCase : str = get_encoder_layer_array(__magic_name__ , "_attention_layer_norm/gamma" ) UpperCAmelCase : List[str] = get_encoder_layer_array(__magic_name__ , "_attention_layer_norm/beta" ) # Intermediate UpperCAmelCase : BertIntermediate = layer.intermediate UpperCAmelCase : Dict = get_encoder_layer_array(__magic_name__ , "_intermediate_dense/kernel" ) UpperCAmelCase : Tuple = get_encoder_layer_array(__magic_name__ , "_intermediate_dense/bias" ) # Output UpperCAmelCase : BertOutput = layer.output UpperCAmelCase : Optional[Any] = get_encoder_layer_array(__magic_name__ , "_output_dense/kernel" ) UpperCAmelCase : Optional[Any] = get_encoder_layer_array(__magic_name__ , "_output_dense/bias" ) UpperCAmelCase : List[str] = get_encoder_layer_array(__magic_name__ , "_output_layer_norm/gamma" ) UpperCAmelCase : Any = get_encoder_layer_array(__magic_name__ , "_output_layer_norm/beta" ) # Embeddings UpperCAmelCase : int = get_encoder_array("_position_embedding_layer/embeddings" ) UpperCAmelCase : str = get_encoder_array("_type_embedding_layer/embeddings" ) UpperCAmelCase : Optional[Any] = get_encoder_array("_embedding_norm_layer/gamma" ) UpperCAmelCase : Any = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head UpperCAmelCase : str = model.cls.predictions.transform UpperCAmelCase : List[Any] = get_masked_lm_array("dense/kernel" ) UpperCAmelCase : List[Any] = get_masked_lm_array("dense/bias" ) UpperCAmelCase : Optional[Any] = get_masked_lm_array("layer_norm/gamma" ) UpperCAmelCase : Union[str, Any] = get_masked_lm_array("layer_norm/beta" ) UpperCAmelCase : Optional[Any] = get_masked_lm_array("embedding_table" ) # Pooling UpperCAmelCase : str = BertPooler(config=__magic_name__ ) UpperCAmelCase : BertPooler = get_encoder_array("_pooler_layer/kernel" ) UpperCAmelCase : BertPooler = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(__magic_name__ ) # Integration test - should load without any errors ;) UpperCAmelCase : Optional[int] = BertForMaskedLM.from_pretrained(__magic_name__ ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) a : Any = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
679
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['PoolFormerFeatureExtractor'] lowerCAmelCase__ = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
719
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCAmelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
1
0
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : """simple docstring""" A__ : List[str] = None def snake_case__ ( self ) -> Union[str, Any]: A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> str: A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = os.path.join(SCREAMING_SNAKE_CASE__ , "feat_extract.json" ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE__ ) A__ = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def snake_case__ ( self ) -> Optional[int]: A__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE__ )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE__ ) A__ = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def snake_case__ ( self ) -> List[Any]: A__ = self.feature_extraction_class() self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
104
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
104
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[Any] =[[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE__ : Any =DisjunctiveConstraint(lowercase__ ) self.assertTrue(isinstance(dc.token_ids , lowercase__ ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowercase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __magic_name__ ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ : List[Any] =[[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowercase__ ): DisjunctiveConstraint(lowercase__ ) # fails here def __magic_name__ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =[[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE__ : Optional[Any] =DisjunctiveConstraint(lowercase__ ) SCREAMING_SNAKE_CASE__ : Dict =dc.update(1 ) SCREAMING_SNAKE_CASE__ : Optional[int] =stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE__ : Tuple =dc.update(2 ) SCREAMING_SNAKE_CASE__ : Tuple =stepped is True and completed is False and reset is False self.assertTrue(lowercase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE__ : Any =dc.update(3 ) SCREAMING_SNAKE_CASE__ : Tuple =stepped is True and completed is True and reset is False self.assertTrue(lowercase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __magic_name__ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] =[[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE__ : Dict =DisjunctiveConstraint(lowercase__ ) SCREAMING_SNAKE_CASE__ : Dict =dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE__ : List[Any] =dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE__ : Dict =dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) SCREAMING_SNAKE_CASE__ : List[Any] =dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() SCREAMING_SNAKE_CASE__ : Tuple =dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE__ : str =dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE__ : str =dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
702
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __lowercase : Optional[int] , __lowercase : str=13 , __lowercase : int=10 , __lowercase : List[Any]=3 , __lowercase : List[str]=2 , __lowercase : int=2 , __lowercase : Dict=True , __lowercase : Optional[Any]=True , __lowercase : int=32 , __lowercase : List[Any]=5 , __lowercase : Union[str, Any]=4 , __lowercase : Any=37 , __lowercase : Optional[Any]="gelu" , __lowercase : Union[str, Any]=0.1 , __lowercase : Tuple=0.1 , __lowercase : Dict=10 , __lowercase : int=0.02 , __lowercase : str="divided_space_time" , __lowercase : Union[str, Any]=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int =parent SCREAMING_SNAKE_CASE__ : List[str] =batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =image_size SCREAMING_SNAKE_CASE__ : List[Any] =num_channels SCREAMING_SNAKE_CASE__ : int =patch_size SCREAMING_SNAKE_CASE__ : Tuple =num_frames SCREAMING_SNAKE_CASE__ : List[Any] =is_training SCREAMING_SNAKE_CASE__ : List[str] =use_labels SCREAMING_SNAKE_CASE__ : Optional[Any] =hidden_size SCREAMING_SNAKE_CASE__ : str =num_hidden_layers SCREAMING_SNAKE_CASE__ : int =num_attention_heads SCREAMING_SNAKE_CASE__ : Tuple =intermediate_size SCREAMING_SNAKE_CASE__ : List[str] =hidden_act SCREAMING_SNAKE_CASE__ : Dict =hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] =attention_type SCREAMING_SNAKE_CASE__ : Union[str, Any] =initializer_range SCREAMING_SNAKE_CASE__ : Any =scope SCREAMING_SNAKE_CASE__ : int =num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token SCREAMING_SNAKE_CASE__ : List[str] =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : str =(num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[int] =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE__ : Any =ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ : int =self.get_config() return config, pixel_values, labels def __magic_name__ ( self : int ) -> Any: SCREAMING_SNAKE_CASE__ : Union[str, Any] =TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) SCREAMING_SNAKE_CASE__ : List[Any] =self.num_labels return config def __magic_name__ ( self : int , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ : Tuple =TimesformerModel(config=__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] =model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : List[str] , __lowercase : str , __lowercase : Tuple , __lowercase : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : str =TimesformerForVideoClassification(__lowercase ) model.to(__lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(__lowercase ) # verify the logits shape SCREAMING_SNAKE_CASE__ : Tuple =torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __lowercase ) def __magic_name__ ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =config_and_inputs SCREAMING_SNAKE_CASE__ : Any ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): snake_case_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () snake_case_ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def __magic_name__ ( self : str ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Dict =TimesformerModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] =ConfigTester( self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def __magic_name__ ( self : str , __lowercase : Dict , __lowercase : str , __lowercase : Optional[int]=False ) -> int: SCREAMING_SNAKE_CASE__ : str =copy.deepcopy(__lowercase ) if return_labels: if model_class in get_values(__lowercase ): SCREAMING_SNAKE_CASE__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowercase ) return inputs_dict def __magic_name__ ( self : List[Any] ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ) -> Optional[int]: pass def __magic_name__ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str =model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Any =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def __magic_name__ ( self : Any ) -> Any: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] =model_class(__lowercase ) SCREAMING_SNAKE_CASE__ : str =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : List[str] =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Dict =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def __magic_name__ ( self : int ) -> Dict: SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __magic_name__ ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__lowercase ) @slow def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =TimesformerModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def __magic_name__ ( self : Union[str, Any] ) -> List[str]: if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[Any] =True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] =self.model_tester.seq_length SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.model_tester.num_frames SCREAMING_SNAKE_CASE__ : Optional[Any] =True SCREAMING_SNAKE_CASE__ : str =False SCREAMING_SNAKE_CASE__ : Tuple =True SCREAMING_SNAKE_CASE__ : Dict =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] =model(**self._prepare_for_class(__lowercase , __lowercase ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =outputs.attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE__ : List[Any] =True SCREAMING_SNAKE_CASE__ : List[str] =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any =model(**self._prepare_for_class(__lowercase , __lowercase ) ) SCREAMING_SNAKE_CASE__ : List[Any] =outputs.attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) SCREAMING_SNAKE_CASE__ : Optional[int] =len(__lowercase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE__ : Optional[int] =True SCREAMING_SNAKE_CASE__ : Union[str, Any] =True SCREAMING_SNAKE_CASE__ : Optional[Any] =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(**self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(out_len + 1 , len(__lowercase ) ) SCREAMING_SNAKE_CASE__ : List[str] =outputs.attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self : Tuple ) -> List[Any]: def check_hidden_states_output(__lowercase : Tuple , __lowercase : Dict , __lowercase : Optional[int] ): SCREAMING_SNAKE_CASE__ : List[Any] =model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : int =model(**self._prepare_for_class(__lowercase , __lowercase ) ) SCREAMING_SNAKE_CASE__ : List[Any] =outputs.hidden_states SCREAMING_SNAKE_CASE__ : Tuple =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowercase ) , __lowercase ) SCREAMING_SNAKE_CASE__ : int =self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Tuple =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : List[str] =True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' ) SCREAMING_SNAKE_CASE__ : Any =np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def __magic_name__ ( self : Any ) -> List[str]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : int =TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( __lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =self.default_image_processor SCREAMING_SNAKE_CASE__ : Tuple =prepare_video() SCREAMING_SNAKE_CASE__ : Any =image_processor(video[:8] , return_tensors='''pt''' ).to(__lowercase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] =model(**__lowercase ) # verify the logits SCREAMING_SNAKE_CASE__ : List[str] =torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) )
665
0
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : int =logging.get_logger(__name__) _UpperCamelCase : Any ={ 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 'segformer' def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case=0.0_2 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=2_56 , _snake_case=2_55 , **_snake_case , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( '''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be''' ''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , lowerCAmelCase_ , ) __lowerCamelCase = num_channels __lowerCamelCase = num_encoder_blocks __lowerCamelCase = depths __lowerCamelCase = sr_ratios __lowerCamelCase = hidden_sizes __lowerCamelCase = patch_sizes __lowerCamelCase = strides __lowerCamelCase = mlp_ratios __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = classifier_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = drop_path_rate __lowerCamelCase = layer_norm_eps __lowerCamelCase = decoder_hidden_size __lowerCamelCase = kwargs.get('''reshape_last_stage''' , lowerCAmelCase_ ) __lowerCamelCase = semantic_loss_ignore_index class _SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE_ = version.parse('1.11' ) @property def _lowerCamelCase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowerCamelCase ( self ): """simple docstring""" return 1E-4 @property def _lowerCamelCase ( self ): """simple docstring""" return 12
316
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _snake_case : Any = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _snake_case : Any = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' _snake_case : List[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def snake_case_ (UpperCamelCase : Tuple ): '''simple docstring''' def remove_articles(UpperCamelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(UpperCamelCase , ''' ''' , UpperCamelCase ) def white_space_fix(UpperCamelCase : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(UpperCamelCase : str ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase ) ) ) ) def snake_case_ (UpperCamelCase : int , UpperCamelCase : Dict ): '''simple docstring''' return int(normalize_answer(UpperCamelCase ) == normalize_answer(UpperCamelCase ) ) def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : List[str] ): '''simple docstring''' _a = [any(compute_exact(UpperCamelCase , UpperCamelCase ) for ref in refs ) for pred, refs in zip(UpperCamelCase , UpperCamelCase )] return (sum(UpperCamelCase ) / len(UpperCamelCase )) * 100 def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(UpperCamelCase ) _a = Counter(UpperCamelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(UpperCamelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(UpperCamelCase ) > 0: _a = keeptmpscorea / len(UpperCamelCase ) if len(UpperCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(UpperCamelCase ) > 0: _a = deltmpscorea / len(UpperCamelCase ) # ADDITION _a = set(UpperCamelCase ) - set(UpperCamelCase ) _a = set(UpperCamelCase ) & set(UpperCamelCase ) _a = set(UpperCamelCase ) - set(UpperCamelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(UpperCamelCase ) > 0: _a = addtmpscore / len(UpperCamelCase ) if len(UpperCamelCase ) > 0: _a = addtmpscore / len(UpperCamelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' _a = len(UpperCamelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(UpperCamelCase ) for i in range(0 , len(UpperCamelCase ) - 1 ): if i < len(UpperCamelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(UpperCamelCase ) ragramslist.append(UpperCamelCase ) ragramslist.append(UpperCamelCase ) ragramslist.append(UpperCamelCase ) for i in range(0 , len(UpperCamelCase ) - 1 ): if i < len(UpperCamelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(UpperCamelCase ) for i in range(0 , len(UpperCamelCase ) - 1 ): if i < len(UpperCamelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(UpperCamelCase ) ((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def snake_case_ (UpperCamelCase : str , UpperCamelCase : bool = True , UpperCamelCase : str = "13a" , UpperCamelCase : bool = True ): '''simple docstring''' if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase )()(UpperCamelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(UpperCamelCase , return_str=UpperCamelCase , escape=UpperCamelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase , return_str=UpperCamelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def snake_case_ (UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Dict ): '''simple docstring''' if not (len(UpperCamelCase ) == len(UpperCamelCase ) == len(UpperCamelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): sari_score += SARIsent(normalize(UpperCamelCase ) , normalize(UpperCamelCase ) , [normalize(UpperCamelCase ) for sent in refs] ) _a = sari_score / len(UpperCamelCase ) return 100 * sari_score def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : List[str]="exp" , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=False , ): '''simple docstring''' _a = len(references[0] ) if any(len(UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(UpperCamelCase )] _a = sacrebleu.corpus_bleu( UpperCamelCase , UpperCamelCase , smooth_method=UpperCamelCase , smooth_value=UpperCamelCase , force=UpperCamelCase , lowercase=UpperCamelCase , use_effective_order=UpperCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ) -> Dict: """simple docstring""" _a = {} result.update({'''sari''': compute_sari(sources=lowerCAmelCase_ , predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} ) result.update({'''exact''': compute_em(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} ) return result
22
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class lowerCAmelCase__ : def __init__( self , UpperCamelCase__ ): '''simple docstring''' A__ = data A__ = None class lowerCAmelCase__ : def __init__( self ): '''simple docstring''' A__ = None A__ = None def __iter__( self ): '''simple docstring''' A__ = self.head while self.head: yield node.data A__ = node.next if node == self.head: break def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join(str(UpperCamelCase__ ) for item in iter(self ) ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' self.insert_nth(len(self ) , UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' self.insert_nth(0 , UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if index < 0 or index > len(self ): raise IndexError("list index out of range." ) A__ = Node(UpperCamelCase__ ) if self.head is None: A__ = new_node # first node points itself A__ = A__ = new_node elif index == 0: # insert at head A__ = self.head A__ = A__ = new_node else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = new_node if index == len(self ) - 1: # insert at tail A__ = new_node def lowercase_ ( self ): '''simple docstring''' return self.delete_nth(0 ) def lowercase_ ( self ): '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def lowercase_ ( self , UpperCamelCase__ = 0 ): '''simple docstring''' if not 0 <= index < len(self ): raise IndexError("list index out of range." ) A__ = self.head if self.head == self.tail: # just one node A__ = A__ = None elif index == 0: # delete head node A__ = self.tail.next.next A__ = self.head.next else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = temp.next.next if index == len(self ) - 1: # delete at tail A__ = temp return delete_node.data def lowercase_ ( self ): '''simple docstring''' return len(self ) == 0 def __a ( ) -> None: '''simple docstring''' A__ = CircularLinkedList() assert len(A ) == 0 assert circular_linked_list.is_empty() is True assert str(A ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(A ) == i circular_linked_list.insert_nth(A , i + 1 ) assert str(A ) == "->".join(str(A ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(A ) == "->".join(str(A ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(A ) == "->".join(str(A ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(A ) == "->".join(str(A ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(A ) == "->".join(str(A ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
261
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={ """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class lowerCAmelCase__ ( UpperCAmelCase_ ): lowercase__ : Dict = """imagegpt""" lowercase__ : str = ["""past_key_values"""] lowercase__ : Union[str, Any] = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase__=5_12 + 1 , UpperCamelCase__=32 * 32 , UpperCamelCase__=5_12 , UpperCamelCase__=24 , UpperCamelCase__=8 , UpperCamelCase__=None , UpperCamelCase__="quick_gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , **UpperCamelCase__ , ): '''simple docstring''' A__ = vocab_size A__ = n_positions A__ = n_embd A__ = n_layer A__ = n_head A__ = n_inner A__ = activation_function A__ = resid_pdrop A__ = embd_pdrop A__ = attn_pdrop A__ = layer_norm_epsilon A__ = initializer_range A__ = scale_attn_weights A__ = use_cache A__ = scale_attn_by_inverse_layer_idx A__ = reorder_and_upcast_attn A__ = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase_ ): @property def lowercase_ ( self ): '''simple docstring''' return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = 1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = 3 , UpperCamelCase__ = 32 , UpperCamelCase__ = 32 , ): '''simple docstring''' A__ = self._generate_dummy_images(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = dict(preprocessor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return inputs
261
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''ConditionalDetrFeatureExtractor'''] __UpperCAmelCase = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
90
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _lowercase : str =logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' lowercase : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) lowercase : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) lowercase : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase : bool = field( default=lowerCAmelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[str]: A : Tuple =self.task_name.lower() class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[int] = "train" lowercase : int = "dev" lowercase : Union[str, Any] = "test" class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : GlueDataTrainingArguments lowercase : str lowercase : List[InputFeatures] def __init__( self : str , SCREAMING_SNAKE_CASE__ : GlueDataTrainingArguments , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizerBase , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Union[str, Split] = Split.train , SCREAMING_SNAKE_CASE__ : Optional[str] = None , ) -> List[Any]: warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , SCREAMING_SNAKE_CASE__ , ) A : Any =args A : Union[str, Any] =glue_processors[args.task_name]() A : Union[str, Any] =glue_output_modes[args.task_name] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): try: A : Any =Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file A : Tuple =os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) A : Optional[Any] =self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) A , A : str =label_list[2], label_list[1] A : Tuple =label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A : int =cached_features_file + '.lock' with FileLock(SCREAMING_SNAKE_CASE__ ): if os.path.exists(SCREAMING_SNAKE_CASE__ ) and not args.overwrite_cache: A : Optional[Any] =time.time() A : str =torch.load(SCREAMING_SNAKE_CASE__ ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(f'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: A : int =self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: A : Dict =self.processor.get_test_examples(args.data_dir ) else: A : Optional[Any] =self.processor.get_train_examples(args.data_dir ) if limit_length is not None: A : Optional[int] =examples[:limit_length] A : int =glue_convert_examples_to_features( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_length=args.max_seq_length , label_list=SCREAMING_SNAKE_CASE__ , output_mode=self.output_mode , ) A : List[Any] =time.time() torch.save(self.features , SCREAMING_SNAKE_CASE__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Optional[Any] ) -> Union[str, Any]: return len(self.features ) def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> InputFeatures: return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: return self.label_list
305
0
'''simple docstring''' from math import ceil def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): _lowercase = list(range(0 , UpperCamelCase__ ) ) _lowercase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _lowercase = [] for i in device_map_blocks: if device_map_blocks.count(UpperCamelCase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(UpperCamelCase__ ) # Missing blocks _lowercase = [i for i in blocks if i not in device_map_blocks] _lowercase = [i for i in device_map_blocks if i not in blocks] if len(UpperCamelCase__ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(UpperCamelCase__ ) ) def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): _lowercase = list(range(UpperCamelCase__ ) ) _lowercase = int(ceil(n_layers / len(UpperCamelCase__ ) ) ) _lowercase = [layers[i : i + n_blocks] for i in range(0 , UpperCamelCase__ , UpperCamelCase__ )] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) )
715
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( snake_case_ ): return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = 0 _lowercase = number while duplicate > 0: _lowercase , _lowercase = divmod(snake_case_ , 10 ) fact_sum += factorial(snake_case_ ) return fact_sum == number if __name__ == "__main__": print('Program to check whether a number is a Krisnamurthy Number or not.') _lowerCamelCase = int(input('Enter number: ').strip()) print( F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
572
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : List[Any] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
557
import numpy as np class A_ : '''simple docstring''' def __init__( self: Optional[int] ): __lowerCamelCase : int = (0, 0) __lowerCamelCase : List[str] = None __lowerCamelCase : int = 0 __lowerCamelCase : int = 0 __lowerCamelCase : Union[str, Any] = 0 def __eq__( self: Optional[int] , a: List[Any] ): return self.position == cell.position def _snake_case ( self: Any ): print(self.position ) class A_ : '''simple docstring''' def __init__( self: str , a: List[str]=(5, 5) ): __lowerCamelCase : Optional[Any] = np.zeros(a ) __lowerCamelCase : List[str] = world_size[0] __lowerCamelCase : Optional[int] = world_size[1] def _snake_case ( self: List[Any] ): print(self.w ) def _snake_case ( self: Optional[int] , a: str ): __lowerCamelCase : Tuple = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __lowerCamelCase : Optional[int] = cell.position[0] __lowerCamelCase : List[str] = cell.position[1] __lowerCamelCase : Dict = [] for n in neughbour_cord: __lowerCamelCase : Dict = current_x + n[0] __lowerCamelCase : Optional[Any] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __lowerCamelCase : Optional[Any] = Cell() __lowerCamelCase : Any = (x, y) __lowerCamelCase : Dict = cell neighbours.append(a ) return neighbours def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = [] __lowerCamelCase : int = [] _open.append(SCREAMING_SNAKE_CASE__ ) while _open: __lowerCamelCase : Union[str, Any] = np.argmin([n.f for n in _open] ) __lowerCamelCase : int = _open[min_f] _closed.append(_open.pop(SCREAMING_SNAKE_CASE__ ) ) if current == goal: break for n in world.get_neigbours(SCREAMING_SNAKE_CASE__ ): for c in _closed: if c == n: continue __lowerCamelCase : Optional[int] = current.g + 1 __lowerCamelCase , __lowerCamelCase : int = n.position __lowerCamelCase , __lowerCamelCase : Tuple = goal.position __lowerCamelCase : Dict = (ya - ya) ** 2 + (xa - xa) ** 2 __lowerCamelCase : str = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[int] = [] while current.parent is not None: path.append(current.position ) __lowerCamelCase : int = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowercase_ = Gridworld() # Start position and goal lowercase_ = Cell() lowercase_ = (0, 0) lowercase_ = Cell() lowercase_ = (4, 4) print(F"""path from {start.position} to {goal.position}""") lowercase_ = astar(world, start, goal) # Just for visual reasons. for i in s: lowercase_ = 1 print(world.w)
669
0
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case : """simple docstring""" __lowerCAmelCase = field( default=__snake_case ,metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__snake_case )} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) @dataclass class snake_case : """simple docstring""" __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """The input training data file (a text file)."""} ) __lowerCAmelCase = field( default=__snake_case ,metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) __lowerCAmelCase = field(default=__snake_case ,metadata={"""help""": """Whether ot not to use whole word mask."""} ) __lowerCAmelCase = field( default=0.15 ,metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __lowerCAmelCase = field( default=1 / 6 ,metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } ,) __lowerCAmelCase = field( default=5 ,metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) __lowerCAmelCase = field( default=-1 ,metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Optional[int]: '''simple docstring''' def _dataset(_UpperCAmelCase , _UpperCAmelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , ref_path=_UpperCAmelCase , ) return LineByLineTextDataset(tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_UpperCAmelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_UpperCAmelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __lowercase ( ) -> Optional[Any]: '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) __lowercase = AutoModelWithLMHead.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , evaluate=_UpperCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=_UpperCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=_UpperCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , data_collator=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , prediction_loss_only=_UpperCAmelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_UpperCAmelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["eval_loss"] ) __lowercase = {"perplexity": perplexity} __lowercase = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(_UpperCAmelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _UpperCAmelCase , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(_UpperCAmelCase ) return results def __lowercase ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
576
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class snake_case : """simple docstring""" __lowerCAmelCase = field( default=__snake_case ,metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__snake_case )} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) @dataclass class snake_case : """simple docstring""" __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """The input training data file (a text file)."""} ) __lowerCAmelCase = field( default=__snake_case ,metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) __lowerCAmelCase = field(default=__snake_case ,metadata={"""help""": """Whether ot not to use whole word mask."""} ) __lowerCAmelCase = field( default=0.15 ,metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __lowerCAmelCase = field( default=1 / 6 ,metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } ,) __lowerCAmelCase = field( default=5 ,metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) __lowerCAmelCase = field( default=-1 ,metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } ,) __lowerCAmelCase = field( default=__snake_case ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Optional[int]: '''simple docstring''' def _dataset(_UpperCAmelCase , _UpperCAmelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , ref_path=_UpperCAmelCase , ) return LineByLineTextDataset(tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_UpperCAmelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_UpperCAmelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __lowercase ( ) -> Optional[Any]: '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _UpperCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) __lowercase = AutoModelWithLMHead.from_config(_UpperCAmelCase ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , evaluate=_UpperCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=_UpperCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=_UpperCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , data_collator=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , prediction_loss_only=_UpperCAmelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_UpperCAmelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["eval_loss"] ) __lowercase = {"perplexity": perplexity} __lowercase = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(_UpperCAmelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , _UpperCAmelCase , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(_UpperCAmelCase ) return results def __lowercase ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
576
1
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _lowerCamelCase ( snake_case = "isbn/0140328726" ): _lowerCAmelCase = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: _lowerCAmelCase = F'{olid} is not a valid Open Library olid' raise ValueError(snake_case ) return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json() def _lowerCamelCase ( snake_case ): _lowerCAmelCase = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } _lowerCAmelCase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _lowerCAmelCase = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] _lowerCAmelCase = data['First sentence']['value'] for key, value in data.items(): if isinstance(snake_case , snake_case ): _lowerCAmelCase = ', '.join(snake_case ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase: List[Any] = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(f"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(f"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase: List[Any] = summarize_book(get_openlibrary_data(f"""isbn/{isbn}""")) print('''\n'''.join(f"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"""Sorry, there are no results for ISBN: {isbn}.""")
192
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase: int = logging.get_logger(__name__) _lowercase: Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowercase: Dict = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } _lowercase: List[Any] = { '''camembert-base''': 5_1_2, } _lowercase: Dict = '''▁''' class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ =VOCAB_FILES_NAMES UpperCamelCase__ =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ =["input_ids", "attention_mask"] def __init__( self : str , lowercase__ : int , lowercase__ : Tuple="<s>" , lowercase__ : Optional[int]="</s>" , lowercase__ : Optional[Any]="</s>" , lowercase__ : Any="<s>" , lowercase__ : Union[str, Any]="<unk>" , lowercase__ : Union[str, Any]="<pad>" , lowercase__ : Optional[int]="<mask>" , lowercase__ : str=["<s>NOTUSED", "</s>NOTUSED"] , lowercase__ : Optional[Dict[str, Any]] = None , **lowercase__ : Union[str, Any] , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , additional_special_tokens=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase__ ) ) _lowerCAmelCase = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> _lowerCAmelCase = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} _lowerCAmelCase = len(self.fairseq_tokens_to_ids ) _lowerCAmelCase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] _lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None , lowercase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None ): _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : str ): return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Optional[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(lowercase__ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Optional[int] ): _lowerCAmelCase = [] _lowerCAmelCase = '' _lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__ ) + token _lowerCAmelCase = True _lowerCAmelCase = [] else: current_sub_tokens.append(lowercase__ ) _lowerCAmelCase = False out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def __getstate__( self : Any ): _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self : Optional[Any] , lowercase__ : Union[str, Any] ): _lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : str , lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase = os.path.join( lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , 'wb' ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
192
1
"""simple docstring""" import string def _a ( _SCREAMING_SNAKE_CASE ) -> None: for key in range(len(string.ascii_uppercase ) ): snake_case_ = """""" for symbol in message: if symbol in string.ascii_uppercase: snake_case_ = string.ascii_uppercase.find(_SCREAMING_SNAKE_CASE ) snake_case_ = num - key if num < 0: snake_case_ = num + len(string.ascii_uppercase ) snake_case_ = translated + string.ascii_uppercase[num] else: snake_case_ = translated + symbol print(f"""Decryption using Key #{key}: {translated}""" ) def _a ( ) -> None: snake_case_ = input("""Encrypted message: """ ) snake_case_ = message.upper() decrypt(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
716
"""simple docstring""" __SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter' __SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE' def _a ( _SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}""" raise TypeError(_SCREAMING_SNAKE_CASE ) snake_case_ = spanish_id.replace("""-""" , """""" ).upper() if len(_SCREAMING_SNAKE_CASE ) != 9: raise ValueError(_SCREAMING_SNAKE_CASE ) try: snake_case_ = int(spanish_id_clean[0:8] ) snake_case_ = spanish_id_clean[8] except ValueError as ex: raise ValueError(_SCREAMING_SNAKE_CASE ) from ex if letter.isdigit(): raise ValueError(_SCREAMING_SNAKE_CASE ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
2
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Tuple = BertJapaneseTokenizer _UpperCamelCase : Optional[int] = False _UpperCamelCase : Dict = True def __a ( self ): super().setUp() _lowercase : Optional[int] = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] _lowercase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __a ( self , _lowerCAmelCase ): _lowercase : Dict = 'こんにちは、世界。 \nこんばんは、世界。' _lowercase : Dict = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def __a ( self , _lowerCAmelCase ): _lowercase : str = self.get_input_output_texts(_a ) _lowercase : Dict = tokenizer.encode(_a , add_special_tokens=_a ) _lowercase : List[Any] = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) return text, ids def __a ( self ): pass # TODO add if relevant def __a ( self ): pass # TODO add if relevant def __a ( self ): pass # TODO add if relevant def __a ( self ): _lowercase : Tuple = self.tokenizer_class(self.vocab_file ) _lowercase : Optional[int] = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(_a , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def __a ( self ): _lowercase : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(_a ) _lowercase : int = 'こんにちは、世界。\nこんばんは、世界。' _lowercase : List[str] = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) _lowercase : Optional[Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_a , 'wb' ) as handle: pickle.dump(_a , _a ) with open(_a , 'rb' ) as handle: _lowercase : List[Any] = pickle.load(_a ) _lowercase : Dict = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) def __a ( self ): _lowercase : List[str] = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def __a ( self ): try: _lowercase : List[str] = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def __a ( self ): try: _lowercase : List[str] = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def __a ( self ): _lowercase : List[Any] = MecabTokenizer(do_lower_case=_a , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def __a ( self ): try: _lowercase : int = MecabTokenizer( do_lower_case=_a , normalize_text=_a , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def __a ( self ): _lowercase : Dict = MecabTokenizer(normalize_text=_a , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def __a ( self ): _lowercase : List[str] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(_a ) _lowercase : Dict = 'こんにちは、世界。\nこんばんは、世界。' _lowercase : List[Any] = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) _lowercase : List[str] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_a , 'wb' ) as handle: pickle.dump(_a , _a ) with open(_a , 'rb' ) as handle: _lowercase : Union[str, Any] = pickle.load(_a ) _lowercase : Tuple = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_sudachi def __a ( self ): _lowercase : Optional[Any] = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def __a ( self ): _lowercase : int = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def __a ( self ): _lowercase : Dict = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def __a ( self ): _lowercase : Optional[Any] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def __a ( self ): _lowercase : Optional[int] = SudachiTokenizer(do_lower_case=_a , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def __a ( self ): _lowercase : str = SudachiTokenizer(normalize_text=_a , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def __a ( self ): _lowercase : Dict = SudachiTokenizer(trim_whitespace=_a , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def __a ( self ): _lowercase : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(_a ) _lowercase : Any = 'こんにちは、世界。\nこんばんは、世界。' _lowercase : Optional[Any] = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) _lowercase : Union[str, Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(_a , 'wb' ) as handle: pickle.dump(_a , _a ) with open(_a , 'rb' ) as handle: _lowercase : str = pickle.load(_a ) _lowercase : int = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_jumanpp def __a ( self ): _lowercase : List[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def __a ( self ): _lowercase : Any = JumanppTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def __a ( self ): _lowercase : int = JumanppTokenizer(normalize_text=_a ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def __a ( self ): _lowercase : Any = JumanppTokenizer(trim_whitespace=_a ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def __a ( self ): _lowercase : str = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def __a ( self ): _lowercase : List[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] _lowercase : List[Any] = {} for i, token in enumerate(_a ): _lowercase : Tuple = i _lowercase : Dict = WordpieceTokenizer(vocab=_a , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def __a ( self ): _lowercase : str = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) _lowercase : List[str] = tokenizer.subword_tokenizer _lowercase : int = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(_a , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) _lowercase : List[Any] = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(_a , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def __a ( self ): _lowercase : Optional[int] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) _lowercase : List[Any] = tokenizer.encode('ありがとう。' , add_special_tokens=_a ) _lowercase : List[Any] = tokenizer.encode('どういたしまして。' , add_special_tokens=_a ) _lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_a ) _lowercase : Tuple = tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = BertJapaneseTokenizer _UpperCamelCase : List[str] = False def __a ( self ): super().setUp() _lowercase : Optional[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] _lowercase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __a ( self , **_lowerCAmelCase ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **_a ) def __a ( self , _lowerCAmelCase ): _lowercase : str = 'こんにちは、世界。 \nこんばんは、世界。' _lowercase : Dict = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def __a ( self ): pass # TODO add if relevant def __a ( self ): pass # TODO add if relevant def __a ( self ): pass # TODO add if relevant def __a ( self ): _lowercase : str = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) _lowercase : Optional[int] = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( _a , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def __a ( self ): _lowercase : Tuple = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] _lowercase : List[Any] = {} for i, token in enumerate(_a ): _lowercase : Dict = i _lowercase : Union[str, Any] = CharacterTokenizer(vocab=_a , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def __a ( self ): _lowercase : Any = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) _lowercase : Any = tokenizer.encode('ありがとう。' , add_special_tokens=_a ) _lowercase : Dict = tokenizer.encode('どういたしまして。' , add_special_tokens=_a ) _lowercase : Tuple = tokenizer.build_inputs_with_special_tokens(_a ) _lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : Optional[int] = 'cl-tohoku/bert-base-japanese' _lowercase : List[Any] = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , _a ) class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : Tuple = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) _lowercase : List[str] = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
66
'''simple docstring''' from __future__ import annotations _UpperCamelCase = 10 def a_ ( _lowerCAmelCase ) -> list[int]: __lowerCamelCase : str = 1 __lowerCamelCase : Union[str, Any] = max(_lowerCAmelCase ) while placement <= max_digit: # declare and initialize empty buckets __lowerCamelCase : list[list] = [[] for _ in range(_lowerCAmelCase )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCamelCase : List[str] = int((i / placement) % RADIX ) buckets[tmp].append(_lowerCAmelCase ) # put each buckets' contents into list_of_ints __lowerCamelCase : Dict = 0 for b in range(_lowerCAmelCase ): for i in buckets[b]: __lowerCamelCase : List[str] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
459
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__( self : Any , a : str , a : str=7 , a : Optional[Any]=3 , a : Optional[Any]=18 , a : List[Any]=30 , a : int=400 , a : Tuple=True , a : str=None , a : List[str]=True , a : str=False , a : Any=True , a : Any=True , a : Optional[Any]=[0.5, 0.5, 0.5] , a : List[Any]=[0.5, 0.5, 0.5] , ) -> List[str]: """simple docstring""" lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size if size is not None else {'''height''': 18, '''width''': 20} lowercase = do_thumbnail lowercase = do_align_axis lowercase = do_pad lowercase = do_normalize lowercase = image_mean lowercase = image_std def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowerCAmelCase : str = DonutImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" lowercase = DonutImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) self.assertTrue(hasattr(_a , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_a , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_a , '''do_pad''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" pass @is_flaky() def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowercase = image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowercase = image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched lowercase = image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
721
"""simple docstring""" def A_ ( __UpperCamelCase : int = 1 , __UpperCamelCase : int = 10_00 ): lowercase = 1 lowercase = 0 for divide_by_number in range(__UpperCamelCase , digit + 1 ): lowercase = [] lowercase = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCamelCase ): lowercase = len(__UpperCamelCase ) lowercase = divide_by_number else: has_been_divided.append(__UpperCamelCase ) lowercase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
396
0
def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(__lowerCAmelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
509
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : List[str] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case_ ( self : Dict , _snake_case : Tuple , _snake_case : List[str] , _snake_case : Tuple ): __lowercase : Optional[Any] = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) __lowercase : Optional[Any] = VideoClassificationPipeline(model=_snake_case , image_processor=_snake_case , top_k=2 ) __lowercase : List[Any] = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def snake_case_ ( self : int , _snake_case : str , _snake_case : Union[str, Any] ): for example in examples: __lowercase : Union[str, Any] = video_classifier(_snake_case ) self.assertEqual( _snake_case , [ {'''score''': ANY(_snake_case ), '''label''': ANY(_snake_case )}, {'''score''': ANY(_snake_case ), '''label''': ANY(_snake_case )}, ] , ) @require_torch def snake_case_ ( self : Optional[Any] ): __lowercase : Union[str, Any] = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' __lowercase : str = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) __lowercase : str = pipeline( '''video-classification''' , model=_snake_case , feature_extractor=_snake_case , frame_sampling_rate=4 ) __lowercase : List[str] = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) __lowercase : List[str] = video_classifier(_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}] , ) __lowercase : List[Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}], [{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}], ] , ) @require_tf def snake_case_ ( self : int ): pass
509
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) SCREAMING_SNAKE_CASE_ = ['''accelerate''', '''launch'''] SCREAMING_SNAKE_CASE_ = Path.home() / '''.cache/huggingface/accelerate''' SCREAMING_SNAKE_CASE_ = '''default_config.yaml''' SCREAMING_SNAKE_CASE_ = config_folder / config_file SCREAMING_SNAKE_CASE_ = config_folder / '''_default_config.yaml''' SCREAMING_SNAKE_CASE_ = Path('tests/test_configs' ) @classmethod def __lowerCamelCase( cls ): """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def __lowerCamelCase( cls ): """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : List[Any] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def __lowerCamelCase( self ): """simple docstring""" for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ): with self.subTest(config_file=UpperCamelCase__ ): execute_subprocess_async( self.base_cmd + ["""--config_file""", str(UpperCamelCase__ ), self.test_file_path] , env=os.environ.copy() ) def __lowerCamelCase( self ): """simple docstring""" execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy() ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = '''test-tpu''' SCREAMING_SNAKE_CASE_ = '''us-central1-a''' SCREAMING_SNAKE_CASE_ = '''ls''' SCREAMING_SNAKE_CASE_ = ['''accelerate''', '''tpu-config'''] SCREAMING_SNAKE_CASE_ = '''cd /usr/share''' SCREAMING_SNAKE_CASE_ = '''tests/test_samples/test_command_file.sh''' SCREAMING_SNAKE_CASE_ = '''Running gcloud compute tpus tpu-vm ssh''' def __lowerCamelCase( self ): """simple docstring""" _snake_case : List[str] = run_command( self.cmd + ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=UpperCamelCase__ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase__ , ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : List[Any] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=UpperCamelCase__ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase__ , ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[int] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=UpperCamelCase__ ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Union[str, Any] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=UpperCamelCase__ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase__ , ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Union[str, Any] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--command""", """echo \"Hello World\"""", """--debug""", ] , return_stdout=UpperCamelCase__ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , UpperCamelCase__ , ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : List[str] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=UpperCamelCase__ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Any = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command_file""", self.command_file, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=UpperCamelCase__ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : List[str] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=UpperCamelCase__ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[Any] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--accelerate_version""", """12.0.0""", """--debug""", ] , return_stdout=UpperCamelCase__ , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , )
711
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCAmelCase_ = logging.get_logger(__name__) def UpperCAmelCase ( A__ , A__ ) -> str: try: with open(A__ , """rb""" ) as flax_state_f: _snake_case : str = from_bytes(A__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(A__ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(A__ , A__ ) def UpperCAmelCase ( A__ , A__ ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _snake_case : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda A__ : x.dtype == jnp.bfloataa , A__ ) ).values() if any(A__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _snake_case : Any = jax.tree_util.tree_map( lambda A__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , A__ ) _snake_case : int = """""" _snake_case : Union[str, Any] = flatten_dict(A__ , sep=""".""" ) _snake_case : List[Any] = pt_model.state_dict() # keep track of unexpected & missing keys _snake_case : Optional[int] = [] _snake_case : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _snake_case : Union[str, Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _snake_case : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] _snake_case : Optional[Any] = jnp.transpose(A__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _snake_case : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""] _snake_case : Union[str, Any] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _snake_case : int = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(A__ ): _snake_case : Optional[int] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) _snake_case : Optional[Any] = """.""".join(A__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict _snake_case : List[str] = np.asarray(A__ ) if not isinstance(A__ , np.ndarray ) else flax_tensor _snake_case : Tuple = torch.from_numpy(A__ ) # remove from missing keys missing_keys.remove(A__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(A__ ) pt_model.load_state_dict(A__ ) # re-transform missing_keys to list _snake_case : List[Any] = list(A__ ) if len(A__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(A__ ) > 0: logger.warning( f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) return pt_model
519
0