code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
__lowerCAmelCase : Any = {
"configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Optional[Any] = [
"ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ErnieForCausalLM",
"ErnieForMaskedLM",
"ErnieForMultipleChoice",
"ErnieForNextSentencePrediction",
"ErnieForPreTraining",
"ErnieForQuestionAnswering",
"ErnieForSequenceClassification",
"ErnieForTokenClassification",
"ErnieModel",
"ErniePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
__lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 529 |
'''simple docstring'''
import functools
def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> int:
# Validation
if not isinstance(__A , __A ) or not all(isinstance(__A , __A ) for day in days ):
raise ValueError('The parameter days should be a list of integers' )
if len(__A ) != 3 or not all(isinstance(__A , __A ) for cost in costs ):
raise ValueError('The parameter costs should be a list of three integers' )
if len(__A ) == 0:
return 0
if min(__A ) <= 0:
raise ValueError('All days elements should be greater than 0' )
if max(__A ) >= 366:
raise ValueError('All days elements should be less than 366' )
_snake_case = set(__A )
@functools.cache
def dynamic_programming(__A ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 495 | 0 |
def lowerCamelCase__ ( a : List[Any] ) -> int:
"""simple docstring"""
stooge(a , 0 , len(a ) - 1 )
return arr
def lowerCamelCase__ ( a : Optional[int] , a : List[str] , a : str ) -> Optional[int]:
"""simple docstring"""
if i >= h:
return
# If first element is smaller than the last then swap them
if arr[i] > arr[h]:
a__ , a__ :Union[str, Any] = arr[h], arr[i]
# If there are more than 2 elements in the array
if h - i + 1 > 2:
a__ :Any = (int)((h - i + 1) / 3 )
# Recursively sort first 2/3 elements
stooge(a , a , (h - t) )
# Recursively sort last 2/3 elements
stooge(a , i + t , (a) )
# Recursively sort first 2/3 elements
stooge(a , a , (h - t) )
if __name__ == "__main__":
snake_case__ = input('''Enter numbers separated by a comma:\n''').strip()
snake_case__ = [int(item) for item in user_input.split(''',''')]
print(stooge_sort(unsorted))
| 373 |
import sys
from collections import defaultdict
class lowerCAmelCase_ :
def __init__( self : Optional[int] ) ->Any:
"""simple docstring"""
a__ :Optional[Any] = []
def _snake_case ( self : Optional[Any] , __A : List[Any] ) ->List[str]:
"""simple docstring"""
return self.node_position[vertex]
def _snake_case ( self : Optional[Any] , __A : str , __A : Any ) ->Dict:
"""simple docstring"""
a__ :Dict = pos
def _snake_case ( self : str , __A : Union[str, Any] , __A : Union[str, Any] , __A : Optional[Any] , __A : Optional[int] ) ->List[Any]:
"""simple docstring"""
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
a__ :str = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
a__ :Optional[int] = 2 * start + 1
else:
a__ :List[Any] = 2 * start + 2
if heap[smallest_child] < heap[start]:
a__ , a__ :Optional[Any] = heap[smallest_child], positions[smallest_child]
a__ , a__ :int = (
heap[start],
positions[start],
)
a__ , a__ :List[Any] = temp, tempa
a__ :Any = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , __A )
self.top_to_bottom(__A , __A , __A , __A )
def _snake_case ( self : List[str] , __A : Any , __A : List[str] , __A : Any , __A : str ) ->Optional[Any]:
"""simple docstring"""
a__ :Optional[Any] = position[index]
while index != 0:
a__ :str = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
a__ :int = heap[parent]
a__ :Optional[Any] = position[parent]
self.set_position(position[parent] , __A )
else:
a__ :List[Any] = val
a__ :List[Any] = temp
self.set_position(__A , __A )
break
a__ :Union[str, Any] = parent
else:
a__ :int = val
a__ :Dict = temp
self.set_position(__A , 0 )
def _snake_case ( self : Tuple , __A : int , __A : int ) ->Union[str, Any]:
"""simple docstring"""
a__ :Tuple = len(__A ) // 2 - 1
for i in range(__A , -1 , -1 ):
self.top_to_bottom(__A , __A , len(__A ) , __A )
def _snake_case ( self : List[Any] , __A : List[Any] , __A : int ) ->Optional[Any]:
"""simple docstring"""
a__ :Any = positions[0]
a__ :str = sys.maxsize
self.top_to_bottom(__A , 0 , len(__A ) , __A )
return temp
def lowerCamelCase__ ( a : Any ) -> Union[str, Any]:
"""simple docstring"""
a__ :Tuple = Heap()
a__ :List[Any] = [0] * len(a )
a__ :str = [-1] * len(a ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
a__ :Any = [] # Heap of Distance of vertices from their neighboring vertex
a__ :int = []
for vertex in range(len(a ) ):
distance_tv.append(sys.maxsize )
positions.append(a )
heap.node_position.append(a )
a__ :Tuple = []
a__ :Any = 1
a__ :int = sys.maxsize
for neighbor, distance in adjacency_list[0]:
a__ :int = 0
a__ :List[str] = distance
heap.heapify(a , a )
for _ in range(1 , len(a ) ):
a__ :Dict = heap.delete_minimum(a , a )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
a__ :Optional[int] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(a )]
):
a__ :List[str] = distance
heap.bottom_to_top(
a , heap.get_position(a ) , a , a )
a__ :str = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
snake_case__ = int(input('''Enter number of edges: ''').strip())
snake_case__ = defaultdict(list)
for _ in range(edges_number):
snake_case__ = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 373 | 1 |
import unittest
import numpy as np
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray:
UpperCamelCase_: str = np.shape(UpperCAmelCase__ )
UpperCamelCase_: str = np.shape(UpperCAmelCase__ )
UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ )
if shape_a[0] != shape_b[0]:
UpperCamelCase_: Any = (
'Expected the same number of rows for A and B. '
F'''Instead found A of size {shape_a} and B of size {shape_b}'''
)
raise ValueError(UpperCAmelCase__ )
if shape_b[1] != shape_c[1]:
UpperCamelCase_: int = (
'Expected the same number of columns for B and C. '
F'''Instead found B of size {shape_b} and C of size {shape_c}'''
)
raise ValueError(UpperCAmelCase__ )
UpperCamelCase_: Dict = pseudo_inv
if a_inv is None:
try:
UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ )
except np.linalg.LinAlgError:
raise ValueError(
'Input matrix A is not invertible. Cannot compute Schur complement.' )
return mat_c - mat_b.T @ a_inv @ mat_b
class _lowerCAmelCase( unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] )
UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] )
UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase )
UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase )
UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase )
self.assertAlmostEqual(_lowerCamelCase , det_a * det_s )
def _a ( self ):
UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] )
with self.assertRaises(_lowerCamelCase ):
schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def _a ( self ):
UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] )
UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(_lowerCamelCase ):
schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main() | 57 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
A_ : Union[str, Any] = datasets.utils.logging.get_logger(__name__)
A_ : Optional[Any] = ['names', 'prefix']
A_ : List[str] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
A_ : List[Any] = ['encoding_errors', 'on_bad_lines']
A_ : Optional[Any] = ['date_format']
@dataclass
class _lowerCAmelCase( datasets.BuilderConfig ):
"""simple docstring"""
a : str =","
a : Optional[str] =None
a : Optional[Union[int, List[int], str]] ="infer"
a : Optional[List[str]] =None
a : Optional[List[str]] =None
a : Optional[Union[int, str, List[int], List[str]]] =None
a : Optional[Union[List[int], List[str]]] =None
a : Optional[str] =None
a : bool =True
a : Optional[Literal["c", "python", "pyarrow"]] =None
a : Dict[Union[int, str], Callable[[Any], Any]] =None
a : Optional[list] =None
a : Optional[list] =None
a : bool =False
a : Optional[Union[int, List[int]]] =None
a : Optional[int] =None
a : Optional[Union[str, List[str]]] =None
a : bool =True
a : bool =True
a : bool =False
a : bool =True
a : Optional[str] =None
a : str ="."
a : Optional[str] =None
a : str ='"'
a : int =0
a : Optional[str] =None
a : Optional[str] =None
a : Optional[str] =None
a : Optional[str] =None
a : bool =True
a : bool =True
a : int =0
a : bool =True
a : bool =False
a : Optional[str] =None
a : int =10000
a : Optional[datasets.Features] =None
a : Optional[str] ="strict"
a : Literal["error", "warn", "skip"] ="error"
a : Optional[str] =None
def _a ( self ):
if self.delimiter is not None:
UpperCamelCase_: Optional[Any] = self.delimiter
if self.column_names is not None:
UpperCamelCase_: int = self.column_names
@property
def _a ( self ):
UpperCamelCase_: Any = {
'sep': self.sep,
'header': self.header,
'names': self.names,
'index_col': self.index_col,
'usecols': self.usecols,
'prefix': self.prefix,
'mangle_dupe_cols': self.mangle_dupe_cols,
'engine': self.engine,
'converters': self.converters,
'true_values': self.true_values,
'false_values': self.false_values,
'skipinitialspace': self.skipinitialspace,
'skiprows': self.skiprows,
'nrows': self.nrows,
'na_values': self.na_values,
'keep_default_na': self.keep_default_na,
'na_filter': self.na_filter,
'verbose': self.verbose,
'skip_blank_lines': self.skip_blank_lines,
'thousands': self.thousands,
'decimal': self.decimal,
'lineterminator': self.lineterminator,
'quotechar': self.quotechar,
'quoting': self.quoting,
'escapechar': self.escapechar,
'comment': self.comment,
'encoding': self.encoding,
'dialect': self.dialect,
'error_bad_lines': self.error_bad_lines,
'warn_bad_lines': self.warn_bad_lines,
'skipfooter': self.skipfooter,
'doublequote': self.doublequote,
'memory_map': self.memory_map,
'float_precision': self.float_precision,
'chunksize': self.chunksize,
'encoding_errors': self.encoding_errors,
'on_bad_lines': self.on_bad_lines,
'date_format': self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowerCamelCase ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _lowerCAmelCase( datasets.ArrowBasedBuilder ):
"""simple docstring"""
a : Dict =CsvConfig
def _a ( self ):
return datasets.DatasetInfo(features=self.config.features )
def _a ( self , _lowerCamelCase ):
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
UpperCamelCase_: Tuple = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_lowerCamelCase , (str, list, tuple) ):
UpperCamelCase_: List[Any] = data_files
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: str = [files]
UpperCamelCase_: Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
UpperCamelCase_: Tuple = []
for split_name, files in data_files.items():
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCamelCase_: Dict = [files]
UpperCamelCase_: int = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'files': files} ) )
return splits
def _a ( self , _lowerCamelCase ):
if self.config.features is not None:
UpperCamelCase_: List[Any] = self.config.features.arrow_schema
if all(not require_storage_cast(_lowerCamelCase ) for feature in self.config.features.values() ):
# cheaper cast
UpperCamelCase_: Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowerCamelCase )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
UpperCamelCase_: int = table_cast(_lowerCamelCase , _lowerCamelCase )
return pa_table
def _a ( self , _lowerCamelCase ):
UpperCamelCase_: List[str] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
UpperCamelCase_: Dict = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(_lowerCamelCase ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ):
UpperCamelCase_: Optional[Any] = pd.read_csv(_lowerCamelCase , iterator=_lowerCamelCase , dtype=_lowerCamelCase , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(_lowerCamelCase ):
UpperCamelCase_: Union[str, Any] = pa.Table.from_pandas(_lowerCamelCase )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase )
except ValueError as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}''' )
raise | 57 | 1 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def lowerCAmelCase_ ( _lowerCamelCase: Any ):
__SCREAMING_SNAKE_CASE : str = image.size
__SCREAMING_SNAKE_CASE : Optional[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
__SCREAMING_SNAKE_CASE : Any = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] )
__SCREAMING_SNAKE_CASE : int = np.array(_lowerCamelCase ).astype(np.floataa ) / 2_55.0
__SCREAMING_SNAKE_CASE : int = image[None].transpose(0 , 3 , 1 , 2 )
__SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(_lowerCamelCase )
return 2.0 * image - 1.0
class _UpperCamelCase ( lowerCamelCase__ ):
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase__ : VQModel , lowerCAmelCase__ : UNetaDModel , lowerCAmelCase__ : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] , ):
"""simple docstring"""
super().__init__()
self.register_modules(vqvae=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ )
@torch.no_grad()
def __call__( self : Optional[Any] , lowerCAmelCase__ : Union[torch.Tensor, PIL.Image.Image] = None , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 1_0_0 , lowerCAmelCase__ : Optional[float] = 0.0 , lowerCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , ):
"""simple docstring"""
if isinstance(lowerCAmelCase__ , PIL.Image.Image ):
__SCREAMING_SNAKE_CASE : Dict = 1
elif isinstance(lowerCAmelCase__ , torch.Tensor ):
__SCREAMING_SNAKE_CASE : Tuple = image.shape[0]
else:
raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase__ )}" )
if isinstance(lowerCAmelCase__ , PIL.Image.Image ):
__SCREAMING_SNAKE_CASE : int = preprocess(lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Union[str, Any] = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
__SCREAMING_SNAKE_CASE : Tuple = (batch_size, self.unet.config.in_channels // 2, height, width)
__SCREAMING_SNAKE_CASE : List[Any] = next(self.unet.parameters() ).dtype
__SCREAMING_SNAKE_CASE : int = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Union[str, Any] = image.to(device=self.device , dtype=lowerCAmelCase__ )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(lowerCAmelCase__ , device=self.device )
__SCREAMING_SNAKE_CASE : Any = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
__SCREAMING_SNAKE_CASE : Optional[int] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__SCREAMING_SNAKE_CASE : Optional[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__SCREAMING_SNAKE_CASE : int = {}
if accepts_eta:
__SCREAMING_SNAKE_CASE : str = eta
for t in self.progress_bar(lowerCAmelCase__ ):
# concat latents and low resolution image in the channel dimension.
__SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([latents, image] , dim=1 )
__SCREAMING_SNAKE_CASE : Any = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
# predict the noise residual
__SCREAMING_SNAKE_CASE : Any = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample
# compute the previous noisy sample x_t -> x_t-1
__SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
# decode the image latents with the VQVAE
__SCREAMING_SNAKE_CASE : Dict = self.vqvae.decode(lowerCAmelCase__ ).sample
__SCREAMING_SNAKE_CASE : Optional[int] = torch.clamp(lowerCAmelCase__ , -1.0 , 1.0 )
__SCREAMING_SNAKE_CASE : List[Any] = image / 2 + 0.5
__SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__SCREAMING_SNAKE_CASE : Tuple = self.numpy_to_pil(lowerCAmelCase__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase__ ) | 704 |
'''simple docstring'''
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True)
os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True)
os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True)
def lowerCAmelCase_ ( _lowerCamelCase: int ):
if hor == 1_28:
__SCREAMING_SNAKE_CASE : Any = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
__SCREAMING_SNAKE_CASE : List[Any] = (32, 1_28, 2_56)
__SCREAMING_SNAKE_CASE : str = ("""UpResnetBlock1D""", """UpResnetBlock1D""")
elif hor == 32:
__SCREAMING_SNAKE_CASE : Union[str, Any] = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
__SCREAMING_SNAKE_CASE : str = (32, 64, 1_28, 2_56)
__SCREAMING_SNAKE_CASE : Tuple = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""")
__SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" )
__SCREAMING_SNAKE_CASE : Any = model.state_dict()
__SCREAMING_SNAKE_CASE : Optional[Any] = {
"""down_block_types""": down_block_types,
"""block_out_channels""": block_out_channels,
"""up_block_types""": up_block_types,
"""layers_per_block""": 1,
"""use_timestep_embedding""": True,
"""out_block_type""": """OutConv1DBlock""",
"""norm_num_groups""": 8,
"""downsample_each_block""": False,
"""in_channels""": 14,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""sample_size""": 6_55_36,
"""mid_block_type""": """MidResTemporalBlock1D""",
"""act_fn""": """mish""",
}
__SCREAMING_SNAKE_CASE : int = UNetaDModel(**_lowerCamelCase )
print(F"length of state dict: {len(state_dict.keys() )}" )
print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
__SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
__SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(_lowerCamelCase )
hf_value_function.load_state_dict(_lowerCamelCase )
torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" )
with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , """w""" ) as f:
json.dump(_lowerCamelCase , _lowerCamelCase )
def lowerCAmelCase_ ( ):
__SCREAMING_SNAKE_CASE : Dict = {
"""in_channels""": 14,
"""down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""),
"""up_block_types""": (),
"""out_block_type""": """ValueFunction""",
"""mid_block_type""": """ValueFunctionMidBlock1D""",
"""block_out_channels""": (32, 64, 1_28, 2_56),
"""layers_per_block""": 1,
"""downsample_each_block""": True,
"""sample_size""": 6_55_36,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""use_timestep_embedding""": True,
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""norm_num_groups""": 8,
"""act_fn""": """mish""",
}
__SCREAMING_SNAKE_CASE : Optional[int] = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" )
__SCREAMING_SNAKE_CASE : Dict = model
__SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel(**_lowerCamelCase )
print(F"length of state dict: {len(state_dict.keys() )}" )
print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
__SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
__SCREAMING_SNAKE_CASE : str = state_dict.pop(_lowerCamelCase )
hf_value_function.load_state_dict(_lowerCamelCase )
torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" )
with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f:
json.dump(_lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function() | 178 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class UpperCAmelCase_ :
snake_case__ = 42
snake_case__ = 42
class UpperCAmelCase_ :
def __init__( self : Tuple , __UpperCamelCase : int ) -> int:
_UpperCamelCase = [[] for _ in range(__A )]
_UpperCamelCase = size
def __getitem__( self : Optional[Any] , __UpperCamelCase : int ) -> int:
return iter(self._graph[vertex] )
@property
def _UpperCamelCase ( self : Optional[int] ) -> int:
return self._size
def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> str:
if weight not in (0, 1):
raise ValueError('''Edge weight must be either 0 or 1.''' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('''Vertex indexes must be in [0; size).''' )
self._graph[from_vertex].append(Edge(__A , __A ) )
def _UpperCamelCase ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : int ) -> Optional[int]:
_UpperCamelCase = deque([start_vertex] )
_UpperCamelCase = [None] * self.size
_UpperCamelCase = 0
while queue:
_UpperCamelCase = queue.popleft()
_UpperCamelCase = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
_UpperCamelCase = current_distance + edge.weight
_UpperCamelCase = distances[edge.destination_vertex]
if (
isinstance(__A , __A )
and new_distance >= dest_vertex_distance
):
continue
_UpperCamelCase = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('''No path from start_vertex to finish_vertex.''' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 420 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class lowerCamelCase_ ( unittest.TestCase ):
def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
__A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
__A : Union[str, Any] = parent
__A : Union[str, Any] = batch_size
__A : Union[str, Any] = num_channels
__A : Optional[Any] = min_resolution
__A : Union[str, Any] = max_resolution
__A : Any = do_resize
__A : Union[str, Any] = size
__A : Optional[int] = do_normalize
__A : Dict = image_mean
__A : Optional[int] = image_std
__A : Tuple = do_rescale
__A : Optional[Any] = rescale_factor
__A : Tuple = do_pad
def lowerCAmelCase_ ( self : Any ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ):
if not batched:
__A : Union[str, Any] = image_inputs[0]
if isinstance(__A , Image.Image ):
__A , __A : Union[str, Any] = image.size
else:
__A , __A : Optional[int] = image.shape[1], image.shape[2]
if w < h:
__A : Optional[int] = int(self.size["""shortest_edge"""] * h / w )
__A : Dict = self.size["""shortest_edge"""]
elif w > h:
__A : Optional[Any] = self.size["""shortest_edge"""]
__A : List[Any] = int(self.size["""shortest_edge"""] * w / h )
else:
__A : Union[str, Any] = self.size["""shortest_edge"""]
__A : str = self.size["""shortest_edge"""]
else:
__A : Any = []
for image in image_inputs:
__A , __A : List[str] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__A : Tuple = max(__A , key=lambda __A : item[0] )[0]
__A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class lowerCamelCase_ ( _lowercase , unittest.TestCase ):
_lowercase : Tuple = DetaImageProcessor if is_vision_available() else None
def lowerCAmelCase_ ( self : Optional[Any] ):
__A : Tuple = DetaImageProcessingTester(self )
@property
def lowerCAmelCase_ ( self : List[str] ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase_ ( self : List[str] ):
__A : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__A , """image_mean""" ) )
self.assertTrue(hasattr(__A , """image_std""" ) )
self.assertTrue(hasattr(__A , """do_normalize""" ) )
self.assertTrue(hasattr(__A , """do_resize""" ) )
self.assertTrue(hasattr(__A , """do_rescale""" ) )
self.assertTrue(hasattr(__A , """do_pad""" ) )
self.assertTrue(hasattr(__A , """size""" ) )
def lowerCAmelCase_ ( self : Any ):
__A : Dict = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad , __A )
def lowerCAmelCase_ ( self : Optional[Any] ):
pass
def lowerCAmelCase_ ( self : Optional[int] ):
# Initialize image_processing
__A : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A )
for image in image_inputs:
self.assertIsInstance(__A , Image.Image )
# Test not batched input
__A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__A , __A : int = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A )
__A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCAmelCase_ ( self : Optional[int] ):
# Initialize image_processing
__A : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A )
for image in image_inputs:
self.assertIsInstance(__A , np.ndarray )
# Test not batched input
__A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values
__A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCAmelCase_ ( self : Dict ):
# Initialize image_processing
__A : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A )
for image in image_inputs:
self.assertIsInstance(__A , torch.Tensor )
# Test not batched input
__A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values
__A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def lowerCAmelCase_ ( self : Tuple ):
# prepare image and target
__A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
__A : Any = json.loads(f.read() )
__A : int = {"""image_id""": 3_9769, """annotations""": target}
# encode them
__A : List[str] = DetaImageProcessor()
__A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" )
# verify pixel values
__A : Tuple = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , __A )
__A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
__A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) )
# verify boxes
__A : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A )
__A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) )
# verify image_id
__A : List[str] = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) )
# verify is_crowd
__A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) )
# verify class_labels
__A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) )
# verify orig_size
__A : str = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) )
# verify size
__A : Any = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
@slow
def lowerCAmelCase_ ( self : Optional[int] ):
# prepare image, target and masks_path
__A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
__A : Tuple = json.loads(f.read() )
__A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target}
__A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
__A : Any = DetaImageProcessor(format="""coco_panoptic""" )
__A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" )
# verify pixel values
__A : Tuple = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , __A )
__A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) )
# verify area
__A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) )
# verify boxes
__A : Union[str, Any] = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A )
__A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) )
# verify image_id
__A : Any = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) )
# verify is_crowd
__A : Any = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) )
# verify class_labels
__A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) )
# verify masks
__A : List[str] = 82_2873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A )
# verify orig_size
__A : Tuple = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) )
# verify size
__A : Any = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
| 17 | 0 |
import argparse
import copy
def a_ ( __magic_name__ ) -> Optional[Any]:
"""simple docstring"""
snake_case : List[str] = {}
with open(__magic_name__ ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
snake_case : Optional[Any] = []
_list.append([line.split()[1], line.split()[2]] )
snake_case : int = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
snake_case : Any = []
_list.append([line.split()[0], line.split()[2]] )
snake_case : str = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def a_ ( __magic_name__ , __magic_name__ ) -> Optional[Any]:
"""simple docstring"""
with open(__magic_name__ ) as f:
snake_case : Optional[int] = f.read(1 )
snake_case : List[Any] = start_node
snake_case : Any = []
snake_case : List[Any] = start_node
snake_case : List[Any] = 0
while visiting not in first_solution:
snake_case : Union[str, Any] = 10_000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution:
snake_case : Union[str, Any] = k[1]
snake_case : List[str] = k[0]
first_solution.append(__magic_name__ )
snake_case : str = distance_of_first_solution + int(__magic_name__ )
snake_case : List[Any] = best_node
first_solution.append(__magic_name__ )
snake_case : int = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
snake_case : Union[str, Any] = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 10_000
)
return first_solution, distance_of_first_solution
def a_ ( __magic_name__ , __magic_name__ ) -> Dict:
"""simple docstring"""
snake_case : Optional[int] = []
for n in solution[1:-1]:
snake_case : Any = solution.index(__magic_name__ )
for kn in solution[1:-1]:
snake_case : List[Any] = solution.index(__magic_name__ )
if n == kn:
continue
snake_case : Tuple = copy.deepcopy(__magic_name__ )
snake_case : List[str] = kn
snake_case : str = n
snake_case : Dict = 0
for k in _tmp[:-1]:
snake_case : str = _tmp[_tmp.index(__magic_name__ ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
snake_case : Dict = distance + int(i[1] )
_tmp.append(__magic_name__ )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
snake_case : Tuple = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def a_ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any:
"""simple docstring"""
snake_case : int = 1
snake_case : Dict = first_solution
snake_case : Union[str, Any] = []
snake_case : List[str] = distance_of_first_solution
snake_case : Any = solution
while count <= iters:
snake_case : Union[str, Any] = find_neighborhood(__magic_name__ , __magic_name__ )
snake_case : int = 0
snake_case : List[str] = neighborhood[index_of_best_solution]
snake_case : List[str] = len(__magic_name__ ) - 1
snake_case : List[str] = False
while not found:
snake_case : Dict = 0
while i < len(__magic_name__ ):
if best_solution[i] != solution[i]:
snake_case : Optional[Any] = best_solution[i]
snake_case : Optional[Any] = solution[i]
break
snake_case : str = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
snake_case : List[str] = True
snake_case : str = best_solution[:-1]
snake_case : str = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
snake_case : List[Any] = cost
snake_case : List[Any] = solution
else:
snake_case : Tuple = index_of_best_solution + 1
snake_case : int = neighborhood[index_of_best_solution]
if len(__magic_name__ ) >= size:
tabu_list.pop(0 )
snake_case : List[Any] = count + 1
return best_solution_ever, best_cost
def a_ ( __magic_name__=None ) -> List[Any]:
"""simple docstring"""
snake_case : Tuple = generate_neighbours(args.File )
snake_case , snake_case : List[Any] = generate_first_solution(
args.File , __magic_name__ )
snake_case , snake_case : List[Any] = tabu_search(
__magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , )
print(F"Best solution: {best_sol}, with total distance: {best_cost}." )
if __name__ == "__main__":
_a : str = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 84 |
import string
import numpy
def a_ ( __magic_name__ , __magic_name__ ) -> int:
"""simple docstring"""
return b if a == 0 else greatest_common_divisor(b % a , __magic_name__ )
class a_ :
A__ : List[Any] = string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
A__ : List[str] = numpy.vectorize(lambda a : x % 36 )
A__ : Dict = numpy.vectorize(a )
def __init__( self : List[str] , UpperCAmelCase__ : numpy.ndarray ):
"""simple docstring"""
snake_case : int = self.modulus(UpperCAmelCase__ ) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
snake_case : List[str] = encrypt_key.shape[0]
def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : str ):
"""simple docstring"""
return self.key_string.index(UpperCAmelCase__ )
def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : int ):
"""simple docstring"""
return self.key_string[round(UpperCAmelCase__ )]
def lowerCAmelCase( self : Optional[Any] ):
"""simple docstring"""
snake_case : List[Any] = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
snake_case : Tuple = det % len(self.key_string )
snake_case : Tuple = len(self.key_string )
if greatest_common_divisor(UpperCAmelCase__ , len(self.key_string ) ) != 1:
snake_case : List[Any] = (
F"determinant modular {req_l} of encryption key({det}) "
F"is not co prime w.r.t {req_l}.\nTry another key."
)
raise ValueError(UpperCAmelCase__ )
def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : str ):
"""simple docstring"""
snake_case : Optional[int] = [char for char in text.upper() if char in self.key_string]
snake_case : Optional[int] = chars[-1]
while len(UpperCAmelCase__ ) % self.break_key != 0:
chars.append(UpperCAmelCase__ )
return "".join(UpperCAmelCase__ )
def lowerCAmelCase( self : Optional[int] , UpperCAmelCase__ : str ):
"""simple docstring"""
snake_case : Optional[int] = self.process_text(text.upper() )
snake_case : Optional[int] = ''''''
for i in range(0 , len(UpperCAmelCase__ ) - self.break_key + 1 , self.break_key ):
snake_case : int = text[i : i + self.break_key]
snake_case : int = [self.replace_letters(UpperCAmelCase__ ) for char in batch]
snake_case : Tuple = numpy.array([vec] ).T
snake_case : Optional[Any] = self.modulus(self.encrypt_key.dot(UpperCAmelCase__ ) ).T.tolist()[
0
]
snake_case : Dict = ''''''.join(
self.replace_digits(UpperCAmelCase__ ) for num in batch_encrypted )
encrypted += encrypted_batch
return encrypted
def lowerCAmelCase( self : str ):
"""simple docstring"""
snake_case : Optional[int] = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
snake_case : int = det % len(self.key_string )
snake_case : Dict = None
for i in range(len(self.key_string ) ):
if (det * i) % len(self.key_string ) == 1:
snake_case : Any = i
break
snake_case : Any = (
det_inv
* numpy.linalg.det(self.encrypt_key )
* numpy.linalg.inv(self.encrypt_key )
)
return self.to_int(self.modulus(UpperCAmelCase__ ) )
def lowerCAmelCase( self : Dict , UpperCAmelCase__ : str ):
"""simple docstring"""
snake_case : Any = self.make_decrypt_key()
snake_case : Optional[Any] = self.process_text(text.upper() )
snake_case : int = ''''''
for i in range(0 , len(UpperCAmelCase__ ) - self.break_key + 1 , self.break_key ):
snake_case : Any = text[i : i + self.break_key]
snake_case : int = [self.replace_letters(UpperCAmelCase__ ) for char in batch]
snake_case : List[str] = numpy.array([vec] ).T
snake_case : Optional[Any] = self.modulus(decrypt_key.dot(UpperCAmelCase__ ) ).T.tolist()[0]
snake_case : int = ''''''.join(
self.replace_digits(UpperCAmelCase__ ) for num in batch_decrypted )
decrypted += decrypted_batch
return decrypted
def a_ ( ) -> None:
"""simple docstring"""
snake_case : Any = int(input('''Enter the order of the encryption key: ''' ) )
snake_case : List[Any] = []
print('''Enter each row of the encryption key with space separated integers''' )
for _ in range(__magic_name__ ):
snake_case : Optional[Any] = [int(__magic_name__ ) for x in input().split()]
hill_matrix.append(__magic_name__ )
snake_case : List[str] = HillCipher(numpy.array(__magic_name__ ) )
print('''Would you like to encrypt or decrypt some text? (1 or 2)''' )
snake_case : int = input('''\n1. Encrypt\n2. Decrypt\n''' )
if option == "1":
snake_case : List[Any] = input('''What text would you like to encrypt?: ''' )
print('''Your encrypted text is:''' )
print(hc.encrypt(__magic_name__ ) )
elif option == "2":
snake_case : int = input('''What text would you like to decrypt?: ''' )
print('''Your decrypted text is:''' )
print(hc.decrypt(__magic_name__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 84 | 1 |
'''simple docstring'''
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,) -> Optional[Any]:
if config_name_or_path is None:
lowerCamelCase_ = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base'
if generator_tokenizer_name_or_path is None:
lowerCamelCase_ = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
lowerCamelCase_ = question_encoder_name_or_path
lowerCamelCase_ = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration
# Save model.
lowerCamelCase_ = RagConfig.from_pretrained(__UpperCamelCase )
lowerCamelCase_ = AutoConfig.from_pretrained(__UpperCamelCase )
lowerCamelCase_ = AutoConfig.from_pretrained(__UpperCamelCase )
lowerCamelCase_ = gen_config
lowerCamelCase_ = question_encoder_config
lowerCamelCase_ = model_class.from_pretrained_question_encoder_generator(
__UpperCamelCase ,__UpperCamelCase ,config=__UpperCamelCase )
rag_model.save_pretrained(__UpperCamelCase )
# Sanity check.
model_class.from_pretrained(__UpperCamelCase )
# Save tokenizers.
lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase )
gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' )
lowerCamelCase_ = AutoTokenizer.from_pretrained(__UpperCamelCase )
question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument(
"--model_type",
choices=["rag_sequence", "rag_token"],
required=True,
type=str,
help="RAG model type: rag_sequence, rag_token",
)
parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.")
parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier")
parser.add_argument(
"--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier"
)
parser.add_argument(
"--generator_tokenizer_name_or_path",
type=str,
help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``",
)
parser.add_argument(
"--question_encoder_tokenizer_name_or_path",
type=str,
help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``",
)
parser.add_argument(
"--config_name_or_path",
type=str,
help=(
"Identifier of the model config to use, if not provided, resolves to a base config for a given"
" ``model_type``"
),
)
A_ = parser.parse_args()
A_ = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 42 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
_snake_case : Tuple = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu")
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation="relu"))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=1_28, activation="relu"))
classifier.add(layers.Dense(units=1, activation="sigmoid"))
# Compiling the CNN
classifier.compile(
optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
_snake_case : Optional[int] = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
_snake_case : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55)
_snake_case : Dict = train_datagen.flow_from_directory(
"dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary"
)
_snake_case : Dict = test_datagen.flow_from_directory(
"dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary"
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save("cnn.h5")
# Part 3 - Making new predictions
_snake_case : int = tf.keras.preprocessing.image.load_img(
"dataset/single_prediction/image.png", target_size=(64, 64)
)
_snake_case : Any = tf.keras.preprocessing.image.img_to_array(test_image)
_snake_case : int = np.expand_dims(test_image, axis=0)
_snake_case : Optional[Any] = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
_snake_case : str = "Normal"
if result[0][0] == 1:
_snake_case : str = "Abnormality detected"
| 441 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase : List[str] = logging.get_logger(__name__)
__UpperCAmelCase : Optional[Any] = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class _SCREAMING_SNAKE_CASE ( A__ ):
UpperCAmelCase_ :Optional[Any] = "cvt"
def __init__( self , __A=3 , __A=[7, 3, 3] , __A=[4, 2, 2] , __A=[2, 1, 1] , __A=[64, 192, 384] , __A=[1, 3, 6] , __A=[1, 2, 10] , __A=[4.0, 4.0, 4.0] , __A=[0.0, 0.0, 0.0] , __A=[0.0, 0.0, 0.0] , __A=[0.0, 0.0, 0.1] , __A=[True, True, True] , __A=[False, False, True] , __A=["dw_bn", "dw_bn", "dw_bn"] , __A=[3, 3, 3] , __A=[1, 1, 1] , __A=[2, 2, 2] , __A=[1, 1, 1] , __A=[1, 1, 1] , __A=0.0_2 , __A=1E-12 , **__A , ) -> List[Any]:
super().__init__(**__A )
lowerCAmelCase_ :List[Any] = num_channels
lowerCAmelCase_ :int = patch_sizes
lowerCAmelCase_ :List[Any] = patch_stride
lowerCAmelCase_ :Optional[int] = patch_padding
lowerCAmelCase_ :List[Any] = embed_dim
lowerCAmelCase_ :int = num_heads
lowerCAmelCase_ :Optional[Any] = depth
lowerCAmelCase_ :Union[str, Any] = mlp_ratio
lowerCAmelCase_ :Optional[int] = attention_drop_rate
lowerCAmelCase_ :List[str] = drop_rate
lowerCAmelCase_ :int = drop_path_rate
lowerCAmelCase_ :int = qkv_bias
lowerCAmelCase_ :List[str] = cls_token
lowerCAmelCase_ :Union[str, Any] = qkv_projection_method
lowerCAmelCase_ :Tuple = kernel_qkv
lowerCAmelCase_ :Any = padding_kv
lowerCAmelCase_ :List[str] = stride_kv
lowerCAmelCase_ :Any = padding_q
lowerCAmelCase_ :str = stride_q
lowerCAmelCase_ :Optional[int] = initializer_range
lowerCAmelCase_ :Optional[Any] = layer_norm_eps
| 720 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json',
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class _SCREAMING_SNAKE_CASE ( A__ ):
UpperCAmelCase_ :Tuple = "wavlm"
def __init__( self , __A=32 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=0.1 , __A=0.0 , __A=0.1 , __A=0.1 , __A=0.0_2 , __A=1E-5 , __A="group" , __A="gelu" , __A=(512, 512, 512, 512, 512, 512, 512) , __A=(5, 2, 2, 2, 2, 2, 2) , __A=(10, 3, 3, 3, 3, 2, 2) , __A=False , __A=128 , __A=16 , __A=320 , __A=800 , __A=False , __A=True , __A=0.0_5 , __A=10 , __A=2 , __A=0.0 , __A=10 , __A=320 , __A=2 , __A=0.1 , __A=100 , __A=256 , __A=256 , __A=0.1 , __A="mean" , __A=False , __A=False , __A=256 , __A=(512, 512, 512, 512, 1500) , __A=(5, 3, 3, 1, 1) , __A=(1, 2, 3, 1, 1) , __A=512 , __A=80 , __A=0 , __A=1 , __A=2 , __A=False , __A=3 , __A=2 , __A=3 , __A=None , **__A , ) -> Any:
super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A )
lowerCAmelCase_ :Any = hidden_size
lowerCAmelCase_ :Union[str, Any] = feat_extract_norm
lowerCAmelCase_ :Optional[Any] = feat_extract_activation
lowerCAmelCase_ :int = list(__A )
lowerCAmelCase_ :Optional[int] = list(__A )
lowerCAmelCase_ :List[Any] = list(__A )
lowerCAmelCase_ :Any = conv_bias
lowerCAmelCase_ :int = num_buckets
lowerCAmelCase_ :List[str] = max_bucket_distance
lowerCAmelCase_ :List[str] = num_conv_pos_embeddings
lowerCAmelCase_ :Dict = num_conv_pos_embedding_groups
lowerCAmelCase_ :Union[str, Any] = len(self.conv_dim )
lowerCAmelCase_ :Dict = num_hidden_layers
lowerCAmelCase_ :List[str] = intermediate_size
lowerCAmelCase_ :Optional[int] = hidden_act
lowerCAmelCase_ :List[Any] = num_attention_heads
lowerCAmelCase_ :Union[str, Any] = hidden_dropout
lowerCAmelCase_ :Optional[Any] = attention_dropout
lowerCAmelCase_ :List[Any] = activation_dropout
lowerCAmelCase_ :Union[str, Any] = feat_proj_dropout
lowerCAmelCase_ :Optional[Any] = final_dropout
lowerCAmelCase_ :Optional[Any] = layerdrop
lowerCAmelCase_ :Union[str, Any] = layer_norm_eps
lowerCAmelCase_ :Union[str, Any] = initializer_range
lowerCAmelCase_ :List[Any] = num_ctc_classes
lowerCAmelCase_ :Tuple = vocab_size
lowerCAmelCase_ :List[str] = do_stable_layer_norm
lowerCAmelCase_ :Union[str, Any] = use_weighted_layer_sum
lowerCAmelCase_ :Optional[int] = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCAmelCase_ :List[str] = apply_spec_augment
lowerCAmelCase_ :Tuple = mask_time_prob
lowerCAmelCase_ :Optional[Any] = mask_time_length
lowerCAmelCase_ :int = mask_time_min_masks
lowerCAmelCase_ :Optional[Any] = mask_feature_prob
lowerCAmelCase_ :Optional[int] = mask_feature_length
# parameters for pretraining with codevector quantized representations
lowerCAmelCase_ :Optional[Any] = num_codevectors_per_group
lowerCAmelCase_ :Optional[int] = num_codevector_groups
lowerCAmelCase_ :Tuple = contrastive_logits_temperature
lowerCAmelCase_ :Tuple = num_negatives
lowerCAmelCase_ :str = codevector_dim
lowerCAmelCase_ :int = proj_codevector_dim
lowerCAmelCase_ :Optional[Any] = diversity_loss_weight
# ctc loss
lowerCAmelCase_ :Union[str, Any] = ctc_loss_reduction
lowerCAmelCase_ :Optional[Any] = ctc_zero_infinity
# adapter
lowerCAmelCase_ :Union[str, Any] = add_adapter
lowerCAmelCase_ :List[str] = adapter_kernel_size
lowerCAmelCase_ :Union[str, Any] = adapter_stride
lowerCAmelCase_ :Union[str, Any] = num_adapter_layers
lowerCAmelCase_ :Tuple = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
lowerCAmelCase_ :str = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
lowerCAmelCase_ :List[Any] = list(__A )
lowerCAmelCase_ :List[str] = list(__A )
lowerCAmelCase_ :Optional[int] = list(__A )
lowerCAmelCase_ :Optional[int] = xvector_output_dim
@property
def __lowerCAmelCase ( self ) -> List[Any]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 256 | 0 |
"""simple docstring"""
class _a :
def __init__( self : Union[str, Any] , _lowercase : int ) -> Dict:
snake_case : Optional[Any] = n
snake_case : str = [None] * self.n
snake_case : List[str] = 0 # index of the first element
snake_case : Tuple = 0
snake_case : str = 0
def __len__( self : Union[str, Any] ) -> int:
return self.size
def __lowercase ( self : Any ) -> bool:
return self.size == 0
def __lowercase ( self : Union[str, Any] ) -> Dict:
return False if self.is_empty() else self.array[self.front]
def __lowercase ( self : Tuple , _lowercase : Union[str, Any] ) -> Union[str, Any]:
if self.size >= self.n:
raise Exception("QUEUE IS FULL" )
snake_case : Union[str, Any] = data
snake_case : Optional[Any] = (self.rear + 1) % self.n
self.size += 1
return self
def __lowercase ( self : Union[str, Any] ) -> Dict:
if self.size == 0:
raise Exception("UNDERFLOW" )
snake_case : Tuple = self.array[self.front]
snake_case : List[str] = None
snake_case : Any = (self.front + 1) % self.n
self.size -= 1
return temp
| 449 |
from math import factorial, pi
def lowerCamelCase__ ( _a , _a = 30):
if not isinstance(_a , (int, float)):
raise ValueError("maclaurin_sin() requires either an int or float for theta")
if not isinstance(_a , _a) or accuracy <= 0:
raise ValueError("maclaurin_sin() requires a positive int for accuracy")
SCREAMING_SNAKE_CASE : int = float(_a)
SCREAMING_SNAKE_CASE : Dict = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1) for r in range(_a))
def lowerCamelCase__ ( _a , _a = 30):
if not isinstance(_a , (int, float)):
raise ValueError("maclaurin_cos() requires either an int or float for theta")
if not isinstance(_a , _a) or accuracy <= 0:
raise ValueError("maclaurin_cos() requires a positive int for accuracy")
SCREAMING_SNAKE_CASE : str = float(_a)
SCREAMING_SNAKE_CASE : Any = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r) for r in range(_a))
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15)) | 25 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=4 , ):
__a : List[str] = parent
__a : int = batch_size
__a : List[Any] = seq_length
__a : Optional[int] = is_training
__a : int = use_attention_mask
__a : int = use_token_type_ids
__a : int = use_labels
__a : Optional[Any] = vocab_size
__a : Optional[int] = hidden_size
__a : Tuple = num_hidden_layers
__a : Dict = num_attention_heads
__a : List[str] = intermediate_size
__a : int = hidden_act
__a : str = hidden_dropout_prob
__a : Optional[Any] = attention_probs_dropout_prob
__a : Optional[int] = max_position_embeddings
__a : int = type_vocab_size
__a : int = type_sequence_label_size
__a : Optional[int] = initializer_range
__a : str = num_choices
def _lowerCamelCase ( self ):
__a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__a : Dict = None
if self.use_attention_mask:
__a : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__a : Dict = None
if self.use_token_type_ids:
__a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__a : Optional[Any] = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _lowerCamelCase ( self ):
__a : int = self.prepare_config_and_inputs()
__a : List[Any] = config_and_inputs
__a : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowercase ( _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__lowerCAmelCase = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowerCamelCase ( self ):
__a : Tuple = FlaxAlbertModelTester(self )
@slow
def _lowerCamelCase ( self ):
for model_class_name in self.all_model_classes:
__a : Optional[int] = model_class_name.from_pretrained('''albert-base-v2''' )
__a : Tuple = model(np.ones((1, 1) ) )
self.assertIsNotNone(_UpperCAmelCase )
@require_flax
class __lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def _lowerCamelCase ( self ):
__a : Dict = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
__a : Optional[int] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
__a : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__a : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
__a : Tuple = (1, 11, 768)
self.assertEqual(output.shape , _UpperCAmelCase )
__a : Dict = np.array(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) ) | 707 |
"""simple docstring"""
def __A ( a_ :int = 2_00) -> int:
__a : int = [1, 2, 5, 10, 20, 50, 1_00, 2_00]
__a : List[Any] = [0] * (pence + 1)
__a : Tuple = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(a_ , pence + 1 , 1):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 73_682 | 101 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
a_ : Union[str, Any] = logging.get_logger(__name__)
a_ : List[str] = {'vocab_file': 'sentencepiece.bpe.model'}
a_ : str = {
'vocab_file': {
'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model',
'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model',
'moussaKam/barthez-orangesum-title': (
'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model'
),
},
}
a_ : str = {
'moussaKam/mbarthez': 10_24,
'moussaKam/barthez': 10_24,
'moussaKam/barthez-orangesum-title': 10_24,
}
a_ : Tuple = '▁'
class _snake_case ( A__ ):
_lowercase : Dict = VOCAB_FILES_NAMES
_lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Optional[Any] = ['''input_ids''', '''attention_mask''']
def __init__( self , a , a="<s>" , a="</s>" , a="</s>" , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a = None , **a , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else mask_token
SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , )
SCREAMING_SNAKE_CASE = vocab_file
SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(a))
SCREAMING_SNAKE_CASE = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
SCREAMING_SNAKE_CASE = len(self.sp_model) - 1
SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
SCREAMING_SNAKE_CASE = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=a , token_ids_a=a , already_has_special_tokens=a)
if token_ids_a is None:
return [1] + ([0] * len(a)) + [1]
return [1] + ([0] * len(a)) + [1, 1] + ([0] * len(a)) + [1]
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
return len(self.sp_model)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(a): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def SCREAMING_SNAKE_CASE__ ( self , a) -> List[str]:
return self.sp_model.encode(a , out_type=a)
def SCREAMING_SNAKE_CASE__ ( self , a) -> int:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(a)
return spm_id if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(a)
def SCREAMING_SNAKE_CASE__ ( self , a) -> List[Any]:
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = ''
SCREAMING_SNAKE_CASE = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(a) + token
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = []
else:
current_sub_tokens.append(a)
SCREAMING_SNAKE_CASE = False
out_string += self.sp_model.decode(a)
return out_string.strip()
def __getstate__( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = self.__dict__.copy()
SCREAMING_SNAKE_CASE = None
return state
def __setstate__( self , a) -> int:
SCREAMING_SNAKE_CASE = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs'):
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]:
if not os.path.isdir(a):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''')
return
SCREAMING_SNAKE_CASE = os.path.join(
a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(a) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , a)
elif not os.path.isfile(self.vocab_file):
with open(a , 'wb') as fi:
SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto()
fi.write(a)
return (out_vocab_file,)
| 73 |
_lowercase = [0, 2, 4, 6, 8]
_lowercase = [1, 3, 5, 7, 9]
def lowerCAmelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : list[int] , UpperCamelCase_ : int )-> int:
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 1_0
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
A__ = 0
for digit in range(1_0 ):
A__ = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 1_0 , UpperCamelCase_ , UpperCamelCase_ )
return result
A__ = 0
for digita in range(1_0 ):
A__ = digita
if (remainder + digita) % 2 == 0:
A__ = ODD_DIGITS
else:
A__ = EVEN_DIGITS
for digita in other_parity_digits:
A__ = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 1_0 , UpperCamelCase_ , UpperCamelCase_ , )
return result
def lowerCAmelCase__ ( UpperCamelCase_ : int = 9 )-> int:
A__ = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(UpperCamelCase_ , 0 , [0] * length , UpperCamelCase_ )
return result
if __name__ == "__main__":
print(F"{solution() = }")
| 632 | 0 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
__a = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k',
'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v',
'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q',
'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u',
'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v',
'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out',
'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos',
'self_attn.rotary_emb': 'encoder.embed_positions',
'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm',
'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1',
'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2',
'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv',
'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm',
'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm',
'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense',
'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense',
'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm',
'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense',
'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense',
'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
__a = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ):
'''simple docstring'''
for attribute in key.split('''.''' ):
UpperCAmelCase_ : Tuple = getattr(_lowercase , _lowercase )
if weight_type is not None:
UpperCAmelCase_ : int = getattr(_lowercase , _lowercase ).shape
else:
UpperCAmelCase_ : int = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCAmelCase_ : Union[str, Any] = value
elif weight_type == "weight_g":
UpperCAmelCase_ : List[Any] = value
elif weight_type == "weight_v":
UpperCAmelCase_ : Any = value
elif weight_type == "bias":
UpperCAmelCase_ : Union[str, Any] = value
elif weight_type == "running_mean":
UpperCAmelCase_ : Tuple = value
elif weight_type == "running_var":
UpperCAmelCase_ : Optional[int] = value
elif weight_type == "num_batches_tracked":
UpperCAmelCase_ : List[str] = value
elif weight_type == "inv_freq":
UpperCAmelCase_ : Optional[int] = value
else:
UpperCAmelCase_ : Optional[int] = value
logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ):
'''simple docstring'''
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : Any = fairseq_model.state_dict()
UpperCAmelCase_ : Any = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase_ : Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
_lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == '''group''' , )
UpperCAmelCase_ : Optional[Any] = True
else:
for key, mapped_key in MAPPING.items():
UpperCAmelCase_ : List[Any] = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
UpperCAmelCase_ : int = True
if "*" in mapped_key:
UpperCAmelCase_ : Optional[int] = name.split(_lowercase )[0].split('''.''' )[-2]
UpperCAmelCase_ : List[Any] = mapped_key.replace('''*''' , _lowercase )
if "pos_bias_u" in name:
UpperCAmelCase_ : Dict = None
elif "pos_bias_v" in name:
UpperCAmelCase_ : str = None
elif "weight_g" in name:
UpperCAmelCase_ : Dict = '''weight_g'''
elif "weight_v" in name:
UpperCAmelCase_ : str = '''weight_v'''
elif "bias" in name:
UpperCAmelCase_ : str = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase_ : List[Any] = '''weight'''
elif "running_mean" in name:
UpperCAmelCase_ : int = '''running_mean'''
elif "inv_freq" in name:
UpperCAmelCase_ : List[str] = '''inv_freq'''
elif "running_var" in name:
UpperCAmelCase_ : int = '''running_var'''
elif "num_batches_tracked" in name:
UpperCAmelCase_ : Tuple = '''num_batches_tracked'''
else:
UpperCAmelCase_ : Dict = None
set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase )
continue
if not is_used:
unused_weights.append(_lowercase )
logger.warning(f'''Unused weights: {unused_weights}''' )
def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ):
'''simple docstring'''
UpperCAmelCase_ : str = full_name.split('''conv_layers.''' )[-1]
UpperCAmelCase_ : Dict = name.split('''.''' )
UpperCAmelCase_ : List[Any] = int(items[0] )
UpperCAmelCase_ : Tuple = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCAmelCase_ : List[Any] = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCAmelCase_ : List[Any] = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCAmelCase_ : Optional[int] = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCAmelCase_ : List[str] = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowercase )
@torch.no_grad()
def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True ):
'''simple docstring'''
if config_path is not None:
UpperCAmelCase_ : str = WavaVecaConformerConfig.from_pretrained(_lowercase , hidden_act='''swish''' )
else:
UpperCAmelCase_ : List[str] = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
UpperCAmelCase_ : Any = '''rotary'''
if is_finetuned:
if dict_path:
UpperCAmelCase_ : Optional[Any] = Dictionary.load(_lowercase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase_ : Tuple = target_dict.pad_index
UpperCAmelCase_ : List[Any] = target_dict.bos_index
UpperCAmelCase_ : Tuple = target_dict.eos_index
UpperCAmelCase_ : Dict = len(target_dict.symbols )
UpperCAmelCase_ : str = os.path.join(_lowercase , '''vocab.json''' )
if not os.path.isdir(_lowercase ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowercase ) )
return
os.makedirs(_lowercase , exist_ok=_lowercase )
UpperCAmelCase_ : Optional[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : List[Any] = 1
with open(_lowercase , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_lowercase , _lowercase )
UpperCAmelCase_ : Optional[Any] = WavaVecaCTCTokenizer(
_lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowercase , )
UpperCAmelCase_ : Union[str, Any] = True if config.feat_extract_norm == '''layer''' else False
UpperCAmelCase_ : Any = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , )
UpperCAmelCase_ : Optional[int] = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase )
processor.save_pretrained(_lowercase )
UpperCAmelCase_ : List[str] = WavaVecaConformerForCTC(_lowercase )
else:
UpperCAmelCase_ : Union[str, Any] = WavaVecaConformerForPreTraining(_lowercase )
if is_finetuned:
UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
UpperCAmelCase_ : Optional[int] = argparse.Namespace(task='''audio_pretraining''' )
UpperCAmelCase_ : Union[str, Any] = fairseq.tasks.setup_task(_lowercase )
UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowercase )
UpperCAmelCase_ : Any = model[0].eval()
recursively_load_weights(_lowercase , _lowercase , not is_finetuned )
hf_wavavec.save_pretrained(_lowercase )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
__a = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
) | 300 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__a = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __a( _a ):
"""simple docstring"""
lowerCAmelCase = ['''pixel_values''']
def __init__( self ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = 1 / 255 ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,**_SCREAMING_SNAKE_CASE ,) -> None:
super().__init__(**_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : str = size if size is not None else {'''shortest_edge''': 224}
UpperCAmelCase_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase_ : List[str] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ,param_name='''crop_size''' )
UpperCAmelCase_ : List[Any] = do_resize
UpperCAmelCase_ : List[Any] = size
UpperCAmelCase_ : Optional[Any] = resample
UpperCAmelCase_ : List[str] = do_center_crop
UpperCAmelCase_ : str = crop_size
UpperCAmelCase_ : List[str] = do_rescale
UpperCAmelCase_ : Any = rescale_factor
UpperCAmelCase_ : Tuple = do_normalize
UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
UpperCAmelCase_ : Dict = image_std if image_std is not None else OPENAI_CLIP_STD
UpperCAmelCase_ : List[str] = do_convert_rgb
def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray:
UpperCAmelCase_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
UpperCAmelCase_ : Tuple = get_resize_output_image_size(_SCREAMING_SNAKE_CASE ,size=size['''shortest_edge'''] ,default_to_square=_SCREAMING_SNAKE_CASE )
return resize(_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray:
UpperCAmelCase_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(_SCREAMING_SNAKE_CASE ,size=(size['''height'''], size['''width''']) ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> Any:
return rescale(_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray:
return normalize(_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = ChannelDimension.FIRST ,**_SCREAMING_SNAKE_CASE ,) -> PIL.Image.Image:
UpperCAmelCase_ : List[Any] = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : Optional[int] = size if size is not None else self.size
UpperCAmelCase_ : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name='''size''' ,default_to_square=_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Tuple = resample if resample is not None else self.resample
UpperCAmelCase_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name='''crop_size''' ,default_to_square=_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase_ : int = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase_ : List[str] = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase_ : int = image_std if image_std is not None else self.image_std
UpperCAmelCase_ : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
UpperCAmelCase_ : Dict = make_list_of_images(_SCREAMING_SNAKE_CASE )
if not valid_images(_SCREAMING_SNAKE_CASE ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
UpperCAmelCase_ : List[Any] = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images]
# All transformations expect numpy arrays.
UpperCAmelCase_ : Any = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images]
if do_resize:
UpperCAmelCase_ : List[str] = [self.resize(image=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ) for image in images]
if do_center_crop:
UpperCAmelCase_ : str = [self.center_crop(image=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ) for image in images]
if do_rescale:
UpperCAmelCase_ : int = [self.rescale(image=_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ) for image in images]
if do_normalize:
UpperCAmelCase_ : str = [self.normalize(image=_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ) for image in images]
UpperCAmelCase_ : List[str] = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=_SCREAMING_SNAKE_CASE ,tensor_type=_SCREAMING_SNAKE_CASE ) | 300 | 1 |
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
UpperCAmelCase_ = random.Random()
def __magic_name__ ( lowercase , lowercase=1.0 , lowercase=None , lowercase=None ) -> Optional[int]:
"""simple docstring"""
if rng is None:
lowercase_ : Any = global_rng
lowercase_ : Tuple = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class UpperCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, snake_case__, snake_case__=7, snake_case__=4_00, snake_case__=20_00, snake_case__=20_48, snake_case__=1_28, snake_case__=1, snake_case__=5_12, snake_case__=30, snake_case__=4_41_00, ) -> Tuple:
"""simple docstring"""
lowercase_ : List[str] = parent
lowercase_ : str = batch_size
lowercase_ : Tuple = min_seq_length
lowercase_ : Dict = max_seq_length
lowercase_ : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
lowercase_ : str = spectrogram_length
lowercase_ : List[str] = feature_size
lowercase_ : Union[str, Any] = num_audio_channels
lowercase_ : Union[str, Any] = hop_length
lowercase_ : Union[str, Any] = chunk_length
lowercase_ : int = sampling_rate
def snake_case__ ( self ) -> Dict:
"""simple docstring"""
return {
"spectrogram_length": self.spectrogram_length,
"feature_size": self.feature_size,
"num_audio_channels": self.num_audio_channels,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"sampling_rate": self.sampling_rate,
}
def snake_case__ ( self, snake_case__=False, snake_case__=False ) -> Tuple:
"""simple docstring"""
def _flatten(snake_case__ ):
return list(itertools.chain(*_lowerCamelCase ) )
if equal_length:
lowercase_ : Optional[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
lowercase_ : int = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
lowercase_ : int = [np.asarray(_lowerCamelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class UpperCamelCase__ ( A_ , unittest.TestCase ):
'''simple docstring'''
__a : Union[str, Any] = TvltFeatureExtractor
def snake_case__ ( self ) -> str:
"""simple docstring"""
lowercase_ : str = TvltFeatureExtractionTester(self )
def snake_case__ ( self ) -> List[str]:
"""simple docstring"""
lowercase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(_lowerCamelCase, """spectrogram_length""" ) )
self.assertTrue(hasattr(_lowerCamelCase, """feature_size""" ) )
self.assertTrue(hasattr(_lowerCamelCase, """num_audio_channels""" ) )
self.assertTrue(hasattr(_lowerCamelCase, """hop_length""" ) )
self.assertTrue(hasattr(_lowerCamelCase, """chunk_length""" ) )
self.assertTrue(hasattr(_lowerCamelCase, """sampling_rate""" ) )
def snake_case__ ( self ) -> Dict:
"""simple docstring"""
lowercase_ : int = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase_ : Dict = feat_extract_first.save_pretrained(_lowerCamelCase )[0]
check_json_file_has_correct_format(_lowerCamelCase )
lowercase_ : List[Any] = self.feature_extraction_class.from_pretrained(_lowerCamelCase )
lowercase_ : Any = feat_extract_first.to_dict()
lowercase_ : List[Any] = feat_extract_second.to_dict()
lowercase_ : Optional[int] = dict_first.pop("""mel_filters""" )
lowercase_ : Any = dict_second.pop("""mel_filters""" )
self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase ) )
self.assertEqual(_lowerCamelCase, _lowerCamelCase )
def snake_case__ ( self ) -> str:
"""simple docstring"""
lowercase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase_ : List[str] = os.path.join(_lowerCamelCase, """feat_extract.json""" )
feat_extract_first.to_json_file(_lowerCamelCase )
lowercase_ : Optional[int] = self.feature_extraction_class.from_json_file(_lowerCamelCase )
lowercase_ : Any = feat_extract_first.to_dict()
lowercase_ : Optional[Any] = feat_extract_second.to_dict()
lowercase_ : int = dict_first.pop("""mel_filters""" )
lowercase_ : Union[str, Any] = dict_second.pop("""mel_filters""" )
self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase ) )
self.assertEqual(_lowerCamelCase, _lowerCamelCase )
def snake_case__ ( self ) -> Optional[Any]:
"""simple docstring"""
# Initialize feature_extractor
lowercase_ : int = self.feature_extraction_class(**self.feat_extract_dict )
# create three inputs of length 800, 1000, and 1200
lowercase_ : Any = [floats_list((1, x) )[0] for x in range(8_00, 14_00, 2_00 )]
lowercase_ : Dict = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs]
# Test not batched input
lowercase_ : str = feature_extractor(np_speech_inputs[0], return_tensors="""np""", sampling_rate=4_41_00 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test batched
lowercase_ : Tuple = feature_extractor(_lowerCamelCase, return_tensors="""np""", sampling_rate=4_41_00 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test audio masking
lowercase_ : Optional[int] = feature_extractor(
_lowerCamelCase, return_tensors="""np""", sampling_rate=4_41_00, mask_audio=_lowerCamelCase ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test 2-D numpy arrays are batched.
lowercase_ : Optional[int] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)]
lowercase_ : List[str] = np.asarray(_lowerCamelCase )
lowercase_ : Tuple = feature_extractor(_lowerCamelCase, return_tensors="""np""", sampling_rate=4_41_00 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
def snake_case__ ( self, snake_case__ ) -> Tuple:
"""simple docstring"""
lowercase_ : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""", """clean""", split="""validation""" )
# automatic decoding with librispeech
lowercase_ : List[str] = ds.sort("""id""" ).select(range(_lowerCamelCase ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def snake_case__ ( self ) -> Dict:
"""simple docstring"""
lowercase_ : List[str] = self._load_datasamples(1 )
lowercase_ : int = TvltFeatureExtractor()
lowercase_ : Optional[int] = feature_extractor(_lowerCamelCase, return_tensors="""pt""" ).audio_values
self.assertEquals(audio_values.shape, (1, 1, 1_92, 1_28) )
lowercase_ : List[str] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] )
self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2], _lowerCamelCase, atol=1E-4 ) ) | 458 |
"""simple docstring"""
import numpy as np
def _UpperCAmelCase ( __lowerCamelCase : np.ndarray , __lowerCamelCase : np.ndarray , __lowerCamelCase : float = 1E-1_2 , __lowerCamelCase : int = 1_00 , ) -> tuple[float, np.ndarray]:
assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[1]
# Ensure proper dimensionality.
assert np.shape(__lowerCamelCase )[0] == np.shape(__lowerCamelCase )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(__lowerCamelCase ) == np.iscomplexobj(__lowerCamelCase )
_snake_case = np.iscomplexobj(__lowerCamelCase )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(__lowerCamelCase , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
_snake_case = False
_snake_case = 0
_snake_case = 0
_snake_case = 1E1_2
while not convergence:
# Multiple matrix by the vector.
_snake_case = np.dot(__lowerCamelCase , __lowerCamelCase )
# Normalize the resulting output vector.
_snake_case = w / np.linalg.norm(__lowerCamelCase )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
_snake_case = vector.conj().T if is_complex else vector.T
_snake_case = np.dot(__lowerCamelCase , np.dot(__lowerCamelCase , __lowerCamelCase ) )
# Check convergence.
_snake_case = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
_snake_case = True
_snake_case = lambda_
if is_complex:
_snake_case = np.real(lambda_ )
return lambda_, vector
def _UpperCAmelCase ( ) -> None:
_snake_case = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
_snake_case = np.array([41, 4, 20] )
_snake_case = real_input_matrix.astype(np.complexaaa )
_snake_case = np.triu(1J * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
_snake_case = np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
_snake_case = real_input_matrix
_snake_case = real_vector
elif problem_type == "complex":
_snake_case = complex_input_matrix
_snake_case = complex_vector
# Our implementation.
_snake_case , _snake_case = power_iteration(__lowerCamelCase , __lowerCamelCase )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
_snake_case , _snake_case = np.linalg.eigh(__lowerCamelCase )
# Last eigenvalue is the maximum one.
_snake_case = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
_snake_case = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1E-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(__lowerCamelCase ) - np.abs(__lowerCamelCase ) ) <= 1E-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 224 | 0 |
from __future__ import annotations
from collections import deque
class __A :
def __init__(self , __magic_name__ ):
lowerCamelCase__ : list[dict] = []
self.adlist.append(
{"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} )
for keyword in keywords:
self.add_keyword(__magic_name__ )
self.set_fail_transitions()
def _snake_case (self , __magic_name__ , __magic_name__ ):
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def _snake_case (self , __magic_name__ ):
lowerCamelCase__ : Any = 0
for character in keyword:
lowerCamelCase__ : Optional[Any] = self.find_next_state(__magic_name__ , __magic_name__ )
if next_state is None:
self.adlist.append(
{
"""value""": character,
"""next_states""": [],
"""fail_state""": 0,
"""output""": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
lowerCamelCase__ : Tuple = len(self.adlist ) - 1
else:
lowerCamelCase__ : Optional[Any] = next_state
self.adlist[current_state]["output"].append(__magic_name__ )
def _snake_case (self ):
lowerCamelCase__ : deque = deque()
for node in self.adlist[0]["next_states"]:
q.append(__magic_name__ )
lowerCamelCase__ : Optional[int] = 0
while q:
lowerCamelCase__ : Optional[int] = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(__magic_name__ )
lowerCamelCase__ : Any = self.adlist[r]["""fail_state"""]
while (
self.find_next_state(__magic_name__ , self.adlist[child]["""value"""] ) is None
and state != 0
):
lowerCamelCase__ : List[Any] = self.adlist[state]["""fail_state"""]
lowerCamelCase__ : List[str] = self.find_next_state(
__magic_name__ , self.adlist[child]["""value"""] )
if self.adlist[child]["fail_state"] is None:
lowerCamelCase__ : Dict = 0
lowerCamelCase__ : List[str] = (
self.adlist[child]["""output"""]
+ self.adlist[self.adlist[child]["""fail_state"""]]["""output"""]
)
def _snake_case (self , __magic_name__ ):
lowerCamelCase__ : dict = {} # returns a dict with keywords and list of its occurrences
lowerCamelCase__ : str = 0
for i in range(len(__magic_name__ ) ):
while (
self.find_next_state(__magic_name__ , string[i] ) is None
and current_state != 0
):
lowerCamelCase__ : Optional[Any] = self.adlist[current_state]["""fail_state"""]
lowerCamelCase__ : Union[str, Any] = self.find_next_state(__magic_name__ , string[i] )
if next_state is None:
lowerCamelCase__ : List[Any] = 0
else:
lowerCamelCase__ : List[str] = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
lowerCamelCase__ : Union[str, Any] = []
result[key].append(i - len(__magic_name__ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 96 |
from pathlib import Path
import cva
import numpy as np
from matplotlib import pyplot as plt
def _A (UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : np.ndarray , UpperCamelCase : int , UpperCamelCase : int ) ->np.ndarray:
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = cva.getAffineTransform(UpperCamelCase , UpperCamelCase )
return cva.warpAffine(UpperCamelCase , UpperCamelCase , (rows, cols) )
if __name__ == "__main__":
# read original image
_lowercase = cva.imread(
str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''')
)
# turn image in gray scale value
_lowercase = cva.cvtColor(image, cva.COLOR_BGR2GRAY)
# get image shape
_lowercase , _lowercase = gray_img.shape
# set different points to rotate image
_lowercase = np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa)
_lowercase = np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa)
_lowercase = np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa)
_lowercase = np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa)
# add all rotated images in a list
_lowercase = [
gray_img,
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
]
# plot different image rotations
_lowercase = plt.figure(1)
_lowercase = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3''']
for i, image in enumerate(images):
plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''')
plt.title(titles[i])
plt.axis('''off''')
plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95)
plt.show()
| 96 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,lowerCAmelCase_ : float ) -> float:
"""simple docstring"""
if days_between_payments <= 0:
raise ValueError('days_between_payments must be > 0' )
if daily_interest_rate < 0:
raise ValueError('daily_interest_rate must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return principal * daily_interest_rate * days_between_payments
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,) -> float:
"""simple docstring"""
if number_of_compounding_periods <= 0:
raise ValueError('number_of_compounding_periods must be > 0' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,lowerCAmelCase_ : float ,) -> float:
"""simple docstring"""
if number_of_years <= 0:
raise ValueError('number_of_years must be > 0' )
if nominal_annual_percentage_rate < 0:
raise ValueError('nominal_annual_percentage_rate must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return compound_interest(
lowerCAmelCase_ ,nominal_annual_percentage_rate / 365 ,number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 220 |
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self ):
SCREAMING_SNAKE_CASE_ : Optional[int] =0
SCREAMING_SNAKE_CASE_ : str =0
SCREAMING_SNAKE_CASE_ : int ={}
def __lowerCamelCase ( self , __UpperCAmelCase ):
if vertex not in self.adjacency:
SCREAMING_SNAKE_CASE_ : List[Any] ={}
self.num_vertices += 1
def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
self.add_vertex(__UpperCAmelCase )
self.add_vertex(__UpperCAmelCase )
if head == tail:
return
SCREAMING_SNAKE_CASE_ : Dict =weight
SCREAMING_SNAKE_CASE_ : int =weight
def __lowerCamelCase ( self ):
SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.get_edges()
for edge in edges:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int =edge
edges.remove((tail, head, weight) )
for i in range(len(__UpperCAmelCase ) ):
SCREAMING_SNAKE_CASE_ : int =list(edges[i] )
edges.sort(key=lambda __UpperCAmelCase : e[2] )
for i in range(len(__UpperCAmelCase ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
SCREAMING_SNAKE_CASE_ : int =edges[i][2] + 1
for edge in edges:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict =edge
SCREAMING_SNAKE_CASE_ : Optional[Any] =weight
SCREAMING_SNAKE_CASE_ : Optional[int] =weight
def __str__( self ):
SCREAMING_SNAKE_CASE_ : int =''
for tail in self.adjacency:
for head in self.adjacency[tail]:
SCREAMING_SNAKE_CASE_ : List[str] =self.adjacency[head][tail]
string += F"""{head} -> {tail} == {weight}\n"""
return string.rstrip('\n' )
def __lowerCamelCase ( self ):
SCREAMING_SNAKE_CASE_ : str =[]
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def __lowerCamelCase ( self ):
return self.adjacency.keys()
@staticmethod
def __lowerCamelCase ( __UpperCAmelCase=None , __UpperCAmelCase=None ):
SCREAMING_SNAKE_CASE_ : Any =Graph()
if vertices is None:
SCREAMING_SNAKE_CASE_ : List[str] =[]
if edges is None:
SCREAMING_SNAKE_CASE_ : Tuple =[]
for vertex in vertices:
g.add_vertex(__UpperCAmelCase )
for edge in edges:
g.add_edge(*__UpperCAmelCase )
return g
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self ):
SCREAMING_SNAKE_CASE_ : List[str] ={}
SCREAMING_SNAKE_CASE_ : Dict ={}
def __len__( self ):
return len(self.parent )
def __lowerCamelCase ( self , __UpperCAmelCase ):
if item in self.parent:
return self.find(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Any =item
SCREAMING_SNAKE_CASE_ : Any =0
return item
def __lowerCamelCase ( self , __UpperCAmelCase ):
if item not in self.parent:
return self.make_set(__UpperCAmelCase )
if item != self.parent[item]:
SCREAMING_SNAKE_CASE_ : Any =self.find(self.parent[item] )
return self.parent[item]
def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
SCREAMING_SNAKE_CASE_ : Tuple =self.find(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : List[Any] =self.find(__UpperCAmelCase )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
SCREAMING_SNAKE_CASE_ : int =roota
return roota
if self.rank[roota] < self.rank[roota]:
SCREAMING_SNAKE_CASE_ : List[Any] =roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
SCREAMING_SNAKE_CASE_ : Optional[int] =roota
return roota
return None
@staticmethod
def __lowerCamelCase ( __UpperCAmelCase ):
SCREAMING_SNAKE_CASE_ : List[str] =graph.num_vertices
SCREAMING_SNAKE_CASE_ : int =Graph.UnionFind()
SCREAMING_SNAKE_CASE_ : str =[]
while num_components > 1:
SCREAMING_SNAKE_CASE_ : List[Any] ={}
for vertex in graph.get_vertices():
SCREAMING_SNAKE_CASE_ : List[Any] =-1
SCREAMING_SNAKE_CASE_ : int =graph.get_edges()
for edge in edges:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =edge
edges.remove((tail, head, weight) )
for edge in edges:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =edge
SCREAMING_SNAKE_CASE_ : List[str] =union_find.find(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : List[str] =union_find.find(__UpperCAmelCase )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
SCREAMING_SNAKE_CASE_ : Tuple =[head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
SCREAMING_SNAKE_CASE_ : int =[head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] =cheap_edge[vertex]
if union_find.find(__UpperCAmelCase ) != union_find.find(__UpperCAmelCase ):
union_find.union(__UpperCAmelCase , __UpperCAmelCase )
mst_edges.append(cheap_edge[vertex] )
SCREAMING_SNAKE_CASE_ : str =num_components - 1
SCREAMING_SNAKE_CASE_ : str =Graph.build(edges=__UpperCAmelCase )
return mst
| 220 | 1 |
'''simple docstring'''
import requests
A = 'YOUR API KEY'
def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str = giphy_api_key):
lowerCamelCase : Optional[Any] = "+".join(query.split())
lowerCamelCase : Union[str, Any] = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
lowerCamelCase : Union[str, Any] = requests.get(_lowerCAmelCase).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 711 |
'''simple docstring'''
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
A = {
'169M': 12,
'430M': 24,
'1B5': 24,
'3B': 32,
'7B': 32,
'14B': 40,
}
A = {
'169M': 768,
'430M': 1024,
'1B5': 2048,
'3B': 2560,
'7B': 4096,
'14B': 5120,
}
def UpperCAmelCase ( UpperCAmelCase__ : Any):
lowerCamelCase : Any = list(state_dict.keys())
for name in state_dict_keys:
lowerCamelCase : List[str] = state_dict.pop(UpperCAmelCase__)
# emb -> embedding
if name.startswith('emb.'):
lowerCamelCase : Dict = name.replace('emb.' , 'embeddings.')
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('blocks.0.ln0'):
lowerCamelCase : str = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln')
# att -> attention
lowerCamelCase : str = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , UpperCAmelCase__)
# ffn -> feed_forward
lowerCamelCase : List[Any] = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , UpperCAmelCase__)
# time_mix_k -> time_mix_key and reshape
if name.endswith('.time_mix_k'):
lowerCamelCase : Any = name.replace('.time_mix_k' , '.time_mix_key')
# time_mix_v -> time_mix_value and reshape
if name.endswith('.time_mix_v'):
lowerCamelCase : str = name.replace('.time_mix_v' , '.time_mix_value')
# time_mix_r -> time_mix_key and reshape
if name.endswith('.time_mix_r'):
lowerCamelCase : List[Any] = name.replace('.time_mix_r' , '.time_mix_receptance')
if name != "head.weight":
lowerCamelCase : Any = 'rwkv.' + name
lowerCamelCase : Any = weight
return state_dict
def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Dict=None):
# 1. If possible, build the tokenizer.
if tokenizer_file is None:
print('No `--tokenizer_file` provided, we will use the default tokenizer.')
lowerCamelCase : Dict = 5_02_77
lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
else:
lowerCamelCase : int = PreTrainedTokenizerFast(tokenizer_file=UpperCAmelCase__)
lowerCamelCase : List[Any] = len(UpperCAmelCase__)
tokenizer.save_pretrained(UpperCAmelCase__)
# 2. Build the config
lowerCamelCase : Tuple = list(NUM_HIDDEN_LAYERS_MAPPING.keys())
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
lowerCamelCase : Union[str, Any] = candidate
break
if size is None:
raise ValueError('Could not infer the size, please provide it with the `--size` argument.')
if size not in possible_sizes:
raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''')
lowerCamelCase : List[Any] = RwkvConfig(
vocab_size=UpperCAmelCase__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(UpperCAmelCase__)
# 3. Download model file then convert state_dict
lowerCamelCase : Tuple = hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__)
lowerCamelCase : Any = torch.load(UpperCAmelCase__ , map_location='cpu')
lowerCamelCase : str = convert_state_dict(UpperCAmelCase__)
# 4. Split in shards and save
lowerCamelCase , lowerCamelCase : Optional[int] = shard_checkpoint(UpperCAmelCase__)
for shard_file, shard in shards.items():
torch.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , UpperCAmelCase__))
if index is not None:
lowerCamelCase : Dict = os.path.join(UpperCAmelCase__ , UpperCAmelCase__)
# Save the index as well
with open(UpperCAmelCase__ , 'w' , encoding='utf-8') as f:
lowerCamelCase : int = json.dumps(UpperCAmelCase__ , indent=2 , sort_keys=UpperCAmelCase__) + '\n'
f.write(UpperCAmelCase__)
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.')
lowerCamelCase : List[str] = list(shards.keys())
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
lowerCamelCase : Dict = torch.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__))
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(UpperCAmelCase__ , UpperCAmelCase__))
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('Please provide a `model_name` to push the model to the Hub.')
lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained(UpperCAmelCase__)
model.push_to_hub(UpperCAmelCase__ , max_shard_size='2GB')
tokenizer.push_to_hub(UpperCAmelCase__)
if __name__ == "__main__":
A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.'
)
parser.add_argument(
'--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.'
)
parser.add_argument(
'--output_dir', default=None, type=str, required=True, help='Where to save the converted model.'
)
parser.add_argument(
'--tokenizer_file',
default=None,
type=str,
help='Path to the tokenizer file to use (if not provided, only the model is converted).',
)
parser.add_argument(
'--size',
default=None,
type=str,
help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Push to the Hub the converted model.',
)
parser.add_argument(
'--model_name',
default=None,
type=str,
help='Name of the pushed model on the Hub, including the username / organization.',
)
A = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 449 | 0 |
import logging
import math
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union
import torch
from .tensor_utils import tensor_tree_map, tree_map
def __magic_name__ ( __a : Union[dict, list, tuple, torch.Tensor] ):
'''simple docstring'''
UpperCamelCase__ = []
if isinstance(__a , __a ):
for v in tree.values():
shapes.extend(_fetch_dims(__a ) )
elif isinstance(__a , (list, tuple) ):
for t in tree:
shapes.extend(_fetch_dims(__a ) )
elif isinstance(__a , torch.Tensor ):
shapes.append(tree.shape )
else:
raise ValueError("""Not supported""" )
return shapes
@torch.jit.ignore
def __magic_name__ ( __a : int , __a : Tuple[int, ...] ):
'''simple docstring'''
UpperCamelCase__ = []
for d in reversed(__a ):
idx.append(flat_idx % d )
UpperCamelCase__ = flat_idx // d
return tuple(reversed(__a ) )
@torch.jit.ignore
def __magic_name__ ( __a : Sequence[int] , __a : Sequence[int] , __a : Sequence[int] , __a : Optional[Sequence[bool]] = None , __a : Optional[Sequence[bool]] = None , ):
'''simple docstring'''
def reduce_edge_list(__a : List[bool] ) -> None:
UpperCamelCase__ = True
for i in range(len(__a ) ):
UpperCamelCase__ = -1 * (i + 1)
l[reversed_idx] &= tally
UpperCamelCase__ = l[reversed_idx]
if start_edges is None:
UpperCamelCase__ = [s == 0 for s in start]
reduce_edge_list(__a )
if end_edges is None:
UpperCamelCase__ = [e == (d - 1) for e, d in zip(__a , __a )]
reduce_edge_list(__a )
# Base cases. Either start/end are empty and we're done, or the final,
# one-dimensional tensor can be simply sliced
if len(__a ) == 0:
return [()]
elif len(__a ) == 1:
return [(slice(start[0] , end[0] + 1 ),)]
UpperCamelCase__ = []
UpperCamelCase__ = []
# Dimensions common to start and end can be selected directly
for s, e in zip(__a , __a ):
if s == e:
path_list.append(slice(__a , s + 1 ) )
else:
break
UpperCamelCase__ = tuple(__a )
UpperCamelCase__ = len(__a )
# start == end, and we're done
if divergence_idx == len(__a ):
return [path]
def upper() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
UpperCamelCase__ = start[divergence_idx]
return tuple(
path + (slice(__a , sdi + 1 ),) + s
for s in _get_minimal_slice_set(
start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) )
def lower() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
UpperCamelCase__ = end[divergence_idx]
return tuple(
path + (slice(__a , edi + 1 ),) + s
for s in _get_minimal_slice_set(
[0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) )
# If both start and end are at the edges of the subtree rooted at
# divergence_idx, we can just select the whole subtree at once
if start_edges[divergence_idx] and end_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) )
# If just start is at the edge, we can grab almost all of the subtree,
# treating only the ragged bottom edge as an edge case
elif start_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) )
slices.extend(lower() )
# Analogous to the previous case, but the top is ragged this time
elif end_edges[divergence_idx]:
slices.extend(upper() )
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) )
# If both sides of the range are ragged, we need to handle both sides
# separately. If there's contiguous meat in between them, we can index it
# in one big chunk
else:
slices.extend(upper() )
UpperCamelCase__ = end[divergence_idx] - start[divergence_idx]
if middle_ground > 1:
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) )
slices.extend(lower() )
return slices
@torch.jit.ignore
def __magic_name__ ( __a : torch.Tensor , __a : int , __a : int , __a : int ):
'''simple docstring'''
UpperCamelCase__ = t.shape[:no_batch_dims]
UpperCamelCase__ = list(_flat_idx_to_idx(__a , __a ) )
# _get_minimal_slice_set is inclusive
UpperCamelCase__ = list(_flat_idx_to_idx(flat_end - 1 , __a ) )
# Get an ordered list of slices to perform
UpperCamelCase__ = _get_minimal_slice_set(
__a , __a , __a , )
UpperCamelCase__ = [t[s] for s in slices]
return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] )
def __magic_name__ ( __a : Callable , __a : Dict[str, Any] , __a : int , __a : int , __a : bool = False , __a : Any = None , __a : bool = False , ):
'''simple docstring'''
if not (len(__a ) > 0):
raise ValueError("""Must provide at least one input""" )
UpperCamelCase__ = [shape[:no_batch_dims] for shape in _fetch_dims(__a )]
UpperCamelCase__ = tuple([max(__a ) for s in zip(*__a )] )
def _prep_inputs(__a : torch.Tensor ) -> torch.Tensor:
if not low_mem:
if not sum(t.shape[:no_batch_dims] ) == no_batch_dims:
UpperCamelCase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] )
UpperCamelCase__ = t.reshape(-1 , *t.shape[no_batch_dims:] )
else:
UpperCamelCase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] )
return t
UpperCamelCase__ = tensor_tree_map(_prep_inputs , __a )
UpperCamelCase__ = None
if _out is not None:
UpperCamelCase__ = tensor_tree_map(lambda __a : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out )
UpperCamelCase__ = 1
for d in orig_batch_dims:
flat_batch_dim *= d
UpperCamelCase__ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0)
def _select_chunk(__a : torch.Tensor ) -> torch.Tensor:
return t[i : i + chunk_size] if t.shape[0] != 1 else t
UpperCamelCase__ = 0
UpperCamelCase__ = prepped_outputs
for _ in range(__a ):
# Chunk the input
if not low_mem:
UpperCamelCase__ = _select_chunk
else:
UpperCamelCase__ = partial(
_chunk_slice , flat_start=__a , flat_end=min(__a , i + chunk_size ) , no_batch_dims=len(__a ) , )
UpperCamelCase__ = tensor_tree_map(__a , __a )
# Run the layer on the chunk
UpperCamelCase__ = layer(**__a )
# Allocate space for the output
if out is None:
UpperCamelCase__ = tensor_tree_map(lambda __a : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __a )
# Put the chunk in its pre-allocated space
if isinstance(__a , __a ):
def assign(__a : dict , __a : dict ) -> None:
for k, v in da.items():
if isinstance(__a , __a ):
assign(__a , da[k] )
else:
if _add_into_out:
v[i : i + chunk_size] += da[k]
else:
UpperCamelCase__ = da[k]
assign(__a , __a )
elif isinstance(__a , __a ):
for xa, xa in zip(__a , __a ):
if _add_into_out:
xa[i : i + chunk_size] += xa
else:
UpperCamelCase__ = xa
elif isinstance(__a , torch.Tensor ):
if _add_into_out:
out[i : i + chunk_size] += output_chunk
else:
UpperCamelCase__ = output_chunk
else:
raise ValueError("""Not supported""" )
i += chunk_size
UpperCamelCase__ = tensor_tree_map(lambda __a : t.view(orig_batch_dims + t.shape[1:] ) , __a )
return out
class __A:
"""simple docstring"""
def __init__(self , SCREAMING_SNAKE_CASE_ = 5_12 , ):
UpperCamelCase__ = max_chunk_size
UpperCamelCase__ = None
UpperCamelCase__ = None
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
logging.info("""Tuning chunk size...""" )
if min_chunk_size >= self.max_chunk_size:
return min_chunk_size
UpperCamelCase__ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )]
UpperCamelCase__ = [c for c in candidates if c > min_chunk_size]
UpperCamelCase__ = [min_chunk_size] + candidates
candidates[-1] += 4
def test_chunk_size(SCREAMING_SNAKE_CASE_ ) -> bool:
try:
with torch.no_grad():
fn(*SCREAMING_SNAKE_CASE_ , chunk_size=SCREAMING_SNAKE_CASE_ )
return True
except RuntimeError:
return False
UpperCamelCase__ = 0
UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) - 1
while i > min_viable_chunk_size_index:
UpperCamelCase__ = test_chunk_size(candidates[i] )
if not viable:
UpperCamelCase__ = (min_viable_chunk_size_index + i) // 2
else:
UpperCamelCase__ = i
UpperCamelCase__ = (i + len(SCREAMING_SNAKE_CASE_ ) - 1) // 2
return candidates[min_viable_chunk_size_index]
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = True
for aa, aa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
assert type(SCREAMING_SNAKE_CASE_ ) == type(SCREAMING_SNAKE_CASE_ )
if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ):
consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )]
UpperCamelCase__ = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )]
consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else:
consistent &= aa == aa
return consistent
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
UpperCamelCase__ = True
UpperCamelCase__ = tree_map(lambda SCREAMING_SNAKE_CASE_ : a.shape if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) else a , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if self.cached_arg_data is not None:
# If args have changed shape/value, we need to re-tune
assert len(self.cached_arg_data ) == len(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = self._compare_arg_caches(self.cached_arg_data , SCREAMING_SNAKE_CASE_ )
else:
# Otherwise, we can reuse the precomputed value
UpperCamelCase__ = False
if not consistent:
UpperCamelCase__ = self._determine_favorable_chunk_size(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )
UpperCamelCase__ = arg_data
assert self.cached_chunk_size is not None
return self.cached_chunk_size
| 513 |
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser(
description=(
'''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'''
''' Distillation'''
)
)
parser.add_argument('''--model_type''', default='''bert''', choices=['''bert'''])
parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str)
parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str)
parser.add_argument('''--vocab_transform''', action='''store_true''')
lowerCamelCase_ = parser.parse_args()
if args.model_type == "bert":
lowerCamelCase_ = BertForMaskedLM.from_pretrained(args.model_name)
lowerCamelCase_ = '''bert'''
else:
raise ValueError('''args.model_type should be "bert".''')
lowerCamelCase_ = model.state_dict()
lowerCamelCase_ = {}
for w in ["word_embeddings", "position_embeddings"]:
lowerCamelCase_ = state_dict[f'{prefix}.embeddings.{w}.weight']
for w in ["weight", "bias"]:
lowerCamelCase_ = state_dict[f'{prefix}.embeddings.LayerNorm.{w}']
lowerCamelCase_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
lowerCamelCase_ = state_dict[
f'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}'
]
lowerCamelCase_ = state_dict[
f'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}'
]
lowerCamelCase_ = state_dict[
f'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}'
]
lowerCamelCase_ = state_dict[
f'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}'
]
lowerCamelCase_ = state_dict[
f'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}'
]
lowerCamelCase_ = state_dict[
f'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}'
]
lowerCamelCase_ = state_dict[
f'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}'
]
lowerCamelCase_ = state_dict[
f'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}'
]
std_idx += 1
lowerCamelCase_ = state_dict['''cls.predictions.decoder.weight''']
lowerCamelCase_ = state_dict['''cls.predictions.bias''']
if args.vocab_transform:
for w in ["weight", "bias"]:
lowerCamelCase_ = state_dict[f'cls.predictions.transform.dense.{w}']
lowerCamelCase_ = state_dict[f'cls.predictions.transform.LayerNorm.{w}']
print(f'N layers selected for distillation: {std_idx}')
print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}')
print(f'Save transferred checkpoint to {args.dump_checkpoint}.')
torch.save(compressed_sd, args.dump_checkpoint)
| 513 | 1 |
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ):
assert isinstance(__lowerCamelCase , __lowerCamelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
__a = tmp_path / 'cache'
__a = {'text': 'string'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__a = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read()
_check_text_dataset(__lowerCamelCase , __lowerCamelCase )
@pytest.mark.parametrize(
'features' , [
None,
{'text': 'string'},
{'text': 'int32'},
{'text': 'float32'},
] , )
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
__a = tmp_path / 'cache'
__a = {'text': 'string'}
__a = features.copy() if features else default_expected_features
__a = (
Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
__a = TextDatasetReader(__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read()
_check_text_dataset(__lowerCamelCase , __lowerCamelCase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
__a = tmp_path / 'cache'
__a = {'text': 'string'}
__a = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase , split=__lowerCamelCase ).read()
_check_text_dataset(__lowerCamelCase , __lowerCamelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
if issubclass(__lowerCamelCase , __lowerCamelCase ):
__a = text_path
elif issubclass(__lowerCamelCase , __lowerCamelCase ):
__a = [text_path]
__a = tmp_path / 'cache'
__a = {'text': 'string'}
__a = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read()
_check_text_dataset(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=("train",) ):
assert isinstance(__lowerCamelCase , __lowerCamelCase )
for split in splits:
__a = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
__a = tmp_path / 'cache'
__a = {'text': 'string'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__a = TextDatasetReader({'train': text_path} , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase ).read()
_check_text_datasetdict(__lowerCamelCase , __lowerCamelCase )
@pytest.mark.parametrize(
'features' , [
None,
{'text': 'string'},
{'text': 'int32'},
{'text': 'float32'},
] , )
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
__a = tmp_path / 'cache'
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
__a = {'text': 'string'}
__a = features.copy() if features else default_expected_features
__a = (
Features({feature: Value(__lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
__a = TextDatasetReader({'train': text_path} , features=__lowerCamelCase , cache_dir=__lowerCamelCase ).read()
_check_text_datasetdict(__lowerCamelCase , __lowerCamelCase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
if split:
__a = {split: text_path}
else:
__a = 'train'
__a = {'train': text_path, 'test': text_path}
__a = tmp_path / 'cache'
__a = {'text': 'string'}
__a = TextDatasetReader(__lowerCamelCase , cache_dir=__lowerCamelCase ).read()
_check_text_datasetdict(__lowerCamelCase , __lowerCamelCase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 246 | import unittest
from transformers import BigBirdConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
from transformers.models.big_bird.modeling_flax_big_bird import (
FlaxBigBirdForCausalLM,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForPreTraining,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
FlaxBigBirdModel,
)
class a__ ( unittest.TestCase ):
def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=5_6 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Optional[Any]:
__a = parent
__a = batch_size
__a = seq_length
__a = is_training
__a = use_attention_mask
__a = use_token_type_ids
__a = use_labels
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = type_sequence_label_size
__a = initializer_range
__a = num_choices
__a = rescale_embeddings
__a = attention_type
__a = use_bias
__a = block_size
__a = num_random_blocks
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
__a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__a = None
if self.use_attention_mask:
__a = random_attention_mask([self.batch_size, self.seq_length] )
__a = None
if self.use_token_type_ids:
__a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__a = BigBirdConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , )
return config, input_ids, token_type_ids, attention_mask
def __SCREAMING_SNAKE_CASE ( self ) -> List[str]:
__a = self.prepare_config_and_inputs()
__a , __a , __a , __a = config_and_inputs
__a = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'attention_mask': attention_mask,
}
return config, inputs_dict
@require_flax
class a__ ( __snake_case , unittest.TestCase ):
A__ : Dict = (
(
FlaxBigBirdForCausalLM,
FlaxBigBirdModel,
FlaxBigBirdForPreTraining,
FlaxBigBirdForMaskedLM,
FlaxBigBirdForMultipleChoice,
FlaxBigBirdForQuestionAnswering,
FlaxBigBirdForSequenceClassification,
FlaxBigBirdForTokenClassification,
)
if is_flax_available()
else ()
)
A__ : int = False
A__ : int = False
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
__a = FlaxBigBirdModelTester(self )
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __SCREAMING_SNAKE_CASE ( self ) -> Tuple:
super().test_from_pretrained_save_pretrained()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __SCREAMING_SNAKE_CASE ( self ) -> List[str]:
super().test_from_pretrained_with_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
super().test_no_automatic_init()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
super().test_hidden_states_output()
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
for model_class_name in self.all_model_classes:
__a = model_class_name.from_pretrained('google/bigbird-roberta-base' )
self.assertIsNotNone(UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
if self.test_attn_probs:
super().test_attention_outputs()
@slow
# copied from `test_modeling_flax_common` because it takes much longer than other models
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__a = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
__a = model_class(UpperCAmelCase )
@jax.jit
def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase )
with self.subTest('JIT Enabled' ):
__a = model_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__a = model_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1e-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> Dict:
# `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version,
# an effort was done to return `attention_probs` (yet to be verified).
if name.startswith('outputs.attentions' ):
return
else:
super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
| 246 | 1 |
def __UpperCAmelCase ( __a : Dict ,__a : List[Any] ,__a : Dict ) -> Optional[Any]:
"""simple docstring"""
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(__a ,n - 1 ,__a ) * a) % mod
else:
_a : Optional[Any] = binary_exponentiation(__a ,n / 2 ,__a )
return (b * b) % mod
# a prime number
a__ = 701
a__ = 1000000000
a__ = 10
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 14 |
"""simple docstring"""
from typing import Any
class a__ :
def __init__( self : List[str] , UpperCamelCase_ : Any):
"""simple docstring"""
__UpperCAmelCase : str = data
__UpperCAmelCase : Optional[Any] = None
class a__ :
def __init__( self : Any):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = None
def a_ ( self : Union[str, Any]):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = self.head
while temp is not None:
print(temp.data , end=" ")
__UpperCAmelCase : Tuple = temp.next
print()
def a_ ( self : int , UpperCamelCase_ : Any):
"""simple docstring"""
__UpperCAmelCase : List[str] = Node(UpperCamelCase_)
__UpperCAmelCase : str = self.head
__UpperCAmelCase : Optional[int] = new_node
def a_ ( self : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str):
"""simple docstring"""
if node_data_a == node_data_a:
return
else:
__UpperCAmelCase : int = self.head
while node_a is not None and node_a.data != node_data_a:
__UpperCAmelCase : Tuple = node_a.next
__UpperCAmelCase : List[Any] = self.head
while node_a is not None and node_a.data != node_data_a:
__UpperCAmelCase : Optional[Any] = node_a.next
if node_a is None or node_a is None:
return
__UpperCAmelCase , __UpperCAmelCase : Any = node_a.data, node_a.data
if __name__ == "__main__":
A = LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print("""After swapping""")
ll.print_list()
| 77 | 0 |
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def A__ ( ) ->Optional[Any]:
'''simple docstring'''
__A =ArgumentParser(
description=(
'''PyTorch TPU distributed training launch '''
'''helper utility that will spawn up '''
'''multiple distributed processes'''
) )
# Optional arguments for the launch helper
parser.add_argument('''--num_cores''' , type=_lowercase , default=1 , help='''Number of TPU cores to use (1 or 8).''' )
# positional
parser.add_argument(
'''training_script''' , type=_lowercase , help=(
'''The full path to the single TPU training '''
'''program/script to be launched in parallel, '''
'''followed by all the arguments for the '''
'''training script'''
) , )
# rest from the training program
parser.add_argument('''training_script_args''' , nargs=_lowercase )
return parser.parse_args()
def A__ ( ) ->Union[str, Any]:
'''simple docstring'''
__A =parse_args()
# Import training_script as a module.
__A =Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
__A =script_fpath.stem
__A =importlib.import_module(_lowercase )
# Patch sys.argv
__A =[args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 712 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
from packaging import version
if TYPE_CHECKING:
from ... import PreTrainedTokenizer, TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import is_torch_available, logging
_lowerCamelCase : Tuple = logging.get_logger(__name__)
_lowerCamelCase : Tuple = {
'''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''',
'''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''',
'''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''',
'''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''',
'''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''',
'''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''',
}
class lowerCAmelCase__ ( __magic_name__ ):
'''simple docstring'''
lowercase_ = """bloom"""
lowercase_ = ["""past_key_values"""]
lowercase_ = {
"""num_hidden_layers""": """n_layer""",
"""num_attention_heads""": """n_head""",
}
def __init__( self , lowercase__=2_5_0_8_8_0 , lowercase__=6_4 , lowercase__=2 , lowercase__=8 , lowercase__=1E-5 , lowercase__=0.02 , lowercase__=True , lowercase__=1 , lowercase__=2 , lowercase__=False , lowercase__=0.0 , lowercase__=0.0 , lowercase__=1 , lowercase__=False , **lowercase__ , ):
'''simple docstring'''
__A =vocab_size
# Backward compatibility with n_embed kwarg
__A =kwargs.pop('''n_embed''' , lowercase__ )
__A =hidden_size if n_embed is None else n_embed
__A =n_layer
__A =n_head
__A =layer_norm_epsilon
__A =initializer_range
__A =use_cache
__A =pretraining_tp
__A =apply_residual_connection_post_layernorm
__A =hidden_dropout
__A =attention_dropout
__A =bos_token_id
__A =eos_token_id
__A =slow_but_exact
super().__init__(bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ )
class lowerCAmelCase__ ( __magic_name__ ):
'''simple docstring'''
lowercase_ = version.parse("""1.12""" )
def __init__( self , lowercase__ , lowercase__ = "default" , lowercase__ = None , lowercase__ = False , ):
'''simple docstring'''
super().__init__(lowercase__ , task=lowercase__ , patching_specs=lowercase__ , use_past=lowercase__ )
if not getattr(self._config , '''pad_token_id''' , lowercase__ ):
# TODO: how to do that better?
__A =0
@property
def __UpperCamelCase ( self ):
'''simple docstring'''
__A =OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
self.fill_with_past_key_values_(lowercase__ , direction='''inputs''' , inverted_values_shape=lowercase__ )
__A ={0: '''batch''', 1: '''past_sequence + sequence'''}
else:
__A ={0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def __UpperCamelCase ( self ):
'''simple docstring'''
return self._config.n_layer
@property
def __UpperCamelCase ( self ):
'''simple docstring'''
return self._config.n_head
@property
def __UpperCamelCase ( self ):
'''simple docstring'''
return 1E-3
def __UpperCamelCase ( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ):
'''simple docstring'''
__A =super(lowercase__ , self ).generate_dummy_inputs(
lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ )
# We need to order the input in the way they appears in the forward()
__A =OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
__A , __A =common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
__A =seqlen + 2
__A =self._config.hidden_size // self.num_attention_heads
__A =(
batch * self.num_attention_heads,
head_dim,
past_key_values_length,
)
__A =(
batch * self.num_attention_heads,
past_key_values_length,
head_dim,
)
__A =[
(torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(self.num_layers )
]
__A =common_inputs['''attention_mask''']
if self.use_past:
__A =ordered_inputs['''attention_mask'''].dtype
__A =torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__ )] , dim=1 )
return ordered_inputs
@property
def __UpperCamelCase ( self ):
'''simple docstring'''
return 1_3
| 516 | 0 |
"""simple docstring"""
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
a : int = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow('''''', '''|''', '''|'''),
datarow=DataRow('''''', '''|''', '''|'''),
padding=1,
with_header_hide=None,
)
a : List[str] = []
a : List[Any] = []
a : List[str] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}}
a : Optional[int] = [
{
'''type''': '''header''',
'''text''': {
'''type''': '''plain_text''',
'''text''': F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results",
'''emoji''': True,
},
}
]
a : Optional[Any] = 0
for log in Path().glob('''*.log'''):
a : Union[str, Any] = 0
with open(log, '''r''') as f:
for line in f:
a : int = json.loads(line)
if line.get('''nodeid''', '''''') != "":
a : str = line['''nodeid''']
if line.get('''duration''', None) is not None:
a : Any = F"{line['duration']:.4f}"
if line.get('''outcome''', '''''') == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split('''_''')[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
a : Dict = []
log.unlink()
a : List[str] = ''''''
a : Dict = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
a : Any = []
a : List[str] = {}
for test in failed_tests:
a : str = test[0].split('''::''')
a : Union[str, Any] = data[0].split('''/''')[-1]
if data[0] not in filesafailed:
a : Union[str, Any] = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
a : Optional[Any] = [test[0] for test in failed_table]
a : List[Any] = list(set(files))
# Count number of instances in failed_tests
a : Dict = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
a : Optional[Any] = tabulate(
table,
headers=['''Test Location''', '''Num Failed'''],
tablefmt=hf_table_format,
stralign='''right''',
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3_0_0_0:
a : List[Any] = '''Too many failed tests, please see the full report in the Action results.'''
a : Tuple = len(err) + 1_0
a : Tuple = message[: 3_0_0_0 - offset] + F"\n...\n```\n{err}"
print(F"### {message}")
else:
a : Union[str, Any] = '''No failed tests! 🤗'''
print(F"## {message}")
payload.append(no_error_payload)
if os.environ.get('''TEST_TYPE''', '''''') != "":
from slack_sdk import WebClient
a : int = WebClient(token=os.environ['''SLACK_API_TOKEN'''])
if message != "No failed tests! 🤗":
a : Optional[Any] = {
'''type''': '''section''',
'''text''': {
'''type''': '''mrkdwn''',
'''text''': message,
},
}
payload.append(md_report)
a : Tuple = {
'''type''': '''section''',
'''text''': {
'''type''': '''mrkdwn''',
'''text''': '''*For more details:*''',
},
'''accessory''': {
'''type''': '''button''',
'''text''': {
'''type''': '''plain_text''',
'''text''': '''Check Action results''',
'''emoji''': True,
},
'''url''': F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}",
},
}
payload.append(action_button)
a : Any = {
'''type''': '''context''',
'''elements''': [
{
'''type''': '''plain_text''',
'''text''': F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}",
}
],
}
payload.append(date_report)
a : str = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload)
a : Optional[int] = response.data['''ts''']
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
a : Any = ''''''
for i, row in enumerate(test_failures):
if row[0] != test_class:
a : Dict = row[0]
else:
a : Any = ''''''
a : str = {
'''type''': '''section''',
'''text''': {
'''type''': '''mrkdwn''',
'''text''': F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```",
},
}
client.chat_postMessage(
channel='''#accelerate-ci-daily''',
thread_ts=ts,
blocks=[payload],
) | 555 |
"""simple docstring"""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms import functional as F
from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection
from transformers.utils import logging
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
a : Dict = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight")
)
rename_keys.append(
(F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias")
)
rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight"))
rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias"))
rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight"))
rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias"))
rename_keys.append(
(F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight")
)
rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias"))
rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight"))
rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias"))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight")
)
rename_keys.append(
(F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias")
)
rename_keys.append(
(
F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight",
F"decoder.layers.{i}.encoder_attn.out_proj.weight",
)
)
rename_keys.append(
(
F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias",
F"decoder.layers.{i}.encoder_attn.out_proj.bias",
)
)
rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight"))
rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias"))
rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight"))
rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias"))
rename_keys.append(
(F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight")
)
rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias"))
rename_keys.append(
(F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight")
)
rename_keys.append(
(F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias")
)
rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight"))
rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias"))
# convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''),
('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
]
)
def _UpperCamelCase ( _A , _A , _A ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = state_dict.pop(_A )
_UpperCAmelCase = val
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
_UpperCAmelCase = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" )
_UpperCAmelCase = value
else:
_UpperCAmelCase = value
return new_state_dict
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
_UpperCAmelCase = """"""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
_UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" )
_UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
_UpperCAmelCase = in_proj_weight[:2_5_6, :]
_UpperCAmelCase = in_proj_bias[:2_5_6]
_UpperCAmelCase = in_proj_weight[2_5_6:5_1_2, :]
_UpperCAmelCase = in_proj_bias[2_5_6:5_1_2]
_UpperCAmelCase = in_proj_weight[-2_5_6:, :]
_UpperCAmelCase = in_proj_bias[-2_5_6:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
_UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" )
_UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
_UpperCAmelCase = in_proj_weight[:2_5_6, :]
_UpperCAmelCase = in_proj_bias[:2_5_6]
_UpperCAmelCase = in_proj_weight[2_5_6:5_1_2, :]
_UpperCAmelCase = in_proj_bias[2_5_6:5_1_2]
_UpperCAmelCase = in_proj_weight[-2_5_6:, :]
_UpperCAmelCase = in_proj_bias[-2_5_6:]
# read in weights + bias of input projection layer of cross-attention
_UpperCAmelCase = state_dict.pop(
F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" )
_UpperCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) of cross-attention to the state dict
_UpperCAmelCase = in_proj_weight_cross_attn[:2_5_6, :]
_UpperCAmelCase = in_proj_bias_cross_attn[:2_5_6]
_UpperCAmelCase = in_proj_weight_cross_attn[2_5_6:5_1_2, :]
_UpperCAmelCase = in_proj_bias_cross_attn[2_5_6:5_1_2]
_UpperCAmelCase = in_proj_weight_cross_attn[-2_5_6:, :]
_UpperCAmelCase = in_proj_bias_cross_attn[-2_5_6:]
def _UpperCamelCase ( _A , _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase ,_UpperCAmelCase = image.size
_UpperCAmelCase = max(_A , _A )
_UpperCAmelCase = 8_0_0 if """detection""" in checkpoint_url else 1_0_0_0
_UpperCAmelCase = target_max_size / current_max_size
_UpperCAmelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) )
return resized_image
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = F.to_tensor(_A )
_UpperCAmelCase = F.normalize(_A , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] )
return image
@torch.no_grad()
def _UpperCamelCase ( _A , _A , _A ) -> str:
"""simple docstring"""
logger.info("""Converting model...""" )
# load original state dict
_UpperCAmelCase = torch.hub.load_state_dict_from_url(_A , map_location="""cpu""" )
# rename keys
for src, dest in rename_keys:
rename_key(_A , _A , _A )
_UpperCAmelCase = rename_backbone_keys(_A )
# query, key and value matrices need special treatment
read_in_q_k_v(_A )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
_UpperCAmelCase = """model."""
for key in state_dict.copy().keys():
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
_UpperCAmelCase = state_dict.pop(_A )
_UpperCAmelCase = val
# create HuggingFace model and load state dict
_UpperCAmelCase = TableTransformerConfig(
backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , )
if "detection" in checkpoint_url:
_UpperCAmelCase = 1_5
_UpperCAmelCase = 2
_UpperCAmelCase = {0: """table""", 1: """table rotated"""}
_UpperCAmelCase = idalabel
_UpperCAmelCase = {v: k for k, v in idalabel.items()}
else:
_UpperCAmelCase = 1_2_5
_UpperCAmelCase = 6
_UpperCAmelCase = {
0: """table""",
1: """table column""",
2: """table row""",
3: """table column header""",
4: """table projected row header""",
5: """table spanning cell""",
}
_UpperCAmelCase = idalabel
_UpperCAmelCase = {v: k for k, v in idalabel.items()}
_UpperCAmelCase = DetrImageProcessor(
format="""coco_detection""" , max_size=8_0_0 if """detection""" in checkpoint_url else 1_0_0_0 )
_UpperCAmelCase = TableTransformerForObjectDetection(_A )
model.load_state_dict(_A )
model.eval()
# verify our conversion
_UpperCAmelCase = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png"""
_UpperCAmelCase = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=_A )
_UpperCAmelCase = Image.open(_A ).convert("""RGB""" )
_UpperCAmelCase = normalize(resize(_A , _A ) ).unsqueeze(0 )
_UpperCAmelCase = model(_A )
if "detection" in checkpoint_url:
_UpperCAmelCase = (1, 1_5, 3)
_UpperCAmelCase = torch.tensor(
[[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] )
_UpperCAmelCase = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] )
else:
_UpperCAmelCase = (1, 1_2_5, 7)
_UpperCAmelCase = torch.tensor(
[[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] )
_UpperCAmelCase = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, :3, :3] , _A , atol=1e-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _A , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(_A ).mkdir(exist_ok=_A )
model.save_pretrained(_A )
image_processor.save_pretrained(_A )
if push_to_hub:
# Push model to HF hub
logger.info("""Pushing model to the hub...""" )
_UpperCAmelCase = (
"""microsoft/table-transformer-detection"""
if """detection""" in checkpoint_url
else """microsoft/table-transformer-structure-recognition"""
)
model.push_to_hub(_A )
image_processor.push_to_hub(_A )
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_url''',
default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''',
type=str,
choices=[
'''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''',
'''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''',
],
help='''URL of the Table Transformer checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
a : int = parser.parse_args()
convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub) | 555 | 1 |
'''simple docstring'''
from collections import deque
from .hash_table import HashTable
class _lowerCamelCase ( __lowercase ):
def __init__( self , *lowerCAmelCase , **lowerCAmelCase ) -> List[str]:
super().__init__(*lowerCAmelCase , **lowerCAmelCase )
def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__: Optional[Any]= deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Tuple= self.values[key]
def UpperCamelCase_ ( self ) -> Any:
return (
sum(self.charge_factor - len(lowerCAmelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase=None ) -> int:
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(lowerCAmelCase ) == 0
):
return key
return super()._collision_resolution(lowerCAmelCase , lowerCAmelCase )
| 706 | import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
lowercase_ : Tuple = getLogger(__name__)
def A__ ( snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : str , snake_case_ : int = 8 , snake_case_ : int = 1_024 , snake_case_ : Union[str, Any]="val" , snake_case_ : Tuple=None , snake_case_ : int=False , snake_case_ : Optional[Any]="summarization" , snake_case_ : Optional[Any]=None , snake_case_ : List[Any]=1 , snake_case_ : Dict = None , snake_case_ : int="" , **snake_case_ : Any , ):
SCREAMING_SNAKE_CASE__: List[str]= str(snake_case_ )
assert local_rank is not None
torch.distributed.init_process_group(backend='''nccl''' , rank=snake_case_ )
SCREAMING_SNAKE_CASE__: str= Path(snake_case_ )
SCREAMING_SNAKE_CASE__: Tuple= save_dir.joinpath(F'rank_{local_rank}_output.json' )
torch.cuda.set_device(snake_case_ )
SCREAMING_SNAKE_CASE__: Tuple= AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda()
if fpaa:
SCREAMING_SNAKE_CASE__: Dict= model.half()
# determine if we need to increase num_beams
use_task_specific_params(snake_case_ , snake_case_ ) # update config with task specific params
SCREAMING_SNAKE_CASE__: List[Any]= generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
SCREAMING_SNAKE_CASE__: str= num_return_sequences
SCREAMING_SNAKE_CASE__: Optional[int]= AutoTokenizer.from_pretrained(snake_case_ )
logger.info(F'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type.
if max_source_length is None:
SCREAMING_SNAKE_CASE__: Dict= tokenizer.model_max_length
if prefix is None:
SCREAMING_SNAKE_CASE__: List[Any]= prefix or getattr(model.config , '''prefix''' , '''''' ) or ''''''
SCREAMING_SNAKE_CASE__: Optional[int]= SeqaSeqDataset(
snake_case_ , snake_case_ , snake_case_ , max_target_length=1_024 , type_path=snake_case_ , n_obs=snake_case_ , prefix=snake_case_ , **snake_case_ , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
SCREAMING_SNAKE_CASE__: Union[str, Any]= ds.make_sortish_sampler(snake_case_ , distributed=snake_case_ , add_extra_examples=snake_case_ , shuffle=snake_case_ )
SCREAMING_SNAKE_CASE__: List[Any]= DataLoader(snake_case_ , sampler=snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn )
SCREAMING_SNAKE_CASE__: List[Any]= []
for batch in tqdm(snake_case_ ):
SCREAMING_SNAKE_CASE__: List[Any]= model.generate(
input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=snake_case_ , num_beams=snake_case_ , **snake_case_ , )
SCREAMING_SNAKE_CASE__: int= tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ )
SCREAMING_SNAKE_CASE__: int= batch['''ids''']
if num_return_sequences > 1:
SCREAMING_SNAKE_CASE__: List[Any]= chunks(snake_case_ , snake_case_ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(snake_case_ ):
results.append({'''pred''': pred, '''id''': ids[i].item()} )
save_json(snake_case_ , snake_case_ )
return results, sampler.num_replicas
def A__ ( ):
SCREAMING_SNAKE_CASE__: List[Any]= argparse.ArgumentParser(
epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' )
parser.add_argument('''--data_dir''' , type=snake_case_ , help='''like cnn_dm/test.source''' )
parser.add_argument(
'''--model_name''' , type=snake_case_ , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , )
parser.add_argument('''--save_dir''' , type=snake_case_ , help='''where to save''' , default='''tmp_gen''' )
parser.add_argument('''--max_source_length''' , type=snake_case_ , default=snake_case_ )
parser.add_argument(
'''--type_path''' , type=snake_case_ , default='''test''' , help='''which subset to evaluate typically train/val/test''' )
parser.add_argument('''--task''' , type=snake_case_ , default='''summarization''' , help='''used for task_specific_params + metrics''' )
parser.add_argument('''--bs''' , type=snake_case_ , default=8 , required=snake_case_ , help='''batch size''' )
parser.add_argument(
'''--local_rank''' , type=snake_case_ , default=-1 , required=snake_case_ , help='''should be passed by distributed.launch''' )
parser.add_argument(
'''--n_obs''' , type=snake_case_ , default=snake_case_ , required=snake_case_ , help='''How many observations. Defaults to all.''' )
parser.add_argument(
'''--num_return_sequences''' , type=snake_case_ , default=1 , required=snake_case_ , help='''How many sequences to return''' )
parser.add_argument(
'''--sync_timeout''' , type=snake_case_ , default=600 , required=snake_case_ , help='''How long should master process wait for other processes to finish.''' , )
parser.add_argument('''--src_lang''' , type=snake_case_ , default=snake_case_ , required=snake_case_ )
parser.add_argument('''--tgt_lang''' , type=snake_case_ , default=snake_case_ , required=snake_case_ )
parser.add_argument(
'''--prefix''' , type=snake_case_ , required=snake_case_ , default=snake_case_ , help='''will be added to the begininng of src examples''' )
parser.add_argument('''--fp16''' , action='''store_true''' )
parser.add_argument('''--debug''' , action='''store_true''' )
SCREAMING_SNAKE_CASE__: Dict= time.time()
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Dict= parser.parse_known_args()
SCREAMING_SNAKE_CASE__: Tuple= parse_numeric_n_bool_cl_kwargs(snake_case_ )
if generate_kwargs and args.local_rank <= 0:
print(F'parsed the following generate kwargs: {generate_kwargs}' )
SCREAMING_SNAKE_CASE__: List[Any]= Path(args.save_dir + '''_tmp''' )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking.
SCREAMING_SNAKE_CASE__: Dict= list(json_save_dir.glob('''rank_*.json''' ) )
if intermediate_files:
raise ValueError(F'Found files at {json_save_dir} please move or remove them.' )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
SCREAMING_SNAKE_CASE__: List[str]= {}
if args.src_lang is not None:
SCREAMING_SNAKE_CASE__: str= args.src_lang
if args.tgt_lang is not None:
SCREAMING_SNAKE_CASE__: Any= args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=snake_case_ )
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: str= eval_data_dir(
args.data_dir , snake_case_ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=snake_case_ , **snake_case_ , )
if args.local_rank <= 0:
SCREAMING_SNAKE_CASE__: str= Path(args.save_dir )
save_dir.mkdir(exist_ok=snake_case_ )
SCREAMING_SNAKE_CASE__: Optional[Any]= gather_results_from_each_node(snake_case_ , snake_case_ , args.sync_timeout )
SCREAMING_SNAKE_CASE__: Union[str, Any]= combine_partial_results(snake_case_ )
if args.num_return_sequences > 1:
SCREAMING_SNAKE_CASE__: Optional[Any]= save_dir.joinpath('''pseudolabel_results.json''' )
print(F'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' )
save_json(snake_case_ , snake_case_ )
return
SCREAMING_SNAKE_CASE__: Union[str, Any]= Path(args.data_dir ).joinpath(args.type_path + '''.target''' )
with open(snake_case_ ) as f:
SCREAMING_SNAKE_CASE__: List[str]= [x.rstrip() for x in f.readlines()][: len(snake_case_ )]
# Calculate metrics, save metrics, and save _generations.txt
SCREAMING_SNAKE_CASE__: Optional[int]= '''translation''' in args.task
SCREAMING_SNAKE_CASE__: str= calculate_bleu if calc_bleu else calculate_rouge
SCREAMING_SNAKE_CASE__: Dict= '''bleu''' if calc_bleu else '''rouge'''
SCREAMING_SNAKE_CASE__: Dict= score_fn(snake_case_ , snake_case_ )
SCREAMING_SNAKE_CASE__: List[str]= len(snake_case_ )
SCREAMING_SNAKE_CASE__: Dict= time.time() - start_time
SCREAMING_SNAKE_CASE__: List[str]= round(runtime / metrics['''n_obs'''] , 4 )
SCREAMING_SNAKE_CASE__: str= num_replicas
# TODO(@stas00): add whatever metadata to metrics
SCREAMING_SNAKE_CASE__: str= save_dir.joinpath(F'{args.type_path}_{metric_name}.json' )
save_json(snake_case_ , snake_case_ , indent=snake_case_ )
print(snake_case_ )
write_txt_file(snake_case_ , save_dir.joinpath(F'{args.type_path}_generations.txt' ) )
if args.debug:
write_txt_file(snake_case_ , save_dir.joinpath(F'{args.type_path}.target' ) )
else:
shutil.rmtree(snake_case_ )
def A__ ( snake_case_ : Optional[int] ):
SCREAMING_SNAKE_CASE__: int= []
for partial_result in partial_results:
records.extend(snake_case_ )
SCREAMING_SNAKE_CASE__: str= sorted(snake_case_ , key=lambda snake_case_ : x["id"] )
SCREAMING_SNAKE_CASE__: int= [x['''pred'''] for x in records]
return preds
def A__ ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : int ):
# WAIT FOR lots of .json files
SCREAMING_SNAKE_CASE__: Optional[int]= time.time()
logger.info('''waiting for all nodes to finish''' )
SCREAMING_SNAKE_CASE__: Optional[Any]= None
while (time.time() - start_wait) < timeout:
SCREAMING_SNAKE_CASE__: List[Any]= list(save_dir.glob('''rank_*.json''' ) )
if len(snake_case_ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
SCREAMING_SNAKE_CASE__: Optional[int]= lmap(snake_case_ , snake_case_ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError('''Rank 0 gave up on waiting for other processes''' )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 107 | 0 |
"""simple docstring"""
import unittest
from transformers import GPTSwaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''')
@require_sentencepiece
@require_tokenizers
class a ( a_ , unittest.TestCase ):
snake_case__ = GPTSwaTokenizer
snake_case__ = False
snake_case__ = True
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = 'This is a test'
lowerCAmelCase = 'This is a test'
return input_text, output_text
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = '<s>'
lowerCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<unk>' )
self.assertEqual(vocab_keys[1] , '<s>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 20_00 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 20_00 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE )
lowerCAmelCase = tokenizer.tokenize('This is a test' )
self.assertListEqual(_SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [4_65, 2_87, 2_65, 6_31, 8_42] )
lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
# fmt: off
self.assertListEqual(
_SCREAMING_SNAKE_CASE , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , )
# fmt: on
lowerCAmelCase = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE )
self.assertListEqual(
_SCREAMING_SNAKE_CASE , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , )
lowerCAmelCase = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE )
# fmt: off
self.assertListEqual(
_SCREAMING_SNAKE_CASE , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] )
# fmt: on
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE )
lowerCAmelCase = ['This is a test', 'I was born in 92000, and this is falsé.']
lowerCAmelCase = [
[4_65, 2_87, 2_65, 6_31, 8_42],
[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60],
]
# Test that encode_fast returns the same as tokenize + convert_tokens_to_ids
for text, expected_ids in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
self.assertListEqual(tokenizer.encode_fast(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
# Test that decode_fast returns the input text
for text, token_ids in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
self.assertEqual(tokenizer.decode_fast(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = [
'<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')',
'Hey there, how are you doing this fine day?',
'This is a text with a trailing spaces followed by a dot .',
'Häj sväjs lillebrör! =)',
'Det är inget fel på Mr. Cool',
]
# fmt: off
lowerCAmelCase = {'input_ids': [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_SCREAMING_SNAKE_CASE , model_name='AI-Sweden/gpt-sw3-126m' , sequences=_SCREAMING_SNAKE_CASE , )
| 4 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _snake_case ( a_ ):
SCREAMING_SNAKE_CASE : Dict = (DDPMScheduler,)
def _SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCAmelCase = {
'num_train_timesteps': 10_00,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'variance_type': 'fixed_small',
'clip_sample': True,
}
config.update(**_SCREAMING_SNAKE_CASE )
return config
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE )
lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_SCREAMING_SNAKE_CASE ) ):
# 1. predict noise residual
lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase = pred_prev_sample
lowerCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 258.9_606 ) < 1e-2
assert abs(result_mean.item() - 0.3_372 ) < 1e-3
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' )
lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE )
lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
lowerCAmelCase = torch.manual_seed(0 )
for t in reversed(range(_SCREAMING_SNAKE_CASE ) ):
# 1. predict noise residual
lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# 2. predict previous mean of sample x_t-1
lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
lowerCAmelCase = pred_prev_sample
lowerCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) )
lowerCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) )
assert abs(result_sum.item() - 202.0_296 ) < 1e-2
assert abs(result_mean.item() - 0.2_631 ) < 1e-3
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE )
lowerCAmelCase = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
lowerCAmelCase = scheduler.timesteps
for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ):
if i == len(_SCREAMING_SNAKE_CASE ) - 1:
lowerCAmelCase = -1
else:
lowerCAmelCase = timesteps[i + 1]
lowerCAmelCase = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE )
lowerCAmelCase = prev_t.item()
self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE )
lowerCAmelCase = [1_00, 87, 50, 51, 0]
with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='`custom_timesteps` must be in descending order.' ):
scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE )
lowerCAmelCase = [1_00, 87, 50, 1, 0]
lowerCAmelCase = len(_SCREAMING_SNAKE_CASE )
with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ):
scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE )
lowerCAmelCase = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_SCREAMING_SNAKE_CASE , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ):
scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
| 284 | 0 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
AutoConfig,
AutoFeatureExtractor,
WavaVecaConfig,
WavaVecaFeatureExtractor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
_UpperCAmelCase = get_tests_dir("""fixtures""")
_UpperCAmelCase = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""")
_UpperCAmelCase = get_tests_dir("""fixtures/dummy-config.json""")
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self ):
"""simple docstring"""
A_ : Optional[Any] = 0
def lowerCAmelCase_ ( self ):
"""simple docstring"""
A_ : Tuple = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
A_ : List[str] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
A_ : str = WavaVecaConfig()
# remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally
A_ : Dict = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ ).to_dict()
config_dict.pop('feature_extractor_type' )
A_ : Dict = WavaVecaFeatureExtractor(**UpperCamelCase__ )
# save in new folder
model_config.save_pretrained(UpperCamelCase__ )
config.save_pretrained(UpperCamelCase__ )
A_ : Any = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ )
# make sure private variable is not incorrectly saved
A_ : int = json.loads(config.to_json_string() )
self.assertTrue('_processor_class' not in dict_as_saved )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
A_ : Optional[int] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
with self.assertRaisesRegex(
UpperCamelCase__ , 'bert-base is not a local folder and is not a valid model identifier' ):
A_ : Any = AutoFeatureExtractor.from_pretrained('bert-base' )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
with self.assertRaisesRegex(
UpperCamelCase__ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ):
A_ : Optional[Any] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ , revision='aaaaaa' )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
with self.assertRaisesRegex(
UpperCamelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ):
A_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
with self.assertRaises(UpperCamelCase__ ):
A_ : Dict = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(UpperCamelCase__ ):
A_ : Optional[Any] = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=UpperCamelCase__ )
A_ : List[str] = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=UpperCamelCase__ )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
# Test feature extractor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase__ )
A_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__ )
self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
try:
AutoConfig.register('custom' , UpperCamelCase__ )
AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCamelCase__ ):
AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ )
# Now that the config is registered, it can be used as any other config with the auto-API
A_ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ )
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(UpperCamelCase__ )
A_ : List[Any] = AutoFeatureExtractor.from_pretrained(UpperCamelCase__ )
self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase_ ( self ):
"""simple docstring"""
class UpperCAmelCase ( lowercase_ ):
'''simple docstring'''
lowerCamelCase_ = True
try:
AutoConfig.register('custom' , UpperCamelCase__ )
AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ )
# If remote code is not set, the default is to use local
A_ : int = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
self.assertTrue(feature_extractor.is_local )
# If remote code is disabled, we load the local one.
A_ : List[Any] = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=UpperCamelCase__ )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
self.assertTrue(feature_extractor.is_local )
# If remote is enabled, we load from the Hub
A_ : Dict = AutoFeatureExtractor.from_pretrained(
'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=UpperCamelCase__ )
self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' )
self.assertTrue(not hasattr(UpperCamelCase__ , 'is_local' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
| 710 | def UpperCamelCase ( __lowercase : str ,__lowercase : int ):
'''simple docstring'''
A_ : int = word.split()
def justify(__lowercase : list ,__lowercase : int ,__lowercase : int ) -> str:
A_ : Optional[Any] = max_width - width
A_ : Union[str, Any] = len(__lowercase )
if len(__lowercase ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
A_ : Dict = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
A_ : int = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
A_ : Optional[int] = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(__lowercase ):
num_spaces_between_words_list[i] += 1
A_ : Tuple = []
for i in range(__lowercase ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * ' ' )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(__lowercase )
A_ : List[str] = []
A_ : list[str] = []
A_ : Dict = 0
for word in words:
if width + len(__lowercase ) + len(__lowercase ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(__lowercase )
width += len(__lowercase )
else:
# justify the line and add it to result
answer.append(justify(__lowercase ,__lowercase ,__lowercase ) )
# reset new line and new width
A_ , A_ : Any = [word], len(__lowercase )
A_ : int = max_width - width - len(__lowercase )
answer.append(' '.join(__lowercase ) + (remaining_spaces + 1) * ' ' )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 70 | 0 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
SCREAMING_SNAKE_CASE = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
SCREAMING_SNAKE_CASE = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Tuple:
UpperCAmelCase_ = (images / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase_ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
UpperCAmelCase_ = numpy_to_pil(__SCREAMING_SNAKE_CASE )
return images
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Tuple:
if images.ndim == 3:
UpperCAmelCase_ = images[None, ...]
UpperCAmelCase_ = (images * 255).round().astype("uint8" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
UpperCAmelCase_ = [Image.fromarray(image.squeeze() , mode="L" ) for image in images]
else:
UpperCAmelCase_ = [Image.fromarray(__SCREAMING_SNAKE_CASE ) for image in images]
return pil_images
| 579 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
SCREAMING_SNAKE_CASE = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"
def snake_case__ ( ) -> Dict:
UpperCAmelCase_ = _ask_options(
"In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
UpperCAmelCase_ = get_sagemaker_input()
else:
UpperCAmelCase_ = get_cluster_input()
return config
def snake_case__ ( __SCREAMING_SNAKE_CASE=None ) -> Optional[Any]:
if subparsers is not None:
UpperCAmelCase_ = subparsers.add_parser("config" , description=__SCREAMING_SNAKE_CASE )
else:
UpperCAmelCase_ = argparse.ArgumentParser("Accelerate config command" , description=__SCREAMING_SNAKE_CASE )
parser.add_argument(
"--config_file" , default=__SCREAMING_SNAKE_CASE , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=__SCREAMING_SNAKE_CASE )
return parser
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> str:
UpperCAmelCase_ = get_user_input()
if args.config_file is not None:
UpperCAmelCase_ = args.config_file
else:
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
os.makedirs(__SCREAMING_SNAKE_CASE )
UpperCAmelCase_ = default_yaml_config_file
if config_file.endswith(".json" ):
config.to_json_file(__SCREAMING_SNAKE_CASE )
else:
config.to_yaml_file(__SCREAMING_SNAKE_CASE )
print(f'''accelerate configuration saved at {config_file}''' )
def snake_case__ ( ) -> Dict:
UpperCAmelCase_ = config_command_parser()
UpperCAmelCase_ = parser.parse_args()
config_command(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 579 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
_A: Optional[Any] = TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
_A: str = TaTokenizerFast
_A: Union[str, Any] = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A: Optional[int] = [
"""MT5EncoderModel""",
"""MT5ForConditionalGeneration""",
"""MT5ForQuestionAnswering""",
"""MT5Model""",
"""MT5PreTrainedModel""",
"""MT5Stack""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A: Dict = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A: Any = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""]
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
_A: Optional[int] = _LazyModule(
__name__,
globals()["""__file__"""],
_import_structure,
extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast},
module_spec=__spec__,
)
| 617 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A: Union[str, Any] = logging.get_logger(__name__)
_A: List[str] = {
"""weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""",
}
class UpperCAmelCase ( UpperCAmelCase_ ):
_A : int = """roc_bert"""
def __init__( self , __A=30_522 , __A=768 , __A=12 , __A=12 , __A=3_072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.0_2 , __A=1E-12 , __A=True , __A=0 , __A="absolute" , __A=None , __A=True , __A=True , __A=768 , __A=910 , __A=512 , __A=24_858 , __A=True , **__A , ):
__UpperCAmelCase = vocab_size
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = hidden_size
__UpperCAmelCase = num_hidden_layers
__UpperCAmelCase = num_attention_heads
__UpperCAmelCase = intermediate_size
__UpperCAmelCase = hidden_act
__UpperCAmelCase = hidden_dropout_prob
__UpperCAmelCase = attention_probs_dropout_prob
__UpperCAmelCase = initializer_range
__UpperCAmelCase = type_vocab_size
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = use_cache
__UpperCAmelCase = enable_pronunciation
__UpperCAmelCase = enable_shape
__UpperCAmelCase = pronunciation_embed_dim
__UpperCAmelCase = pronunciation_vocab_size
__UpperCAmelCase = shape_embed_dim
__UpperCAmelCase = shape_vocab_size
__UpperCAmelCase = concat_input
__UpperCAmelCase = position_embedding_type
__UpperCAmelCase = classifier_dropout
super().__init__(pad_token_id=__A , **__A )
| 617 | 1 |
"""simple docstring"""
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def __snake_case ( _lowercase ,_lowercase ,_lowercase ):
"""simple docstring"""
UpperCamelCase = AutoConfig.from_pretrained(_lowercase )
UpperCamelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowercase )
UpperCamelCase = checkpoints.load_tax_checkpoint(_lowercase )
UpperCamelCase = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp''']
if config.model_type == "t5":
UpperCamelCase = '''SelfAttention'''
if config.model_type == "longt5" and config.encoder_attention_type == "local":
UpperCamelCase = '''LocalSelfAttention'''
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase = '''TransientGlobalSelfAttention'''
else:
raise ValueError(
'''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'''
''' attribute with a value from [\'local\', \'transient-global].''' )
# Encoder
for layer_index in range(config.num_layers ):
UpperCamelCase = f'layers_{str(_lowercase )}'
# Self-Attention
UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel''']
UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel''']
UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel''']
UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel''']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale''']
# Layer Normalization
UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale''']
if split_mlp_wi:
UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel''']
UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel''']
else:
UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel''']
UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel''']
# Layer Normalization
UpperCamelCase = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale''']
# Assigning
UpperCamelCase = flax_model.params['''encoder''']['''block'''][str(_lowercase )]['''layer''']
UpperCamelCase = tax_attention_key
UpperCamelCase = tax_attention_out
UpperCamelCase = tax_attention_query
UpperCamelCase = tax_attention_value
UpperCamelCase = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase = tax_global_layer_norm
if split_mlp_wi:
UpperCamelCase = tax_mlp_wi_a
UpperCamelCase = tax_mlp_wi_a
else:
UpperCamelCase = tax_mlp_wi
UpperCamelCase = tax_mlp_wo
UpperCamelCase = tax_mlp_layer_norm
UpperCamelCase = flax_model_encoder_layer_block
# Only for layer 0:
UpperCamelCase = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T
UpperCamelCase = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
UpperCamelCase = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T
UpperCamelCase = tax_encoder_global_rel_embedding
# Assigning
UpperCamelCase = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale''']
UpperCamelCase = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
UpperCamelCase = f'layers_{str(_lowercase )}'
# Self-Attention
UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel''']
UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel''']
UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel''']
UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel''']
# Layer Normalization
UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][
'''scale'''
]
# Encoder-Decoder-Attention
UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention''']
UpperCamelCase = tax_enc_dec_attention_module['''key''']['''kernel''']
UpperCamelCase = tax_enc_dec_attention_module['''out''']['''kernel''']
UpperCamelCase = tax_enc_dec_attention_module['''query''']['''kernel''']
UpperCamelCase = tax_enc_dec_attention_module['''value''']['''kernel''']
# Layer Normalization
UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale''']
# MLP
if split_mlp_wi:
UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel''']
UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel''']
else:
UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel''']
UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel''']
# Layer Normalization
UpperCamelCase = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale''']
# Assigning
UpperCamelCase = flax_model.params['''decoder''']['''block'''][str(_lowercase )]['''layer''']
UpperCamelCase = tax_attention_key
UpperCamelCase = tax_attention_out
UpperCamelCase = tax_attention_query
UpperCamelCase = tax_attention_value
UpperCamelCase = tax_pre_attention_layer_norm
UpperCamelCase = tax_enc_dec_attention_key
UpperCamelCase = tax_enc_dec_attention_out
UpperCamelCase = tax_enc_dec_attention_query
UpperCamelCase = tax_enc_dec_attention_value
UpperCamelCase = tax_cross_layer_norm
if split_mlp_wi:
UpperCamelCase = tax_mlp_wi_a
UpperCamelCase = tax_mlp_wi_a
else:
UpperCamelCase = tax_mlp_wi
UpperCamelCase = tax_mlp_wo
UpperCamelCase = txa_mlp_layer_norm
UpperCamelCase = flax_model_decoder_layer_block
# Decoder Normalization
UpperCamelCase = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale''']
UpperCamelCase = txa_decoder_norm
# Only for layer 0:
UpperCamelCase = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T
UpperCamelCase = tax_decoder_rel_embedding
# Token Embeddings
UpperCamelCase = tax_model['''target''']['''token_embedder''']['''embedding''']
UpperCamelCase = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
UpperCamelCase = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel''']
flax_model.save_pretrained(_lowercase )
print('''T5X Model was sucessfully converted!''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.'
)
parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.')
parser.add_argument(
'--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.'
)
SCREAMING_SNAKE_CASE_ = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path) | 34 |
'''simple docstring'''
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def __UpperCAmelCase ( __magic_name__ ,__magic_name__=7 )-> Tuple:
"""simple docstring"""
snake_case_ : List[str] = None
if token is not None:
snake_case_ : List[str] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
snake_case_ : Dict = "636036"
snake_case_ : List[str] = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
snake_case_ : Optional[Any] = requests.get(__magic_name__ ,headers=__magic_name__ ).json()
return result["workflow_runs"]
def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]:
"""simple docstring"""
snake_case_ : str = get_daily_ci_runs(__magic_name__ )
snake_case_ : Optional[int] = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
snake_case_ : Dict = workflow_run["id"]
break
return workflow_run_id
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[Any]:
"""simple docstring"""
snake_case_ : Optional[Any] = get_last_daily_ci_runs(__magic_name__ )
if workflow_run_id is not None:
snake_case_ : Union[str, Any] = get_artifacts_links(worflow_run_id=__magic_name__ ,token=__magic_name__ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
snake_case_ : Union[str, Any] = artifacts_links[artifact_name]
download_artifact(
artifact_name=__magic_name__ ,artifact_url=__magic_name__ ,output_dir=__magic_name__ ,token=__magic_name__ )
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__ )-> List[Any]:
"""simple docstring"""
get_last_daily_ci_artifacts(__magic_name__ ,__magic_name__ ,__magic_name__ )
snake_case_ : Union[str, Any] = {}
for artifact_name in artifact_names:
snake_case_ : Any = os.path.join(__magic_name__ ,F'''{artifact_name}.zip''' )
if os.path.isfile(__magic_name__ ):
snake_case_ : Tuple = {}
with zipfile.ZipFile(__magic_name__ ) as z:
for filename in z.namelist():
if not os.path.isdir(__magic_name__ ):
# read the file
with z.open(__magic_name__ ) as f:
snake_case_ : Optional[Any] = f.read().decode("UTF-8" )
return results
| 653 | 0 |
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
lowercase : int = 6378137.0
lowercase : Any = 6356752.314245
lowercase : List[str] = 637_8137
def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A ) -> float:
_snake_case = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
_snake_case = atan((1 - flattening) * tan(radians(__A ) ) )
_snake_case = atan((1 - flattening) * tan(radians(__A ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
_snake_case = haversine_distance(__A , __A , __A , __A ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
_snake_case = (b_lata + b_lata) / 2
_snake_case = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
_snake_case = (sin(__A ) ** 2) * (cos(__A ) ** 2)
_snake_case = cos(sigma / 2 ) ** 2
_snake_case = (sigma - sin(__A )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
_snake_case = (cos(__A ) ** 2) * (sin(__A ) ** 2)
_snake_case = sin(sigma / 2 ) ** 2
_snake_case = (sigma + sin(__A )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 703 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __UpperCAmelCase :
@staticmethod
def lowerCamelCase ( *lowerCAmelCase_ , **lowerCAmelCase_ ):
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
@require_torch
class __UpperCAmelCase ( unittest.TestCase ):
__lowercase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case = pipeline(
'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' )
_snake_case = [
{
'image': './tests/fixtures/tests_samples/COCO/000000039769.png',
'candidate_labels': ['cat', 'remote', 'couch'],
}
]
return object_detector, examples
def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case = object_detector(examples[0] , threshold=0.0 )
_snake_case = len(lowerCAmelCase_ )
self.assertGreater(lowerCAmelCase_ , 0 )
self.assertEqual(
lowerCAmelCase_ , [
{
'score': ANY(lowerCAmelCase_ ),
'label': ANY(lowerCAmelCase_ ),
'box': {'xmin': ANY(lowerCAmelCase_ ), 'ymin': ANY(lowerCAmelCase_ ), 'xmax': ANY(lowerCAmelCase_ ), 'ymax': ANY(lowerCAmelCase_ )},
}
for i in range(lowerCAmelCase_ )
] , )
@require_tf
@unittest.skip('Zero Shot Object Detection not implemented in TF' )
def lowerCamelCase ( self ):
"""simple docstring"""
pass
@require_torch
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = pipeline(
'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' )
_snake_case = object_detector(
'./tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.64 , )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
{'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}},
{'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}},
{'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}},
{'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}},
{'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}},
{'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}},
{'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}},
{'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}},
{'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}},
] , )
_snake_case = object_detector(
[
{
'image': './tests/fixtures/tests_samples/COCO/000000039769.png',
'candidate_labels': ['cat', 'remote', 'couch'],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
[
{'score': 0.7235, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}},
{'score': 0.7218, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}},
{'score': 0.7184, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}},
{'score': 0.6748, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}},
{'score': 0.6656, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}},
{'score': 0.6614, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}},
{'score': 0.6456, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}},
{'score': 0.642, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}},
{'score': 0.6419, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}},
]
] , )
@require_torch
@slow
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = pipeline('zero-shot-object-detection' )
_snake_case = object_detector(
'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
{'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}},
{'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}},
{'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}},
{'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}},
{'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}},
] , )
_snake_case = object_detector(
[
{
'image': 'http://images.cocodataset.org/val2017/000000039769.jpg',
'candidate_labels': ['cat', 'remote', 'couch'],
},
{
'image': 'http://images.cocodataset.org/val2017/000000039769.jpg',
'candidate_labels': ['cat', 'remote', 'couch'],
},
] , )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
[
{'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}},
{'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}},
{'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}},
{'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}},
{'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}},
],
[
{'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}},
{'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}},
{'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}},
{'score': 0.1474, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}},
{'score': 0.1208, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}},
],
] , )
@require_tf
@unittest.skip('Zero Shot Object Detection not implemented in TF' )
def lowerCamelCase ( self ):
"""simple docstring"""
pass
@require_torch
@slow
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = 0.2
_snake_case = pipeline('zero-shot-object-detection' )
_snake_case = object_detector(
'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=lowerCAmelCase_ , )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
{'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}},
{'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}},
{'score': 0.2537, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}},
] , )
@require_torch
@slow
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = 2
_snake_case = pipeline('zero-shot-object-detection' )
_snake_case = object_detector(
'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=lowerCAmelCase_ , )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
{'score': 0.2868, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}},
{'score': 0.277, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}},
] , )
| 542 | 0 |
"""simple docstring"""
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
lowerCAmelCase__ :List[str] = FlaxDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=__UpperCAmelCase , cache_dir=__UpperCAmelCase )
lowerCAmelCase__ :int = [t[-1] for t in os.walk(os.path.join(__UpperCAmelCase , os.listdir(__UpperCAmelCase )[0] , 'snapshots' ) )]
lowerCAmelCase__ :Dict = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('.bin' ) for f in files )
@slow
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ :int = FlaxStableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=__UpperCAmelCase )
lowerCAmelCase__ :int = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
lowerCAmelCase__ :List[Any] = jax.random.PRNGKey(0 )
lowerCAmelCase__ :List[Any] = 4
lowerCAmelCase__ :Optional[Any] = jax.device_count()
lowerCAmelCase__ :Any = num_samples * [prompt]
lowerCAmelCase__ :Optional[Any] = pipeline.prepare_inputs(__UpperCAmelCase )
# shard inputs and rng
lowerCAmelCase__ :Optional[Any] = replicate(__UpperCAmelCase )
lowerCAmelCase__ :int = jax.random.split(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ :Dict = shard(__UpperCAmelCase )
lowerCAmelCase__ :int = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images
assert images.shape == (num_samples, 1, 6_4, 6_4, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3
assert np.abs(np.abs(__UpperCAmelCase , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1
lowerCAmelCase__ :Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(__UpperCAmelCase ) == num_samples
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=__UpperCAmelCase )
lowerCAmelCase__ :Tuple = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
lowerCAmelCase__ :Optional[Any] = jax.random.PRNGKey(0 )
lowerCAmelCase__ :Any = 5_0
lowerCAmelCase__ :Optional[int] = jax.device_count()
lowerCAmelCase__ :Union[str, Any] = num_samples * [prompt]
lowerCAmelCase__ :Dict = pipeline.prepare_inputs(__UpperCAmelCase )
# shard inputs and rng
lowerCAmelCase__ :Optional[Any] = replicate(__UpperCAmelCase )
lowerCAmelCase__ :List[str] = jax.random.split(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ :str = shard(__UpperCAmelCase )
lowerCAmelCase__ :int = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images
assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3
assert np.abs((np.abs(__UpperCAmelCase , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=__UpperCAmelCase )
lowerCAmelCase__ :Tuple = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
lowerCAmelCase__ :Optional[Any] = jax.random.PRNGKey(0 )
lowerCAmelCase__ :Tuple = 5_0
lowerCAmelCase__ :List[Any] = jax.device_count()
lowerCAmelCase__ :Tuple = num_samples * [prompt]
lowerCAmelCase__ :str = pipeline.prepare_inputs(__UpperCAmelCase )
# shard inputs and rng
lowerCAmelCase__ :List[Any] = replicate(__UpperCAmelCase )
lowerCAmelCase__ :List[str] = jax.random.split(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ :Tuple = shard(__UpperCAmelCase )
lowerCAmelCase__ :List[str] = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images
assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(__UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ , lowerCAmelCase__ :Any = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa )
lowerCAmelCase__ :Optional[Any] = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
lowerCAmelCase__ :Optional[Any] = jax.random.PRNGKey(0 )
lowerCAmelCase__ :Any = 5_0
lowerCAmelCase__ :Optional[int] = jax.device_count()
lowerCAmelCase__ :Tuple = num_samples * [prompt]
lowerCAmelCase__ :Any = pipeline.prepare_inputs(__UpperCAmelCase )
# shard inputs and rng
lowerCAmelCase__ :Any = replicate(__UpperCAmelCase )
lowerCAmelCase__ :Any = jax.random.split(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ :int = shard(__UpperCAmelCase )
lowerCAmelCase__ :Dict = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images
assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3
assert np.abs((np.abs(__UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :Tuple = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , )
lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , )
lowerCAmelCase__ :int = scheduler.create_state()
lowerCAmelCase__ :Tuple = scheduler_state
lowerCAmelCase__ :Tuple = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
lowerCAmelCase__ :List[str] = jax.random.PRNGKey(0 )
lowerCAmelCase__ :Union[str, Any] = 5_0
lowerCAmelCase__ :Any = jax.device_count()
lowerCAmelCase__ :Tuple = num_samples * [prompt]
lowerCAmelCase__ :List[str] = pipeline.prepare_inputs(__UpperCAmelCase )
# shard inputs and rng
lowerCAmelCase__ :Any = replicate(__UpperCAmelCase )
lowerCAmelCase__ :Any = jax.random.split(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ :List[str] = shard(__UpperCAmelCase )
lowerCAmelCase__ :Dict = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images
assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3
assert np.abs((np.abs(__UpperCAmelCase , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1
def snake_case ( self ):
'''simple docstring'''
lowerCAmelCase__ :int = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
lowerCAmelCase__ :List[str] = jax.device_count()
lowerCAmelCase__ :str = num_samples * [prompt]
lowerCAmelCase__ :str = jax.random.split(jax.random.PRNGKey(0 ) , __UpperCAmelCase )
lowerCAmelCase__ , lowerCAmelCase__ :Any = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=__UpperCAmelCase , )
lowerCAmelCase__ :int = replicate(__UpperCAmelCase )
lowerCAmelCase__ :List[Any] = pipeline.prepare_inputs(__UpperCAmelCase )
lowerCAmelCase__ :str = shard(__UpperCAmelCase )
lowerCAmelCase__ :Dict = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images
assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3)
lowerCAmelCase__ :Union[str, Any] = images[2, 0, 2_5_6, 1_0:1_7, 1]
# With memory efficient attention
lowerCAmelCase__ , lowerCAmelCase__ :str = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=__UpperCAmelCase , use_memory_efficient_attention=__UpperCAmelCase , )
lowerCAmelCase__ :List[str] = replicate(__UpperCAmelCase )
lowerCAmelCase__ :Dict = pipeline.prepare_inputs(__UpperCAmelCase )
lowerCAmelCase__ :int = shard(__UpperCAmelCase )
lowerCAmelCase__ :int = pipeline(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , jit=__UpperCAmelCase ).images
assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3)
lowerCAmelCase__ :Optional[Any] = images[2, 0, 2_5_6, 1_0:1_7, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1E-2
| 93 | '''simple docstring'''
import csv
import tweepy
# Twitter API credentials
__snake_case : Union[str, Any] = ''''''
__snake_case : List[Any] = ''''''
__snake_case : List[str] = ''''''
__snake_case : Any = ''''''
def lowerCamelCase__ ( A_ ):
# authorize twitter, initialize tweepy
UpperCAmelCase_ = tweepy.OAuthHandler(A_ , A_ )
auth.set_access_token(A_ , A_ )
UpperCAmelCase_ = tweepy.API(A_ )
# initialize a list to hold all the tweepy Tweets
UpperCAmelCase_ = []
# make initial request for most recent tweets (200 is the maximum allowed count)
UpperCAmelCase_ = api.user_timeline(screen_name=A_ , count=200 )
# save most recent tweets
alltweets.extend(A_ )
# save the id of the oldest tweet less one
UpperCAmelCase_ = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(A_ ) > 0:
print(F"""getting tweets before {oldest}""" )
# all subsequent requests use the max_id param to prevent duplicates
UpperCAmelCase_ = api.user_timeline(
screen_name=A_ , count=200 , max_id=A_ )
# save most recent tweets
alltweets.extend(A_ )
# update the id of the oldest tweet less one
UpperCAmelCase_ = alltweets[-1].id - 1
print(F"""...{len(A_ )} tweets downloaded so far""" )
# transform the tweepy tweets into a 2D array that will populate the csv
UpperCAmelCase_ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(F"""new_{screen_name}_tweets.csv""" , "w" ) as f:
UpperCAmelCase_ = csv.writer(A_ )
writer.writerow(["id", "created_at", "text"] )
writer.writerows(A_ )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets('''FirePing32''')
| 660 | 0 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __A ( a ):
"""simple docstring"""
UpperCamelCase__ : Tuple =["""image_processor""", """tokenizer"""]
UpperCamelCase__ : str ="""ViTImageProcessor"""
UpperCamelCase__ : Dict =("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Tuple =None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , lowerCamelCase__ , )
__UpperCamelCase : Tuple =kwargs.pop('feature_extractor' )
__UpperCamelCase : Union[str, Any] =image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(lowerCamelCase__ , lowerCamelCase__ )
def __call__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ):
"""simple docstring"""
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
__UpperCamelCase : str =self.tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ )
if visual_prompt is not None:
__UpperCamelCase : Union[str, Any] =self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ )
if images is not None:
__UpperCamelCase : List[Any] =self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ )
if visual_prompt is not None and images is not None:
__UpperCamelCase : List[Any] ={
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
__UpperCamelCase : Dict =image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
__UpperCamelCase : Union[str, Any] ={
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**lowerCamelCase__ ) , tensor_type=lowerCamelCase__ )
def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ )
def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ):
"""simple docstring"""
return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ )
@property
def __lowercase ( self ):
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCamelCase__ , )
return self.image_processor_class
@property
def __lowercase ( self ):
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCamelCase__ , )
return self.image_processor
| 704 |
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
A_ :Dict = {
'''sample_size''': 32,
'''in_channels''': 3,
'''out_channels''': 3,
'''layers_per_block''': 2,
'''num_class_embeds''': 1000,
'''block_out_channels''': [32, 64],
'''attention_head_dim''': 8,
'''down_block_types''': [
'''ResnetDownsampleBlock2D''',
'''AttnDownBlock2D''',
],
'''up_block_types''': [
'''AttnUpBlock2D''',
'''ResnetUpsampleBlock2D''',
],
'''resnet_time_scale_shift''': '''scale_shift''',
'''upsample_type''': '''resnet''',
'''downsample_type''': '''resnet''',
}
A_ :List[str] = {
'''sample_size''': 64,
'''in_channels''': 3,
'''out_channels''': 3,
'''layers_per_block''': 3,
'''num_class_embeds''': 1000,
'''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4],
'''attention_head_dim''': 64,
'''down_block_types''': [
'''ResnetDownsampleBlock2D''',
'''AttnDownBlock2D''',
'''AttnDownBlock2D''',
'''AttnDownBlock2D''',
],
'''up_block_types''': [
'''AttnUpBlock2D''',
'''AttnUpBlock2D''',
'''AttnUpBlock2D''',
'''ResnetUpsampleBlock2D''',
],
'''resnet_time_scale_shift''': '''scale_shift''',
'''upsample_type''': '''resnet''',
'''downsample_type''': '''resnet''',
}
A_ :Dict = {
'''sample_size''': 256,
'''in_channels''': 3,
'''out_channels''': 3,
'''layers_per_block''': 2,
'''num_class_embeds''': None,
'''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4],
'''attention_head_dim''': 64,
'''down_block_types''': [
'''ResnetDownsampleBlock2D''',
'''ResnetDownsampleBlock2D''',
'''ResnetDownsampleBlock2D''',
'''AttnDownBlock2D''',
'''AttnDownBlock2D''',
'''AttnDownBlock2D''',
],
'''up_block_types''': [
'''AttnUpBlock2D''',
'''AttnUpBlock2D''',
'''AttnUpBlock2D''',
'''ResnetUpsampleBlock2D''',
'''ResnetUpsampleBlock2D''',
'''ResnetUpsampleBlock2D''',
],
'''resnet_time_scale_shift''': '''default''',
'''upsample_type''': '''resnet''',
'''downsample_type''': '''resnet''',
}
A_ :Tuple = {
'''num_train_timesteps''': 40,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
A_ :List[str] = {
'''num_train_timesteps''': 201,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
A_ :int = {
'''num_train_timesteps''': 151,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
def A ( a_ ) -> Optional[Any]:
if isinstance(a_ ,a_ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError('boolean value expected' )
def A ( a_ ,a_ ,a_ ,a_ ,a_=False ) -> Dict:
__UpperCamelCase : str =checkpoint[F'{old_prefix}.in_layers.0.weight']
__UpperCamelCase : Optional[Any] =checkpoint[F'{old_prefix}.in_layers.0.bias']
__UpperCamelCase : Dict =checkpoint[F'{old_prefix}.in_layers.2.weight']
__UpperCamelCase : Dict =checkpoint[F'{old_prefix}.in_layers.2.bias']
__UpperCamelCase : int =checkpoint[F'{old_prefix}.emb_layers.1.weight']
__UpperCamelCase : str =checkpoint[F'{old_prefix}.emb_layers.1.bias']
__UpperCamelCase : List[Any] =checkpoint[F'{old_prefix}.out_layers.0.weight']
__UpperCamelCase : List[str] =checkpoint[F'{old_prefix}.out_layers.0.bias']
__UpperCamelCase : str =checkpoint[F'{old_prefix}.out_layers.3.weight']
__UpperCamelCase : Any =checkpoint[F'{old_prefix}.out_layers.3.bias']
if has_skip:
__UpperCamelCase : Union[str, Any] =checkpoint[F'{old_prefix}.skip_connection.weight']
__UpperCamelCase : Dict =checkpoint[F'{old_prefix}.skip_connection.bias']
return new_checkpoint
def A ( a_ ,a_ ,a_ ,a_ ,a_=None ) -> int:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] =checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 ,dim=0 )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] =checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 ,dim=0 )
__UpperCamelCase : Tuple =checkpoint[F'{old_prefix}.norm.weight']
__UpperCamelCase : Optional[Any] =checkpoint[F'{old_prefix}.norm.bias']
__UpperCamelCase : Union[str, Any] =weight_q.squeeze(-1 ).squeeze(-1 )
__UpperCamelCase : Union[str, Any] =bias_q.squeeze(-1 ).squeeze(-1 )
__UpperCamelCase : Dict =weight_k.squeeze(-1 ).squeeze(-1 )
__UpperCamelCase : Optional[int] =bias_k.squeeze(-1 ).squeeze(-1 )
__UpperCamelCase : str =weight_v.squeeze(-1 ).squeeze(-1 )
__UpperCamelCase : Optional[Any] =bias_v.squeeze(-1 ).squeeze(-1 )
__UpperCamelCase : Tuple =(
checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 )
)
__UpperCamelCase : Union[str, Any] =checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def A ( a_ ,a_ ) -> Union[str, Any]:
__UpperCamelCase : Tuple =torch.load(a_ ,map_location='cpu' )
__UpperCamelCase : List[str] ={}
__UpperCamelCase : Any =checkpoint['time_embed.0.weight']
__UpperCamelCase : int =checkpoint['time_embed.0.bias']
__UpperCamelCase : Tuple =checkpoint['time_embed.2.weight']
__UpperCamelCase : List[str] =checkpoint['time_embed.2.bias']
if unet_config["num_class_embeds"] is not None:
__UpperCamelCase : List[str] =checkpoint['label_emb.weight']
__UpperCamelCase : Tuple =checkpoint['input_blocks.0.0.weight']
__UpperCamelCase : str =checkpoint['input_blocks.0.0.bias']
__UpperCamelCase : Optional[Any] =unet_config['down_block_types']
__UpperCamelCase : Optional[int] =unet_config['layers_per_block']
__UpperCamelCase : int =unet_config['attention_head_dim']
__UpperCamelCase : List[str] =unet_config['block_out_channels']
__UpperCamelCase : Tuple =1
__UpperCamelCase : Union[str, Any] =channels_list[0]
for i, layer_type in enumerate(a_ ):
__UpperCamelCase : List[Any] =channels_list[i]
__UpperCamelCase : Optional[int] =current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(a_ ):
__UpperCamelCase : Dict =F'down_blocks.{i}.resnets.{j}'
__UpperCamelCase : Any =F'input_blocks.{current_layer}.0'
__UpperCamelCase : Any =True if j == 0 and downsample_block_has_skip else False
__UpperCamelCase : Optional[int] =convert_resnet(a_ ,a_ ,a_ ,a_ ,has_skip=a_ )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(a_ ):
__UpperCamelCase : Optional[Any] =F'down_blocks.{i}.resnets.{j}'
__UpperCamelCase : Union[str, Any] =F'input_blocks.{current_layer}.0'
__UpperCamelCase : Any =True if j == 0 and downsample_block_has_skip else False
__UpperCamelCase : List[str] =convert_resnet(a_ ,a_ ,a_ ,a_ ,has_skip=a_ )
__UpperCamelCase : Union[str, Any] =F'down_blocks.{i}.attentions.{j}'
__UpperCamelCase : Optional[Any] =F'input_blocks.{current_layer}.1'
__UpperCamelCase : Optional[Any] =convert_attention(
a_ ,a_ ,a_ ,a_ ,a_ )
current_layer += 1
if i != len(a_ ) - 1:
__UpperCamelCase : List[Any] =F'down_blocks.{i}.downsamplers.0'
__UpperCamelCase : int =F'input_blocks.{current_layer}.0'
__UpperCamelCase : str =convert_resnet(a_ ,a_ ,a_ ,a_ )
current_layer += 1
__UpperCamelCase : Optional[Any] =current_channels
# hardcoded the mid-block for now
__UpperCamelCase : Any ='mid_block.resnets.0'
__UpperCamelCase : List[str] ='middle_block.0'
__UpperCamelCase : Union[str, Any] =convert_resnet(a_ ,a_ ,a_ ,a_ )
__UpperCamelCase : List[Any] ='mid_block.attentions.0'
__UpperCamelCase : Optional[Any] ='middle_block.1'
__UpperCamelCase : List[Any] =convert_attention(a_ ,a_ ,a_ ,a_ ,a_ )
__UpperCamelCase : str ='mid_block.resnets.1'
__UpperCamelCase : Optional[Any] ='middle_block.2'
__UpperCamelCase : int =convert_resnet(a_ ,a_ ,a_ ,a_ )
__UpperCamelCase : List[Any] =0
__UpperCamelCase : Optional[int] =unet_config['up_block_types']
for i, layer_type in enumerate(a_ ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
__UpperCamelCase : Any =F'up_blocks.{i}.resnets.{j}'
__UpperCamelCase : Dict =F'output_blocks.{current_layer}.0'
__UpperCamelCase : Dict =convert_resnet(a_ ,a_ ,a_ ,a_ ,has_skip=a_ )
current_layer += 1
if i != len(a_ ) - 1:
__UpperCamelCase : List[str] =F'up_blocks.{i}.upsamplers.0'
__UpperCamelCase : Optional[Any] =F'output_blocks.{current_layer-1}.1'
__UpperCamelCase : Union[str, Any] =convert_resnet(a_ ,a_ ,a_ ,a_ )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
__UpperCamelCase : Optional[Any] =F'up_blocks.{i}.resnets.{j}'
__UpperCamelCase : Optional[Any] =F'output_blocks.{current_layer}.0'
__UpperCamelCase : str =convert_resnet(a_ ,a_ ,a_ ,a_ ,has_skip=a_ )
__UpperCamelCase : Optional[int] =F'up_blocks.{i}.attentions.{j}'
__UpperCamelCase : Tuple =F'output_blocks.{current_layer}.1'
__UpperCamelCase : str =convert_attention(
a_ ,a_ ,a_ ,a_ ,a_ )
current_layer += 1
if i != len(a_ ) - 1:
__UpperCamelCase : Optional[Any] =F'up_blocks.{i}.upsamplers.0'
__UpperCamelCase : str =F'output_blocks.{current_layer-1}.2'
__UpperCamelCase : str =convert_resnet(a_ ,a_ ,a_ ,a_ )
__UpperCamelCase : Any =checkpoint['out.0.weight']
__UpperCamelCase : Any =checkpoint['out.0.bias']
__UpperCamelCase : Optional[Any] =checkpoint['out.2.weight']
__UpperCamelCase : List[Any] =checkpoint['out.2.bias']
return new_checkpoint
if __name__ == "__main__":
A_ :int = argparse.ArgumentParser()
parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''')
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.'''
)
parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''')
A_ :List[Any] = parser.parse_args()
A_ :Tuple = strabool(args.class_cond)
A_ :List[str] = os.path.basename(args.unet_path)
print(f"Checkpoint: {ckpt_name}")
# Get U-Net config
if "imagenet64" in ckpt_name:
A_ :Optional[int] = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
A_ :List[Any] = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
A_ :Optional[int] = TEST_UNET_CONFIG
else:
raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.")
if not args.class_cond:
A_ :List[str] = None
A_ :List[str] = con_pt_to_diffuser(args.unet_path, unet_config)
A_ :str = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
A_ :List[str] = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
A_ :Optional[int] = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
A_ :Dict = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.")
A_ :Optional[Any] = CMStochasticIterativeScheduler(**scheduler_config)
A_ :int = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path)
| 154 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
snake_case__ = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ = ["""SpeechEncoderDecoderModel"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case__ = ["""FlaxSpeechEncoderDecoderModel"""]
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
snake_case__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 583 |
snake_case__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ"""
def lowerCamelCase_ ( ):
lowercase : Optional[Any] = input('''Enter message: ''' )
lowercase : Optional[Any] = input('''Enter key [alphanumeric]: ''' )
lowercase : Union[str, Any] = input('''Encrypt/Decrypt [e/d]: ''' )
if mode.lower().startswith('''e''' ):
lowercase : str = '''encrypt'''
lowercase : Optional[Any] = encrypt_message(UpperCAmelCase_ , UpperCAmelCase_ )
elif mode.lower().startswith('''d''' ):
lowercase : str = '''decrypt'''
lowercase : Optional[int] = decrypt_message(UpperCAmelCase_ , UpperCAmelCase_ )
print(f'''\n{mode.title()}ed message:''' )
print(UpperCAmelCase_ )
def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ):
return translate_message(UpperCAmelCase_ , UpperCAmelCase_ , '''encrypt''' )
def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ):
return translate_message(UpperCAmelCase_ , UpperCAmelCase_ , '''decrypt''' )
def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str ):
lowercase : Optional[Any] = []
lowercase : Tuple = 0
lowercase : str = key.upper()
for symbol in message:
lowercase : Any = LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(UpperCAmelCase_ )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(UpperCAmelCase_ ):
lowercase : List[str] = 0
else:
translated.append(UpperCAmelCase_ )
return "".join(UpperCAmelCase_ )
if __name__ == "__main__":
main()
| 583 | 1 |
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__snake_case : int =logging.get_logger(__name__)
__snake_case : List[Any] ={
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
}
__snake_case : Any ={
'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'},
'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'},
}
__snake_case : Optional[int] ={
'ctrl': 2_5_6,
}
__snake_case : Optional[int] ={
'Pregnancy': 1_6_8_6_2_9,
'Christianity': 7_6_7_5,
'Explain': 1_0_6_4_2_3,
'Fitness': 6_3_4_4_0,
'Saving': 6_3_1_6_3,
'Ask': 2_7_1_7_1,
'Ass': 9_5_9_8_5,
'Joke': 1_6_3_5_0_9,
'Questions': 4_5_6_2_2,
'Thoughts': 4_9_6_0_5,
'Retail': 5_2_3_4_2,
'Feminism': 1_6_4_3_3_8,
'Writing': 1_1_9_9_2,
'Atheism': 1_9_2_2_6_3,
'Netflix': 4_8_6_1_6,
'Computing': 3_9_6_3_9,
'Opinion': 4_3_2_1_3,
'Alone': 4_4_9_6_7,
'Funny': 5_8_9_1_7,
'Gaming': 4_0_3_5_8,
'Human': 4_0_8_8,
'India': 1_3_3_1,
'Joker': 7_7_1_3_8,
'Diet': 3_6_2_0_6,
'Legal': 1_1_8_5_9,
'Norman': 4_9_3_9,
'Tip': 7_2_6_8_9,
'Weight': 5_2_3_4_3,
'Movies': 4_6_2_7_3,
'Running': 2_3_4_2_5,
'Science': 2_0_9_0,
'Horror': 3_7_7_9_3,
'Confession': 6_0_5_7_2,
'Finance': 1_2_2_5_0,
'Politics': 1_6_3_6_0,
'Scary': 1_9_1_9_8_5,
'Support': 1_2_6_5_4,
'Technologies': 3_2_5_1_6,
'Teenage': 6_6_1_6_0,
'Event': 3_2_7_6_9,
'Learned': 6_7_4_6_0,
'Notion': 1_8_2_7_7_0,
'Wikipedia': 3_7_5_8_3,
'Books': 6_6_6_5,
'Extract': 7_6_0_5_0,
'Confessions': 1_0_2_7_0_1,
'Conspiracy': 7_5_9_3_2,
'Links': 6_3_6_7_4,
'Narcissus': 1_5_0_4_2_5,
'Relationship': 5_4_7_6_6,
'Relationships': 1_3_4_7_9_6,
'Reviews': 4_1_6_7_1,
'News': 4_2_5_6,
'Translation': 2_6_8_2_0,
'multilingual': 1_2_8_4_0_6,
}
def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any]):
'''simple docstring'''
lowerCAmelCase__ : Tuple = set()
lowerCAmelCase__ : Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
lowerCAmelCase__ : List[Any] = char
lowerCAmelCase__ : Dict = set(lowerCamelCase_)
return pairs
class lowerCamelCase__ ( lowerCamelCase__):
'''simple docstring'''
snake_case_ =VOCAB_FILES_NAMES
snake_case_ =PRETRAINED_VOCAB_FILES_MAP
snake_case_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ =CONTROL_CODES
def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase="<unk>" ,**__lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(unk_token=__lowerCamelCase ,**__lowerCamelCase )
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
lowerCAmelCase__ : List[str] = json.load(__lowerCamelCase )
lowerCAmelCase__ : int = {v: k for k, v in self.encoder.items()}
with open(__lowerCamelCase ,encoding='''utf-8''' ) as merges_handle:
lowerCAmelCase__ : str = merges_handle.read().split('''\n''' )[1:-1]
lowerCAmelCase__ : Optional[Any] = [tuple(merge.split() ) for merge in merges]
lowerCAmelCase__ : int = dict(zip(__lowerCamelCase ,range(len(__lowerCamelCase ) ) ) )
lowerCAmelCase__ : Union[str, Any] = {}
@property
def lowerCAmelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
return len(self.encoder )
def lowerCAmelCase__ (self ) -> int:
"""simple docstring"""
return dict(self.encoder ,**self.added_tokens_encoder )
def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
lowerCAmelCase__ : Union[str, Any] = tuple(__lowerCamelCase )
lowerCAmelCase__ : Tuple = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
lowerCAmelCase__ : Union[str, Any] = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
lowerCAmelCase__ : Optional[Any] = min(__lowerCamelCase ,key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase ,float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowerCAmelCase__ : int = bigram
lowerCAmelCase__ : Optional[int] = []
lowerCAmelCase__ : int = 0
while i < len(__lowerCamelCase ):
try:
lowerCAmelCase__ : Optional[Any] = word.index(__lowerCamelCase ,__lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCAmelCase__ : int = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCAmelCase__ : Optional[Any] = tuple(__lowerCamelCase )
lowerCAmelCase__ : Any = new_word
if len(__lowerCamelCase ) == 1:
break
else:
lowerCAmelCase__ : Optional[Any] = get_pairs(__lowerCamelCase )
lowerCAmelCase__ : List[Any] = '''@@ '''.join(__lowerCamelCase )
lowerCAmelCase__ : Optional[int] = word[:-4]
lowerCAmelCase__ : List[Any] = word
return word
def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ : List[Any] = []
lowerCAmelCase__ : int = re.findall(R'''\S+\n?''' ,__lowerCamelCase )
for token in words:
split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(''' ''' ) ) )
return split_tokens
def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]:
"""simple docstring"""
return self.encoder.get(__lowerCamelCase ,self.encoder.get(self.unk_token ) )
def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
return self.decoder.get(__lowerCamelCase ,self.unk_token )
def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ : Dict = ''' '''.join(__lowerCamelCase ).replace('''@@ ''' ,'''''' ).strip()
return out_string
def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCAmelCase__ : Optional[int] = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCAmelCase__ : List[Any] = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=__lowerCamelCase ,ensure_ascii=__lowerCamelCase ) + '''\n''' )
lowerCAmelCase__ : Optional[Any] = 0
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
lowerCAmelCase__ : Optional[int] = token_index
writer.write(''' '''.join(__lowerCamelCase ) + '''\n''' )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 719 |
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
__snake_case : List[str] ='tiny-wmt19-en-ru'
# Build
# borrowed from a test
__snake_case : Any =[
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
__snake_case : Union[str, Any] =dict(zip(vocab, range(len(vocab))))
__snake_case : List[Any] =['l o 123', 'lo w 1456', 'e r</w> 1789', '']
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case : Optional[Any] =Path(tmpdirname)
__snake_case : int =build_dir / VOCAB_FILES_NAMES['src_vocab_file']
__snake_case : str =build_dir / VOCAB_FILES_NAMES['tgt_vocab_file']
__snake_case : Optional[int] =build_dir / VOCAB_FILES_NAMES['merges_file']
with open(src_vocab_file, 'w') as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, 'w') as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, 'w') as fp:
fp.write('\n'.join(merges))
__snake_case : Union[str, Any] =FSMTTokenizer(
langs=['en', 'ru'],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
__snake_case : Dict =FSMTConfig(
langs=['ru', 'en'],
src_vocab_size=1_0_0_0,
tgt_vocab_size=1_0_0_0,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
__snake_case : Optional[Any] =FSMTForConditionalGeneration(config)
print(f"""num of params {tiny_model.num_parameters()}""")
# Test
__snake_case : Dict =tokenizer(['Making tiny model'], return_tensors='pt')
__snake_case : Dict =tiny_model(**batch)
print('test output:', len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(f"""Generated {mname_tiny}""")
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 90 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
_SCREAMING_SNAKE_CASE : Union[str, Any] = TypeVar("T")
_SCREAMING_SNAKE_CASE : Dict = TypeVar("U")
class _snake_case ( Generic[T, U] ):
'''simple docstring'''
def __init__( self: str , __UpperCamelCase: Optional[int] , __UpperCamelCase: str ) -> Dict:
__magic_name__ : int = key
__magic_name__ : Optional[Any] = val
__magic_name__ : Tuple = None
__magic_name__ : Union[str, Any] = None
def __repr__( self: str ) -> str:
return (
f"""Node: key: {self.key}, val: {self.val}, """
f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}"""
)
class _snake_case ( Generic[T, U] ):
'''simple docstring'''
def __init__( self: Tuple ) -> None:
__magic_name__ : int = DoubleLinkedListNode(_a , _a )
__magic_name__ : str = DoubleLinkedListNode(_a , _a )
__magic_name__ , __magic_name__ : int = self.rear, self.head
def __repr__( self: Tuple ) -> str:
__magic_name__ : Dict = ["DoubleLinkedList"]
__magic_name__ : Optional[Any] = self.head
while node.next is not None:
rep.append(str(_a ) )
__magic_name__ : Dict = node.next
rep.append(str(self.rear ) )
return ",\n ".join(_a )
def lowerCAmelCase__ ( self: Dict , __UpperCamelCase: Optional[Any] ) -> None:
__magic_name__ : Optional[Any] = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
__magic_name__ : Dict = node
__magic_name__ : Optional[int] = previous
__magic_name__ : Dict = node
__magic_name__ : Union[str, Any] = self.rear
def lowerCAmelCase__ ( self: Any , __UpperCamelCase: Dict ) -> DoubleLinkedListNode[T, U] | None:
if node.prev is None or node.next is None:
return None
__magic_name__ : Optional[Any] = node.next
__magic_name__ : Union[str, Any] = node.prev
__magic_name__ : Tuple = None
__magic_name__ : Union[str, Any] = None
return node
class _snake_case ( Generic[T, U] ):
'''simple docstring'''
__snake_case = {}
def __init__( self: int , __UpperCamelCase: int ) -> Tuple:
__magic_name__ : str = DoubleLinkedList()
__magic_name__ : Union[str, Any] = capacity
__magic_name__ : Optional[Any] = 0
__magic_name__ : Tuple = 0
__magic_name__ : Dict = 0
__magic_name__ : Any = {}
def __repr__( self: Union[str, Any] ) -> str:
return (
f"""CacheInfo(hits={self.hits}, misses={self.miss}, """
f"""capacity={self.capacity}, current size={self.num_keys})"""
)
def __contains__( self: Any , __UpperCamelCase: List[str] ) -> bool:
return key in self.cache
def lowerCAmelCase__ ( self: Union[str, Any] , __UpperCamelCase: Optional[Any] ) -> U | None:
# Note: pythonic interface would throw KeyError rather than return None
if key in self.cache:
self.hits += 1
__magic_name__ : List[str] = self.cache[key]
__magic_name__ : List[Any] = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(_a )
return node.val
self.miss += 1
return None
def lowerCAmelCase__ ( self: List[Any] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Union[str, Any] ) -> None:
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
__magic_name__ : int = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(_a ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
__magic_name__ : Dict = DoubleLinkedListNode(_a , _a )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
__magic_name__ : str = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
__magic_name__ : List[str] = value
self.list.add(_a )
@classmethod
def lowerCAmelCase__ ( cls: Any , __UpperCamelCase: Optional[Any] = 128 ) -> Callable[[Callable[[T], U]], Callable[..., U]]:
def cache_decorator_inner(__UpperCamelCase: int ) -> Callable[..., U]:
def cache_decorator_wrapper(*__UpperCamelCase: Tuple ) -> U:
if func not in cls.decorator_function_to_instance_map:
__magic_name__ : str = LRUCache(_a )
__magic_name__ : Optional[Any] = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
__magic_name__ : int = func(*_a )
cls.decorator_function_to_instance_map[func].put(args[0] , _a )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(_a , "cache_info" , _a ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod() | 436 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase__ = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
'''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SEWForCTC''',
'''SEWForSequenceClassification''',
'''SEWModel''',
'''SEWPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 122 | 0 |
'''simple docstring'''
import argparse
import os
import re
__lowercase = '''src/transformers/models/auto'''
# re pattern that matches mapping introductions:
# SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict
__lowercase = re.compile(R'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''')
# re pattern that matches identifiers in mappings
__lowercase = re.compile(R'''\s*\(\s*"(\S[^"]+)"''')
def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ):
with open(_SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f:
lowerCAmelCase_ : str =f.read()
lowerCAmelCase_ : Optional[Any] =content.split('''\n''' )
lowerCAmelCase_ : Optional[Any] =[]
lowerCAmelCase_ : List[Any] =0
while line_idx < len(_SCREAMING_SNAKE_CASE ):
if _re_intro_mapping.search(lines[line_idx] ) is not None:
lowerCAmelCase_ : List[str] =len(re.search(R'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8
# Start of a new mapping!
while not lines[line_idx].startswith(''' ''' * indent + '''(''' ):
new_lines.append(lines[line_idx] )
line_idx += 1
lowerCAmelCase_ : List[Any] =[]
while lines[line_idx].strip() != "]":
# Blocks either fit in one line or not
if lines[line_idx].strip() == "(":
lowerCAmelCase_ : Optional[int] =line_idx
while not lines[line_idx].startswith(''' ''' * indent + ''')''' ):
line_idx += 1
blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) )
else:
blocks.append(lines[line_idx] )
line_idx += 1
# Sort blocks by their identifiers
lowerCAmelCase_ : Optional[Any] =sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : _re_identifier.search(_SCREAMING_SNAKE_CASE ).groups()[0] )
new_lines += blocks
else:
new_lines.append(lines[line_idx] )
line_idx += 1
if overwrite:
with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f:
f.write('''\n'''.join(_SCREAMING_SNAKE_CASE ) )
elif "\n".join(_SCREAMING_SNAKE_CASE ) != content:
return True
def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE = False ):
lowerCAmelCase_ : Dict =[os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for f in os.listdir(_SCREAMING_SNAKE_CASE ) if f.endswith('''.py''' )]
lowerCAmelCase_ : Dict =[sort_auto_mapping(_SCREAMING_SNAKE_CASE , overwrite=_SCREAMING_SNAKE_CASE ) for fname in fnames]
if not overwrite and any(_SCREAMING_SNAKE_CASE ):
lowerCAmelCase_ : List[Any] =[f for f, d in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if d]
raise ValueError(
f'The following files have auto mappings that need sorting: {", ".join(_SCREAMING_SNAKE_CASE )}. Run `make style` to fix'
''' this.''' )
if __name__ == "__main__":
__lowercase = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__lowercase = parser.parse_args()
sort_all_auto_mappings(not args.check_only)
| 708 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class _snake_case ( lowerCAmelCase_ ):
"""simple docstring"""
_UpperCamelCase : UNetaDModel
_UpperCamelCase : ScoreSdeVeScheduler
def __init__( self : Union[str, Any] , UpperCamelCase_ : UNetaDModel , UpperCamelCase_ : ScoreSdeVeScheduler ):
super().__init__()
self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ )
@torch.no_grad()
def __call__( self : Union[str, Any] , UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 2000 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , **UpperCamelCase_ : Dict , ):
lowerCAmelCase_ : Union[str, Any] =self.unet.config.sample_size
lowerCAmelCase_ : Dict =(batch_size, 3, img_size, img_size)
lowerCAmelCase_ : Dict =self.unet
lowerCAmelCase_ : Optional[int] =randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ ) * self.scheduler.init_noise_sigma
lowerCAmelCase_ : Any =sample.to(self.device )
self.scheduler.set_timesteps(UpperCamelCase_ )
self.scheduler.set_sigmas(UpperCamelCase_ )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
lowerCAmelCase_ : Optional[Any] =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
lowerCAmelCase_ : int =self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample
lowerCAmelCase_ : List[str] =self.scheduler.step_correct(UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample
# prediction step
lowerCAmelCase_ : Any =model(UpperCamelCase_ , UpperCamelCase_ ).sample
lowerCAmelCase_ : Tuple =self.scheduler.step_pred(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ )
lowerCAmelCase_ , lowerCAmelCase_ : Tuple =output.prev_sample, output.prev_sample_mean
lowerCAmelCase_ : Tuple =sample_mean.clamp(0 , 1 )
lowerCAmelCase_ : int =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase_ : Optional[Any] =self.numpy_to_pil(UpperCamelCase_ )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=UpperCamelCase_ )
| 305 | 0 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a ( _lowerCamelCase , unittest.TestCase ):
snake_case_ = KandinskyVaaPriorPipeline
snake_case_ = ["prompt"]
snake_case_ = ["prompt", "negative_prompt"]
snake_case_ = [
"num_images_per_prompt",
"generator",
"num_inference_steps",
"latents",
"negative_prompt",
"guidance_scale",
"output_type",
"return_dict",
]
snake_case_ = False
@property
def A_ ( self : Optional[Any] ):
return 32
@property
def A_ ( self : Tuple ):
return 32
@property
def A_ ( self : Optional[Any] ):
return self.time_input_dim
@property
def A_ ( self : str ):
return self.time_input_dim * 4
@property
def A_ ( self : Tuple ):
return 100
@property
def A_ ( self : List[Any] ):
snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def A_ ( self : Any ):
torch.manual_seed(0 )
snake_case_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(lowercase_ )
@property
def A_ ( self : Optional[int] ):
torch.manual_seed(0 )
snake_case_ = {
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
snake_case_ = PriorTransformer(**lowercase_ )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
snake_case_ = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def A_ ( self : Any ):
torch.manual_seed(0 )
snake_case_ = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
snake_case_ = CLIPVisionModelWithProjection(lowercase_ )
return model
@property
def A_ ( self : Union[str, Any] ):
snake_case_ = CLIPImageProcessor(
crop_size=224 , do_center_crop=lowercase_ , do_normalize=lowercase_ , do_resize=lowercase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , )
return image_processor
def A_ ( self : Any ):
snake_case_ = self.dummy_prior
snake_case_ = self.dummy_image_encoder
snake_case_ = self.dummy_text_encoder
snake_case_ = self.dummy_tokenizer
snake_case_ = self.dummy_image_processor
snake_case_ = UnCLIPScheduler(
variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=lowercase_ , clip_sample_range=10.0 , )
snake_case_ = {
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def A_ ( self : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : List[str]=0 ):
if str(lowercase_ ).startswith('''mps''' ):
snake_case_ = torch.manual_seed(lowercase_ )
else:
snake_case_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
snake_case_ = {
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def A_ ( self : Optional[Any] ):
snake_case_ = '''cpu'''
snake_case_ = self.get_dummy_components()
snake_case_ = self.pipeline_class(**lowercase_ )
snake_case_ = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case_ = pipe(**self.get_dummy_inputs(lowercase_ ) )
snake_case_ = output.image_embeds
snake_case_ = pipe(
**self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0]
snake_case_ = image[0, -10:]
snake_case_ = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
snake_case_ = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def A_ ( self : Any ):
snake_case_ = torch_device == '''cpu'''
snake_case_ = True
snake_case_ = False
self._test_inference_batch_single_identical(
test_max_difference=lowercase_ , relax_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
@skip_mps
def A_ ( self : Union[str, Any] ):
snake_case_ = torch_device == '''cpu'''
snake_case_ = False
self._test_attention_slicing_forward_pass(
test_max_difference=lowercase_ , test_mean_pixel_difference=lowercase_ , )
| 640 |
'''simple docstring'''
from ....utils import logging
a : Optional[int] = logging.get_logger(__name__)
class a ( _lowerCamelCase ):
def __init__( self : int , lowercase_ : Tuple , lowercase_ : Any=None , lowercase_ : List[Any]=2048 ):
snake_case_ = config.__dict__
snake_case_ = modal_hidden_size
if num_labels:
snake_case_ = num_labels
| 640 | 1 |
'''simple docstring'''
from collections.abc import Generator
def SCREAMING_SNAKE_CASE_ ( ):
UpperCamelCase__ : Tuple = 0, 1
while True:
UpperCamelCase__ : Union[str, Any] = b, a + b
yield b
def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ = 1_0_0_0 ):
UpperCamelCase__ : Optional[int] = 1
UpperCamelCase__ : Optional[int] = fibonacci_generator()
while len(str(next(UpperCamelCase__ ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 701 |
class _lowerCamelCase :
"""simple docstring"""
def __init__( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ : Union[str, Any] = ''''''
UpperCamelCase__ : int = ''''''
UpperCamelCase__ : Optional[int] = []
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
if m == -1:
return n + 1
elif n == -1:
return m + 1
elif self.dp[m][n] > -1:
return self.dp[m][n]
else:
if self.worda[m] == self.worda[n]:
UpperCamelCase__ : Union[str, Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 )
else:
UpperCamelCase__ : int = self.__min_dist_top_down_dp(__SCREAMING_SNAKE_CASE , n - 1 )
UpperCamelCase__ : Tuple = self.__min_dist_top_down_dp(m - 1 , __SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[Any] = self.__min_dist_top_down_dp(m - 1 , n - 1 )
UpperCamelCase__ : Optional[int] = 1 + min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return self.dp[m][n]
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ : Union[str, Any] = worda
UpperCamelCase__ : Any = worda
UpperCamelCase__ : List[str] = [[-1 for _ in range(len(__SCREAMING_SNAKE_CASE ) )] for _ in range(len(__SCREAMING_SNAKE_CASE ) )]
return self.__min_dist_top_down_dp(len(__SCREAMING_SNAKE_CASE ) - 1 , len(__SCREAMING_SNAKE_CASE ) - 1 )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
UpperCamelCase__ : int = worda
UpperCamelCase__ : List[str] = worda
UpperCamelCase__ : int = len(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[Any] = len(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : int = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )]
for i in range(m + 1 ):
for j in range(n + 1 ):
if i == 0: # first string is empty
UpperCamelCase__ : List[Any] = j
elif j == 0: # second string is empty
UpperCamelCase__ : Union[str, Any] = i
elif worda[i - 1] == worda[j - 1]: # last characters are equal
UpperCamelCase__ : List[Any] = self.dp[i - 1][j - 1]
else:
UpperCamelCase__ : Union[str, Any] = self.dp[i][j - 1]
UpperCamelCase__ : str = self.dp[i - 1][j]
UpperCamelCase__ : Union[str, Any] = self.dp[i - 1][j - 1]
UpperCamelCase__ : List[Any] = 1 + min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return self.dp[m][n]
if __name__ == "__main__":
lowerCamelCase =EditDistance()
print("****************** Testing Edit Distance DP Algorithm ******************")
print()
lowerCamelCase =input("Enter the first string: ").strip()
lowerCamelCase =input("Enter the second string: ").strip()
print()
print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''')
print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''')
print()
print("*************** End of Testing Edit Distance DP Algorithm ***************")
| 462 | 0 |
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class snake_case ( UpperCamelCase_ ):
def __lowercase( self : List[str] )-> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__ : List[Any] = 8
# DPR tok
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(self.tmpdirname , 'dpr_tokenizer' )
os.makedirs(a_ , exist_ok=a_ )
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(a_ , DPR_VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
# BART tok
SCREAMING_SNAKE_CASE__ : List[str] = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
SCREAMING_SNAKE_CASE__ : Any = dict(zip(a_ , range(len(a_ ) ) ) )
SCREAMING_SNAKE_CASE__ : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(self.tmpdirname , 'bart_tokenizer' )
os.makedirs(a_ , exist_ok=a_ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(a_ , BART_VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(a_ , BART_VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(a_ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(a_ ) )
def __lowercase( self : Union[str, Any] )-> DPRQuestionEncoderTokenizer:
"""simple docstring"""
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) )
def __lowercase( self : Union[str, Any] )-> DPRContextEncoderTokenizer:
"""simple docstring"""
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) )
def __lowercase( self : List[Any] )-> BartTokenizer:
"""simple docstring"""
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) )
def __lowercase( self : str )-> int:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def __lowercase( self : str )-> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = Dataset.from_dict(
{
'id': ['0', '1'],
'text': ['foo', 'bar'],
'title': ['Foo', 'Bar'],
'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def __lowercase( self : List[str] )-> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_dataset()
SCREAMING_SNAKE_CASE__ : Optional[int] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset:
SCREAMING_SNAKE_CASE__ : Any = dataset
SCREAMING_SNAKE_CASE__ : int = RagRetriever(
a_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def __lowercase( self : Tuple , a_ : bool )-> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_dataset()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , )
if from_disk:
SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(self.tmpdirname , 'dataset' )
SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(self.tmpdirname , 'index.faiss' )
dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) )
dataset.drop_index('embeddings' )
dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) )
del dataset
SCREAMING_SNAKE_CASE__ : Union[str, Any] = RagRetriever(
a_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = RagRetriever(
a_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , a_ ) , )
return retriever
def __lowercase( self : Any )-> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = Dataset.from_dict(
{
'id': ['0', '1'],
'text': ['foo', 'bar'],
'title': ['Foo', 'Bar'],
'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT )
SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' )
dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' )
pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) )
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' )
SCREAMING_SNAKE_CASE__ : List[str] = {sample['id']: [sample['text'], sample['title']] for sample in dataset}
pickle.dump(a_ , open(a_ , 'wb' ) )
SCREAMING_SNAKE_CASE__ : Any = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , )
SCREAMING_SNAKE_CASE__ : int = RagRetriever(
a_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def __lowercase( self : Tuple )-> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = 1
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_canonical_hf_index_retriever()
SCREAMING_SNAKE_CASE__ : Any = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = retriever.retrieve(a_ , n_docs=a_ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(a_ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] )
self.assertEqual(len(doc_dicts[0]['id'] ) , a_ )
self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __lowercase( self : List[str] )-> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset:
SCREAMING_SNAKE_CASE__ : int = self.get_dummy_dataset()
retriever.save_pretrained(a_ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = RagRetriever.from_pretrained(a_ )
self.assertIsInstance(a_ , a_ )
SCREAMING_SNAKE_CASE__ : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
SCREAMING_SNAKE_CASE__ : List[Any] = retriever.retrieve(a_ , n_docs=1 )
self.assertTrue(out is not None )
def __lowercase( self : Optional[Any] )-> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = 1
SCREAMING_SNAKE_CASE__ : int = self.get_dummy_custom_hf_index_retriever(from_disk=a_ )
SCREAMING_SNAKE_CASE__ : Optional[int] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = retriever.retrieve(a_ , n_docs=a_ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(a_ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] )
self.assertEqual(len(doc_dicts[0]['id'] ) , a_ )
self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __lowercase( self : Optional[int] )-> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=a_ )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(a_ )
SCREAMING_SNAKE_CASE__ : List[str] = RagRetriever.from_pretrained(a_ )
self.assertIsInstance(a_ , a_ )
SCREAMING_SNAKE_CASE__ : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
SCREAMING_SNAKE_CASE__ : Optional[Any] = retriever.retrieve(a_ , n_docs=1 )
self.assertTrue(out is not None )
def __lowercase( self : Union[str, Any] )-> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1
SCREAMING_SNAKE_CASE__ : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=a_ )
SCREAMING_SNAKE_CASE__ : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = retriever.retrieve(a_ , n_docs=a_ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(a_ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] )
self.assertEqual(len(doc_dicts[0]['id'] ) , a_ )
self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __lowercase( self : Dict )-> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=a_ )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(a_ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = RagRetriever.from_pretrained(a_ )
self.assertIsInstance(a_ , a_ )
SCREAMING_SNAKE_CASE__ : Dict = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
SCREAMING_SNAKE_CASE__ : Any = retriever.retrieve(a_ , n_docs=1 )
self.assertTrue(out is not None )
def __lowercase( self : str )-> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1
SCREAMING_SNAKE_CASE__ : Tuple = self.get_dummy_legacy_index_retriever()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = retriever.retrieve(a_ , n_docs=a_ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(a_ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] )
self.assertEqual(len(doc_dicts[0]['text'] ) , a_ )
self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def __lowercase( self : Dict )-> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(a_ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = RagRetriever.from_pretrained(a_ )
self.assertIsInstance(a_ , a_ )
SCREAMING_SNAKE_CASE__ : Any = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = retriever.retrieve(a_ , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def __lowercase( self : int )-> Tuple:
"""simple docstring"""
import torch
SCREAMING_SNAKE_CASE__ : List[Any] = 1
SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_canonical_hf_index_retriever()
SCREAMING_SNAKE_CASE__ : Optional[Any] = [[5, 7], [10, 11]]
SCREAMING_SNAKE_CASE__ : str = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = retriever(a_ , a_ , prefix=retriever.config.generator.prefix , n_docs=a_ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = (
out['context_input_ids'],
out['context_attention_mask'],
out['retrieved_doc_embeds'],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(a_ , a_ )
self.assertIsInstance(a_ , a_ )
self.assertIsInstance(a_ , np.ndarray )
SCREAMING_SNAKE_CASE__ : int = retriever(
a_ , a_ , prefix=retriever.config.generator.prefix , n_docs=a_ , return_tensors='pt' , )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = ( # noqa: F841
out['context_input_ids'],
out['context_attention_mask'],
out['retrieved_doc_embeds'],
out['doc_ids'],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(a_ , torch.Tensor )
self.assertIsInstance(a_ , torch.Tensor )
self.assertIsInstance(a_ , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def __lowercase( self : List[Any] )-> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dpr_ctx_encoder_tokenizer()
SCREAMING_SNAKE_CASE__ : Dict = 1
SCREAMING_SNAKE_CASE__ : int = self.get_dummy_custom_hf_index_retriever(from_disk=a_ )
retriever.set_ctx_encoder_tokenizer(a_ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = [[5, 7], [10, 11]]
SCREAMING_SNAKE_CASE__ : List[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
SCREAMING_SNAKE_CASE__ : int = retriever(a_ , a_ , prefix=retriever.config.generator.prefix , n_docs=a_ )
self.assertEqual(
len(a_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , a_ ) # check for doc token related keys in dictionary.
| 85 | import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
SCREAMING_SNAKE_CASE__ : Optional[int] = logging.getLogger(__name__)
SCREAMING_SNAKE_CASE__ : List[Any] = "Hello world! cécé herlolip"
SCREAMING_SNAKE_CASE__ : Dict = namedtuple(
"BertAbsConfig",
[
"temp_dir",
"large",
"use_bert_emb",
"finetune_bert",
"encoder",
"share_emb",
"max_pos",
"enc_layers",
"enc_hidden_size",
"enc_heads",
"enc_ff_size",
"enc_dropout",
"dec_layers",
"dec_hidden_size",
"dec_heads",
"dec_ff_size",
"dec_dropout",
],
)
def _a ( lowercase__ : List[str] , lowercase__ : List[Any] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = BertAbsConfig(
temp_dir='.' , finetune_bert=lowercase__ , large=lowercase__ , share_emb=lowercase__ , use_bert_emb=lowercase__ , encoder='bert' , max_pos=5_12 , enc_layers=6 , enc_hidden_size=5_12 , enc_heads=8 , enc_ff_size=5_12 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_68 , dec_heads=8 , dec_ff_size=20_48 , dec_dropout=0.2 , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.load(lowercase__ , lambda lowercase__ , lowercase__ : storage )
SCREAMING_SNAKE_CASE__ : Any = AbsSummarizer(lowercase__ , torch.device('cpu' ) , lowercase__ )
original.eval()
SCREAMING_SNAKE_CASE__ : List[Any] = BertAbsSummarizer(lowercase__ , torch.device('cpu' ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info('convert the model' )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info('Make sure that the models\' outputs are identical' )
SCREAMING_SNAKE_CASE__ : Any = BertTokenizer.from_pretrained('bert-base-uncased' )
# prepare the model inputs
SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.encode('This is sample éàalj\'-.' )
encoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(lowercase__ )) )
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor(lowercase__ ).unsqueeze(0 )
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode('This is sample 3 éàalj\'-.' )
decoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(lowercase__ )) )
SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor(lowercase__ ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
SCREAMING_SNAKE_CASE__ : int = encoder_input_ids
SCREAMING_SNAKE_CASE__ : Any = decoder_input_ids
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Dict = None
SCREAMING_SNAKE_CASE__ : str = None
SCREAMING_SNAKE_CASE__ : List[str] = None
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
SCREAMING_SNAKE_CASE__ : Optional[Any] = original(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )[0]
SCREAMING_SNAKE_CASE__ : Optional[int] = original.generator(lowercase__ )
SCREAMING_SNAKE_CASE__ : Tuple = new_model(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )[0]
SCREAMING_SNAKE_CASE__ : List[Any] = new_model.generator(lowercase__ )
SCREAMING_SNAKE_CASE__ : Tuple = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print('Maximum absolute difference beween weights: {:.2f}'.format(lowercase__ ) )
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print('Maximum absolute difference beween weights: {:.2f}'.format(lowercase__ ) )
SCREAMING_SNAKE_CASE__ : List[Any] = torch.allclose(lowercase__ , lowercase__ , atol=1E-3 )
if are_identical:
logging.info('all weights are equal up to 1e-3' )
else:
raise ValueError('the weights are different. The new model is likely different from the original one.' )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info('saving the model\'s state dictionary' )
torch.save(
new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Tuple = argparse.ArgumentParser()
parser.add_argument(
"--bertabs_checkpoint_path",
default=None,
type=str,
required=True,
help="Path the official PyTorch dump.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the output PyTorch model.",
)
SCREAMING_SNAKE_CASE__ : Tuple = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 85 | 1 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(__UpperCAmelCase ) , 'Tatoeba directory does not exist.' )
class _lowercase ( unittest.TestCase ):
@cached_property
def _UpperCamelCase ( self ) -> Union[str, Any]:
lowerCamelCase : int = tempfile.mkdtemp()
return TatoebaConverter(save_dir=UpperCAmelCase_ )
@slow
def _UpperCamelCase ( self ) -> Union[str, Any]:
self.resolver.convert_models(['heb-eng'] )
@slow
def _UpperCamelCase ( self ) -> int:
lowerCamelCase , lowerCamelCase : Any = self.resolver.write_model_card('opus-mt-he-en' , dry_run=UpperCAmelCase_ )
assert mmeta["long_pair"] == "heb-eng"
| 133 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( __UpperCAmelCase , unittest.TestCase ):
lowercase_ = KandinskyInpaintPipeline
lowercase_ = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image']
lowercase_ = [
'prompt',
'negative_prompt',
'image_embeds',
'negative_image_embeds',
'image',
'mask_image',
]
lowercase_ = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'negative_prompt',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
lowercase_ = False
@property
def _UpperCamelCase ( self ) -> List[str]:
return 32
@property
def _UpperCamelCase ( self ) -> Any:
return 32
@property
def _UpperCamelCase ( self ) -> Any:
return self.time_input_dim
@property
def _UpperCamelCase ( self ) -> List[Any]:
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self ) -> str:
return 100
@property
def _UpperCamelCase ( self ) -> Optional[Any]:
lowerCamelCase : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' )
return tokenizer
@property
def _UpperCamelCase ( self ) -> Any:
torch.manual_seed(0 )
lowerCamelCase : str = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , )
lowerCamelCase : List[Any] = MultilingualCLIP(UpperCAmelCase_ )
lowerCamelCase : List[Any] = text_encoder.eval()
return text_encoder
@property
def _UpperCamelCase ( self ) -> Tuple:
torch.manual_seed(0 )
lowerCamelCase : List[Any] = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'text_image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'text_image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
lowerCamelCase : Tuple = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def _UpperCamelCase ( self ) -> List[str]:
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _UpperCamelCase ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
lowerCamelCase : Any = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCamelCase ( self ) -> Union[str, Any]:
lowerCamelCase : Any = self.dummy_text_encoder
lowerCamelCase : List[str] = self.dummy_tokenizer
lowerCamelCase : int = self.dummy_unet
lowerCamelCase : Union[str, Any] = self.dummy_movq
lowerCamelCase : List[str] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCAmelCase_ , )
lowerCamelCase : List[Any] = {
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ) -> Tuple:
lowerCamelCase : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
lowerCamelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCAmelCase_ )
# create init_image
lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
lowerCamelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase : Dict = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert('RGB' ).resize((256, 256) )
# create mask
lowerCamelCase : Optional[Any] = np.ones((64, 64) , dtype=np.floataa )
lowerCamelCase : Union[str, Any] = 0
if str(UpperCAmelCase_ ).startswith('mps' ):
lowerCamelCase : Optional[int] = torch.manual_seed(UpperCAmelCase_ )
else:
lowerCamelCase : Dict = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
lowerCamelCase : List[str] = {
'prompt': 'horse',
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def _UpperCamelCase ( self ) -> List[str]:
lowerCamelCase : Any = 'cpu'
lowerCamelCase : List[Any] = self.get_dummy_components()
lowerCamelCase : List[str] = self.pipeline_class(**UpperCAmelCase_ )
lowerCamelCase : Tuple = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowerCamelCase : int = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
lowerCamelCase : int = output.images
lowerCamelCase : Union[str, Any] = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
lowerCamelCase : Any = image[0, -3:, -3:, -1]
lowerCamelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
print(F"""image.shape {image.shape}""" )
assert image.shape == (1, 64, 64, 3)
lowerCamelCase : Dict = np.array(
[0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
def _UpperCamelCase ( self ) -> Any:
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase ):
def _UpperCamelCase ( self ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self ) -> List[str]:
lowerCamelCase : Union[str, Any] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' )
lowerCamelCase : List[str] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
lowerCamelCase : Union[str, Any] = np.ones((768, 768) , dtype=np.floataa )
lowerCamelCase : Optional[Any] = 0
lowerCamelCase : Optional[int] = 'a hat'
lowerCamelCase : Dict = KandinskyPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
lowerCamelCase : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa )
lowerCamelCase : Optional[int] = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
lowerCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 )
lowerCamelCase , lowerCamelCase : Tuple = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
lowerCamelCase : Optional[Any] = pipeline(
UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , )
lowerCamelCase : List[str] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 133 | 1 |
"""simple docstring"""
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
lowerCamelCase_ = numpy.array([0, 0])
lowerCamelCase_ = numpy.array([0.5, 0.8_660_254])
lowerCamelCase_ = numpy.array([1, 0])
lowerCamelCase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def __lowerCamelCase ( a_ : list[numpy.ndarray] , a_ : int ) -> list[numpy.ndarray]:
__SCREAMING_SNAKE_CASE :str = initial_vectors
for _ in range(a_ ):
__SCREAMING_SNAKE_CASE :List[Any] = iteration_step(a_ )
return vectors
def __lowerCamelCase ( a_ : list[numpy.ndarray] ) -> list[numpy.ndarray]:
__SCREAMING_SNAKE_CASE :Any = []
for i, start_vector in enumerate(vectors[:-1] ):
__SCREAMING_SNAKE_CASE :Dict = vectors[i + 1]
new_vectors.append(a_ )
__SCREAMING_SNAKE_CASE :Dict = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def __lowerCamelCase ( a_ : numpy.ndarray , a_ : float ) -> numpy.ndarray:
__SCREAMING_SNAKE_CASE :str = numpy.radians(a_ )
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = numpy.cos(a_ ), numpy.sin(a_ )
__SCREAMING_SNAKE_CASE :int = numpy.array(((c, -s), (s, c)) )
return numpy.dot(a_ , a_ )
def __lowerCamelCase ( a_ : list[numpy.ndarray] ) -> None:
__SCREAMING_SNAKE_CASE :Tuple = plt.gca()
axes.set_aspect('''equal''' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = zip(*a_ )
plt.plot(a_ , a_ )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase_ = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors) | 498 |
"""simple docstring"""
def __lowerCamelCase ( a_ : list , a_ : int , a_ : int = 0 , a_ : int = 0 ) -> int:
__SCREAMING_SNAKE_CASE :Union[str, Any] = right or len(a_ ) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(a_ , a_ , left + 1 , right - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 498 | 1 |
import re
import string
import numpy as np
import datasets
__UpperCamelCase : List[str] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n'
__UpperCamelCase : Optional[Any] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n'
__UpperCamelCase : Union[str, Any] = '\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class lowercase__ ( datasets.Metric):
def __A ( self : Optional[int] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , reference_urls=[] , )
def __A ( self : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Union[str, Any]=False , ):
'''simple docstring'''
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
SCREAMING_SNAKE_CASE : int = np.array([re.sub(UpperCamelCase__ , '''''' , UpperCamelCase__ ) for x in predictions] )
SCREAMING_SNAKE_CASE : List[Any] = np.array([re.sub(UpperCamelCase__ , '''''' , UpperCamelCase__ ) for x in references] )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(UpperCamelCase__ )
SCREAMING_SNAKE_CASE : str = np.asarray(UpperCamelCase__ )
if ignore_case:
SCREAMING_SNAKE_CASE : Dict = np.char.lower(UpperCamelCase__ )
SCREAMING_SNAKE_CASE : List[str] = np.char.lower(UpperCamelCase__ )
if ignore_punctuation:
SCREAMING_SNAKE_CASE : Optional[int] = string.punctuation.maketrans('''''' , '''''' , string.punctuation )
SCREAMING_SNAKE_CASE : List[str] = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ )
SCREAMING_SNAKE_CASE : List[Any] = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ )
if ignore_numbers:
SCREAMING_SNAKE_CASE : Any = string.digits.maketrans('''''' , '''''' , string.digits )
SCREAMING_SNAKE_CASE : Tuple = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ )
SCREAMING_SNAKE_CASE : Any = predictions == references
return {"exact_match": np.mean(UpperCamelCase__ ) * 100}
| 715 | import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
__UpperCamelCase : Dict = None
__UpperCamelCase : Tuple = logging.get_logger(__name__)
__UpperCamelCase : Optional[int] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
__UpperCamelCase : Optional[int] = {
'vocab_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model',
't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model',
't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model',
},
'tokenizer_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json',
't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json',
't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json',
},
}
# TODO(PVP) - this should be removed in Transformers v5
__UpperCamelCase : Union[str, Any] = {
't5-small': 512,
't5-base': 512,
't5-large': 512,
't5-3b': 512,
't5-11b': 512,
}
class lowercase__ ( UpperCamelCase_):
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = ["""input_ids""", """attention_mask"""]
UpperCamelCase_ = TaTokenizer
UpperCamelCase_ = []
def __init__( self : str , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : Optional[int]="<pad>" , UpperCamelCase__ : Optional[Any]=100 , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : str , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
SCREAMING_SNAKE_CASE : List[str] = [f"""<extra_id_{i}>""" for i in range(UpperCamelCase__ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
SCREAMING_SNAKE_CASE : int = len(set(filter(lambda UpperCamelCase__ : bool('''extra_id_''' in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"""
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
super().__init__(
UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , )
SCREAMING_SNAKE_CASE : str = vocab_file
SCREAMING_SNAKE_CASE : int = False if not self.vocab_file else True
SCREAMING_SNAKE_CASE : str = extra_ids
@staticmethod
def __A ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ):
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
SCREAMING_SNAKE_CASE : List[str] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"""
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f""" {pretrained_model_name_or_path} automatically truncating your input to"""
f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"""
f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"""
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , UpperCamelCase__ , )
return max_model_length
def __A ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(UpperCamelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
SCREAMING_SNAKE_CASE : Any = os.path.join(
UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ):
copyfile(self.vocab_file , UpperCamelCase__ )
logger.info(f"""Copy vocab file to {out_vocab_file}""" )
return (out_vocab_file,)
def __A ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
SCREAMING_SNAKE_CASE : Tuple = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def __A ( self : Any , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def __A ( self : Dict ):
'''simple docstring'''
return list(
set(filter(lambda UpperCamelCase__ : bool(re.search(r'''<extra_id_\d+>''' , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) )
def __A ( self : List[Any] ):
'''simple docstring'''
return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
| 34 | 0 |
"""simple docstring"""
from statistics import mean, stdev
def a__ ( lowerCAmelCase , lowerCAmelCase = 3 ) -> list:
UpperCAmelCase__ : Dict = min(lowerCAmelCase )
UpperCAmelCase__ : List[str] = max(lowerCAmelCase )
# normalize data
return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase ) for x in data]
def a__ ( lowerCAmelCase , lowerCAmelCase = 3 ) -> list:
UpperCAmelCase__ : List[Any] = mean(lowerCAmelCase )
UpperCAmelCase__ : Optional[Any] = stdev(lowerCAmelCase )
# standardize data
return [round((x - mu) / (sigma) , lowerCAmelCase ) for x in data]
| 182 |
"""simple docstring"""
import math
def a__ ( lowerCAmelCase ) -> list[int]:
UpperCAmelCase__ : Optional[int] = []
UpperCAmelCase__ : Union[str, Any] = 2
UpperCAmelCase__ : List[Any] = int(math.sqrt(lowerCAmelCase ) ) # Size of every segment
UpperCAmelCase__ : Dict = [True] * (end + 1)
UpperCAmelCase__ : str = []
while start <= end:
if temp[start] is True:
in_prime.append(lowerCAmelCase )
for i in range(start * start , end + 1 , lowerCAmelCase ):
UpperCAmelCase__ : Optional[Any] = False
start += 1
prime += in_prime
UpperCAmelCase__ : Optional[Any] = end + 1
UpperCAmelCase__ : Dict = min(2 * end , lowerCAmelCase )
while low <= n:
UpperCAmelCase__ : Optional[int] = [True] * (high - low + 1)
for each in in_prime:
UpperCAmelCase__ : Optional[int] = math.floor(low / each ) * each
if t < low:
t += each
for j in range(lowerCAmelCase , high + 1 , lowerCAmelCase ):
UpperCAmelCase__ : int = False
for j in range(len(lowerCAmelCase ) ):
if temp[j] is True:
prime.append(j + low )
UpperCAmelCase__ : Dict = high + 1
UpperCAmelCase__ : int = min(high + end , lowerCAmelCase )
return prime
print(sieve(10**6))
| 182 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCAmelCase : str = {
"google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json",
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class snake_case ( __lowerCamelCase ):
"""simple docstring"""
_lowerCAmelCase = 'canine'
def __init__( self , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=16384 , lowerCamelCase=16 , lowerCamelCase=0.02 , lowerCamelCase=1E-1_2 , lowerCamelCase=0 , lowerCamelCase=0xe_000 , lowerCamelCase=0xe_001 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase=8 , lowerCamelCase=16384 , lowerCamelCase=128 , **lowerCamelCase , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase )
snake_case__ : List[str] = max_position_embeddings
snake_case__ : Dict = hidden_size
snake_case__ : Tuple = num_hidden_layers
snake_case__ : Optional[Any] = num_attention_heads
snake_case__ : Union[str, Any] = intermediate_size
snake_case__ : List[str] = hidden_act
snake_case__ : Dict = hidden_dropout_prob
snake_case__ : Any = attention_probs_dropout_prob
snake_case__ : Any = initializer_range
snake_case__ : str = type_vocab_size
snake_case__ : Any = layer_norm_eps
# Character config:
snake_case__ : Union[str, Any] = downsampling_rate
snake_case__ : Dict = upsampling_kernel_size
snake_case__ : Tuple = num_hash_functions
snake_case__ : List[str] = num_hash_buckets
snake_case__ : List[str] = local_transformer_stride
| 694 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowerCAmelCase : Dict = logging.get_logger(__name__)
_lowerCAmelCase : Optional[Any] = "▁"
_lowerCAmelCase : Dict = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"}
_lowerCAmelCase : Dict = {
"vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model",
},
"monolingual_vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt",
},
}
_lowerCAmelCase : str = {"vinai/bartpho-syllable": 1_0_2_4}
class snake_case ( __lowerCamelCase ):
"""simple docstring"""
_lowerCAmelCase = VOCAB_FILES_NAMES
_lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
_lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCAmelCase = ['input_ids', 'attention_mask']
def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ) -> None:
"""simple docstring"""
snake_case__ : List[Any] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token
snake_case__ : str = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , )
snake_case__ : int = vocab_file
snake_case__ : Optional[Any] = monolingual_vocab_file
snake_case__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowerCamelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
snake_case__ : Dict = {}
snake_case__ : Union[str, Any] = 0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids:
snake_case__ : List[str] = cnt
cnt += 1
with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f:
for line in f.readlines():
snake_case__ : Optional[int] = line.strip().split()[0]
snake_case__ : List[Any] = len(self.fairseq_tokens_to_ids )
if str(lowerCamelCase ) not in self.fairseq_tokens_to_ids:
snake_case__ : Any = len(self.fairseq_tokens_to_ids )
snake_case__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> List[Any]:
"""simple docstring"""
snake_case__ : int = self.__dict__.copy()
snake_case__ : Any = None
snake_case__ : int = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
snake_case__ : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
snake_case__ : Dict = {}
snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case__ : str = [self.cls_token_id]
snake_case__ : List[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase )) + [1]
return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1]
def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]:
"""simple docstring"""
snake_case__ : List[str] = [self.sep_token_id]
snake_case__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowercase__ ( self ) -> Optional[int]:
"""simple docstring"""
return len(self.fairseq_ids_to_tokens )
def lowercase__ ( self ) -> str:
"""simple docstring"""
snake_case__ : int = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowercase__ ( self , lowerCamelCase ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase )
def lowercase__ ( self , lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def lowercase__ ( self , lowerCamelCase ) -> str:
"""simple docstring"""
return self.fairseq_ids_to_tokens[index]
def lowercase__ ( self , lowerCamelCase ) -> List[str]:
"""simple docstring"""
snake_case__ : List[Any] = ''''''.join(lowerCamelCase ).replace(lowerCamelCase , ''' ''' ).strip()
return out_string
def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowerCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
snake_case__ : Optional[int] = os.path.join(
lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
snake_case__ : Optional[int] = os.path.join(
lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCamelCase , '''wb''' ) as fi:
snake_case__ : Dict = self.sp_model.serialized_model_proto()
fi.write(lowerCamelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , lowerCamelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(lowerCamelCase )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 694 | 1 |
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
lowercase_ : Union[str, Any] = logging.getLogger(__name__)
class _lowerCamelCase ( UpperCamelCase_ ):
def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ) -> List[Any]:
super().__init__(
lowerCAmelCase , question_encoder_tokenizer=lowerCAmelCase , generator_tokenizer=lowerCAmelCase , index=lowerCAmelCase , init_retrieval=lowerCAmelCase , )
SCREAMING_SNAKE_CASE__: str= None
def UpperCamelCase_ ( self , lowerCAmelCase ) -> Union[str, Any]:
logger.info('''initializing retrieval''' )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info('''dist initialized''' )
# needs to be set manually
SCREAMING_SNAKE_CASE__: Any= self._infer_socket_ifname()
# avoid clash with the NCCL port
SCREAMING_SNAKE_CASE__: Any= str(distributed_port + 1 )
SCREAMING_SNAKE_CASE__: int= dist.new_group(ranks=lowerCAmelCase , backend='''gloo''' )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info('''dist not initialized / main''' )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def UpperCamelCase_ ( self ) -> List[str]:
return dist.get_rank(group=self.process_group ) == 0
def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=torch.floataa ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__: str= torch.empty(lowerCAmelCase , dtype=lowerCAmelCase )
dist.scatter(lowerCAmelCase , src=0 , scatter_list=lowerCAmelCase , group=self.process_group )
return target_tensor
def UpperCamelCase_ ( self ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__: List[Any]= psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
SCREAMING_SNAKE_CASE__: int= next((addr for addr in addrs if addr.startswith('''e''' )) , lowerCAmelCase )
return ifname
def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[str]= self._main_retrieve(lowerCAmelCase , lowerCAmelCase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase )
# distributed training
SCREAMING_SNAKE_CASE__: List[str]= dist.get_world_size(group=self.process_group )
# gather logic
SCREAMING_SNAKE_CASE__: Union[str, Any]= None
if self._is_main():
SCREAMING_SNAKE_CASE__: List[Any]= [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCAmelCase )]
dist.gather(torch.tensor(lowerCAmelCase ) , dst=0 , gather_list=lowerCAmelCase , group=self.process_group )
# scatter logic
SCREAMING_SNAKE_CASE__: Any= question_hidden_states.shape[0]
SCREAMING_SNAKE_CASE__: Optional[Any]= []
SCREAMING_SNAKE_CASE__: str= []
if self._is_main():
assert len(lowerCAmelCase ) == world_size
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Tuple= self._main_retrieve(torch.cat(lowerCAmelCase ).numpy() , lowerCAmelCase )
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: List[Any]= torch.tensor(lowerCAmelCase ), torch.tensor(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: List[Any]= self._chunk_tensor(lowerCAmelCase , lowerCAmelCase )
SCREAMING_SNAKE_CASE__: List[Any]= self._chunk_tensor(lowerCAmelCase , lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Dict= self._scattered(lowerCAmelCase , [n_queries, n_docs] , target_type=torch.intaa )
SCREAMING_SNAKE_CASE__: Union[str, Any]= self._scattered(lowerCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase )
| 64 |
'''simple docstring'''
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ ):
_UpperCAmelCase ='''pixel_values'''
_UpperCAmelCase =False
_UpperCAmelCase =TimmBackboneConfig
def __init__( self: Union[str, Any] , a: Union[str, Any] , **a: Tuple) ->Optional[Any]:
'''simple docstring'''
requires_backends(self , "timm")
super().__init__(a)
a_ = config
if config.backbone is None:
raise ValueError("backbone is not set in the config. Please set it to a timm model name.")
if config.backbone not in timm.list_models():
raise ValueError(f"""backbone {config.backbone} is not supported by timm.""")
if hasattr(a , "out_features") and config.out_features is not None:
raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.")
a_ = getattr(a , "use_pretrained_backbone" , a)
if pretrained is None:
raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.")
# We just take the final layer by default. This matches the default for the transformers models.
a_ = config.out_indices if getattr(a , "out_indices" , a) is not None else (-1,)
a_ = timm.create_model(
config.backbone , pretrained=a , features_only=config.features_only , in_chans=config.num_channels , out_indices=a , **a , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
a_ = self._backbone.return_layers
a_ = {layer["module"]: str(a) for i, layer in enumerate(self._backbone.feature_info.info)}
super()._init_backbone(a)
@classmethod
def _lowerCAmelCase ( cls: Tuple , a: Optional[Any] , *a: Optional[Any] , **a: str) ->List[Any]:
'''simple docstring'''
requires_backends(cls , ["vision", "timm"])
from ...models.timm_backbone import TimmBackboneConfig
a_ = kwargs.pop("config" , TimmBackboneConfig())
a_ = kwargs.pop("use_timm_backbone" , a)
if not use_timm:
raise ValueError("use_timm_backbone must be True for timm backbones")
a_ = kwargs.pop("num_channels" , config.num_channels)
a_ = kwargs.pop("features_only" , config.features_only)
a_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone)
a_ = kwargs.pop("out_indices" , config.out_indices)
a_ = TimmBackboneConfig(
backbone=a , num_channels=a , features_only=a , use_pretrained_backbone=a , out_indices=a , )
return super()._from_config(a , **a)
def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str:
'''simple docstring'''
pass
def _lowerCAmelCase ( self: Tuple , a: List[Any] , a: Any=None , a: Dict=None , a: Optional[int]=None , **a: int) ->Union[BackboneOutput, Tuple[Tensor, ...]]:
'''simple docstring'''
a_ = return_dict if return_dict is not None else self.config.use_return_dict
a_ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a_ = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("Cannot output attentions for timm backbones at the moment")
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
a_ = self._all_layers
a_ = self._backbone(a , **a)
a_ = self._return_layers
a_ = tuple(hidden_states[i] for i in self.out_indices)
else:
a_ = self._backbone(a , **a)
a_ = None
a_ = tuple(a)
a_ = tuple(a) if hidden_states is not None else None
if not return_dict:
a_ = (feature_maps,)
if output_hidden_states:
a_ = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=a , hidden_states=a , attentions=a)
| 685 | 0 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def lowerCamelCase__ ( __snake_case ) -> Any:
"""simple docstring"""
_UpperCamelCase = SwinConfig(image_size=1_92 )
if "base" in model_name:
_UpperCamelCase = 6
_UpperCamelCase = 1_28
_UpperCamelCase = (2, 2, 18, 2)
_UpperCamelCase = (4, 8, 16, 32)
elif "large" in model_name:
_UpperCamelCase = 12
_UpperCamelCase = 1_92
_UpperCamelCase = (2, 2, 18, 2)
_UpperCamelCase = (6, 12, 24, 48)
else:
raise ValueError('''Model not supported, only supports base and large variants''' )
_UpperCamelCase = window_size
_UpperCamelCase = embed_dim
_UpperCamelCase = depths
_UpperCamelCase = num_heads
return config
def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]:
"""simple docstring"""
if "encoder.mask_token" in name:
_UpperCamelCase = name.replace('''encoder.mask_token''', '''embeddings.mask_token''' )
if "encoder.patch_embed.proj" in name:
_UpperCamelCase = name.replace('''encoder.patch_embed.proj''', '''embeddings.patch_embeddings.projection''' )
if "encoder.patch_embed.norm" in name:
_UpperCamelCase = name.replace('''encoder.patch_embed.norm''', '''embeddings.norm''' )
if "attn.proj" in name:
_UpperCamelCase = name.replace('''attn.proj''', '''attention.output.dense''' )
if "attn" in name:
_UpperCamelCase = name.replace('''attn''', '''attention.self''' )
if "norm1" in name:
_UpperCamelCase = name.replace('''norm1''', '''layernorm_before''' )
if "norm2" in name:
_UpperCamelCase = name.replace('''norm2''', '''layernorm_after''' )
if "mlp.fc1" in name:
_UpperCamelCase = name.replace('''mlp.fc1''', '''intermediate.dense''' )
if "mlp.fc2" in name:
_UpperCamelCase = name.replace('''mlp.fc2''', '''output.dense''' )
if name == "encoder.norm.weight":
_UpperCamelCase = "layernorm.weight"
if name == "encoder.norm.bias":
_UpperCamelCase = "layernorm.bias"
if "decoder" in name:
pass
else:
_UpperCamelCase = "swin." + name
return name
def lowerCamelCase__ ( __snake_case, __snake_case ) -> Union[str, Any]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
_UpperCamelCase = orig_state_dict.pop(__SCREAMING_SNAKE_CASE )
if "attn_mask" in key:
pass
elif "qkv" in key:
_UpperCamelCase = key.split('''.''' )
_UpperCamelCase = int(key_split[2] )
_UpperCamelCase = int(key_split[4] )
_UpperCamelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
_UpperCamelCase = val[:dim, :]
_UpperCamelCase = val[
dim : dim * 2, :
]
_UpperCamelCase = val[-dim:, :]
else:
_UpperCamelCase = val[
:dim
]
_UpperCamelCase = val[
dim : dim * 2
]
_UpperCamelCase = val[
-dim:
]
else:
_UpperCamelCase = val
return orig_state_dict
def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = torch.load(__SCREAMING_SNAKE_CASE, map_location='''cpu''' )["model"]
_UpperCamelCase = get_swin_config(__SCREAMING_SNAKE_CASE )
_UpperCamelCase = SwinForMaskedImageModeling(__SCREAMING_SNAKE_CASE )
model.eval()
_UpperCamelCase = convert_state_dict(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE )
model.load_state_dict(__SCREAMING_SNAKE_CASE )
_UpperCamelCase = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCamelCase = ViTImageProcessor(size={'''height''': 1_92, '''width''': 1_92} )
_UpperCamelCase = Image.open(requests.get(__SCREAMING_SNAKE_CASE, stream=__SCREAMING_SNAKE_CASE ).raw )
_UpperCamelCase = image_processor(images=__SCREAMING_SNAKE_CASE, return_tensors='''pt''' )
with torch.no_grad():
_UpperCamelCase = model(**__SCREAMING_SNAKE_CASE ).logits
print(outputs.keys() )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
print(F'''Pushing model and image processor for {model_name} to hub''' )
model.push_to_hub(F'''microsoft/{model_name}''' )
image_processor.push_to_hub(F'''microsoft/{model_name}''' )
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""swin-base-simmim-window6-192""",
type=str,
choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""],
help="""Name of the Swin SimMIM model you'd like to convert.""",
)
parser.add_argument(
"""--checkpoint_path""",
default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""",
type=str,
help="""Path to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_a = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 703 |
"""simple docstring"""
import argparse
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
# =================#
# UNet Conversion #
# =================#
_a = [
# (stable-diffusion, HF Diffusers)
("""time_embed.0.weight""", """time_embedding.linear_1.weight"""),
("""time_embed.0.bias""", """time_embedding.linear_1.bias"""),
("""time_embed.2.weight""", """time_embedding.linear_2.weight"""),
("""time_embed.2.bias""", """time_embedding.linear_2.bias"""),
("""input_blocks.0.0.weight""", """conv_in.weight"""),
("""input_blocks.0.0.bias""", """conv_in.bias"""),
("""out.0.weight""", """conv_norm_out.weight"""),
("""out.0.bias""", """conv_norm_out.bias"""),
("""out.2.weight""", """conv_out.weight"""),
("""out.2.bias""", """conv_out.bias"""),
]
_a = [
# (stable-diffusion, HF Diffusers)
("""in_layers.0""", """norm1"""),
("""in_layers.2""", """conv1"""),
("""out_layers.0""", """norm2"""),
("""out_layers.3""", """conv2"""),
("""emb_layers.1""", """time_emb_proj"""),
("""skip_connection""", """conv_shortcut"""),
]
_a = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
_a = F"""down_blocks.{i}.resnets.{j}."""
_a = F"""input_blocks.{3*i + j + 1}.0."""
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
_a = F"""down_blocks.{i}.attentions.{j}."""
_a = F"""input_blocks.{3*i + j + 1}.1."""
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
_a = F"""up_blocks.{i}.resnets.{j}."""
_a = F"""output_blocks.{3*i + j}.0."""
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
_a = F"""up_blocks.{i}.attentions.{j}."""
_a = F"""output_blocks.{3*i + j}.1."""
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
_a = F"""down_blocks.{i}.downsamplers.0.conv."""
_a = F"""input_blocks.{3*(i+1)}.0.op."""
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
_a = F"""up_blocks.{i}.upsamplers.0."""
_a = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}."""
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
_a = """mid_block.attentions.0."""
_a = """middle_block.1."""
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
_a = F"""mid_block.resnets.{j}."""
_a = F"""middle_block.{2*j}."""
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
def lowerCamelCase__ ( __snake_case ) -> str:
"""simple docstring"""
_UpperCamelCase = {k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
_UpperCamelCase = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
_UpperCamelCase = v.replace(__snake_case, __snake_case )
_UpperCamelCase = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
_UpperCamelCase = v.replace(__snake_case, __snake_case )
_UpperCamelCase = v
_UpperCamelCase = {v: unet_state_dict[k] for k, v in mapping.items()}
return new_state_dict
# ================#
# VAE Conversion #
# ================#
_a = [
# (stable-diffusion, HF Diffusers)
("""nin_shortcut""", """conv_shortcut"""),
("""norm_out""", """conv_norm_out"""),
("""mid.attn_1.""", """mid_block.attentions.0."""),
]
for i in range(4):
# down_blocks have two resnets
for j in range(2):
_a = F"""encoder.down_blocks.{i}.resnets.{j}."""
_a = F"""encoder.down.{i}.block.{j}."""
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
if i < 3:
_a = F"""down_blocks.{i}.downsamplers.0."""
_a = F"""down.{i}.downsample."""
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
_a = F"""up_blocks.{i}.upsamplers.0."""
_a = F"""up.{3-i}.upsample."""
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
# up_blocks have three resnets
# also, up blocks in hf are numbered in reverse from sd
for j in range(3):
_a = F"""decoder.up_blocks.{i}.resnets.{j}."""
_a = F"""decoder.up.{3-i}.block.{j}."""
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
_a = F"""mid_block.resnets.{i}."""
_a = F"""mid.block_{i+1}."""
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
_a = [
# (stable-diffusion, HF Diffusers)
("""norm.""", """group_norm."""),
("""q.""", """query."""),
("""k.""", """key."""),
("""v.""", """value."""),
("""proj_out.""", """proj_attn."""),
]
def lowerCamelCase__ ( __snake_case ) -> List[str]:
"""simple docstring"""
return w.reshape(*w.shape, 1, 1 )
def lowerCamelCase__ ( __snake_case ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = {k: k for k in vae_state_dict.keys()}
for k, v in mapping.items():
for sd_part, hf_part in vae_conversion_map:
_UpperCamelCase = v.replace(__snake_case, __snake_case )
_UpperCamelCase = v
for k, v in mapping.items():
if "attentions" in k:
for sd_part, hf_part in vae_conversion_map_attn:
_UpperCamelCase = v.replace(__snake_case, __snake_case )
_UpperCamelCase = v
_UpperCamelCase = {v: vae_state_dict[k] for k, v in mapping.items()}
_UpperCamelCase = ['''q''', '''k''', '''v''', '''proj_out''']
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if F'''mid.attn_1.{weight_name}.weight''' in k:
print(F'''Reshaping {k} for SD format''' )
_UpperCamelCase = reshape_weight_for_sd(__snake_case )
return new_state_dict
# =========================#
# Text Encoder Conversion #
# =========================#
_a = [
# (stable-diffusion, HF Diffusers)
("""resblocks.""", """text_model.encoder.layers."""),
("""ln_1""", """layer_norm1"""),
("""ln_2""", """layer_norm2"""),
(""".c_fc.""", """.fc1."""),
(""".c_proj.""", """.fc2."""),
(""".attn""", """.self_attn"""),
("""ln_final.""", """transformer.text_model.final_layer_norm."""),
("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""),
("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""),
]
_a = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
_a = re.compile("""|""".join(protected.keys()))
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
_a = {"""q""": 0, """k""": 1, """v""": 2}
def lowerCamelCase__ ( __snake_case ) -> Any:
"""simple docstring"""
_UpperCamelCase = {}
_UpperCamelCase = {}
_UpperCamelCase = {}
for k, v in text_enc_dict.items():
if (
k.endswith('''.self_attn.q_proj.weight''' )
or k.endswith('''.self_attn.k_proj.weight''' )
or k.endswith('''.self_attn.v_proj.weight''' )
):
_UpperCamelCase = k[: -len('''.q_proj.weight''' )]
_UpperCamelCase = k[-len('''q_proj.weight''' )]
if k_pre not in capture_qkv_weight:
_UpperCamelCase = [None, None, None]
_UpperCamelCase = v
continue
if (
k.endswith('''.self_attn.q_proj.bias''' )
or k.endswith('''.self_attn.k_proj.bias''' )
or k.endswith('''.self_attn.v_proj.bias''' )
):
_UpperCamelCase = k[: -len('''.q_proj.bias''' )]
_UpperCamelCase = k[-len('''q_proj.bias''' )]
if k_pre not in capture_qkv_bias:
_UpperCamelCase = [None, None, None]
_UpperCamelCase = v
continue
_UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case )
_UpperCamelCase = v
for k_pre, tensors in capture_qkv_weight.items():
if None in tensors:
raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' )
_UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case )
_UpperCamelCase = torch.cat(__snake_case )
for k_pre, tensors in capture_qkv_bias.items():
if None in tensors:
raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' )
_UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case )
_UpperCamelCase = torch.cat(__snake_case )
return new_state_dict
def lowerCamelCase__ ( __snake_case ) -> Tuple:
"""simple docstring"""
return text_enc_dict
if __name__ == "__main__":
_a = argparse.ArgumentParser()
parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""")
parser.add_argument(
"""--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt."""
)
_a = parser.parse_args()
assert args.model_path is not None, "Must provide a model path!"
assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
# Path for safetensors
_a = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""")
_a = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""")
_a = osp.join(args.model_path, """text_encoder""", """model.safetensors""")
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
_a = load_file(unet_path, device="""cpu""")
else:
_a = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""")
_a = torch.load(unet_path, map_location="""cpu""")
if osp.exists(vae_path):
_a = load_file(vae_path, device="""cpu""")
else:
_a = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""")
_a = torch.load(vae_path, map_location="""cpu""")
if osp.exists(text_enc_path):
_a = load_file(text_enc_path, device="""cpu""")
else:
_a = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""")
_a = torch.load(text_enc_path, map_location="""cpu""")
# Convert the UNet model
_a = convert_unet_state_dict(unet_state_dict)
_a = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
_a = convert_vae_state_dict(vae_state_dict)
_a = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()}
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
_a = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict
if is_vaa_model:
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
_a = {"""transformer.""" + k: v for k, v in text_enc_dict.items()}
_a = convert_text_enc_state_dict_vaa(text_enc_dict)
_a = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()}
else:
_a = convert_text_enc_state_dict(text_enc_dict)
_a = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()}
# Put together new checkpoint
_a = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
if args.half:
_a = {k: v.half() for k, v in state_dict.items()}
if args.use_safetensors:
save_file(state_dict, args.checkpoint_path)
else:
_a = {"""state_dict""": state_dict}
torch.save(state_dict, args.checkpoint_path)
| 78 | 0 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class __lowercase ( _UpperCAmelCase):
"""simple docstring"""
_A : Union[str, Any] = (UnCLIPScheduler,)
def __UpperCamelCase (self , **lowercase__ ):
snake_case_ : Optional[int] = {
"""num_train_timesteps""": 10_00,
"""variance_type""": """fixed_small_log""",
"""clip_sample""": True,
"""clip_sample_range""": 1.0,
"""prediction_type""": """epsilon""",
}
config.update(**lowercase__ )
return config
def __UpperCamelCase (self ):
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowercase__ )
def __UpperCamelCase (self ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=lowercase__ )
def __UpperCamelCase (self ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase__ )
def __UpperCamelCase (self ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=lowercase__ )
def __UpperCamelCase (self ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=lowercase__ )
def __UpperCamelCase (self ):
for time_step in [0, 5_00, 9_99]:
for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=lowercase__ , prev_timestep=lowercase__ )
def __UpperCamelCase (self ):
snake_case_ : str = self.scheduler_classes[0]
snake_case_ : Union[str, Any] = self.get_scheduler_config(variance_type="""fixed_small_log""" )
snake_case_ : str = scheduler_class(**lowercase__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000e-10 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0549625 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.9994987 ) ) < 1e-5
def __UpperCamelCase (self ):
snake_case_ : Tuple = self.scheduler_classes[0]
snake_case_ : Optional[int] = self.get_scheduler_config(variance_type="""learned_range""" )
snake_case_ : int = scheduler_class(**lowercase__ )
snake_case_ : Tuple = 0.5
assert scheduler._get_variance(1 , predicted_variance=lowercase__ ) - -10.1712790 < 1e-5
assert scheduler._get_variance(4_87 , predicted_variance=lowercase__ ) - -5.7998052 < 1e-5
assert scheduler._get_variance(9_99 , predicted_variance=lowercase__ ) - -0.0010011 < 1e-5
def __UpperCamelCase (self ):
snake_case_ : Union[str, Any] = self.scheduler_classes[0]
snake_case_ : Dict = self.get_scheduler_config()
snake_case_ : List[str] = scheduler_class(**lowercase__ )
snake_case_ : Tuple = scheduler.timesteps
snake_case_ : Any = self.dummy_model()
snake_case_ : List[Any] = self.dummy_sample_deter
snake_case_ : Any = torch.manual_seed(0 )
for i, t in enumerate(lowercase__ ):
# 1. predict noise residual
snake_case_ : Optional[Any] = model(lowercase__ , lowercase__ )
# 2. predict previous mean of sample x_t-1
snake_case_ : int = scheduler.step(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ ).prev_sample
snake_case_ : str = pred_prev_sample
snake_case_ : Optional[Any] = torch.sum(torch.abs(lowercase__ ) )
snake_case_ : Dict = torch.mean(torch.abs(lowercase__ ) )
assert abs(result_sum.item() - 252.2682495 ) < 1e-2
assert abs(result_mean.item() - 0.3284743 ) < 1e-3
def __UpperCamelCase (self ):
snake_case_ : Any = self.scheduler_classes[0]
snake_case_ : List[str] = self.get_scheduler_config()
snake_case_ : Union[str, Any] = scheduler_class(**lowercase__ )
scheduler.set_timesteps(25 )
snake_case_ : Optional[Any] = scheduler.timesteps
snake_case_ : Tuple = self.dummy_model()
snake_case_ : List[str] = self.dummy_sample_deter
snake_case_ : str = torch.manual_seed(0 )
for i, t in enumerate(lowercase__ ):
# 1. predict noise residual
snake_case_ : Optional[int] = model(lowercase__ , lowercase__ )
if i + 1 == timesteps.shape[0]:
snake_case_ : str = None
else:
snake_case_ : str = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
snake_case_ : Dict = scheduler.step(
lowercase__ , lowercase__ , lowercase__ , prev_timestep=lowercase__ , generator=lowercase__ ).prev_sample
snake_case_ : Optional[int] = pred_prev_sample
snake_case_ : Dict = torch.sum(torch.abs(lowercase__ ) )
snake_case_ : Optional[Any] = torch.mean(torch.abs(lowercase__ ) )
assert abs(result_sum.item() - 258.2044983 ) < 1e-2
assert abs(result_mean.item() - 0.3362038 ) < 1e-3
def __UpperCamelCase (self ):
pass
def __UpperCamelCase (self ):
pass
| 480 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
a_ = {
'''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''],
'''processing_trocr''': ['''TrOCRProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrOCRForCausalLM''',
'''TrOCRPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 480 | 1 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class UpperCAmelCase_ ( __lowercase ):
"""simple docstring"""
UpperCAmelCase__ : List[str] = ""
UpperCAmelCase__ : Optional[int] = "hf-legacy" # "hf://"" is reserved for hffs
def __init__( self , _a = None , _a = None , **_a , ) -> str:
super().__init__(self , **_a )
_a : List[Any] = repo_info
_a : Optional[int] = token
_a : Tuple = None
def __lowercase ( self ) -> Any:
if self.dir_cache is None:
_a : int = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
_a : Optional[Any] = {
'''name''': hf_file.rfilename,
'''size''': None,
'''type''': '''file''',
}
self.dir_cache.update(
{
str(_a ): {'''name''': str(_a ), '''size''': None, '''type''': '''directory'''}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def __lowercase ( self , _a , _a = "rb" , **_a , ) -> Tuple:
if not isinstance(self.repo_info , _a ):
raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" )
_a : Dict = hf_hub_url(self.repo_info.id , _a , revision=self.repo_info.sha )
return fsspec.open(
_a , mode=_a , headers=get_authentication_headers_for_url(_a , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open()
def __lowercase ( self , _a , **_a ) -> Tuple:
self._get_dirs()
_a : Optional[int] = self._strip_protocol(_a )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(_a )
def __lowercase ( self , _a , _a=False , **_a ) -> Tuple:
self._get_dirs()
_a : Optional[Any] = PurePosixPath(path.strip('''/''' ) )
_a : Union[str, Any] = {}
for p, f in self.dir_cache.items():
_a : Optional[Any] = PurePosixPath(p.strip('''/''' ) )
_a : List[Any] = p.parent
if root == path:
_a : Dict = f
_a : List[str] = list(paths.values() )
if detail:
return out
else:
return sorted(f['''name'''] for f in out )
| 578 |
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
a__ = '''\
@inproceedings{popovic-2015-chrf,
title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",
month = sep,
year = "2015",
address = "Lisbon, Portugal",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W15-3049",
doi = "10.18653/v1/W15-3049",
pages = "392--395",
}
@inproceedings{popovic-2017-chrf,
title = "chr{F}++: words helping character n-grams",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Second Conference on Machine Translation",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4770",
doi = "10.18653/v1/W17-4770",
pages = "612--618",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
a__ = '''\
ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,
and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation
that is already present in sacrebleu.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.
'''
a__ = '''
Produces ChrF(++) scores for hypotheses given reference translations.
Args:
predictions (list of str): The predicted sentences.
references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.
char_order (int): Character n-gram order. Defaults to `6`.
word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.
beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.
lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.
whitespace (bool): If `True`, include whitespaces when extracting character n-grams.
eps_smoothing (bool): If `True`, applies epsilon smoothing similar
to reference chrF++.py, NLTK and Moses implementations. If `False`,
it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.
Returns:
\'score\' (float): The chrF (chrF++) score,
\'char_order\' (int): The character n-gram order,
\'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,
\'beta\' (int): Determine the importance of recall w.r.t precision
Examples:
Example 1--a simple example of calculating chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction, references=reference)
>>> print(results)
{\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}
Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2)
>>> print(results)
{\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2,
... lowercase=True)
>>> print(results)
{\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
"""simple docstring"""
def __lowercase ( self ) -> Any:
if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ):
raise ImportWarning(
'''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'''
'''You can install it with `pip install "sacrebleu>=1.4.12"`.''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[
'''https://github.com/m-popovic/chrF''',
] , )
def __lowercase ( self , _a , _a , _a = CHRF.CHAR_ORDER , _a = CHRF.WORD_ORDER , _a = CHRF.BETA , _a = False , _a = False , _a = False , ) -> Union[str, Any]:
_a : int = len(references[0] )
if any(len(_a ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a : int = [[refs[i] for refs in references] for i in range(_a )]
_a : str = CHRF(_a , _a , _a , _a , _a , _a )
_a : Optional[Any] = sb_chrf.corpus_score(_a , _a )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 578 | 1 |
from __future__ import annotations
import math
def __SCREAMING_SNAKE_CASE ( a__ : float ,a__ : int ) -> float:
__A : Dict = u
for i in range(1 ,lowercase__ ):
__A : List[Any] = temp * (u - i)
return temp
def __SCREAMING_SNAKE_CASE ( ) -> None:
__A : Union[str, Any] = int(input("""enter the numbers of values: """ ) )
__A : List[str] = []
for _ in range(lowercase__ ):
y.append([] )
for i in range(lowercase__ ):
for j in range(lowercase__ ):
y[i].append(lowercase__ )
__A : str = 0
print("""enter the values of parameters in a list: """ )
__A : Dict = list(map(lowercase__ ,input().split() ) )
print("""enter the values of corresponding parameters: """ )
for i in range(lowercase__ ):
__A : Optional[int] = float(input() )
__A : Tuple = int(input("""enter the value to interpolate: """ ) )
__A : int = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 ,lowercase__ ):
for j in range(n - i ):
__A : Union[str, Any] = y[j + 1][i - 1] - y[j][i - 1]
__A : List[str] = y[0][0]
for i in range(1 ,lowercase__ ):
summ += (ucal(lowercase__ ,lowercase__ ) * y[0][i]) / math.factorial(lowercase__ )
print(f"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 17 |
from queue import Queue
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from ..models.auto import AutoTokenizer
class lowerCAmelCase_ :
def __snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : int ):
raise NotImplementedError()
def __snake_case ( self : Union[str, Any] ):
raise NotImplementedError()
class lowerCAmelCase_ ( snake_case__ ):
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : "AutoTokenizer" , SCREAMING_SNAKE_CASE_ : bool = False , **SCREAMING_SNAKE_CASE_ : List[Any] ):
lowerCAmelCase__ = tokenizer
lowerCAmelCase__ = skip_prompt
lowerCAmelCase__ = decode_kwargs
# variables used in the streaming process
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
lowerCAmelCase__ = True
def __snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : List[str] ):
if len(value.shape ) > 1 and value.shape[0] > 1:
raise ValueError('''TextStreamer only supports batch size 1''' )
elif len(value.shape ) > 1:
lowerCAmelCase__ = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
lowerCAmelCase__ = False
return
# Add the new token to the cache and decodes the entire thing.
self.token_cache.extend(value.tolist() )
lowerCAmelCase__ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs )
# After the symbol for a new line, we flush the cache.
if text.endswith('''\n''' ):
lowerCAmelCase__ = text[self.print_len :]
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
# If the last token is a CJK character, we print the characters.
elif len(SCREAMING_SNAKE_CASE_ ) > 0 and self._is_chinese_char(ord(text[-1] ) ):
lowerCAmelCase__ = text[self.print_len :]
self.print_len += len(SCREAMING_SNAKE_CASE_ )
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
# which may change with the subsequent token -- there are probably smarter ways to do this!)
else:
lowerCAmelCase__ = text[self.print_len : text.rfind(''' ''' ) + 1]
self.print_len += len(SCREAMING_SNAKE_CASE_ )
self.on_finalized_text(SCREAMING_SNAKE_CASE_ )
def __snake_case ( self : List[Any] ):
# Flush the cache, if it exists
if len(self.token_cache ) > 0:
lowerCAmelCase__ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs )
lowerCAmelCase__ = text[self.print_len :]
lowerCAmelCase__ = []
lowerCAmelCase__ = 0
else:
lowerCAmelCase__ = ''''''
lowerCAmelCase__ = True
self.on_finalized_text(SCREAMING_SNAKE_CASE_ , stream_end=SCREAMING_SNAKE_CASE_ )
def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ):
print(SCREAMING_SNAKE_CASE_ , flush=SCREAMING_SNAKE_CASE_ , end='''''' if not stream_end else None )
def __snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
class lowerCAmelCase_ ( snake_case__ ):
def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : "AutoTokenizer" , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[float] = None , **SCREAMING_SNAKE_CASE_ : List[str] ):
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ = Queue()
lowerCAmelCase__ = None
lowerCAmelCase__ = timeout
def __snake_case ( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ):
self.text_queue.put(SCREAMING_SNAKE_CASE_ , timeout=self.timeout )
if stream_end:
self.text_queue.put(self.stop_signal , timeout=self.timeout )
def __iter__( self : Optional[int] ):
return self
def __snake_case ( self : int ):
lowerCAmelCase__ = self.text_queue.get(timeout=self.timeout )
if value == self.stop_signal:
raise StopIteration()
else:
return value
| 668 | 0 |
'''simple docstring'''
lowerCAmelCase__ : List[str] = tuple[float, float, float]
lowerCAmelCase__ : Union[str, Any] = tuple[float, float, float]
def _a ( __lowerCAmelCase : Pointad , __lowerCAmelCase : Pointad ):
"""simple docstring"""
snake_case__ : Tuple = end_pointa[0] - end_pointa[0]
snake_case__ : Dict = end_pointa[1] - end_pointa[1]
snake_case__ : List[str] = end_pointa[2] - end_pointa[2]
return (x, y, z)
def _a ( __lowerCAmelCase : Vectorad , __lowerCAmelCase : Vectorad ):
"""simple docstring"""
snake_case__ : List[Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i
snake_case__ : Any = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
snake_case__ : int = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def _a ( __lowerCAmelCase : Vectorad , __lowerCAmelCase : int ):
"""simple docstring"""
return tuple(round(_lowercase , _lowercase ) for x in vector ) == (0, 0, 0)
def _a ( __lowerCAmelCase : Pointad , __lowerCAmelCase : Pointad , __lowerCAmelCase : Pointad , __lowerCAmelCase : int = 10 ):
"""simple docstring"""
snake_case__ : str = create_vector(_lowercase , _lowercase )
snake_case__ : List[Any] = create_vector(_lowercase , _lowercase )
return is_zero_vector(get_ad_vectors_cross(_lowercase , _lowercase ) , _lowercase )
| 709 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class a :
"""simple docstring"""
def __init__( self : Any , snake_case_ : str , snake_case_ : Optional[Any]=1_3 , snake_case_ : int=7 , snake_case_ : int=True , snake_case_ : Optional[Any]=True , snake_case_ : Dict=True , snake_case_ : int=True , snake_case_ : Optional[Any]=9_9 , snake_case_ : int=6_4 , snake_case_ : Dict=5 , snake_case_ : List[Any]=4 , snake_case_ : Union[str, Any]=3_7 , snake_case_ : Dict="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Dict=0.1 , snake_case_ : Any=5_1_2 , snake_case_ : Any=1_6 , snake_case_ : Any=2 , snake_case_ : Dict=0.0_2 , snake_case_ : List[str]=3 , snake_case_ : Optional[int]=4 , snake_case_ : str=None , ):
'''simple docstring'''
snake_case__ : List[Any] = parent
snake_case__ : int = batch_size
snake_case__ : Dict = seq_length
snake_case__ : int = is_training
snake_case__ : Optional[Any] = use_input_mask
snake_case__ : Optional[Any] = use_token_type_ids
snake_case__ : Dict = use_labels
snake_case__ : int = vocab_size
snake_case__ : Any = hidden_size
snake_case__ : int = num_hidden_layers
snake_case__ : Union[str, Any] = num_attention_heads
snake_case__ : List[Any] = intermediate_size
snake_case__ : int = hidden_act
snake_case__ : int = hidden_dropout_prob
snake_case__ : List[Any] = attention_probs_dropout_prob
snake_case__ : Optional[int] = max_position_embeddings
snake_case__ : Optional[int] = type_vocab_size
snake_case__ : Any = type_sequence_label_size
snake_case__ : str = initializer_range
snake_case__ : List[str] = num_labels
snake_case__ : Dict = num_choices
snake_case__ : Union[str, Any] = scope
snake_case__ : List[Any] = vocab_size - 1
def __magic_name__ ( self : List[Any] ):
'''simple docstring'''
snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ : Optional[int] = None
if self.use_input_mask:
snake_case__ : int = random_attention_mask([self.batch_size, self.seq_length] )
snake_case__ : Union[str, Any] = None
if self.use_labels:
snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case__ : Dict = self.get_config()
return config, input_ids, input_mask, token_labels
def __magic_name__ ( self : List[Any] ):
'''simple docstring'''
return GPTNeoXConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , )
def __magic_name__ ( self : List[str] ):
'''simple docstring'''
snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = self.prepare_config_and_inputs()
snake_case__ : List[str] = True
return config, input_ids, input_mask, token_labels
def __magic_name__ ( self : Tuple , snake_case_ : Any , snake_case_ : str , snake_case_ : str ):
'''simple docstring'''
snake_case__ : Any = GPTNeoXModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
snake_case__ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ )
snake_case__ : int = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : List[Any] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Optional[int] ):
'''simple docstring'''
snake_case__ : Union[str, Any] = True
snake_case__ : Tuple = GPTNeoXModel(snake_case_ )
model.to(snake_case_ )
model.eval()
snake_case__ : Dict = model(snake_case_ , attention_mask=snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : Any , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : List[Any] ):
'''simple docstring'''
snake_case__ : Union[str, Any] = GPTNeoXForCausalLM(config=snake_case_ )
model.to(snake_case_ )
model.eval()
snake_case__ : Tuple = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __magic_name__ ( self : Optional[int] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[str] ):
'''simple docstring'''
snake_case__ : Dict = self.num_labels
snake_case__ : List[Any] = GPTNeoXForQuestionAnswering(snake_case_ )
model.to(snake_case_ )
model.eval()
snake_case__ : Any = model(snake_case_ , attention_mask=snake_case_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __magic_name__ ( self : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Dict ):
'''simple docstring'''
snake_case__ : str = self.num_labels
snake_case__ : List[str] = GPTNeoXForSequenceClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
snake_case__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case__ : str = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __magic_name__ ( self : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : Dict , snake_case_ : Optional[int] ):
'''simple docstring'''
snake_case__ : Any = self.num_labels
snake_case__ : Any = GPTNeoXForTokenClassification(snake_case_ )
model.to(snake_case_ )
model.eval()
snake_case__ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __magic_name__ ( self : Union[str, Any] , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Tuple ):
'''simple docstring'''
snake_case__ : Optional[Any] = True
snake_case__ : Union[str, Any] = GPTNeoXForCausalLM(config=snake_case_ )
model.to(snake_case_ )
model.eval()
# first forward pass
snake_case__ : int = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ )
snake_case__ : Dict = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
snake_case__ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
snake_case__ : Dict = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case__ : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 )
snake_case__ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , output_hidden_states=snake_case_ )
snake_case__ : Union[str, Any] = output_from_no_past['''hidden_states'''][0]
snake_case__ : str = model(
snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )['''hidden_states'''][0]
# select random slice
snake_case__ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case__ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case__ : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-3 ) )
def __magic_name__ ( self : Optional[int] ):
'''simple docstring'''
snake_case__ : Dict = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = config_and_inputs
snake_case__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
__UpperCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else ()
__UpperCAmelCase = (
{
"""feature-extraction""": GPTNeoXModel,
"""question-answering""": GPTNeoXForQuestionAnswering,
"""text-classification""": GPTNeoXForSequenceClassification,
"""text-generation""": GPTNeoXForCausalLM,
"""token-classification""": GPTNeoXForTokenClassification,
"""zero-shot""": GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
__UpperCAmelCase = False
def __magic_name__ ( self : int ):
'''simple docstring'''
snake_case__ : Optional[int] = GPTNeoXModelTester(self )
snake_case__ : List[str] = ConfigTester(self , config_class=snake_case_ , hidden_size=6_4 , num_attention_heads=8 )
def __magic_name__ ( self : List[str] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __magic_name__ ( self : Dict ):
'''simple docstring'''
snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(snake_case_ , snake_case_ , snake_case_ )
def __magic_name__ ( self : Dict ):
'''simple docstring'''
snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ )
def __magic_name__ ( self : Union[str, Any] ):
'''simple docstring'''
snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder()
snake_case__ : Optional[int] = None
self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ )
def __magic_name__ ( self : Optional[int] ):
'''simple docstring'''
snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case_ , snake_case_ , snake_case_ )
def __magic_name__ ( self : int ):
'''simple docstring'''
snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*snake_case_ )
def __magic_name__ ( self : List[str] ):
'''simple docstring'''
snake_case__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case_ )
def __magic_name__ ( self : Any ):
'''simple docstring'''
snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case_ )
def __magic_name__ ( self : List[Any] ):
'''simple docstring'''
snake_case__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case_ )
@unittest.skip(reason='''Feed forward chunking is not implemented''' )
def __magic_name__ ( self : Optional[Any] ):
'''simple docstring'''
pass
@parameterized.expand([('''linear''',), ('''dynamic''',)] )
def __magic_name__ ( self : Optional[int] , snake_case_ : Optional[Any] ):
'''simple docstring'''
snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : Dict = ids_tensor([1, 1_0] , config.vocab_size )
snake_case__ : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
snake_case__ : Tuple = GPTNeoXModel(snake_case_ )
original_model.to(snake_case_ )
original_model.eval()
snake_case__ : Any = original_model(snake_case_ ).last_hidden_state
snake_case__ : List[str] = original_model(snake_case_ ).last_hidden_state
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
snake_case__ : Optional[Any] = {'''type''': scaling_type, '''factor''': 1_0.0}
snake_case__ : Optional[Any] = GPTNeoXModel(snake_case_ )
scaled_model.to(snake_case_ )
scaled_model.eval()
snake_case__ : Optional[int] = scaled_model(snake_case_ ).last_hidden_state
snake_case__ : List[str] = scaled_model(snake_case_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) )
@require_torch
class a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __magic_name__ ( self : List[str] ):
'''simple docstring'''
snake_case__ : Dict = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' )
for checkpointing in [True, False]:
snake_case__ : str = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(snake_case_ )
snake_case__ : Tuple = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(snake_case_ )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
snake_case__ : List[str] = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure'''
snake_case__ : Optional[int] = model.generate(**snake_case_ , do_sample=snake_case_ , max_new_tokens=2_0 )
snake_case__ : Tuple = tokenizer.batch_decode(snake_case_ )[0]
self.assertEqual(snake_case_ , snake_case_ )
| 502 | 0 |
import math
import sys
import cva
import numpy as np
def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : float ):
# For applying gaussian function for each element in matrix.
__UpperCAmelCase : int = math.sqrt(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ):
__UpperCAmelCase : List[Any] = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : float ):
# Creates a gaussian kernel of given dimension.
__UpperCAmelCase : Union[str, Any] = np.zeros((kernel_size, kernel_size) )
for i in range(0 , __lowerCamelCase ):
for j in range(0 , __lowerCamelCase ):
__UpperCAmelCase : str = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(__lowerCamelCase , __lowerCamelCase )
def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : int , ):
__UpperCAmelCase : Optional[Any] = np.zeros(img.shape )
__UpperCAmelCase : int = get_gauss_kernel(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Tuple = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__UpperCAmelCase : int = get_slice(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Dict = img_s - img_s[kernel_size // 2, kernel_size // 2]
__UpperCAmelCase : Optional[Any] = vec_gaussian(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Any = np.multiply(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : str = np.multiply(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = np.sum(__lowerCamelCase ) / np.sum(__lowerCamelCase )
__UpperCAmelCase : List[Any] = val
return imga
def lowerCamelCase__ ( __lowerCamelCase : list ):
__UpperCAmelCase : List[str] = args[1] if args[1:] else """../image_data/lena.jpg"""
__UpperCAmelCase : Optional[Any] = float(args[2] ) if args[2:] else 1.0
__UpperCAmelCase : Dict = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__UpperCAmelCase : Optional[int] = int(args[4] )
__UpperCAmelCase : List[str] = kernel_size + abs(kernel_size % 2 - 1 )
else:
__UpperCAmelCase : int = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
a ,a ,a ,a : Optional[Any] = parse_args(sys.argv)
a : Optional[int] = cva.imread(filename, 0)
cva.imshow("input image", img)
a : int = img / 255
a : Union[str, Any] = out.astype("float32")
a : Any = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
a : Optional[int] = out * 255
a : Union[str, Any] = np.uinta(out)
cva.imshow("output image", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 63 |
'''simple docstring'''
import random
from typing import Any
def __A ( a_ : list ):
for _ in range(len(a_ ) ):
lowerCAmelCase : List[Any] = random.randint(0 ,len(a_ ) - 1 )
lowerCAmelCase : Tuple = random.randint(0 ,len(a_ ) - 1 )
lowerCAmelCase , lowerCAmelCase : Optional[Any] = data[b], data[a]
return data
if __name__ == "__main__":
lowerCAmelCase = [0, 1, 2, 3, 4, 5, 6, 7]
lowerCAmelCase = ["""python""", """says""", """hello""", """!"""]
print("""Fisher-Yates Shuffle:""")
print("""List""", integers, strings)
print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 525 | 0 |
'''simple docstring'''
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
UpperCamelCase__ = get_logger(__name__)
class _UpperCAmelCase :
def __init__( self : List[str] , a : Optional[str] = None ):
'''simple docstring'''
lowercase_ : Union[str, Any] = (
os.path.join(a , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
lowercase_ : List[str] = Extractor
def lowerCAmelCase__ ( self : str , a : str ):
'''simple docstring'''
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
lowercase_ : Union[str, Any] = os.path.abspath(a )
return os.path.join(self.extract_dir , hash_url_to_filename(a ) )
def lowerCAmelCase__ ( self : Union[str, Any] , a : str , a : bool ):
'''simple docstring'''
return force_extract or (
not os.path.isfile(a ) and not (os.path.isdir(a ) and os.listdir(a ))
)
def lowerCAmelCase__ ( self : List[Any] , a : str , a : bool = False ):
'''simple docstring'''
lowercase_ : List[Any] = self.extractor.infer_extractor_format(a )
if not extractor_format:
return input_path
lowercase_ : str = self._get_output_path(a )
if self._do_extract(a , a ):
self.extractor.extract(a , a , a )
return output_path
class _UpperCAmelCase ( snake_case ):
@classmethod
@abstractmethod
def lowerCAmelCase__ ( cls : Tuple , a : Union[Path, str] , **a : List[Any] ):
'''simple docstring'''
...
@staticmethod
@abstractmethod
def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ):
'''simple docstring'''
...
class _UpperCAmelCase ( snake_case , snake_case ):
__lowerCamelCase: List[bytes] = []
@staticmethod
def lowerCAmelCase__ ( a : Union[Path, str] , a : int ):
'''simple docstring'''
with open(a , "rb" ) as f:
return f.read(a )
@classmethod
def lowerCAmelCase__ ( cls : Union[str, Any] , a : Union[Path, str] , a : bytes = b"" ):
'''simple docstring'''
if not magic_number:
lowercase_ : int = max(len(a ) for cls_magic_number in cls.magic_numbers )
try:
lowercase_ : List[Any] = cls.read_magic_number(a , a )
except OSError:
return False
return any(magic_number.startswith(a ) for cls_magic_number in cls.magic_numbers )
class _UpperCAmelCase ( snake_case ):
@classmethod
def lowerCAmelCase__ ( cls : Optional[int] , a : Union[Path, str] , **a : Optional[Any] ):
'''simple docstring'''
return tarfile.is_tarfile(a )
@staticmethod
def lowerCAmelCase__ ( a : List[str] , a : int ):
'''simple docstring'''
def resolved(a : str ) -> str:
return os.path.realpath(os.path.abspath(a ) )
def badpath(a : str , a : str ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(a , a ) ).startswith(a )
def badlink(a : Any , a : str ) -> bool:
# Links are interpreted relative to the directory containing the link
lowercase_ : Optional[int] = resolved(os.path.join(a , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=a )
lowercase_ : List[str] = resolved(a )
for finfo in members:
if badpath(finfo.name , a ):
logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" )
elif finfo.issym() and badlink(a , a ):
logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" )
elif finfo.islnk() and badlink(a , a ):
logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" )
else:
yield finfo
@staticmethod
def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ):
'''simple docstring'''
os.makedirs(a , exist_ok=a )
lowercase_ : List[str] = tarfile.open(a )
tar_file.extractall(a , members=TarExtractor.safemembers(a , a ) )
tar_file.close()
class _UpperCAmelCase ( snake_case ):
__lowerCamelCase: Union[str, Any] = [b'\x1F\x8B']
@staticmethod
def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ):
'''simple docstring'''
with gzip.open(a , "rb" ) as gzip_file:
with open(a , "wb" ) as extracted_file:
shutil.copyfileobj(a , a )
class _UpperCAmelCase ( snake_case ):
__lowerCamelCase: str = [
b'PK\x03\x04',
b'PK\x05\x06', # empty archive
b'PK\x07\x08', # spanned archive
]
@classmethod
def lowerCAmelCase__ ( cls : Union[str, Any] , a : Union[Path, str] , a : bytes = b"" ):
'''simple docstring'''
if super().is_extractable(a , magic_number=a ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(a , "rb" ) as fp:
lowercase_ : Optional[int] = _EndRecData(a )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
lowercase_ : int = fp.read(a ) # CD is where we expect it to be
if len(a ) == sizeCentralDir:
lowercase_ : Union[str, Any] = struct.unpack(a , a ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ):
'''simple docstring'''
os.makedirs(a , exist_ok=a )
with zipfile.ZipFile(a , "r" ) as zip_file:
zip_file.extractall(a )
zip_file.close()
class _UpperCAmelCase ( snake_case ):
__lowerCamelCase: List[str] = [b'\xFD\x37\x7A\x58\x5A\x00']
@staticmethod
def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ):
'''simple docstring'''
with lzma.open(a ) as compressed_file:
with open(a , "wb" ) as extracted_file:
shutil.copyfileobj(a , a )
class _UpperCAmelCase ( snake_case ):
__lowerCamelCase: Optional[int] = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID
@staticmethod
def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ):
'''simple docstring'''
if not config.RARFILE_AVAILABLE:
raise ImportError("Please pip install rarfile" )
import rarfile
os.makedirs(a , exist_ok=a )
lowercase_ : Union[str, Any] = rarfile.RarFile(a )
rf.extractall(a )
rf.close()
class _UpperCAmelCase ( snake_case ):
__lowerCamelCase: Any = [b'\x28\xb5\x2F\xFD']
@staticmethod
def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ):
'''simple docstring'''
if not config.ZSTANDARD_AVAILABLE:
raise ImportError("Please pip install zstandard" )
import zstandard as zstd
lowercase_ : Union[str, Any] = zstd.ZstdDecompressor()
with open(a , "rb" ) as ifh, open(a , "wb" ) as ofh:
dctx.copy_stream(a , a )
class _UpperCAmelCase ( snake_case ):
__lowerCamelCase: Dict = [b'\x42\x5A\x68']
@staticmethod
def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ):
'''simple docstring'''
with bza.open(a , "rb" ) as compressed_file:
with open(a , "wb" ) as extracted_file:
shutil.copyfileobj(a , a )
class _UpperCAmelCase ( snake_case ):
__lowerCamelCase: Union[str, Any] = [b'\x37\x7A\xBC\xAF\x27\x1C']
@staticmethod
def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ):
'''simple docstring'''
if not config.PY7ZR_AVAILABLE:
raise ImportError("Please pip install py7zr" )
import pyazr
os.makedirs(a , exist_ok=a )
with pyazr.SevenZipFile(a , "r" ) as archive:
archive.extractall(a )
class _UpperCAmelCase ( snake_case ):
__lowerCamelCase: List[Any] = [b'\x04\x22\x4D\x18']
@staticmethod
def lowerCAmelCase__ ( a : Union[Path, str] , a : Union[Path, str] ):
'''simple docstring'''
if not config.LZ4_AVAILABLE:
raise ImportError("Please pip install lz4" )
import lza.frame
with lza.frame.open(a , "rb" ) as compressed_file:
with open(a , "wb" ) as extracted_file:
shutil.copyfileobj(a , a )
class _UpperCAmelCase :
# Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip)
__lowerCamelCase: Dict[str, Type[BaseExtractor]] = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def lowerCAmelCase__ ( cls : Any ):
'''simple docstring'''
return max(
len(a )
for extractor in cls.extractors.values()
if issubclass(a , a )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def lowerCAmelCase__ ( a : Union[Path, str] , a : int ):
'''simple docstring'''
try:
return MagicNumberBaseExtractor.read_magic_number(a , magic_number_length=a )
except OSError:
return b""
@classmethod
def lowerCAmelCase__ ( cls : int , a : Union[Path, str] , a : bool = False ):
'''simple docstring'''
warnings.warn(
"Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. "
"Use 'infer_extractor_format' instead." , category=a , )
lowercase_ : str = cls.infer_extractor_format(a )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def lowerCAmelCase__ ( cls : Tuple , a : Union[Path, str] ): # <Added version="2.4.0"/>
'''simple docstring'''
lowercase_ : Any = cls._get_magic_number_max_length()
lowercase_ : Any = cls._read_magic_number(a , a )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(a , magic_number=a ):
return extractor_format
@classmethod
def lowerCAmelCase__ ( cls : List[str] , a : Union[Path, str] , a : Union[Path, str] , a : Optional[str] = None , a : Optional[BaseExtractor] = "deprecated" , ):
'''simple docstring'''
os.makedirs(os.path.dirname(a ) , exist_ok=a )
# Prevent parallel extractions
lowercase_ : int = str(Path(a ).with_suffix(".lock" ) )
with FileLock(a ):
shutil.rmtree(a , ignore_errors=a )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(a , a ): # passed as positional arg
warnings.warn(
"Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. "
"Use 'extractor_format' instead." , category=a , )
lowercase_ : Union[str, Any] = extractor if extractor != "deprecated" else extractor_format
else:
lowercase_ : Any = cls.extractors[extractor_format]
return extractor.extract(a , a )
else:
warnings.warn(
"Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an "
"exception in 3.0.0." , category=a , )
for extractor in cls.extractors.values():
if extractor.is_extractable(a ):
return extractor.extract(a , a )
| 640 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 200 ):
"""simple docstring"""
lowercase_ : Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200]
lowercase_ : str = [0] * (pence + 1)
lowercase_ : Dict = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(_UpperCamelCase , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 73682
| 640 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCAmelCase_ ( a__ , unittest.TestCase ):
UpperCAmelCase__ : List[Any] = ShapEImgaImgPipeline
UpperCAmelCase__ : str = ["image"]
UpperCAmelCase__ : int = ["image"]
UpperCAmelCase__ : Optional[int] = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
UpperCAmelCase__ : Tuple = False
@property
def snake_case_ ( self ) -> Union[str, Any]:
return 32
@property
def snake_case_ ( self ) -> str:
return 32
@property
def snake_case_ ( self ) -> int:
return self.time_input_dim * 4
@property
def snake_case_ ( self ) -> Optional[int]:
return 8
@property
def snake_case_ ( self ) -> Optional[int]:
torch.manual_seed(0 )
UpperCamelCase : Union[str, Any] = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size, image_size=64, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=1, )
UpperCamelCase : List[Any] = CLIPVisionModel(SCREAMING_SNAKE_CASE_ )
return model
@property
def snake_case_ ( self ) -> str:
UpperCamelCase : Dict = CLIPImageProcessor(
crop_size=224, do_center_crop=SCREAMING_SNAKE_CASE_, do_normalize=SCREAMING_SNAKE_CASE_, do_resize=SCREAMING_SNAKE_CASE_, image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], resample=3, size=224, )
return image_processor
@property
def snake_case_ ( self ) -> Any:
torch.manual_seed(0 )
UpperCamelCase : Dict = {
'num_attention_heads': 2,
'attention_head_dim': 16,
'embedding_dim': self.time_input_dim,
'num_embeddings': 32,
'embedding_proj_dim': self.text_embedder_hidden_size,
'time_embed_dim': self.time_embed_dim,
'num_layers': 1,
'clip_embed_dim': self.time_input_dim * 2,
'additional_embeddings': 0,
'time_embed_act_fn': 'gelu',
'norm_in_type': 'layer',
'embedding_proj_norm_type': 'layer',
'encoder_hid_proj_type': None,
'added_emb_type': None,
}
UpperCamelCase : Any = PriorTransformer(**SCREAMING_SNAKE_CASE_ )
return model
@property
def snake_case_ ( self ) -> Optional[int]:
torch.manual_seed(0 )
UpperCamelCase : Dict = {
'param_shapes': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'd_latent': self.time_input_dim,
'd_hidden': self.renderer_dim,
'n_output': 12,
'background': (
0.1,
0.1,
0.1,
),
}
UpperCamelCase : List[Any] = ShapERenderer(**SCREAMING_SNAKE_CASE_ )
return model
def snake_case_ ( self ) -> Dict:
UpperCamelCase : Dict = self.dummy_prior
UpperCamelCase : Tuple = self.dummy_image_encoder
UpperCamelCase : Optional[Any] = self.dummy_image_processor
UpperCamelCase : Any = self.dummy_renderer
UpperCamelCase : Optional[int] = HeunDiscreteScheduler(
beta_schedule='exp', num_train_timesteps=1024, prediction_type='sample', use_karras_sigmas=SCREAMING_SNAKE_CASE_, clip_sample=SCREAMING_SNAKE_CASE_, clip_sample_range=1.0, )
UpperCamelCase : Optional[int] = {
'prior': prior,
'image_encoder': image_encoder,
'image_processor': image_processor,
'renderer': renderer,
'scheduler': scheduler,
}
return components
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> List[Any]:
UpperCamelCase : Any = floats_tensor((1, 3, 64, 64), rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ):
UpperCamelCase : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = {
'image': input_image,
'generator': generator,
'num_inference_steps': 1,
'frame_size': 32,
'output_type': 'np',
}
return inputs
def snake_case_ ( self ) -> Union[str, Any]:
UpperCamelCase : Tuple = 'cpu'
UpperCamelCase : List[str] = self.get_dummy_components()
UpperCamelCase : List[str] = self.pipeline_class(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Optional[int] = output.images[0]
UpperCamelCase : Any = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
UpperCamelCase : Any = np.array(
[
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def snake_case_ ( self ) -> List[Any]:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def snake_case_ ( self ) -> Optional[Any]:
UpperCamelCase : Optional[Any] = torch_device == 'cpu'
UpperCamelCase : Any = True
self._test_inference_batch_single_identical(
batch_size=2, test_max_difference=SCREAMING_SNAKE_CASE_, relax_max_difference=SCREAMING_SNAKE_CASE_, )
def snake_case_ ( self ) -> Optional[int]:
UpperCamelCase : Union[str, Any] = self.get_dummy_components()
UpperCamelCase : Tuple = self.pipeline_class(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = 1
UpperCamelCase : Optional[Any] = 2
UpperCamelCase : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
for key in inputs.keys():
if key in self.batch_params:
UpperCamelCase : str = batch_size * [inputs[key]]
UpperCamelCase : Any = pipe(**SCREAMING_SNAKE_CASE_, num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
def snake_case_ ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self ) -> str:
UpperCamelCase : Dict = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' )
UpperCamelCase : Optional[Any] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/shap_e/test_shap_e_img2img_out.npy' )
UpperCamelCase : Optional[int] = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' )
UpperCamelCase : List[str] = pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 )
UpperCamelCase : int = pipe(
SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, guidance_scale=3.0, num_inference_steps=64, frame_size=64, output_type='np', ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
| 40 |
'''simple docstring'''
def _SCREAMING_SNAKE_CASE (A ) -> bool:
"""simple docstring"""
if not isinstance(A , A ):
raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' )
if len(A ) == 0:
raise ValueError('''Input list must be a non empty list''' )
if len(A ) == 1:
return True
lowercase__ = series[1] - series[0]
for index in range(len(A ) - 1 ):
if series[index + 1] - series[index] != common_diff:
return False
return True
def _SCREAMING_SNAKE_CASE (A ) -> float:
"""simple docstring"""
if not isinstance(A , A ):
raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' )
if len(A ) == 0:
raise ValueError('''Input list must be a non empty list''' )
lowercase__ = 0
for val in series:
answer += val
return answer / len(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 460 | 0 |
from math import pow, sqrt
def a ( *SCREAMING_SNAKE_CASE_ : float ):
"""simple docstring"""
UpperCamelCase : Tuple = len(SCREAMING_SNAKE_CASE_ ) > 0 and all(value > 0.0 for value in values )
return result
def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ):
"""simple docstring"""
return (
round(sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else ValueError('''Input Error: Molar mass values must greater than 0.''' )
)
def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ):
"""simple docstring"""
return (
round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ):
"""simple docstring"""
return (
round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ):
"""simple docstring"""
return (
round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 )
if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ):
"""simple docstring"""
return (
round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 )
if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
| 643 |
import torch
from transformers import AutoModel
class UpperCAmelCase_ ( torch.nn.Module):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ):
"""simple docstring"""
super(__SCREAMING_SNAKE_CASE , self ).__init__()
UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 )
UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 )
def _lowercase ( self , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ):
"""simple docstring"""
return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = W_supports['''sizes'''].tolist()
UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item()
UpperCamelCase : Any = W_supports['''end_token_id'''].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = None
UpperCamelCase : Any = None
UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id
UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id
for i, size in enumerate(__SCREAMING_SNAKE_CASE ):
if i == 0:
UpperCamelCase : Optional[int] = 0
else:
UpperCamelCase : Tuple = support_sizes[i - 1]
UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]]
UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]]
UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) )
UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) )
else:
UpperCamelCase : str = p_start
UpperCamelCase : Optional[int] = p_end
return p_starts, p_ends
| 643 | 1 |
"""simple docstring"""
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class __A ( nn.Module ):
UpperCAmelCase__ = 42
UpperCAmelCase__ = 42
UpperCAmelCase__ = 0.0
UpperCAmelCase__ = 1
UpperCAmelCase__ = 1
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = jnp.floataa
def lowerCamelCase__ ( self : str ) -> int:
__magic_name__: str = []
__magic_name__: Any = []
for i in range(self.num_layers ):
__magic_name__: str = self.in_channels if i == 0 else self.out_channels
__magic_name__: Optional[int] = FlaxResnetBlockaD(
in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__snake_case )
__magic_name__: List[str] = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__snake_case )
__magic_name__: Any = resnets
__magic_name__: str = attentions
if self.add_downsample:
__magic_name__: List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Any , __snake_case : List[Any] , __snake_case : Any , __snake_case : Dict , __snake_case : List[str]=True ) -> str:
__magic_name__: str = ()
for resnet, attn in zip(self.resnets , self.attentions ):
__magic_name__: Optional[Any] = resnet(__snake_case , __snake_case , deterministic=__snake_case )
__magic_name__: Union[str, Any] = attn(__snake_case , __snake_case , deterministic=__snake_case )
output_states += (hidden_states,)
if self.add_downsample:
__magic_name__: Any = self.downsamplers_a(__snake_case )
output_states += (hidden_states,)
return hidden_states, output_states
class __A ( nn.Module ):
UpperCAmelCase__ = 42
UpperCAmelCase__ = 42
UpperCAmelCase__ = 0.0
UpperCAmelCase__ = 1
UpperCAmelCase__ = True
UpperCAmelCase__ = jnp.floataa
def lowerCamelCase__ ( self : str ) -> Optional[int]:
__magic_name__: Optional[Any] = []
for i in range(self.num_layers ):
__magic_name__: str = self.in_channels if i == 0 else self.out_channels
__magic_name__: Tuple = FlaxResnetBlockaD(
in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__snake_case )
__magic_name__: Union[str, Any] = resnets
if self.add_downsample:
__magic_name__: str = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : str , __snake_case : int , __snake_case : List[str] , __snake_case : List[Any]=True ) -> Dict:
__magic_name__: Optional[Any] = ()
for resnet in self.resnets:
__magic_name__: Optional[int] = resnet(__snake_case , __snake_case , deterministic=__snake_case )
output_states += (hidden_states,)
if self.add_downsample:
__magic_name__: List[str] = self.downsamplers_a(__snake_case )
output_states += (hidden_states,)
return hidden_states, output_states
class __A ( nn.Module ):
UpperCAmelCase__ = 42
UpperCAmelCase__ = 42
UpperCAmelCase__ = 42
UpperCAmelCase__ = 0.0
UpperCAmelCase__ = 1
UpperCAmelCase__ = 1
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = jnp.floataa
def lowerCamelCase__ ( self : int ) -> int:
__magic_name__: Optional[int] = []
__magic_name__: Any = []
for i in range(self.num_layers ):
__magic_name__: int = self.in_channels if (i == self.num_layers - 1) else self.out_channels
__magic_name__: Any = self.prev_output_channel if i == 0 else self.out_channels
__magic_name__: Dict = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__snake_case )
__magic_name__: int = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__snake_case )
__magic_name__: List[str] = resnets
__magic_name__: List[str] = attentions
if self.add_upsample:
__magic_name__: str = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Tuple , __snake_case : int , __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Dict=True ) -> List[Any]:
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
__magic_name__: Any = res_hidden_states_tuple[-1]
__magic_name__: Optional[int] = res_hidden_states_tuple[:-1]
__magic_name__: Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
__magic_name__: Optional[Any] = resnet(__snake_case , __snake_case , deterministic=__snake_case )
__magic_name__: str = attn(__snake_case , __snake_case , deterministic=__snake_case )
if self.add_upsample:
__magic_name__: Optional[Any] = self.upsamplers_a(__snake_case )
return hidden_states
class __A ( nn.Module ):
UpperCAmelCase__ = 42
UpperCAmelCase__ = 42
UpperCAmelCase__ = 42
UpperCAmelCase__ = 0.0
UpperCAmelCase__ = 1
UpperCAmelCase__ = True
UpperCAmelCase__ = jnp.floataa
def lowerCamelCase__ ( self : int ) -> Union[str, Any]:
__magic_name__: Any = []
for i in range(self.num_layers ):
__magic_name__: List[str] = self.in_channels if (i == self.num_layers - 1) else self.out_channels
__magic_name__: List[Any] = self.prev_output_channel if i == 0 else self.out_channels
__magic_name__: List[Any] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__snake_case )
__magic_name__: Any = resnets
if self.add_upsample:
__magic_name__: List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int]=True ) -> int:
for resnet in self.resnets:
# pop res hidden states
__magic_name__: List[Any] = res_hidden_states_tuple[-1]
__magic_name__: Dict = res_hidden_states_tuple[:-1]
__magic_name__: Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
__magic_name__: Optional[int] = resnet(__snake_case , __snake_case , deterministic=__snake_case )
if self.add_upsample:
__magic_name__: Optional[Any] = self.upsamplers_a(__snake_case )
return hidden_states
class __A ( nn.Module ):
UpperCAmelCase__ = 42
UpperCAmelCase__ = 0.0
UpperCAmelCase__ = 1
UpperCAmelCase__ = 1
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = jnp.floataa
def lowerCamelCase__ ( self : Dict ) -> Dict:
# there is always at least one resnet
__magic_name__: Tuple = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
__magic_name__: str = []
for _ in range(self.num_layers ):
__magic_name__: List[Any] = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(__snake_case )
__magic_name__: Tuple = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(__snake_case )
__magic_name__: Optional[Any] = resnets
__magic_name__: int = attentions
def __call__( self : str , __snake_case : Tuple , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Optional[Any]=True ) -> int:
__magic_name__: Optional[Any] = self.resnets[0](__snake_case , __snake_case )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
__magic_name__: Optional[Any] = attn(__snake_case , __snake_case , deterministic=__snake_case )
__magic_name__: str = resnet(__snake_case , __snake_case , deterministic=__snake_case )
return hidden_states
| 96 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ = logging.get_logger(__name__)
UpperCamelCase__ = {
"tanreinama/GPTSAN-2.8B-spout_is_uniform": (
"https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json"
),
}
class __SCREAMING_SNAKE_CASE ( _a ):
snake_case : Optional[Any] = """gptsan-japanese"""
snake_case : Any = [
"""past_key_values""",
]
snake_case : str = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self , __lowerCAmelCase=36000 , __lowerCAmelCase=1280 , __lowerCAmelCase=1024 , __lowerCAmelCase=8192 , __lowerCAmelCase=4096 , __lowerCAmelCase=128 , __lowerCAmelCase=10 , __lowerCAmelCase=0 , __lowerCAmelCase=16 , __lowerCAmelCase=16 , __lowerCAmelCase=128 , __lowerCAmelCase=0.0 , __lowerCAmelCase=1E-5 , __lowerCAmelCase=False , __lowerCAmelCase=0.0 , __lowerCAmelCase="float32" , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=0.002 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=35998 , __lowerCAmelCase=35995 , __lowerCAmelCase=35999 , **__lowerCAmelCase , ):
UpperCamelCase__ = vocab_size
UpperCamelCase__ = max_position_embeddings
UpperCamelCase__ = d_model
UpperCamelCase__ = d_ff
UpperCamelCase__ = d_ext
UpperCamelCase__ = d_spout
UpperCamelCase__ = num_switch_layers
UpperCamelCase__ = num_ext_layers
UpperCamelCase__ = num_switch_layers + num_ext_layers
UpperCamelCase__ = num_heads
UpperCamelCase__ = num_experts
UpperCamelCase__ = expert_capacity
UpperCamelCase__ = dropout_rate
UpperCamelCase__ = layer_norm_epsilon
UpperCamelCase__ = router_bias
UpperCamelCase__ = router_jitter_noise
UpperCamelCase__ = router_dtype
UpperCamelCase__ = router_ignore_padding_tokens
UpperCamelCase__ = output_hidden_states
UpperCamelCase__ = output_attentions
UpperCamelCase__ = initializer_factor
UpperCamelCase__ = output_router_logits
UpperCamelCase__ = use_cache
super().__init__(
separator_token_id=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
| 619 | 0 |
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 720 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _UpperCamelCase( SCREAMING_SNAKE_CASE ):
__A: Optional[Any] = ["""image_processor""", """tokenizer"""]
__A: List[str] = """CLIPImageProcessor"""
__A: Dict = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self : str , _lowerCamelCase : List[str]=None , _lowerCamelCase : Any=None , **_lowerCamelCase : str ):
_UpperCAmelCase : Union[str, Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , _lowerCamelCase , )
_UpperCAmelCase : Optional[Any] = kwargs.pop("feature_extractor" )
_UpperCAmelCase : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(_lowerCamelCase , _lowerCamelCase )
def __call__( self : Any , _lowerCamelCase : List[str]=None , _lowerCamelCase : str=None , _lowerCamelCase : Optional[int]=None , **_lowerCamelCase : Union[str, Any] ):
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
_UpperCAmelCase : Union[str, Any] = self.tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )
if images is not None:
_UpperCAmelCase : Any = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )
if text is not None and images is not None:
_UpperCAmelCase : Any = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase )
def a__ ( self : Union[str, Any] , *_lowerCamelCase : List[Any] , **_lowerCamelCase : List[str] ):
return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase )
def a__ ( self : Union[str, Any] , *_lowerCamelCase : List[str] , **_lowerCamelCase : str ):
return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase )
@property
def a__ ( self : Any ):
_UpperCAmelCase : Union[str, Any] = self.tokenizer.model_input_names
_UpperCAmelCase : Optional[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def a__ ( self : Union[str, Any] ):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _lowerCamelCase , )
return self.image_processor_class
@property
def a__ ( self : int ):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _lowerCamelCase , )
return self.image_processor
| 328 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class __SCREAMING_SNAKE_CASE ( lowercase):
__SCREAMING_SNAKE_CASE : List[str] = """naver-clova-ix/donut-base-finetuned-docvqa"""
__SCREAMING_SNAKE_CASE : Any = (
"""This is a tool that answers a question about an document (pdf). It takes an input named `document` which """
"""should be the document containing the information, as well as a `question` that is the question about the """
"""document. It returns a text that contains the answer to the question."""
)
__SCREAMING_SNAKE_CASE : Optional[int] = """document_qa"""
__SCREAMING_SNAKE_CASE : int = AutoProcessor
__SCREAMING_SNAKE_CASE : Any = VisionEncoderDecoderModel
__SCREAMING_SNAKE_CASE : Optional[Any] = ["""image""", """text"""]
__SCREAMING_SNAKE_CASE : Optional[int] = ["""text"""]
def __init__( self : Any , *__UpperCamelCase : str , **__UpperCamelCase : str ):
if not is_vision_available():
raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." )
super().__init__(*__UpperCamelCase , **__UpperCamelCase )
def UpperCAmelCase__ ( self : str , __UpperCamelCase : "Image" , __UpperCamelCase : str ):
_UpperCAmelCase = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
_UpperCAmelCase = task_prompt.replace("{user_input}" , __UpperCamelCase )
_UpperCAmelCase = self.pre_processor.tokenizer(
__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors="pt" ).input_ids
_UpperCAmelCase = self.pre_processor(__UpperCamelCase , return_tensors="pt" ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def UpperCAmelCase__ ( self : int , __UpperCamelCase : str ):
return self.model.generate(
inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__UpperCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__UpperCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__UpperCamelCase , ).sequences
def UpperCAmelCase__ ( self : Any , __UpperCamelCase : List[Any] ):
_UpperCAmelCase = self.pre_processor.batch_decode(__UpperCamelCase )[0]
_UpperCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , "" )
_UpperCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , "" )
_UpperCAmelCase = re.sub(r"<.*?>" , "" , __UpperCamelCase , count=1 ).strip() # remove first task start token
_UpperCAmelCase = self.pre_processor.tokenajson(__UpperCamelCase )
return sequence["answer"]
| 684 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
)
else:
from .modeling_text_unet import UNetFlatConditionModel
from .pipeline_versatile_diffusion import VersatileDiffusionPipeline
from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline
from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline
from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
| 684 | 1 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class _SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder):
def _snake_case ( self )-> str:
return datasets.DatasetInfo(
features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=_SCREAMING_SNAKE_CASE , )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Union[str, Any]:
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )]
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[int]:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE )
class _SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder):
def _snake_case ( self )-> str:
return datasets.DatasetInfo(
features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=_SCREAMING_SNAKE_CASE , )
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Tuple:
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} )
]
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )-> Optional[Any]:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( ) ->Dict:
"""simple docstring"""
return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )]
def __UpperCamelCase ( ) ->Dict:
"""simple docstring"""
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )]
class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__):
@require_beam
def _snake_case ( self )-> Optional[Any]:
lowerCamelCase_ =len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
lowerCamelCase_ =DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner="""DirectRunner""" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , f'{builder.name}-train.arrow' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) )
lowerCamelCase_ =builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , _SCREAMING_SNAKE_CASE )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _SCREAMING_SNAKE_CASE )
self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
@require_beam
def _snake_case ( self )-> str:
import apache_beam as beam
lowerCamelCase_ =beam.io.parquetio.WriteToParquet
lowerCamelCase_ =len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
lowerCamelCase_ =DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner="""DirectRunner""" )
with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock:
lowerCamelCase_ =partial(_SCREAMING_SNAKE_CASE , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
_SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , f'{builder.name}-train-00000-of-00002.arrow' ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
_SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , f'{builder.name}-train-00000-of-00002.arrow' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) )
lowerCamelCase_ =builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , _SCREAMING_SNAKE_CASE )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _SCREAMING_SNAKE_CASE )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) )
self.assertTrue(
os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
@require_beam
def _snake_case ( self )-> Dict:
with tempfile.TemporaryDirectory() as tmp_cache_dir:
lowerCamelCase_ =DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def _snake_case ( self )-> List[str]:
lowerCamelCase_ =len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
lowerCamelCase_ =NestedBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner="""DirectRunner""" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , f'{builder.name}-train.arrow' ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) )
lowerCamelCase_ =builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , _SCREAMING_SNAKE_CASE )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , _SCREAMING_SNAKE_CASE )
self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
| 75 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Optional[Any] = {
'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__):
_UpperCamelCase:Union[str, Any] = "deta"
_UpperCamelCase:int = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=900 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.2_5 , **_SCREAMING_SNAKE_CASE , )-> str:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
lowerCamelCase_ =CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] )
else:
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
lowerCamelCase_ =backbone_config.pop("""model_type""" )
lowerCamelCase_ =CONFIG_MAPPING[backbone_model_type]
lowerCamelCase_ =config_class.from_dict(_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =backbone_config
lowerCamelCase_ =num_queries
lowerCamelCase_ =max_position_embeddings
lowerCamelCase_ =d_model
lowerCamelCase_ =encoder_ffn_dim
lowerCamelCase_ =encoder_layers
lowerCamelCase_ =encoder_attention_heads
lowerCamelCase_ =decoder_ffn_dim
lowerCamelCase_ =decoder_layers
lowerCamelCase_ =decoder_attention_heads
lowerCamelCase_ =dropout
lowerCamelCase_ =attention_dropout
lowerCamelCase_ =activation_dropout
lowerCamelCase_ =activation_function
lowerCamelCase_ =init_std
lowerCamelCase_ =init_xavier_std
lowerCamelCase_ =encoder_layerdrop
lowerCamelCase_ =auxiliary_loss
lowerCamelCase_ =position_embedding_type
# deformable attributes
lowerCamelCase_ =num_feature_levels
lowerCamelCase_ =encoder_n_points
lowerCamelCase_ =decoder_n_points
lowerCamelCase_ =two_stage
lowerCamelCase_ =two_stage_num_proposals
lowerCamelCase_ =with_box_refine
lowerCamelCase_ =assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError("""If two_stage is True, with_box_refine must be True.""" )
# Hungarian matcher
lowerCamelCase_ =class_cost
lowerCamelCase_ =bbox_cost
lowerCamelCase_ =giou_cost
# Loss coefficients
lowerCamelCase_ =mask_loss_coefficient
lowerCamelCase_ =dice_loss_coefficient
lowerCamelCase_ =bbox_loss_coefficient
lowerCamelCase_ =giou_loss_coefficient
lowerCamelCase_ =eos_coefficient
lowerCamelCase_ =focal_alpha
super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@property
def _snake_case ( self )-> int:
return self.encoder_attention_heads
@property
def _snake_case ( self )-> int:
return self.d_model
def _snake_case ( self )-> str:
lowerCamelCase_ =copy.deepcopy(self.__dict__ )
lowerCamelCase_ =self.backbone_config.to_dict()
lowerCamelCase_ =self.__class__.model_type
return output
| 75 | 1 |
import numpy as np
def UpperCamelCase ( _a , _a , _a , _a , _a ) -> List[Any]:
'''simple docstring'''
lowercase_ :Optional[Any] = int(np.ceil((x_end - xa) / h ) )
lowercase_ :List[str] = np.zeros((n + 1,) )
lowercase_ :List[str] = ya
lowercase_ :Any = xa
for k in range(_a ):
lowercase_ :int = f(_a , y[k] )
lowercase_ :List[str] = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
lowercase_ :Optional[Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
lowercase_ :Tuple = f(x + h , y[k] + h * ka )
lowercase_ :Dict = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 257 |
# Lint as: python3
import itertools
import os
import re
SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(r"([A-Z]+)([A-Z][a-z])")
SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(r"([a-z\d])([A-Z])")
SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r"(?<!_)_(?!_)")
SCREAMING_SNAKE_CASE : Tuple = re.compile(r"(_{2,})")
SCREAMING_SNAKE_CASE : Any = r"^\w+(\.\w+)*$"
SCREAMING_SNAKE_CASE : Any = r"<>:/\|?*"
def UpperCamelCase ( _a ) -> Any:
'''simple docstring'''
lowercase_ :List[str] = _uppercase_uppercase_re.sub(R'''\1_\2''' , _a )
lowercase_ :Optional[int] = _lowercase_uppercase_re.sub(R'''\1_\2''' , _a )
return name.lower()
def UpperCamelCase ( _a ) -> Dict:
'''simple docstring'''
lowercase_ :List[str] = _single_underscore_re.split(_a )
lowercase_ :Tuple = [_multiple_underscores_re.split(_a ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(_a ) if n != '''''' )
def UpperCamelCase ( _a ) -> Optional[int]:
'''simple docstring'''
if os.path.basename(_a ) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}" )
return camelcase_to_snakecase(_a )
def UpperCamelCase ( _a , _a ) -> Optional[Any]:
'''simple docstring'''
if os.path.basename(_a ) != name:
raise ValueError(f"Should be a dataset name, not a path: {name}" )
if not re.match(_split_re , _a ):
raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." )
return f"{filename_prefix_for_name(_a )}-{split}"
def UpperCamelCase ( _a , _a , _a , _a=None ) -> List[Any]:
'''simple docstring'''
lowercase_ :List[str] = filename_prefix_for_split(_a , _a )
if filetype_suffix:
prefix += f".{filetype_suffix}"
lowercase_ :List[Any] = os.path.join(_a , _a )
return f"{filepath}*"
def UpperCamelCase ( _a , _a , _a , _a=None , _a=None ) -> List[Any]:
'''simple docstring'''
lowercase_ :Union[str, Any] = filename_prefix_for_split(_a , _a )
lowercase_ :Any = os.path.join(_a , _a )
if shard_lengths:
lowercase_ :str = len(_a )
lowercase_ :Tuple = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(_a )]
if filetype_suffix:
lowercase_ :Any = [filename + f".{filetype_suffix}" for filename in filenames]
return filenames
else:
lowercase_ :Tuple = prefix
if filetype_suffix:
filename += f".{filetype_suffix}"
return [filename]
| 257 | 1 |
"""simple docstring"""
import math
def _lowercase ( _SCREAMING_SNAKE_CASE : int ) -> bool:
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowercase ( _SCREAMING_SNAKE_CASE : int = 10001 ) -> int:
'''simple docstring'''
try:
__A : str = int(_SCREAMING_SNAKE_CASE )
except (TypeError, ValueError):
raise TypeError('Parameter nth must be int or castable to int.' ) from None
if nth <= 0:
raise ValueError('Parameter nth must be greater than or equal to one.' )
__A : list[int] = []
__A : Dict = 2
while len(_SCREAMING_SNAKE_CASE ) < nth:
if is_prime(_SCREAMING_SNAKE_CASE ):
primes.append(_SCREAMING_SNAKE_CASE )
num += 1
else:
num += 1
return primes[len(_SCREAMING_SNAKE_CASE ) - 1]
if __name__ == "__main__":
print(F'{solution() = }')
| 237 | """simple docstring"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
lowerCamelCase : Tuple =logging.get_logger(__name__)
lowerCamelCase : Union[str, Any] ={
'''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''',
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class __snake_case( A_ ):
'''simple docstring'''
_UpperCAmelCase = "umt5"
_UpperCAmelCase = ["past_key_values"]
def __init__( self , __lowerCamelCase=250112 , __lowerCamelCase=512 , __lowerCamelCase=64 , __lowerCamelCase=1024 , __lowerCamelCase=8 , __lowerCamelCase=None , __lowerCamelCase=6 , __lowerCamelCase=32 , __lowerCamelCase=128 , __lowerCamelCase=0.1 , __lowerCamelCase=1e-6 , __lowerCamelCase=1.0 , __lowerCamelCase="gated-gelu" , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase="T5Tokenizer" , __lowerCamelCase=True , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=0 , **__lowerCamelCase , ):
'''simple docstring'''
super().__init__(
is_encoder_decoder=__lowerCamelCase , tokenizer_class=__lowerCamelCase , tie_word_embeddings=__lowerCamelCase , pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
__A : Union[str, Any] = vocab_size
__A : Any = d_model
__A : str = d_kv
__A : List[Any] = d_ff
__A : Union[str, Any] = num_layers
__A : Tuple = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__A : Union[str, Any] = num_heads
__A : str = relative_attention_num_buckets
__A : Union[str, Any] = relative_attention_max_distance
__A : int = dropout_rate
__A : int = layer_norm_epsilon
__A : int = initializer_factor
__A : List[Any] = feed_forward_proj
__A : str = use_cache
__A : str = self.feed_forward_proj.split('-' )
__A : str = act_info[-1]
__A : Any = act_info[0] == 'gated'
if len(__lowerCamelCase ) > 1 and act_info[0] != "gated" or len(__lowerCamelCase ) > 2:
raise ValueError(
F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
if feed_forward_proj == "gated-gelu":
__A : Optional[int] = 'gelu_new'
@property
def _a ( self ):
'''simple docstring'''
return self.d_model
@property
def _a ( self ):
'''simple docstring'''
return self.num_heads
@property
def _a ( self ):
'''simple docstring'''
return self.num_layers
class __snake_case( A_ ):
'''simple docstring'''
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def _a ( self ):
'''simple docstring'''
__A : List[Any] = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
__A : int = 'past_encoder_sequence + sequence'
__A : List[str] = {0: 'batch'}
__A : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__A : List[str] = {0: 'batch', 1: 'decoder_sequence'}
__A : str = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction='inputs' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def _a ( self ):
'''simple docstring'''
return 13
@property
def _a ( self ):
'''simple docstring'''
return 5e-4
| 237 | 1 |
'''simple docstring'''
def _a (lowercase__ : str , lowercase__ : str ) -> float:
"""simple docstring"""
def get_matched_characters(lowercase__ : str , lowercase__ : str ) -> str:
__snake_case = []
__snake_case = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
__snake_case = int(max(0 , i - limit ) )
__snake_case = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(lowercase__ )
__snake_case = f'{_stra[0:_stra.index(lowercase__ )]} {_stra[_stra.index(lowercase__ ) + 1:]}'
return "".join(lowercase__ )
# matching characters
__snake_case = get_matched_characters(lowercase__ , lowercase__ )
__snake_case = get_matched_characters(lowercase__ , lowercase__ )
__snake_case = len(lowercase__ )
# transposition
__snake_case = (
len([(ca, ca) for ca, ca in zip(lowercase__ , lowercase__ ) if ca != ca] ) // 2
)
if not match_count:
__snake_case = 0.0
else:
__snake_case = (
1
/ 3
* (
match_count / len(lowercase__ )
+ match_count / len(lowercase__ )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
__snake_case = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler("hello", "world"))
| 56 |
import os
import numpy
import onnx
def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = a.name
SCREAMING_SNAKE_CASE_ : Dict = b.name
SCREAMING_SNAKE_CASE_ : str = ''
SCREAMING_SNAKE_CASE_ : Optional[Any] = ''
SCREAMING_SNAKE_CASE_ : Optional[Any] = a == b
SCREAMING_SNAKE_CASE_ : str = name_a
SCREAMING_SNAKE_CASE_ : str = name_b
return res
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : Dict ) -> Optional[int]:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowerCamelCase_ , lowerCamelCase_ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_ )
_graph_replace_input_with(node_proto.attribute[1].g , lowerCamelCase_ , lowerCamelCase_ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_ )
def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict ) -> List[Any]:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = list(model.graph.initializer )
SCREAMING_SNAKE_CASE_ : List[str] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
SCREAMING_SNAKE_CASE_ : List[str] = inits[i].name
SCREAMING_SNAKE_CASE_ : str = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , lowerCamelCase_ , lowerCamelCase_ )
def __UpperCAmelCase ( lowerCamelCase_ : Dict ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = os.path.dirname(lowerCamelCase_ )
SCREAMING_SNAKE_CASE_ : Tuple = os.path.basename(lowerCamelCase_ )
SCREAMING_SNAKE_CASE_ : int = onnx.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) )
SCREAMING_SNAKE_CASE_ : Any = list(model.graph.initializer )
SCREAMING_SNAKE_CASE_ : int = set()
SCREAMING_SNAKE_CASE_ : Optional[Any] = {}
SCREAMING_SNAKE_CASE_ : Dict = []
SCREAMING_SNAKE_CASE_ : int = 0
for i in range(len(lowerCamelCase_ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(lowerCamelCase_ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(lowerCamelCase_ )
dup_set.add(lowerCamelCase_ )
SCREAMING_SNAKE_CASE_ : int = inits[j].data_type
SCREAMING_SNAKE_CASE_ : str = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('unexpected data type: ' , lowerCamelCase_ )
total_reduced_size += mem_size
SCREAMING_SNAKE_CASE_ : int = inits[i].name
SCREAMING_SNAKE_CASE_ : List[Any] = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowerCamelCase_ )
else:
SCREAMING_SNAKE_CASE_ : Optional[int] = [name_j]
ind_to_replace.append((j, i) )
print('total reduced size: ' , total_reduced_size / 10_24 / 10_24 / 10_24 , 'GB' )
SCREAMING_SNAKE_CASE_ : int = sorted(lowerCamelCase_ )
_remove_dup_initializers_from_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'optimized_' + model_file_name
SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(lowerCamelCase_ , lowerCamelCase_ )
onnx.save(lowerCamelCase_ , lowerCamelCase_ )
return new_model
| 105 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .attention_processor import AttentionProcessor, AttnProcessor
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
@dataclass
class _a ( __a ):
"""simple docstring"""
A_ = 42
class _a ( __a , __a ):
"""simple docstring"""
A_ = True
@register_to_config
def __init__( self : List[Any] , lowercase_ : int = 3 , lowercase_ : int = 3 , lowercase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowercase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowercase_ : Tuple[int] = (64,) , lowercase_ : int = 1 , lowercase_ : str = "silu" , lowercase_ : int = 4 , lowercase_ : int = 32 , lowercase_ : int = 32 , lowercase_ : float = 0.1_8_2_1_5 , ):
'''simple docstring'''
super().__init__()
# pass init params to Encoder
lowercase_ = Encoder(
in_channels=lowercase_ , out_channels=lowercase_ , down_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , act_fn=lowercase_ , norm_num_groups=lowercase_ , double_z=lowercase_ , )
# pass init params to Decoder
lowercase_ = Decoder(
in_channels=lowercase_ , out_channels=lowercase_ , up_block_types=lowercase_ , block_out_channels=lowercase_ , layers_per_block=lowercase_ , norm_num_groups=lowercase_ , act_fn=lowercase_ , )
lowercase_ = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 )
lowercase_ = nn.Convad(lowercase_ , lowercase_ , 1 )
lowercase_ = False
lowercase_ = False
# only relevant if vae tiling is enabled
lowercase_ = self.config.sample_size
lowercase_ = (
self.config.sample_size[0]
if isinstance(self.config.sample_size , (list, tuple) )
else self.config.sample_size
)
lowercase_ = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) )
lowercase_ = 0.2_5
def lowerCamelCase__ ( self : int , lowercase_ : List[str] , lowercase_ : List[Any]=False ):
'''simple docstring'''
if isinstance(lowercase_ , (Encoder, Decoder) ):
lowercase_ = value
def lowerCamelCase__ ( self : Dict , lowercase_ : bool = True ):
'''simple docstring'''
lowercase_ = use_tiling
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
self.enable_tiling(lowercase_ )
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase_ = True
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
lowercase_ = False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
lowercase_ = {}
def fn_recursive_add_processors(lowercase_ : str , lowercase_ : torch.nn.Module , lowercase_ : Dict[str, AttentionProcessor] ):
if hasattr(lowercase_ , """set_processor""" ):
lowercase_ = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"""{name}.{sub_name}""" , lowercase_ , lowercase_ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(lowercase_ , lowercase_ , lowercase_ )
return processors
def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ):
'''simple docstring'''
lowercase_ = len(self.attn_processors.keys() )
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != count:
raise ValueError(
F"""A dict of processors was passed, but the number of processors {len(lowercase_ )} does not match the"""
F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(lowercase_ : str , lowercase_ : torch.nn.Module , lowercase_ : List[Any] ):
if hasattr(lowercase_ , """set_processor""" ):
if not isinstance(lowercase_ , lowercase_ ):
module.set_processor(lowercase_ )
else:
module.set_processor(processor.pop(F"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"""{name}.{sub_name}""" , lowercase_ , lowercase_ )
for name, module in self.named_children():
fn_recursive_attn_processor(lowercase_ , lowercase_ , lowercase_ )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
@apply_forward_hook
def lowerCamelCase__ ( self : Tuple , lowercase_ : torch.FloatTensor , lowercase_ : bool = True ):
'''simple docstring'''
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(lowercase_ , return_dict=lowercase_ )
if self.use_slicing and x.shape[0] > 1:
lowercase_ = [self.encoder(lowercase_ ) for x_slice in x.split(1 )]
lowercase_ = torch.cat(lowercase_ )
else:
lowercase_ = self.encoder(lowercase_ )
lowercase_ = self.quant_conv(lowercase_ )
lowercase_ = DiagonalGaussianDistribution(lowercase_ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=lowercase_ )
def lowerCamelCase__ ( self : Any , lowercase_ : torch.FloatTensor , lowercase_ : bool = True ):
'''simple docstring'''
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(lowercase_ , return_dict=lowercase_ )
lowercase_ = self.post_quant_conv(lowercase_ )
lowercase_ = self.decoder(lowercase_ )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
@apply_forward_hook
def lowerCamelCase__ ( self : Dict , lowercase_ : torch.FloatTensor , lowercase_ : bool = True ):
'''simple docstring'''
if self.use_slicing and z.shape[0] > 1:
lowercase_ = [self._decode(lowercase_ ).sample for z_slice in z.split(1 )]
lowercase_ = torch.cat(lowercase_ )
else:
lowercase_ = self._decode(lowercase_ ).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=lowercase_ )
def lowerCamelCase__ ( self : Tuple , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : Union[str, Any] ):
'''simple docstring'''
lowercase_ = min(a.shape[2] , b.shape[2] , lowercase_ )
for y in range(lowercase_ ):
lowercase_ = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def lowerCamelCase__ ( self : Optional[int] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : str ):
'''simple docstring'''
lowercase_ = min(a.shape[3] , b.shape[3] , lowercase_ )
for x in range(lowercase_ ):
lowercase_ = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def lowerCamelCase__ ( self : Tuple , lowercase_ : torch.FloatTensor , lowercase_ : bool = True ):
'''simple docstring'''
lowercase_ = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) )
lowercase_ = int(self.tile_latent_min_size * self.tile_overlap_factor )
lowercase_ = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
lowercase_ = []
for i in range(0 , x.shape[2] , lowercase_ ):
lowercase_ = []
for j in range(0 , x.shape[3] , lowercase_ ):
lowercase_ = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
lowercase_ = self.encoder(lowercase_ )
lowercase_ = self.quant_conv(lowercase_ )
row.append(lowercase_ )
rows.append(lowercase_ )
lowercase_ = []
for i, row in enumerate(lowercase_ ):
lowercase_ = []
for j, tile in enumerate(lowercase_ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
lowercase_ = self.blend_v(rows[i - 1][j] , lowercase_ , lowercase_ )
if j > 0:
lowercase_ = self.blend_h(row[j - 1] , lowercase_ , lowercase_ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(lowercase_ , dim=3 ) )
lowercase_ = torch.cat(lowercase_ , dim=2 )
lowercase_ = DiagonalGaussianDistribution(lowercase_ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=lowercase_ )
def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : torch.FloatTensor , lowercase_ : bool = True ):
'''simple docstring'''
lowercase_ = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) )
lowercase_ = int(self.tile_sample_min_size * self.tile_overlap_factor )
lowercase_ = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
lowercase_ = []
for i in range(0 , z.shape[2] , lowercase_ ):
lowercase_ = []
for j in range(0 , z.shape[3] , lowercase_ ):
lowercase_ = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
lowercase_ = self.post_quant_conv(lowercase_ )
lowercase_ = self.decoder(lowercase_ )
row.append(lowercase_ )
rows.append(lowercase_ )
lowercase_ = []
for i, row in enumerate(lowercase_ ):
lowercase_ = []
for j, tile in enumerate(lowercase_ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
lowercase_ = self.blend_v(rows[i - 1][j] , lowercase_ , lowercase_ )
if j > 0:
lowercase_ = self.blend_h(row[j - 1] , lowercase_ , lowercase_ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(lowercase_ , dim=3 ) )
lowercase_ = torch.cat(lowercase_ , dim=2 )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
def lowerCamelCase__ ( self : Tuple , lowercase_ : torch.FloatTensor , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[torch.Generator] = None , ):
'''simple docstring'''
lowercase_ = sample
lowercase_ = self.encode(lowercase_ ).latent_dist
if sample_posterior:
lowercase_ = posterior.sample(generator=lowercase_ )
else:
lowercase_ = posterior.mode()
lowercase_ = self.decode(lowercase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
| 603 | '''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
__snake_case = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
"""text-classification""",
"""language-modeling""",
"""summarization""",
"""token-classification""",
"""question-answering""",
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
__snake_case = logging.getLogger()
def A_ ( ) ->List[str]:
lowercase_ = argparse.ArgumentParser()
parser.add_argument("""-f""" )
lowercase_ = parser.parse_args()
return args.f
def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="eval" ) ->Optional[int]:
lowercase_ = os.path.join(SCREAMING_SNAKE_CASE_ , f"""{split}_results.json""" )
if os.path.exists(SCREAMING_SNAKE_CASE_ ):
with open(SCREAMING_SNAKE_CASE_ , """r""" ) as f:
return json.load(SCREAMING_SNAKE_CASE_ )
raise ValueError(f"""can't find {path}""" )
__snake_case = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class _a ( __a ):
"""simple docstring"""
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase_ = self.get_auto_remove_tmp_dir()
lowercase_ = F"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(lowercase_ , """argv""" , lowercase_ ):
run_flax_glue.main()
lowercase_ = get_results(lowercase_ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 )
@slow
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase_ = self.get_auto_remove_tmp_dir()
lowercase_ = F"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowercase_ , """argv""" , lowercase_ ):
run_clm_flax.main()
lowercase_ = get_results(lowercase_ )
self.assertLess(result["""eval_perplexity"""] , 100 )
@slow
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase_ = self.get_auto_remove_tmp_dir()
lowercase_ = F"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(lowercase_ , """argv""" , lowercase_ ):
run_summarization_flax.main()
lowercase_ = get_results(lowercase_ , split="""test""" )
self.assertGreaterEqual(result["""test_rouge1"""] , 10 )
self.assertGreaterEqual(result["""test_rouge2"""] , 2 )
self.assertGreaterEqual(result["""test_rougeL"""] , 7 )
self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 )
@slow
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
lowercase_ = self.get_auto_remove_tmp_dir()
lowercase_ = F"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(lowercase_ , """argv""" , lowercase_ ):
run_mlm_flax.main()
lowercase_ = get_results(lowercase_ )
self.assertLess(result["""eval_perplexity"""] , 42 )
@slow
def lowerCamelCase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase_ = self.get_auto_remove_tmp_dir()
lowercase_ = F"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowercase_ , """argv""" , lowercase_ ):
run_ta_mlm_flax.main()
lowercase_ = get_results(lowercase_ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.4_2 )
@slow
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
lowercase_ = 7 if get_gpu_count() > 1 else 2
lowercase_ = self.get_auto_remove_tmp_dir()
lowercase_ = F"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(lowercase_ , """argv""" , lowercase_ ):
run_flax_ner.main()
lowercase_ = get_results(lowercase_ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 )
self.assertGreaterEqual(result["""eval_f1"""] , 0.3 )
@slow
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
lowercase_ = self.get_auto_remove_tmp_dir()
lowercase_ = F"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(lowercase_ , """argv""" , lowercase_ ):
run_qa.main()
lowercase_ = get_results(lowercase_ )
self.assertGreaterEqual(result["""eval_f1"""] , 30 )
self.assertGreaterEqual(result["""eval_exact"""] , 30 )
| 603 | 1 |
"""simple docstring"""
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class lowercase__ ( A_ ):
__UpperCAmelCase = 42
__UpperCAmelCase = jnp.floataa
__UpperCAmelCase = True
def UpperCamelCase_ ( self) -> str:
super().setup()
_lowerCamelCase : Optional[int] = nn.Dense(5 , dtype=self.dtype)
def __call__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> int:
_lowerCamelCase : Optional[int] = super().__call__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE)
_lowerCamelCase : Optional[int] = self.cls(outputs[2])
return outputs[:2] + (cls_out,)
class lowercase__ ( A_ ):
__UpperCAmelCase = FlaxBigBirdForNaturalQuestionsModule
def _snake_case ( __snake_case : Tuple , __snake_case : str , __snake_case : List[str] , __snake_case : Dict , __snake_case : Tuple , __snake_case : List[Any] ):
"""simple docstring"""
def cross_entropy(__snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[int]=None ):
_lowerCamelCase : Optional[int] = logits.shape[-1]
_lowerCamelCase : Any = (labels[..., None] == jnp.arange(__snake_case )[None]).astype("""f4""" )
_lowerCamelCase : Any = jax.nn.log_softmax(__snake_case , axis=-1 )
_lowerCamelCase : Any = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
_lowerCamelCase : int = reduction(__snake_case )
return loss
_lowerCamelCase : int = partial(__snake_case , reduction=jnp.mean )
_lowerCamelCase : int = cross_entropy(__snake_case , __snake_case )
_lowerCamelCase : int = cross_entropy(__snake_case , __snake_case )
_lowerCamelCase : List[str] = cross_entropy(__snake_case , __snake_case )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class lowercase__ :
__UpperCAmelCase = "google/bigbird-roberta-base"
__UpperCAmelCase = 3000
__UpperCAmelCase = 10500
__UpperCAmelCase = 128
__UpperCAmelCase = 3
__UpperCAmelCase = 1
__UpperCAmelCase = 5
# tx_args
__UpperCAmelCase = 3e-5
__UpperCAmelCase = 0.0
__UpperCAmelCase = 20000
__UpperCAmelCase = 0.0_0_9_5
__UpperCAmelCase = "bigbird-roberta-natural-questions"
__UpperCAmelCase = "training-expt"
__UpperCAmelCase = "data/nq-training.jsonl"
__UpperCAmelCase = "data/nq-validation.jsonl"
def UpperCamelCase_ ( self) -> Optional[int]:
os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE)
_lowerCamelCase : Dict = os.path.join(self.base_dir , self.save_dir)
_lowerCamelCase : Tuple = self.batch_size_per_device * jax.device_count()
@dataclass
class lowercase__ :
__UpperCAmelCase = 42
__UpperCAmelCase = 4096 # no dynamic padding on TPUs
def __call__( self , SCREAMING_SNAKE_CASE) -> Optional[int]:
_lowerCamelCase : Dict = self.collate_fn(SCREAMING_SNAKE_CASE)
_lowerCamelCase : int = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
return batch
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> List[str]:
_lowerCamelCase , _lowerCamelCase : Any = self.fetch_inputs(features["""input_ids"""])
_lowerCamelCase : Dict = {
"""input_ids""": jnp.array(SCREAMING_SNAKE_CASE , dtype=jnp.intaa),
"""attention_mask""": jnp.array(SCREAMING_SNAKE_CASE , dtype=jnp.intaa),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa),
}
return batch
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> int:
_lowerCamelCase : List[str] = [self._fetch_inputs(SCREAMING_SNAKE_CASE) for ids in input_ids]
return zip(*SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> Dict:
_lowerCamelCase : List[Any] = [1 for _ in range(len(SCREAMING_SNAKE_CASE))]
while len(SCREAMING_SNAKE_CASE) < self.max_length:
input_ids.append(self.pad_id)
attention_mask.append(0)
return input_ids, attention_mask
def _snake_case ( __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Union[str, Any]=None ):
"""simple docstring"""
if seed is not None:
_lowerCamelCase : Optional[Any] = dataset.shuffle(seed=__snake_case )
for i in range(len(__snake_case ) // batch_size ):
_lowerCamelCase : int = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(__snake_case )
@partial(jax.pmap , axis_name="""batch""" )
def _snake_case ( __snake_case : Any , __snake_case : List[str] , **__snake_case : Tuple ):
"""simple docstring"""
def loss_fn(__snake_case : str ):
_lowerCamelCase : List[Any] = model_inputs.pop("""start_labels""" )
_lowerCamelCase : Optional[Any] = model_inputs.pop("""end_labels""" )
_lowerCamelCase : List[str] = model_inputs.pop("""pooled_labels""" )
_lowerCamelCase : Optional[Any] = state.apply_fn(**__snake_case , params=__snake_case , dropout_rng=__snake_case , train=__snake_case )
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = outputs
return state.loss_fn(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , )
_lowerCamelCase , _lowerCamelCase : List[Any] = jax.random.split(__snake_case )
_lowerCamelCase : Any = jax.value_and_grad(__snake_case )
_lowerCamelCase , _lowerCamelCase : Any = grad_fn(state.params )
_lowerCamelCase : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
_lowerCamelCase : Tuple = jax.lax.pmean(__snake_case , """batch""" )
_lowerCamelCase : int = state.apply_gradients(grads=__snake_case )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def _snake_case ( __snake_case : Any , **__snake_case : int ):
"""simple docstring"""
_lowerCamelCase : Any = model_inputs.pop("""start_labels""" )
_lowerCamelCase : Any = model_inputs.pop("""end_labels""" )
_lowerCamelCase : Any = model_inputs.pop("""pooled_labels""" )
_lowerCamelCase : Optional[Any] = state.apply_fn(**__snake_case , params=state.params , train=__snake_case )
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = outputs
_lowerCamelCase : Tuple = state.loss_fn(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
_lowerCamelCase : str = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class lowercase__ ( train_state.TrainState ):
__UpperCAmelCase = struct.field(pytree_node=A_ )
@dataclass
class lowercase__ :
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = None
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None) -> Optional[int]:
_lowerCamelCase : Tuple = model.params
_lowerCamelCase : Any = TrainState.create(
apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE , tx=SCREAMING_SNAKE_CASE , loss_fn=SCREAMING_SNAKE_CASE , )
if ckpt_dir is not None:
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[Any] = restore_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
_lowerCamelCase : Optional[Any] = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
_lowerCamelCase , _lowerCamelCase : Optional[Any] = build_tx(**SCREAMING_SNAKE_CASE)
_lowerCamelCase : Union[str, Any] = train_state.TrainState(
step=SCREAMING_SNAKE_CASE , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE , tx=SCREAMING_SNAKE_CASE , opt_state=SCREAMING_SNAKE_CASE , )
_lowerCamelCase : List[Any] = args
_lowerCamelCase : Optional[Any] = data_collator
_lowerCamelCase : Optional[Any] = lr
_lowerCamelCase : Optional[Any] = params
_lowerCamelCase : Optional[Any] = jax_utils.replicate(SCREAMING_SNAKE_CASE)
return state
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> Union[str, Any]:
_lowerCamelCase : Dict = self.args
_lowerCamelCase : List[str] = len(SCREAMING_SNAKE_CASE) // args.batch_size
_lowerCamelCase : Optional[Any] = jax.random.PRNGKey(0)
_lowerCamelCase : List[Any] = jax.random.split(SCREAMING_SNAKE_CASE , jax.device_count())
for epoch in range(args.max_epochs):
_lowerCamelCase : Tuple = jnp.array(0 , dtype=jnp.floataa)
_lowerCamelCase : Tuple = get_batched_dataset(SCREAMING_SNAKE_CASE , args.batch_size , seed=SCREAMING_SNAKE_CASE)
_lowerCamelCase : Dict = 0
for batch in tqdm(SCREAMING_SNAKE_CASE , total=SCREAMING_SNAKE_CASE , desc=F'Running EPOCH-{epoch}'):
_lowerCamelCase : Union[str, Any] = self.data_collator(SCREAMING_SNAKE_CASE)
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.train_step_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
if i % args.logging_steps == 0:
_lowerCamelCase : Optional[int] = jax_utils.unreplicate(state.step)
_lowerCamelCase : int = running_loss.item() / i
_lowerCamelCase : Tuple = self.scheduler_fn(state_step - 1)
_lowerCamelCase : Optional[Any] = self.evaluate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
_lowerCamelCase : Optional[int] = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(SCREAMING_SNAKE_CASE))
self.logger.log(SCREAMING_SNAKE_CASE , commit=SCREAMING_SNAKE_CASE)
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE)
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[Any]:
_lowerCamelCase : Optional[int] = get_batched_dataset(SCREAMING_SNAKE_CASE , self.args.batch_size)
_lowerCamelCase : Dict = len(SCREAMING_SNAKE_CASE) // self.args.batch_size
_lowerCamelCase : str = jnp.array(0 , dtype=jnp.floataa)
_lowerCamelCase : int = 0
for batch in tqdm(SCREAMING_SNAKE_CASE , total=SCREAMING_SNAKE_CASE , desc="""Evaluating ... """):
_lowerCamelCase : int = self.data_collator(SCREAMING_SNAKE_CASE)
_lowerCamelCase : Dict = self.val_step_fn(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE)
running_loss += jax_utils.unreplicate(metrics["""loss"""])
i += 1
return running_loss / i
def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> List[str]:
_lowerCamelCase : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE)
print(F'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """)
self.model_save_fn(SCREAMING_SNAKE_CASE , params=state.params)
with open(os.path.join(SCREAMING_SNAKE_CASE , """opt_state.msgpack""") , """wb""") as f:
f.write(to_bytes(state.opt_state))
joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE , """args.joblib"""))
joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE , """data_collator.joblib"""))
with open(os.path.join(SCREAMING_SNAKE_CASE , """training_state.json""") , """w""") as f:
json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE)
print("""DONE""")
def _snake_case ( __snake_case : Any , __snake_case : Any ):
"""simple docstring"""
print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ )
with open(os.path.join(__snake_case , """flax_model.msgpack""" ) , """rb""" ) as f:
_lowerCamelCase : Dict = from_bytes(state.params , f.read() )
with open(os.path.join(__snake_case , """opt_state.msgpack""" ) , """rb""" ) as f:
_lowerCamelCase : str = from_bytes(state.opt_state , f.read() )
_lowerCamelCase : Optional[Any] = joblib.load(os.path.join(__snake_case , """args.joblib""" ) )
_lowerCamelCase : Optional[int] = joblib.load(os.path.join(__snake_case , """data_collator.joblib""" ) )
with open(os.path.join(__snake_case , """training_state.json""" ) , """r""" ) as f:
_lowerCamelCase : str = json.load(__snake_case )
_lowerCamelCase : Tuple = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def _snake_case ( __snake_case : List[Any] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Any ):
"""simple docstring"""
_lowerCamelCase : List[Any] = num_train_steps - warmup_steps
_lowerCamelCase : Optional[int] = optax.linear_schedule(init_value=__snake_case , end_value=__snake_case , transition_steps=__snake_case )
_lowerCamelCase : List[str] = optax.linear_schedule(init_value=__snake_case , end_value=1E-7 , transition_steps=__snake_case )
_lowerCamelCase : Optional[Any] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def _snake_case ( __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Dict ):
"""simple docstring"""
def weight_decay_mask(__snake_case : Union[str, Any] ):
_lowerCamelCase : Any = traverse_util.flatten_dict(__snake_case )
_lowerCamelCase : List[Any] = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(__snake_case )
_lowerCamelCase : List[str] = scheduler_fn(__snake_case , __snake_case , __snake_case , __snake_case )
_lowerCamelCase : str = optax.adamw(learning_rate=__snake_case , weight_decay=__snake_case , mask=__snake_case )
return tx, lr
| 88 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ = StableDiffusionSAGPipeline
UpperCAmelCase__ = TEXT_TO_IMAGE_PARAMS
UpperCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCAmelCase__ = False
def __lowercase( self ) -> Dict:
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
__UpperCamelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , )
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__UpperCamelCase = CLIPTextModel(_SCREAMING_SNAKE_CASE )
__UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
__UpperCamelCase = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> Any:
if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(_SCREAMING_SNAKE_CASE )
else:
__UpperCamelCase = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE )
__UpperCamelCase = {
'prompt': '.',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 1.0,
'sag_scale': 1.0,
'output_type': 'numpy',
}
return inputs
def __lowercase( self ) -> List[Any]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __lowercase( self ) -> Optional[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowercase( self ) -> Dict:
__UpperCamelCase = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' )
__UpperCamelCase = sag_pipe.to(_SCREAMING_SNAKE_CASE )
sag_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
__UpperCamelCase = '.'
__UpperCamelCase = torch.manual_seed(0 )
__UpperCamelCase = sag_pipe(
[prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
__UpperCamelCase = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __lowercase( self ) -> int:
__UpperCamelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
__UpperCamelCase = sag_pipe.to(_SCREAMING_SNAKE_CASE )
sag_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
__UpperCamelCase = '.'
__UpperCamelCase = torch.manual_seed(0 )
__UpperCamelCase = sag_pipe(
[prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
__UpperCamelCase = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __lowercase( self ) -> List[Any]:
__UpperCamelCase = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
__UpperCamelCase = sag_pipe.to(_SCREAMING_SNAKE_CASE )
sag_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
__UpperCamelCase = '.'
__UpperCamelCase = torch.manual_seed(0 )
__UpperCamelCase = sag_pipe(
[prompt] , width=768 , height=512 , generator=_SCREAMING_SNAKE_CASE , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , )
__UpperCamelCase = output.images
assert image.shape == (1, 512, 768, 3)
| 383 | 0 |
'''simple docstring'''
import string
def _SCREAMING_SNAKE_CASE( snake_case_ : str ) ->str:
'''simple docstring'''
_lowercase : str = ''''''
for i in sequence:
_lowercase : Tuple = ord(snake_case_ )
if 65 <= extract <= 90:
output += chr(1_55 - extract )
elif 97 <= extract <= 1_22:
output += chr(2_19 - extract )
else:
output += i
return output
def _SCREAMING_SNAKE_CASE( snake_case_ : str ) ->str:
'''simple docstring'''
_lowercase : Tuple = string.ascii_letters
_lowercase : Optional[int] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1]
return "".join(
letters_reversed[letters.index(snake_case_ )] if c in letters else c for c in sequence )
def _SCREAMING_SNAKE_CASE( ) ->None:
'''simple docstring'''
from timeit import timeit
print('''Running performance benchmarks...''' )
_lowercase : List[str] = '''from string import printable ; from __main__ import atbash, atbash_slow'''
print(F"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=snake_case_ )} seconds" )
print(F"> atbash(): {timeit('atbash(printable)' , setup=snake_case_ )} seconds" )
if __name__ == "__main__":
for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"):
print(f'''{example} encrypted in atbash: {atbash(example)}''')
benchmark()
| 411 |
'''simple docstring'''
from math import factorial
def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : int ) ->int:
'''simple docstring'''
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError('''Please enter positive integers for n and k where n >= k''' )
return factorial(snake_case_ ) // (factorial(snake_case_ ) * factorial(n - k ))
if __name__ == "__main__":
print(
'The number of five-card hands possible from a standard',
f'''fifty-two card deck is: {combinations(52, 5)}\n''',
)
print(
'If a class of 40 students must be arranged into groups of',
f'''4 for group projects, there are {combinations(40, 4)} ways''',
'to arrange them.\n',
)
print(
'If 10 teams are competing in a Formula One race, there',
f'''are {combinations(10, 3)} ways that first, second and''',
'third place can be awarded.',
)
| 411 | 1 |
def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
if index == number_of_items:
return 0
A_ = 0
A_ = 0
A_ = knapsack(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , index + 1 )
if weights[index] <= max_weight:
A_ = values[index] + knapsack(
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , max_weight - weights[index] , index + 1 )
return max(__UpperCamelCase , __UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod() | 141 |
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class __lowercase ( unittest.TestCase ):
__magic_name__ : int = MODEL_FOR_MASKED_LM_MAPPING
__magic_name__ : Dict = TF_MODEL_FOR_MASKED_LM_MAPPING
def lowerCAmelCase_ ( self ) -> Dict:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def lowerCAmelCase_ ( self ) -> str:
'''simple docstring'''
A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' )
A_ = unmasker('''My name is <mask>''' )
self.assertEqual(
nested_simplify(a__ , decimals=6 ) , [
{'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped'''},
{'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser'''},
] , )
A_ = unmasker('''The largest city in France is <mask>''' )
self.assertEqual(
nested_simplify(a__ , decimals=6 ) , [
{
'''sequence''': '''The largest city in France is grouped''',
'''score''': 2.1E-05,
'''token''': 3_8_0_1_5,
'''token_str''': ''' grouped''',
},
{
'''sequence''': '''The largest city in France is accuser''',
'''score''': 2.1E-05,
'''token''': 2_5_5_0_6,
'''token_str''': ''' accuser''',
},
] , )
A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 )
self.assertEqual(
nested_simplify(a__ , decimals=6 ) , [
{'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''},
{'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''},
{'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 2_9_4_1, '''token_str''': ''' Te'''},
] , )
@require_torch
def lowerCAmelCase_ ( self ) -> Optional[Any]:
'''simple docstring'''
A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' )
A_ = unmasker('''My name is <mask>''' )
self.assertEqual(
nested_simplify(a__ , decimals=6 ) , [
{'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul'''},
{'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''},
] , )
A_ = unmasker('''The largest city in France is <mask>''' )
self.assertEqual(
nested_simplify(a__ , decimals=6 ) , [
{
'''sequence''': '''The largest city in France is Maul''',
'''score''': 2.2E-05,
'''token''': 3_5_6_7_6,
'''token_str''': ''' Maul''',
},
{'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''},
] , )
A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 )
self.assertEqual(
nested_simplify(a__ , decimals=6 ) , [
{'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''},
{'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 2_9_4_1, '''token_str''': ''' Te'''},
{'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''},
] , )
A_ = unmasker('''My name is <mask> <mask>''' , top_k=2 )
self.assertEqual(
nested_simplify(a__ , decimals=6 ) , [
[
{
'''score''': 2.2E-05,
'''token''': 3_5_6_7_6,
'''token_str''': ''' Maul''',
'''sequence''': '''<s>My name is Maul<mask></s>''',
},
{'''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''},
],
[
{
'''score''': 2.2E-05,
'''token''': 3_5_6_7_6,
'''token_str''': ''' Maul''',
'''sequence''': '''<s>My name is<mask> Maul</s>''',
},
{'''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''},
],
] , )
@require_torch_gpu
def lowerCAmelCase_ ( self ) -> Union[str, Any]:
'''simple docstring'''
A_ = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' )
# convert model to fp16
pipe.model.half()
A_ = pipe('''Paris is the [MASK] of France.''' )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(a__ , a__ )
@slow
@require_torch
def lowerCAmelCase_ ( self ) -> str:
'''simple docstring'''
A_ = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' )
self.run_large_test(a__ )
@slow
@require_tf
def lowerCAmelCase_ ( self ) -> List[Any]:
'''simple docstring'''
A_ = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' )
self.run_large_test(a__ )
def lowerCAmelCase_ ( self , a__ ) -> Tuple:
'''simple docstring'''
A_ = unmasker('''My name is <mask>''' )
self.assertEqual(
nested_simplify(a__ ) , [
{'''sequence''': '''My name is John''', '''score''': 0.0_08, '''token''': 6_1_0, '''token_str''': ''' John'''},
{'''sequence''': '''My name is Chris''', '''score''': 0.0_07, '''token''': 1_5_7_3, '''token_str''': ''' Chris'''},
] , )
A_ = unmasker('''The largest city in France is <mask>''' )
self.assertEqual(
nested_simplify(a__ ) , [
{
'''sequence''': '''The largest city in France is Paris''',
'''score''': 0.2_51,
'''token''': 2_2_0_1,
'''token_str''': ''' Paris''',
},
{
'''sequence''': '''The largest city in France is Lyon''',
'''score''': 0.2_14,
'''token''': 1_2_7_9_0,
'''token_str''': ''' Lyon''',
},
] , )
A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 )
self.assertEqual(
nested_simplify(a__ ) , [
{'''sequence''': '''My name is Patrick''', '''score''': 0.0_05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''},
{'''sequence''': '''My name is Clara''', '''score''': 0.0_00, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''},
{'''sequence''': '''My name is Te''', '''score''': 0.0_00, '''token''': 2_9_4_1, '''token_str''': ''' Te'''},
] , )
@require_torch
def lowerCAmelCase_ ( self ) -> List[Any]:
'''simple docstring'''
A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' )
A_ = None
A_ = None
self.run_pipeline_test(a__ , [] )
@require_tf
def lowerCAmelCase_ ( self ) -> List[str]:
'''simple docstring'''
A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' )
A_ = None
A_ = None
self.run_pipeline_test(a__ , [] )
def lowerCAmelCase_ ( self , a__ , a__ , a__ ) -> Any:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' )
A_ = FillMaskPipeline(model=a__ , tokenizer=a__ )
A_ = [
F"This is another {tokenizer.mask_token} test",
]
return fill_masker, examples
def lowerCAmelCase_ ( self , a__ , a__ ) -> Any:
'''simple docstring'''
A_ = fill_masker.tokenizer
A_ = fill_masker.model
A_ = fill_masker(
F"This is a {tokenizer.mask_token}" , )
self.assertEqual(
a__ , [
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
] , )
A_ = fill_masker([F"This is a {tokenizer.mask_token}"] )
self.assertEqual(
a__ , [
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
] , )
A_ = fill_masker([F"This is a {tokenizer.mask_token}", F"Another {tokenizer.mask_token} great test."] )
self.assertEqual(
a__ , [
[
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
],
[
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
],
] , )
with self.assertRaises(a__ ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(a__ ):
fill_masker('''This is''' )
self.run_test_top_k(a__ , a__ )
self.run_test_targets(a__ , a__ )
self.run_test_top_k_targets(a__ , a__ )
self.fill_mask_with_duplicate_targets_and_top_k(a__ , a__ )
self.fill_mask_with_multiple_masks(a__ , a__ )
def lowerCAmelCase_ ( self , a__ , a__ ) -> List[Any]:
'''simple docstring'''
A_ = tokenizer.get_vocab()
A_ = sorted(vocab.keys() )[:2]
# Pipeline argument
A_ = FillMaskPipeline(model=a__ , tokenizer=a__ , targets=a__ )
A_ = fill_masker(F"This is a {tokenizer.mask_token}" )
self.assertEqual(
a__ , [
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
] , )
A_ = {vocab[el] for el in targets}
self.assertEqual({el['''token'''] for el in outputs} , a__ )
A_ = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['''token_str'''] for el in outputs} , set(a__ ) )
# Call argument
A_ = FillMaskPipeline(model=a__ , tokenizer=a__ )
A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ )
self.assertEqual(
a__ , [
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
] , )
A_ = {vocab[el] for el in targets}
self.assertEqual({el['''token'''] for el in outputs} , a__ )
A_ = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['''token_str'''] for el in outputs} , set(a__ ) )
# Score equivalence
A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ )
A_ = [top_mask['''token_str'''] for top_mask in outputs]
A_ = [top_mask['''score'''] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(a__ ) == set(a__ ):
A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ )
A_ = [top_mask['''score'''] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) )
# Raises with invalid
with self.assertRaises(a__ ):
A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(a__ ):
A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=[''''''] )
with self.assertRaises(a__ ):
A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets='''''' )
def lowerCAmelCase_ ( self , a__ , a__ ) -> int:
'''simple docstring'''
A_ = FillMaskPipeline(model=a__ , tokenizer=a__ , top_k=2 )
A_ = fill_masker(F"This is a {tokenizer.mask_token}" )
self.assertEqual(
a__ , [
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
] , )
A_ = FillMaskPipeline(model=a__ , tokenizer=a__ )
A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=2 )
self.assertEqual(
a__ , [
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
] , )
self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) )
def lowerCAmelCase_ ( self , a__ , a__ ) -> str:
'''simple docstring'''
A_ = tokenizer.get_vocab()
A_ = FillMaskPipeline(model=a__ , tokenizer=a__ )
# top_k=2, ntargets=3
A_ = sorted(vocab.keys() )[:3]
A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=2 , targets=a__ )
# If we use the most probably targets, and filter differently, we should still
# have the same results
A_ = [el['''token_str'''] for el in sorted(a__ , key=lambda a__ : x["score"] , reverse=a__ )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(a__ ).issubset(a__ ):
A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=3 , targets=a__ )
# They should yield exactly the same result
self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) )
def lowerCAmelCase_ ( self , a__ , a__ ) -> Union[str, Any]:
'''simple docstring'''
A_ = FillMaskPipeline(model=a__ , tokenizer=a__ )
A_ = tokenizer.get_vocab()
# String duplicates + id duplicates
A_ = sorted(vocab.keys() )[:3]
A_ = [targets[0], targets[1], targets[0], targets[2], targets[1]]
A_ = fill_masker(F"My name is {tokenizer.mask_token}" , targets=a__ , top_k=1_0 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(a__ ) , 3 )
def lowerCAmelCase_ ( self , a__ , a__ ) -> List[Any]:
'''simple docstring'''
A_ = FillMaskPipeline(model=a__ , tokenizer=a__ )
A_ = fill_masker(
F"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}" , top_k=2 )
self.assertEqual(
a__ , [
[
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
],
[
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
],
[
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
{'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )},
],
] , ) | 141 | 1 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
_a : Union[str, Any] = logging.get_logger(__name__)
_a : Tuple = {
'artists_file': 'artists.json',
'lyrics_file': 'lyrics.json',
'genres_file': 'genres.json',
}
_a : str = {
'artists_file': {
'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json',
},
'genres_file': {
'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json',
},
'lyrics_file': {
'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json',
},
}
_a : Union[str, Any] = {
'jukebox': 512,
}
class a_ ( a ):
A__ : str = VOCAB_FILES_NAMES
A__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A__ : Optional[int] = PRETRAINED_LYRIC_TOKENS_SIZES
A__ : int = ['input_ids', 'attention_mask']
def __init__( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int=["v3", "v2", "v2"] , UpperCAmelCase__ : Tuple=512 , UpperCAmelCase__ : Any=5 , UpperCAmelCase__ : Optional[Any]="<|endoftext|>" , **UpperCAmelCase__ : Dict , ):
"""simple docstring"""
snake_case : List[str] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else unk_token
super().__init__(
unk_token=UpperCAmelCase__ , n_genres=UpperCAmelCase__ , version=UpperCAmelCase__ , max_n_lyric_tokens=UpperCAmelCase__ , **UpperCAmelCase__ , )
snake_case : Union[str, Any] = version
snake_case : Union[str, Any] = max_n_lyric_tokens
snake_case : List[str] = n_genres
with open(UpperCAmelCase__ , encoding='''utf-8''' ) as vocab_handle:
snake_case : Tuple = json.load(UpperCAmelCase__ )
with open(UpperCAmelCase__ , encoding='''utf-8''' ) as vocab_handle:
snake_case : Union[str, Any] = json.load(UpperCAmelCase__ )
with open(UpperCAmelCase__ , encoding='''utf-8''' ) as vocab_handle:
snake_case : Union[str, Any] = json.load(UpperCAmelCase__ )
snake_case : Optional[Any] = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'''
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
snake_case : Optional[Any] = oov.replace(r'''\-\'''' , r'''\-+\'''' )
snake_case : List[str] = regex.compile(UpperCAmelCase__ )
snake_case : Tuple = {v: k for k, v in self.artists_encoder.items()}
snake_case : Union[str, Any] = {v: k for k, v in self.genres_encoder.items()}
snake_case : Tuple = {v: k for k, v in self.lyrics_encoder.items()}
@property
def lowerCAmelCase( self : str ):
"""simple docstring"""
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def lowerCAmelCase( self : List[Any] ):
"""simple docstring"""
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ):
"""simple docstring"""
snake_case : str = [self.artists_encoder.get(UpperCAmelCase__ , 0 ) for artist in list_artists]
for genres in range(len(UpperCAmelCase__ ) ):
snake_case : Optional[int] = [self.genres_encoder.get(UpperCAmelCase__ , 0 ) for genre in list_genres[genres]]
snake_case : Optional[int] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
snake_case : List[Any] = [[self.lyrics_encoder.get(UpperCAmelCase__ , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def lowerCAmelCase( self : List[Any] , UpperCAmelCase__ : str ):
"""simple docstring"""
return list(UpperCAmelCase__ )
def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Optional[Any] ):
"""simple docstring"""
snake_case , snake_case , snake_case : Tuple = self.prepare_for_tokenization(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
snake_case : Optional[int] = self._tokenize(UpperCAmelCase__ )
return artist, genre, lyrics
def lowerCAmelCase( self : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False ):
"""simple docstring"""
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
snake_case : List[str] = artists[idx].lower()
snake_case : Optional[Any] = [genres[idx].lower()]
else:
snake_case : List[Any] = self._normalize(artists[idx] ) + '''.v2'''
snake_case : int = [
self._normalize(UpperCAmelCase__ ) + '''.v2''' for genre in genres[idx].split('''_''' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
snake_case : Any = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' )
snake_case : int = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'''
snake_case : Dict = {vocab[index]: index + 1 for index in range(len(UpperCAmelCase__ ) )}
snake_case : List[str] = 0
snake_case : Tuple = len(UpperCAmelCase__ ) + 1
snake_case : Optional[int] = self.vocab
snake_case : Optional[int] = {v: k for k, v in self.vocab.items()}
snake_case : int = ''''''
else:
snake_case : Dict = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' )
snake_case : int = self._run_strip_accents(UpperCAmelCase__ )
snake_case : List[str] = lyrics.replace('''\\''' , '''\n''' )
snake_case : List[str] = self.out_of_vocab.sub('''''' , UpperCAmelCase__ ), [], []
return artists, genres, lyrics
def lowerCAmelCase( self : List[str] , UpperCAmelCase__ : str ):
"""simple docstring"""
snake_case : Optional[Any] = unicodedata.normalize('''NFD''' , UpperCAmelCase__ )
snake_case : Any = []
for char in text:
snake_case : int = unicodedata.category(UpperCAmelCase__ )
if cat == "Mn":
continue
output.append(UpperCAmelCase__ )
return "".join(UpperCAmelCase__ )
def lowerCAmelCase( self : Optional[Any] , UpperCAmelCase__ : str ):
"""simple docstring"""
snake_case : Optional[Any] = (
[chr(UpperCAmelCase__ ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )]
+ [chr(UpperCAmelCase__ ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )]
+ [chr(UpperCAmelCase__ ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )]
+ ['''.''']
)
snake_case : Optional[Any] = frozenset(UpperCAmelCase__ )
snake_case : Dict = re.compile(r'''_+''' )
snake_case : int = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] )
snake_case : List[Any] = pattern.sub('''_''' , UpperCAmelCase__ ).strip('''_''' )
return text
def lowerCAmelCase( self : Dict , UpperCAmelCase__ : List[str] ):
"""simple docstring"""
return " ".join(UpperCAmelCase__ )
def lowerCAmelCase( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : bool = False ):
"""simple docstring"""
# Convert to TensorType
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
snake_case : List[str] = TensorType(UpperCAmelCase__ )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' )
import tensorflow as tf
snake_case : Dict = tf.constant
snake_case : List[str] = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' )
import torch
snake_case : str = torch.tensor
snake_case : List[Any] = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' )
import jax.numpy as jnp # noqa: F811
snake_case : Optional[int] = jnp.array
snake_case : Optional[Any] = _is_jax
else:
snake_case : int = np.asarray
snake_case : Union[str, Any] = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
snake_case : Optional[int] = [inputs]
if not is_tensor(UpperCAmelCase__ ):
snake_case : Union[str, Any] = as_tensor(UpperCAmelCase__ )
except: # noqa E722
raise ValueError(
'''Unable to create tensor, you should probably activate truncation and/or padding '''
'''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' )
return inputs
def __call__( self : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any]="" , UpperCAmelCase__ : int="pt" ):
"""simple docstring"""
snake_case : Optional[Any] = [0, 0, 0]
snake_case : Optional[int] = [artist] * len(self.version )
snake_case : Any = [genres] * len(self.version )
snake_case , snake_case , snake_case : Dict = self.tokenize(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
snake_case , snake_case , snake_case : List[Any] = self._convert_token_to_id(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
snake_case : Union[str, Any] = [-INFINITY] * len(full_tokens[-1] )
snake_case : Optional[Any] = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=UpperCAmelCase__ )
for i in range(len(self.version ) )
]
return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} )
def lowerCAmelCase( self : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(UpperCAmelCase__ ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
snake_case : Tuple = os.path.join(
UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] )
with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=UpperCAmelCase__ ) )
snake_case : Any = os.path.join(
UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] )
with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=UpperCAmelCase__ ) )
snake_case : Optional[Any] = os.path.join(
UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] )
with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=UpperCAmelCase__ ) )
return (artists_file, genres_file, lyrics_file)
def lowerCAmelCase( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ):
"""simple docstring"""
snake_case : List[str] = self.artists_decoder.get(UpperCAmelCase__ )
snake_case : int = [self.genres_decoder.get(UpperCAmelCase__ ) for genre in genres_index]
snake_case : int = [self.lyrics_decoder.get(UpperCAmelCase__ ) for character in lyric_index]
return artist, genres, lyrics
| 84 |
import argparse
import requests
import torch
from PIL import Image
from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor
def a_ ( __magic_name__ ) -> List[Any]:
"""simple docstring"""
if "cls_token" in name:
snake_case : Tuple = name.replace('''cls_token''' , '''vit.embeddings.cls_token''' )
if "mask_token" in name:
snake_case : Optional[int] = name.replace('''mask_token''' , '''decoder.mask_token''' )
if "decoder_pos_embed" in name:
snake_case : List[str] = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' )
if "pos_embed" in name and "decoder" not in name:
snake_case : List[str] = name.replace('''pos_embed''' , '''vit.embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
snake_case : List[Any] = name.replace('''patch_embed.proj''' , '''vit.embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
snake_case : int = name.replace('''patch_embed.norm''' , '''vit.embeddings.norm''' )
if "decoder_blocks" in name:
snake_case : int = name.replace('''decoder_blocks''' , '''decoder.decoder_layers''' )
if "blocks" in name:
snake_case : Optional[Any] = name.replace('''blocks''' , '''vit.encoder.layer''' )
if "attn.proj" in name:
snake_case : str = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
snake_case : Any = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
snake_case : List[str] = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
snake_case : Tuple = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
snake_case : Tuple = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
snake_case : Tuple = name.replace('''mlp.fc2''' , '''output.dense''' )
if "decoder_embed" in name:
snake_case : Dict = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' )
if "decoder_norm" in name:
snake_case : Dict = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' )
if "decoder_pred" in name:
snake_case : Dict = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' )
if "norm.weight" in name and "decoder" not in name:
snake_case : Optional[int] = name.replace('''norm.weight''' , '''vit.layernorm.weight''' )
if "norm.bias" in name and "decoder" not in name:
snake_case : List[str] = name.replace('''norm.bias''' , '''vit.layernorm.bias''' )
return name
def a_ ( __magic_name__ , __magic_name__ ) -> str:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
snake_case : Union[str, Any] = orig_state_dict.pop(__magic_name__ )
if "qkv" in key:
snake_case : Optional[int] = key.split('''.''' )
snake_case : int = int(key_split[1] )
if "decoder_blocks" in key:
snake_case : List[str] = config.decoder_hidden_size
snake_case : List[Any] = '''decoder.decoder_layers.'''
if "weight" in key:
snake_case : str = val[:dim, :]
snake_case : Optional[Any] = val[dim : dim * 2, :]
snake_case : Any = val[-dim:, :]
elif "bias" in key:
snake_case : Optional[Any] = val[:dim]
snake_case : List[Any] = val[dim : dim * 2]
snake_case : List[Any] = val[-dim:]
else:
snake_case : Optional[int] = config.hidden_size
snake_case : Tuple = '''vit.encoder.layer.'''
if "weight" in key:
snake_case : Optional[Any] = val[:dim, :]
snake_case : str = val[dim : dim * 2, :]
snake_case : Union[str, Any] = val[-dim:, :]
elif "bias" in key:
snake_case : Tuple = val[:dim]
snake_case : int = val[dim : dim * 2]
snake_case : Optional[Any] = val[-dim:]
else:
snake_case : Optional[Any] = val
return orig_state_dict
def a_ ( __magic_name__ , __magic_name__ ) -> Any:
"""simple docstring"""
snake_case : List[str] = ViTMAEConfig()
if "large" in checkpoint_url:
snake_case : str = 1_024
snake_case : Tuple = 4_096
snake_case : Optional[Any] = 24
snake_case : List[Any] = 16
elif "huge" in checkpoint_url:
snake_case : Tuple = 14
snake_case : int = 1_280
snake_case : Dict = 5_120
snake_case : Tuple = 32
snake_case : Optional[Any] = 16
snake_case : Optional[Any] = ViTMAEForPreTraining(__magic_name__ )
snake_case : Optional[Any] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''model''']
snake_case : int = ViTMAEImageProcessor(size=config.image_size )
snake_case : Dict = convert_state_dict(__magic_name__ , __magic_name__ )
model.load_state_dict(__magic_name__ )
model.eval()
snake_case : Tuple = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg'''
snake_case : List[Any] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
snake_case : Dict = ViTMAEImageProcessor(size=config.image_size )
snake_case : str = image_processor(images=__magic_name__ , return_tensors='''pt''' )
# forward pass
torch.manual_seed(2 )
snake_case : Union[str, Any] = model(**__magic_name__ )
snake_case : Optional[Any] = outputs.logits
if "large" in checkpoint_url:
snake_case : Any = torch.tensor(
[[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] )
elif "huge" in checkpoint_url:
snake_case : List[Any] = torch.tensor(
[[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] )
else:
snake_case : Dict = torch.tensor(
[[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] )
# verify logits
assert torch.allclose(logits[0, :3, :3] , __magic_name__ , atol=1e-4 )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__magic_name__ )
if __name__ == "__main__":
_a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth',
type=str,
help='URL of the checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
_a : str = parser.parse_args()
convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 84 | 1 |
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase = logging.get_logger(__name__)
lowerCAmelCase = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
lowerCAmelCase = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
for attribute in key.split('''.''' ):
lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
lowercase__ = hf_pointer.shape
assert hf_shape == value.shape, (
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}'
)
if weight_type == "weight":
lowercase__ = value
elif weight_type == "weight_g":
lowercase__ = value
elif weight_type == "weight_v":
lowercase__ = value
elif weight_type == "bias":
lowercase__ = value
else:
lowercase__ = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = []
lowercase__ = fairseq_model.state_dict()
lowercase__ = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
lowercase__ = None
for name, value in fairseq_dict.items():
lowercase__ = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , )
lowercase__ = True
elif name.split('''.''' )[0] == "proj":
lowercase__ = fairseq_model.proj
lowercase__ = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
lowercase__ = True
if "*" in mapped_key:
lowercase__ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2]
lowercase__ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
lowercase__ = '''weight_g'''
elif "weight_v" in name:
lowercase__ = '''weight_v'''
elif "bias" in name:
lowercase__ = '''bias'''
elif "weight" in name:
lowercase__ = '''weight'''
else:
lowercase__ = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(f'Unused weights: {unused_weights}' )
return proj_weight
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = full_name.split('''conv_layers.''' )[-1]
lowercase__ = name.split('''.''' )
lowercase__ = int(items[0] )
lowercase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
lowercase__ = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
lowercase__ = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
lowercase__ = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
lowercase__ = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ , lowercase__ = emb.weight.shape
lowercase__ = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE )
lowercase__ = emb.weight.data
return lin_layer
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f:
lowercase__ = f.readlines()
lowercase__ = [line.split(''' ''' )[0] for line in lines]
lowercase__ = len(SCREAMING_SNAKE_CASE )
lowercase__ = {
'''<s>''': 0,
'''<pad>''': 1,
'''</s>''': 2,
'''<unk>''': 3,
}
vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
lowercase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE )
lowercase__ = SpeechaTextaConfig.from_pretrained(
SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE )
lowercase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
lowercase__ = model[0].eval()
# set weights for wav2vec2 encoder
lowercase__ = WavaVecaModel(SCREAMING_SNAKE_CASE )
lowercase__ = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE )
lowercase__ = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE )
lowercase__ , lowercase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE )
# set output linear layer
unexpected_keys.remove('''embed_out''' )
lowercase__ = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' )
logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' )
lowercase__ = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
lowercase__ = False
# add projection layer
lowercase__ = nn.Parameter(projection_layer.weight )
lowercase__ = nn.Parameter(projection_layer.bias )
lowercase__ = create_vocab_dict(SCREAMING_SNAKE_CASE )
with open(os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) , '''w''' ) as fp:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
lowercase__ = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , '''vocab.json''' ) )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
lowercase__ = hf_wavavec.config.to_dict()
lowercase__ = tokenizer.pad_token_id
lowercase__ = tokenizer.bos_token_id
lowercase__ = tokenizer.eos_token_id
lowercase__ = '''speech_to_text_2'''
lowercase__ = '''wav2vec2'''
lowercase__ = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument(
'--encoder_config_path',
default='facebook/wav2vec2-large-lv60',
type=str,
help='Path to hf encoder wav2vec2 checkpoint config',
)
parser.add_argument(
'--decoder_config_path',
default='facebook/s2t-small-mustc-en-fr-st',
type=str,
help='Path to hf decoder s2t checkpoint config',
)
parser.add_argument('--vocab_size', default=1_0224, type=int, help='Vocab size of decoder')
parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers')
lowerCAmelCase = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 43 |
'''simple docstring'''
from __future__ import annotations
class _a :
'''simple docstring'''
def __init__( self ,__a = 0 ) -> str:
snake_case : List[Any] = key
def snake_case_ ( self ,__a ,__a ) -> list[str]:
assert isinstance(__a ,__a ) and isinstance(__a ,__a )
snake_case : Tuple = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(__a ) ^ key ) for ch in content]
def snake_case_ ( self ,__a ,__a ) -> list[str]:
assert isinstance(__a ,__a ) and isinstance(__a ,__a )
snake_case : List[Any] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(__a ) ^ key ) for ch in content]
def snake_case_ ( self ,__a ,__a = 0 ) -> str:
assert isinstance(__a ,__a ) and isinstance(__a ,__a )
snake_case : List[Any] = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
snake_case : List[str] = """"""
for ch in content:
ans += chr(ord(__a ) ^ key )
return ans
def snake_case_ ( self ,__a ,__a = 0 ) -> str:
assert isinstance(__a ,__a ) and isinstance(__a ,__a )
snake_case : Any = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
snake_case : List[str] = """"""
for ch in content:
ans += chr(ord(__a ) ^ key )
return ans
def snake_case_ ( self ,__a ,__a = 0 ) -> bool:
assert isinstance(__a ,__a ) and isinstance(__a ,__a )
try:
with open(__a ) as fin, open("""encrypt.out""" ,"""w+""" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(__a ,__a ) )
except OSError:
return False
return True
def snake_case_ ( self ,__a ,__a ) -> bool:
assert isinstance(__a ,__a ) and isinstance(__a ,__a )
try:
with open(__a ) as fin, open("""decrypt.out""" ,"""w+""" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(__a ,__a ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 116 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCAmelCase :
def __init__( self , snake_case__ , snake_case__=13 , snake_case__=[30, 30] , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.0_2 , snake_case__=3 , snake_case__=None , snake_case__=8 , snake_case__=10 , ):
lowerCAmelCase : str = parent
lowerCAmelCase : Tuple = batch_size
lowerCAmelCase : List[Any] = image_size
lowerCAmelCase : List[Any] = patch_size
lowerCAmelCase : Dict = num_channels
lowerCAmelCase : int = is_training
lowerCAmelCase : Optional[Any] = use_labels
lowerCAmelCase : Optional[int] = hidden_size
lowerCAmelCase : List[Any] = num_hidden_layers
lowerCAmelCase : int = num_attention_heads
lowerCAmelCase : Any = intermediate_size
lowerCAmelCase : Union[str, Any] = hidden_act
lowerCAmelCase : Optional[int] = hidden_dropout_prob
lowerCAmelCase : Optional[int] = attention_probs_dropout_prob
lowerCAmelCase : Optional[Any] = type_sequence_label_size
lowerCAmelCase : Any = initializer_range
lowerCAmelCase : str = num_labels
lowerCAmelCase : Any = scope
lowerCAmelCase : Dict = n_targets
lowerCAmelCase : Tuple = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
lowerCAmelCase : List[Any] = (image_size[1] // patch_size) * (image_size[0] // patch_size)
lowerCAmelCase : int = num_patches + 1 + self.num_detection_tokens
def lowercase ( self ):
lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
lowerCAmelCase : int = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
lowerCAmelCase : Optional[int] = []
for i in range(self.batch_size ):
lowerCAmelCase : Tuple = {}
lowerCAmelCase : Dict = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=snake_case__ )
lowerCAmelCase : List[str] = torch.rand(self.n_targets , 4 , device=snake_case__ )
labels.append(snake_case__ )
lowerCAmelCase : Any = self.get_config()
return config, pixel_values, labels
def lowercase ( self ):
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ):
lowerCAmelCase : Any = YolosModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
lowerCAmelCase : List[Any] = model(snake_case__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) )
def lowercase ( self , snake_case__ , snake_case__ , snake_case__ ):
lowerCAmelCase : Optional[int] = YolosForObjectDetection(snake_case__ )
model.to(snake_case__ )
model.eval()
lowerCAmelCase : Union[str, Any] = model(pixel_values=snake_case__ )
lowerCAmelCase : Dict = model(snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
lowerCAmelCase : str = model(pixel_values=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
def lowercase ( self ):
lowerCAmelCase : List[str] = self.prepare_config_and_inputs()
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = config_and_inputs
lowerCAmelCase : Dict = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase ( a , a , unittest.TestCase ):
_lowerCamelCase : str = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
_lowerCamelCase : str = (
{"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {}
)
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Dict = False
_lowerCamelCase : Optional[Any] = False
_lowerCamelCase : Union[str, Any] = False
def lowercase ( self , snake_case__ , snake_case__ , snake_case__=False ):
lowerCAmelCase : Any = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
lowerCAmelCase : Optional[Any] = []
for i in range(self.model_tester.batch_size ):
lowerCAmelCase : List[str] = {}
lowerCAmelCase : Tuple = torch.ones(
size=(self.model_tester.n_targets,) , device=snake_case__ , dtype=torch.long )
lowerCAmelCase : Any = torch.ones(
self.model_tester.n_targets , 4 , device=snake_case__ , dtype=torch.float )
labels.append(snake_case__ )
lowerCAmelCase : str = labels
return inputs_dict
def lowercase ( self ):
lowerCAmelCase : int = YolosModelTester(self )
lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 )
def lowercase ( self ):
self.config_tester.run_common_tests()
def lowercase ( self ):
# YOLOS does not use inputs_embeds
pass
def lowercase ( self ):
lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase : Union[str, Any] = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) )
def lowercase ( self ):
lowerCAmelCase , lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase : List[Any] = model_class(snake_case__ )
lowerCAmelCase : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()]
lowerCAmelCase : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , snake_case__ )
def lowercase ( self ):
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def lowercase ( self ):
lowerCAmelCase , lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase : Union[str, Any] = True
# in YOLOS, the seq_len is different
lowerCAmelCase : Any = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
lowerCAmelCase : List[str] = True
lowerCAmelCase : Optional[Any] = False
lowerCAmelCase : int = True
lowerCAmelCase : Dict = model_class(snake_case__ )
model.to(snake_case__ )
model.eval()
with torch.no_grad():
lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) )
lowerCAmelCase : Any = outputs.attentions
self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowerCAmelCase : str = True
lowerCAmelCase : List[str] = model_class(snake_case__ )
model.to(snake_case__ )
model.eval()
with torch.no_grad():
lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) )
lowerCAmelCase : Any = outputs.attentions
self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
lowerCAmelCase : Optional[int] = len(snake_case__ )
# Check attention is always last and order is fine
lowerCAmelCase : Tuple = True
lowerCAmelCase : Any = True
lowerCAmelCase : Any = model_class(snake_case__ )
model.to(snake_case__ )
model.eval()
with torch.no_grad():
lowerCAmelCase : List[str] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) )
lowerCAmelCase : Dict = 1
self.assertEqual(out_len + added_hidden_states , len(snake_case__ ) )
lowerCAmelCase : Optional[Any] = outputs.attentions
self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def lowercase ( self ):
def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ):
lowerCAmelCase : Optional[int] = model_class(snake_case__ )
model.to(snake_case__ )
model.eval()
with torch.no_grad():
lowerCAmelCase : str = model(**self._prepare_for_class(snake_case__ , snake_case__ ) )
lowerCAmelCase : Optional[Any] = outputs.hidden_states
lowerCAmelCase : Dict = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(snake_case__ ) , snake_case__ )
# YOLOS has a different seq_length
lowerCAmelCase : Union[str, Any] = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
lowerCAmelCase , lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase : Any = True
check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase : Dict = True
check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ )
def lowercase ( self ):
lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*snake_case__ )
@slow
def lowercase ( self ):
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase : List[Any] = YolosModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def __UpperCamelCase ( ) -> Dict:
"""simple docstring"""
lowerCAmelCase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class lowerCAmelCase ( unittest.TestCase ):
@cached_property
def lowercase ( self ):
return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None
@slow
def lowercase ( self ):
lowerCAmelCase : Optional[int] = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(snake_case__ )
lowerCAmelCase : Optional[Any] = self.default_image_processor
lowerCAmelCase : List[Any] = prepare_img()
lowerCAmelCase : List[Any] = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ )
# forward pass
with torch.no_grad():
lowerCAmelCase : Optional[int] = model(inputs.pixel_values )
# verify outputs
lowerCAmelCase : Optional[Any] = torch.Size((1, 100, 92) )
self.assertEqual(outputs.logits.shape , snake_case__ )
lowerCAmelCase : Any = torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=snake_case__ , )
lowerCAmelCase : Dict = torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=snake_case__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , snake_case__ , atol=1e-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , snake_case__ , atol=1e-4 ) )
# verify postprocessing
lowerCAmelCase : Tuple = image_processor.post_process_object_detection(
snake_case__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0]
lowerCAmelCase : Dict = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(snake_case__ )
lowerCAmelCase : int = [75, 75, 17, 63, 17]
lowerCAmelCase : str = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(snake_case__ )
self.assertEqual(len(results['scores'] ) , 5 )
self.assertTrue(torch.allclose(results['scores'] , snake_case__ , atol=1e-4 ) )
self.assertSequenceEqual(results['labels'].tolist() , snake_case__ )
self.assertTrue(torch.allclose(results['boxes'][0, :] , snake_case__ ) )
| 646 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __UpperCamelCase ( _A : Dict ) -> int:
"""simple docstring"""
lowerCAmelCase : Tuple = []
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight",
F"stage{idx}.patch_embed.proj.weight",
) )
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias",
F"stage{idx}.patch_embed.proj.bias",
) )
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight",
F"stage{idx}.patch_embed.norm.weight",
) )
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias",
F"stage{idx}.patch_embed.norm.bias",
) )
return embed
def __UpperCamelCase ( _A : List[Any] , _A : Dict ) -> Any:
"""simple docstring"""
lowerCAmelCase : str = []
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight",
F"stage{idx}.blocks.{cnt}.attn.proj_q.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias",
F"stage{idx}.blocks.{cnt}.attn.proj_q.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight",
F"stage{idx}.blocks.{cnt}.attn.proj_k.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias",
F"stage{idx}.blocks.{cnt}.attn.proj_k.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight",
F"stage{idx}.blocks.{cnt}.attn.proj_v.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias",
F"stage{idx}.blocks.{cnt}.attn.proj_v.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight",
F"stage{idx}.blocks.{cnt}.attn.proj.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias",
F"stage{idx}.blocks.{cnt}.attn.proj.bias",
) )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") )
return attention_weights
def __UpperCamelCase ( _A : Optional[int] ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase : Optional[int] = []
token.append((F"cvt.encoder.stages.{idx}.cls_token", 'stage2.cls_token') )
return token
def __UpperCamelCase ( ) -> int:
"""simple docstring"""
lowerCAmelCase : List[Any] = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __UpperCamelCase ( _A : str , _A : Optional[Any] , _A : Dict , _A : str ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase : List[str] = 'imagenet-1k-id2label.json'
lowerCAmelCase : Tuple = 10_00
lowerCAmelCase : str = 'huggingface/label-files'
lowerCAmelCase : List[Any] = num_labels
lowerCAmelCase : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) )
lowerCAmelCase : List[str] = {int(_A ): v for k, v in idalabel.items()}
lowerCAmelCase : List[str] = idalabel
lowerCAmelCase : str = {v: k for k, v in idalabel.items()}
lowerCAmelCase : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
lowerCAmelCase : List[str] = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
lowerCAmelCase : Tuple = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
lowerCAmelCase : Any = [2, 2, 20]
lowerCAmelCase : List[str] = [3, 12, 16]
lowerCAmelCase : List[Any] = [1_92, 7_68, 10_24]
lowerCAmelCase : Union[str, Any] = CvtForImageClassification(_A )
lowerCAmelCase : str = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
lowerCAmelCase : Optional[Any] = image_size
lowerCAmelCase : List[Any] = torch.load(_A , map_location=torch.device('cpu' ) )
lowerCAmelCase : str = OrderedDict()
lowerCAmelCase : int = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
lowerCAmelCase : List[str] = list_of_state_dict + cls_token(_A )
lowerCAmelCase : Optional[Any] = list_of_state_dict + embeddings(_A )
for cnt in range(config.depth[idx] ):
lowerCAmelCase : List[Any] = list_of_state_dict + attention(_A , _A )
lowerCAmelCase : List[str] = list_of_state_dict + final()
for gg in list_of_state_dict:
print(_A )
for i in range(len(_A ) ):
lowerCAmelCase : Tuple = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(_A )
model.save_pretrained(_A )
image_processor.save_pretrained(_A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
_lowerCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'--cvt_model',
default='cvt-w24',
type=str,
help='Name of the cvt model you\'d like to convert.',
)
parser.add_argument(
'--image_size',
default=384,
type=int,
help='Input Image Size',
)
parser.add_argument(
'--cvt_file_name',
default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth',
type=str,
help='Input Image Size',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
_lowerCAmelCase : str = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 646 | 1 |
import numpy as np
class A :
def __init__( self: Tuple ) -> Any:
'''simple docstring'''
UpperCAmelCase_ =(0, 0)
UpperCAmelCase_ =None
UpperCAmelCase_ =0
UpperCAmelCase_ =0
UpperCAmelCase_ =0
def __eq__( self: List[Any] , _lowerCAmelCase: Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return self.position == cell.position
def lowerCAmelCase__ ( self: int ) -> Optional[int]:
'''simple docstring'''
print(self.position )
class A :
def __init__( self: Dict , _lowerCAmelCase: Optional[int]=(5, 5) ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ =np.zeros(_lowerCAmelCase )
UpperCAmelCase_ =world_size[0]
UpperCAmelCase_ =world_size[1]
def lowerCAmelCase__ ( self: int ) -> Dict:
'''simple docstring'''
print(self.w )
def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: List[Any] ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ =[
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
UpperCAmelCase_ =cell.position[0]
UpperCAmelCase_ =cell.position[1]
UpperCAmelCase_ =[]
for n in neughbour_cord:
UpperCAmelCase_ =current_x + n[0]
UpperCAmelCase_ =current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
UpperCAmelCase_ =Cell()
UpperCAmelCase_ =(x, y)
UpperCAmelCase_ =cell
neighbours.append(_lowerCAmelCase )
return neighbours
def a__ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
UpperCAmelCase_ =[]
UpperCAmelCase_ =[]
_open.append(lowercase__ )
while _open:
UpperCAmelCase_ =np.argmin([n.f for n in _open] )
UpperCAmelCase_ =_open[min_f]
_closed.append(_open.pop(lowercase__ ) )
if current == goal:
break
for n in world.get_neigbours(lowercase__ ):
for c in _closed:
if c == n:
continue
UpperCAmelCase_ =current.g + 1
UpperCAmelCase_ , UpperCAmelCase_ =n.position
UpperCAmelCase_ , UpperCAmelCase_ =goal.position
UpperCAmelCase_ =(ya - ya) ** 2 + (xa - xa) ** 2
UpperCAmelCase_ =n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(lowercase__ )
UpperCAmelCase_ =[]
while current.parent is not None:
path.append(current.position )
UpperCAmelCase_ =current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
__lowercase : List[Any] =Gridworld()
# Start position and goal
__lowercase : List[Any] =Cell()
__lowercase : List[Any] =(0, 0)
__lowercase : str =Cell()
__lowercase : Tuple =(4, 4)
print(f"""path from {start.position} to {goal.position}""")
__lowercase : str =astar(world, start, goal)
# Just for visual reasons.
for i in s:
__lowercase : Optional[int] =1
print(world.w)
| 54 |
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class lowerCamelCase_ ( lowerCAmelCase__ ):
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = None , **snake_case_ , ) -> Dict:
'''simple docstring'''
super().__init__(
snake_case_ , split=snake_case_ , features=snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ , streaming=snake_case_ , num_proc=snake_case_ , **snake_case_ , )
__lowercase = path_or_paths if isinstance(snake_case_ , snake_case_ ) else {self.split: path_or_paths}
__lowercase = Text(
cache_dir=snake_case_ , data_files=snake_case_ , features=snake_case_ , **snake_case_ , )
def A ( self ) -> int:
'''simple docstring'''
if self.streaming:
__lowercase = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
__lowercase = None
__lowercase = None
__lowercase = None
__lowercase = None
self.builder.download_and_prepare(
download_config=snake_case_ , download_mode=snake_case_ , verification_mode=snake_case_ , base_path=snake_case_ , num_proc=self.num_proc , )
__lowercase = self.builder.as_dataset(
split=self.split , verification_mode=snake_case_ , in_memory=self.keep_in_memory )
return dataset
| 639 | 0 |
'''simple docstring'''
from typing import Dict, Optional
import numpy as np
import datasets
a_ = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n"
a_ = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n"
a_ = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}"
def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = False, ):
"""simple docstring"""
if label_map is not None:
for old_id, new_id in label_map.items():
snake_case_ : int = new_id
# turn into Numpy arrays
snake_case_ : int = np.array(__SCREAMING_SNAKE_CASE )
snake_case_ : Any = np.array(__SCREAMING_SNAKE_CASE )
if reduce_labels:
snake_case_ : str = 2_5_5
snake_case_ : str = label - 1
snake_case_ : List[Any] = 2_5_5
snake_case_ : Union[str, Any] = label != ignore_index
snake_case_ : Dict = np.not_equal(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE )
snake_case_ : Tuple = pred_label[mask]
snake_case_ : Any = np.array(__SCREAMING_SNAKE_CASE )[mask]
snake_case_ : List[str] = pred_label[pred_label == label]
snake_case_ : int = np.histogram(__SCREAMING_SNAKE_CASE, bins=__SCREAMING_SNAKE_CASE, range=(0, num_labels - 1) )[0]
snake_case_ : Tuple = np.histogram(__SCREAMING_SNAKE_CASE, bins=__SCREAMING_SNAKE_CASE, range=(0, num_labels - 1) )[0]
snake_case_ : List[Any] = np.histogram(__SCREAMING_SNAKE_CASE, bins=__SCREAMING_SNAKE_CASE, range=(0, num_labels - 1) )[0]
snake_case_ : List[Any] = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = False, ):
"""simple docstring"""
snake_case_ : List[Any] = np.zeros((num_labels,), dtype=np.floataa )
snake_case_ : List[str] = np.zeros((num_labels,), dtype=np.floataa )
snake_case_ : int = np.zeros((num_labels,), dtype=np.floataa )
snake_case_ : int = np.zeros((num_labels,), dtype=np.floataa )
for result, gt_seg_map in zip(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ):
snake_case_ : int = intersect_and_union(
__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = False, ):
"""simple docstring"""
snake_case_ : Tuple = total_intersect_and_union(
__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE )
# compute metrics
snake_case_ : Union[str, Any] = {}
snake_case_ : int = total_area_intersect.sum() / total_area_label.sum()
snake_case_ : str = total_area_intersect / total_area_union
snake_case_ : Union[str, Any] = total_area_intersect / total_area_label
snake_case_ : List[str] = np.nanmean(__SCREAMING_SNAKE_CASE )
snake_case_ : str = np.nanmean(__SCREAMING_SNAKE_CASE )
snake_case_ : Any = all_acc
snake_case_ : Union[str, Any] = iou
snake_case_ : Tuple = acc
if nan_to_num is not None:
snake_case_ : str = {metric: np.nan_to_num(__SCREAMING_SNAKE_CASE, nan=__SCREAMING_SNAKE_CASE ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase_ ( datasets.Metric ):
def snake_case__ ( self):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))),
"references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))),
}) , reference_urls=[
"https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"
] , )
def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ):
snake_case_ : Optional[Any] = mean_iou(
results=lowercase_ , gt_seg_maps=lowercase_ , num_labels=lowercase_ , ignore_index=lowercase_ , nan_to_num=lowercase_ , label_map=lowercase_ , reduce_labels=lowercase_ , )
return iou_result
| 710 |
'''simple docstring'''
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
a_ = "src/diffusers"
a_ = "."
# This is to make sure the diffusers module imported is the one in the repo.
a_ = importlib.util.spec_from_file_location(
"diffusers",
os.path.join(DIFFUSERS_PATH, "__init__.py"),
submodule_search_locations=[DIFFUSERS_PATH],
)
a_ = spec.loader.load_module()
def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return line.startswith(__SCREAMING_SNAKE_CASE ) or len(__SCREAMING_SNAKE_CASE ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$", __SCREAMING_SNAKE_CASE ) is not None
def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
snake_case_ : Optional[int] = object_name.split("." )
snake_case_ : Dict = 0
# First let's find the module where our object lives.
snake_case_ : int = parts[i]
while i < len(__SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE, f'{module}.py' ) ):
i += 1
if i < len(__SCREAMING_SNAKE_CASE ):
snake_case_ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE, parts[i] )
if i >= len(__SCREAMING_SNAKE_CASE ):
raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' )
with open(os.path.join(__SCREAMING_SNAKE_CASE, f'{module}.py' ), "r", encoding="utf-8", newline="\n" ) as f:
snake_case_ : str = f.readlines()
# Now let's find the class / func in the code!
snake_case_ : Any = ""
snake_case_ : Optional[Any] = 0
for name in parts[i + 1 :]:
while (
line_index < len(__SCREAMING_SNAKE_CASE ) and re.search(rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(__SCREAMING_SNAKE_CASE ):
raise ValueError(f' {object_name} does not match any function or class in {module}.' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
snake_case_ : Union[str, Any] = line_index
while line_index < len(__SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index], __SCREAMING_SNAKE_CASE ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
snake_case_ : Dict = lines[start_index:line_index]
return "".join(__SCREAMING_SNAKE_CASE )
a_ = re.compile(R"^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)")
a_ = re.compile(R"^\s*(\S+)->(\S+)(\s+.*|$)")
a_ = re.compile(R"<FILL\s+[^>]*>")
def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
snake_case_ : str = code.split("\n" )
snake_case_ : Union[str, Any] = 0
while idx < len(__SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(__SCREAMING_SNAKE_CASE ):
return re.search(r"^(\s*)\S", lines[idx] ).groups()[0]
return ""
def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
snake_case_ : Optional[Any] = len(get_indent(__SCREAMING_SNAKE_CASE ) ) > 0
if has_indent:
snake_case_ : Optional[Any] = f'class Bla:\n{code}'
snake_case_ : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=__SCREAMING_SNAKE_CASE )
snake_case_ : List[str] = black.format_str(__SCREAMING_SNAKE_CASE, mode=__SCREAMING_SNAKE_CASE )
snake_case_ , snake_case_ : Optional[Any] = style_docstrings_in_code(__SCREAMING_SNAKE_CASE )
return result[len("class Bla:\n" ) :] if has_indent else result
def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE=False ):
"""simple docstring"""
with open(__SCREAMING_SNAKE_CASE, "r", encoding="utf-8", newline="\n" ) as f:
snake_case_ : List[Any] = f.readlines()
snake_case_ : str = []
snake_case_ : Tuple = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(__SCREAMING_SNAKE_CASE ):
snake_case_ : Union[str, Any] = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = search.groups()
snake_case_ : int = find_code_in_diffusers(__SCREAMING_SNAKE_CASE )
snake_case_ : List[Any] = get_indent(__SCREAMING_SNAKE_CASE )
snake_case_ : Dict = line_index + 1 if indent == theoretical_indent else line_index + 2
snake_case_ : Dict = theoretical_indent
snake_case_ : Tuple = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
snake_case_ : str = True
while line_index < len(__SCREAMING_SNAKE_CASE ) and should_continue:
line_index += 1
if line_index >= len(__SCREAMING_SNAKE_CASE ):
break
snake_case_ : Dict = lines[line_index]
snake_case_ : List[Any] = _should_continue(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) and re.search(f'^{indent}# End copy', __SCREAMING_SNAKE_CASE ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
snake_case_ : Optional[int] = lines[start_index:line_index]
snake_case_ : Optional[Any] = "".join(__SCREAMING_SNAKE_CASE )
# Remove any nested `Copied from` comments to avoid circular copies
snake_case_ : int = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(__SCREAMING_SNAKE_CASE ) is None]
snake_case_ : Dict = "\n".join(__SCREAMING_SNAKE_CASE )
# Before comparing, use the `replace_pattern` on the original code.
if len(__SCREAMING_SNAKE_CASE ) > 0:
snake_case_ : Union[str, Any] = replace_pattern.replace("with", "" ).split("," )
snake_case_ : Optional[Any] = [_re_replace_pattern.search(__SCREAMING_SNAKE_CASE ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
snake_case_ , snake_case_ , snake_case_ : Optional[Any] = pattern.groups()
snake_case_ : Optional[int] = re.sub(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE )
if option.strip() == "all-casing":
snake_case_ : List[Any] = re.sub(obja.lower(), obja.lower(), __SCREAMING_SNAKE_CASE )
snake_case_ : Optional[int] = re.sub(obja.upper(), obja.upper(), __SCREAMING_SNAKE_CASE )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
snake_case_ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code )
snake_case_ : Optional[Any] = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
snake_case_ : List[str] = lines[:start_index] + [theoretical_code] + lines[line_index:]
snake_case_ : List[str] = start_index + 1
if overwrite and len(__SCREAMING_SNAKE_CASE ) > 0:
# Warn the user a file has been modified.
print(f'Detected changes, rewriting {filename}.' )
with open(__SCREAMING_SNAKE_CASE, "w", encoding="utf-8", newline="\n" ) as f:
f.writelines(__SCREAMING_SNAKE_CASE )
return diffs
def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE = False ):
"""simple docstring"""
snake_case_ : List[str] = glob.glob(os.path.join(__SCREAMING_SNAKE_CASE, "**/*.py" ), recursive=__SCREAMING_SNAKE_CASE )
snake_case_ : List[Any] = []
for filename in all_files:
snake_case_ : Tuple = is_copy_consistent(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE )
diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs]
if not overwrite and len(__SCREAMING_SNAKE_CASE ) > 0:
snake_case_ : str = "\n".join(__SCREAMING_SNAKE_CASE )
raise Exception(
"Found the following copy inconsistencies:\n"
+ diff
+ "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
a_ = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 92 | 0 |
'''simple docstring'''
import json
import os
import unittest
from typing import Tuple
from transformers import WavaVecaPhonemeCTCTokenizer
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class __A ( UpperCamelCase__ , unittest.TestCase ):
a__ : List[Any] = WavaVecaPhonemeCTCTokenizer
a__ : int = False
def _lowercase (self : Optional[Any] ):
super().setUp()
UpperCAmelCase_ = (
"<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː "
"ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː "
"ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 "
"oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ "
"pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ "
"yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ "
"əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ "
"ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ "
"ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ "
"uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ "
"ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ "
"ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ "
"ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4"
).split(" " )
UpperCAmelCase_ = dict(zip(__a , range(len(__a ) ) ) )
UpperCAmelCase_ = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__a ) + "\n" )
def _lowercase (self : List[str] , __a : Dict , __a : str=False , __a : Union[str, Any]=20 , __a : str=5 ):
UpperCAmelCase_ = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__a )) for i in range(len(__a ) )]
UpperCAmelCase_ = list(filter(lambda __a : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__a ) , __a ) )
if max_length is not None and len(__a ) > max_length:
UpperCAmelCase_ = toks[:max_length]
if min_length is not None and len(__a ) < min_length and len(__a ) > 0:
while len(__a ) < min_length:
UpperCAmelCase_ = toks + toks
# toks_str = [t[1] for t in toks]
UpperCAmelCase_ = [t[0] for t in toks]
# Ensure consistency
UpperCAmelCase_ = tokenizer.decode(__a , clean_up_tokenization_spaces=__a )
if " " not in output_txt and len(__a ) > 1:
UpperCAmelCase_ = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__a )
+ " "
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__a )
)
if with_prefix_space:
UpperCAmelCase_ = " " + output_txt
UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a )
return output_txt, output_ids
def _lowercase (self : Optional[Any] , **__a : Optional[int] ):
kwargs.update(self.special_tokens_map )
return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__a )
def _lowercase (self : Optional[Any] ):
UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
# check adding a single token
tokenizer.add_tokens("xxx" )
UpperCAmelCase_ = tokenizer("m xxx ɪ" , do_phonemize=__a ).input_ids
self.assertEqual(__a , [13, 392, 17] ) # xxx should be last token
tokenizer.add_tokens(["aaa", "bbb", "ccc"] )
UpperCAmelCase_ = tokenizer("m aaa ɪ ccc" , do_phonemize=__a ).input_ids
self.assertEqual(__a , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa
UpperCAmelCase_ = tokenizer("maɪ c" , do_phonemize=__a ).input_ids
self.assertEqual(__a , [3, 200] ) # mai should be <unk> (=3)
def _lowercase (self : List[Any] ):
UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
UpperCAmelCase_ = "Hello how are you"
UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" )
self.assertEqual(__a , "h ə l oʊ h aʊ ɑːɹ j uː" )
def _lowercase (self : Optional[int] ):
UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
UpperCAmelCase_ = "Hello how are you"
UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" )
self.assertEqual(tokenizer(__a ).input_ids , tokenizer(__a , do_phonemize=__a ).input_ids )
def _lowercase (self : int ):
UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
UpperCAmelCase_ = "Hello how are you"
UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" )
UpperCAmelCase_ = tokenizer.decode(tokenizer(__a ).input_ids )
self.assertEqual(__a , __a )
def _lowercase (self : List[str] ):
UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
UpperCAmelCase_ = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, 24, 22, 5, 77],
]
UpperCAmelCase_ = tokenizer.decode(sample_ids[0] )
UpperCAmelCase_ = tokenizer.batch_decode(__a )
self.assertEqual(__a , batch_tokens[0] )
self.assertEqual(__a , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] )
def _lowercase (self : str ):
UpperCAmelCase_ = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" )
tokenizer.add_tokens("|" )
UpperCAmelCase_ = "Hello how are you"
UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" )
self.assertEqual(__a , "h ə l oʊ | h aʊ | ɑːɹ | j uː |" )
def _lowercase (self : Any ):
UpperCAmelCase_ = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" )
tokenizer.add_tokens("|" )
UpperCAmelCase_ = "Hello how are you"
UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" )
self.assertEqual(tokenizer(__a ).input_ids , tokenizer(__a , do_phonemize=__a ).input_ids )
def _lowercase (self : Optional[Any] ):
UpperCAmelCase_ = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" )
tokenizer.add_tokens("|" )
# fmt: off
UpperCAmelCase_ = [
[11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
[tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
]
# fmt: on
# decode with word_del_token filter
UpperCAmelCase_ = tokenizer.decode(sample_ids[0] )
UpperCAmelCase_ = tokenizer.batch_decode(__a )
self.assertEqual(__a , batch_tokens[0] )
self.assertEqual(__a , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] )
# decode with no word_del_token filter
UpperCAmelCase_ = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__a )
UpperCAmelCase_ = tokenizer.batch_decode(__a , filter_word_delimiter_token=__a )
self.assertEqual(__a , batch_tokens[0] )
self.assertEqual(__a , ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"] )
def _lowercase (self : str ):
UpperCAmelCase_ = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" )
tokenizer.add_tokens("|" )
UpperCAmelCase_ = "Hello how are you"
UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" )
UpperCAmelCase_ = tokenizer.decode(tokenizer(__a ).input_ids , filter_word_delimiter_token=__a )
self.assertEqual(__a , __a )
def _lowercase (self : Any ):
UpperCAmelCase_ = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" )
tokenizer.add_tokens("|" )
UpperCAmelCase_ = "Hello how are you"
UpperCAmelCase_ = tokenizer.phonemize(__a , phonemizer_lang="en-us" )
UpperCAmelCase_ = tokenizer.decode(tokenizer(__a ).input_ids , filter_word_delimiter_token=__a )
self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |" )] ).strip() , __a )
def _lowercase (self : Optional[Any] ):
UpperCAmelCase_ = self.tokenizer_class.from_pretrained(
"facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token=__a )
UpperCAmelCase_ = "Hello how are you"
UpperCAmelCase_ = tokenizer(__a , phonemizer_lang="en-us" ).input_ids
UpperCAmelCase_ = tokenizer(__a , phonemizer_lang="fr-fr" ).input_ids
self.assertNotEqual(__a , __a )
UpperCAmelCase_ = tokenizer.decode(__a )
UpperCAmelCase_ = tokenizer.decode(__a )
self.assertEqual(__a , "h ə l oʊ h aʊ ɑːɹ j uː" )
self.assertEqual(__a , "ɛ l o h aʊ a ʁ j u" )
def _lowercase (self : List[Any] ):
UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
UpperCAmelCase_ = "Hello how Are you"
UpperCAmelCase_ = "hello how are you"
UpperCAmelCase_ = tokenizer(__a ).input_ids
UpperCAmelCase_ = tokenizer(__a ).input_ids
self.assertEqual(__a , __a )
def _lowercase (self : Tuple ):
UpperCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" )
tokenizer.add_tokens(["!", "?"] )
tokenizer.add_special_tokens({"cls_token": "$$$"} )
# fmt: off
UpperCAmelCase_ = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394],
[24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394],
]
# fmt: on
UpperCAmelCase_ = tokenizer.batch_decode(__a )
self.assertEqual(__a , ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"] )
@staticmethod
def _lowercase (__a : Tuple , __a : Optional[int] ):
UpperCAmelCase_ = [d[key] for d in offsets]
return retrieved_list
def _lowercase (self : Optional[int] ):
UpperCAmelCase_ = self.get_tokenizer(word_delimiter_token="|" )
tokenizer.add_tokens("|" )
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
UpperCAmelCase_ = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
# fmt: on
UpperCAmelCase_ = tokenizer.decode(__a , output_char_offsets=__a , filter_word_delimiter_token=__a )
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys() ) , 2 )
self.assertTrue("text" in outputs )
self.assertTrue("char_offsets" in outputs )
self.assertTrue(isinstance(__a , __a ) )
# check that order of chars is correct and identical for both outputs
self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"] , "char" ) ) , outputs.text )
self.assertListEqual(
self.get_from_offsets(outputs["char_offsets"] , "char" ) , ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"] )
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs["char_offsets"] , "start_offset" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] )
self.assertListEqual(
self.get_from_offsets(outputs["char_offsets"] , "end_offset" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] )
def _lowercase (self : Optional[int] ):
UpperCAmelCase_ = self.get_tokenizer(word_delimiter_token="|" )
def check_list_tuples_equal(__a : str , __a : List[Any] ):
self.assertTrue(isinstance(__a , __a ) )
self.assertTrue(isinstance(outputs_list[0] , __a ) )
# transform list to ModelOutput
UpperCAmelCase_ = WavaVecaPhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]} )
self.assertListEqual(outputs_batch["text"] , outputs_batch_a["text"] )
def recursive_check(__a : Optional[Any] , __a : Optional[Any] ):
if isinstance(__a , __a ):
[recursive_check(__a , __a ) for la, la in zip(__a , __a )]
self.assertEqual(__a , __a )
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch["char_offsets"] , outputs_batch_a["char_offsets"] )
# fmt: off
UpperCAmelCase_ = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
UpperCAmelCase_ = tokenizer.batch_decode(__a , output_char_offsets=__a )
UpperCAmelCase_ = [tokenizer.decode(__a , output_char_offsets=__a ) for ids in sample_ids]
check_list_tuples_equal(__a , __a )
@unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes" )
def _lowercase (self : Union[str, Any] ):
pass
@unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes" )
def _lowercase (self : Union[str, Any] ):
pass
@unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency" )
def _lowercase (self : Optional[Any] ):
pass
@unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing" )
def _lowercase (self : Optional[Any] ):
pass
def _lowercase (self : Union[str, Any] ):
UpperCAmelCase_ = self.get_tokenizers(do_lower_case=__a )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = len(__a )
self.assertNotEqual(__a , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
UpperCAmelCase_ = ["aaaaa bbbbbb", "cccccccccdddddddd"]
UpperCAmelCase_ = tokenizer.add_tokens(__a )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = len(__a )
self.assertNotEqual(__a , 0 )
self.assertEqual(__a , __a )
self.assertEqual(__a , len(__a ) )
self.assertEqual(__a , all_size + len(__a ) )
UpperCAmelCase_ = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__a )
self.assertGreaterEqual(len(__a ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
UpperCAmelCase_ = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
UpperCAmelCase_ = tokenizer.add_special_tokens(__a )
UpperCAmelCase_ = tokenizer.vocab_size
UpperCAmelCase_ = len(__a )
self.assertNotEqual(__a , 0 )
self.assertEqual(__a , __a )
self.assertEqual(__a , len(__a ) )
self.assertEqual(__a , all_size_a + len(__a ) )
UpperCAmelCase_ = tokenizer.encode(
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__a )
self.assertGreaterEqual(len(__a ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
@unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." )
def _lowercase (self : List[str] ):
pass
@unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." )
def _lowercase (self : int ):
pass
def _lowercase (self : Any ):
# The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which
# is not the case for Wav2Vec2PhonemeCTCTokenizer.
UpperCAmelCase_ = self.get_tokenizers(fast=__a , do_lower_case=__a )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
UpperCAmelCase_ = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"]
UpperCAmelCase_ = tokenizer.convert_tokens_to_string(__a )
self.assertIsInstance(output["text"] , __a )
| 78 |
'''simple docstring'''
import random
def lowerCAmelCase_ ( __A : int ):
'''simple docstring'''
snake_case: Optional[int] = num - 1
snake_case: List[str] = 0
while s % 2 == 0:
snake_case: Union[str, Any] = s // 2
t += 1
for _ in range(5 ):
snake_case: Union[str, Any] = random.randrange(2 , num - 1 )
snake_case: Tuple = pow(__A , __A , __A )
if v != 1:
snake_case: Union[str, Any] = 0
while v != (num - 1):
if i == t - 1:
return False
else:
snake_case: int = i + 1
snake_case: int = (v**2) % num
return True
def lowerCAmelCase_ ( __A : int ):
'''simple docstring'''
if num < 2:
return False
snake_case: List[Any] = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
1_01,
1_03,
1_07,
1_09,
1_13,
1_27,
1_31,
1_37,
1_39,
1_49,
1_51,
1_57,
1_63,
1_67,
1_73,
1_79,
1_81,
1_91,
1_93,
1_97,
1_99,
2_11,
2_23,
2_27,
2_29,
2_33,
2_39,
2_41,
2_51,
2_57,
2_63,
2_69,
2_71,
2_77,
2_81,
2_83,
2_93,
3_07,
3_11,
3_13,
3_17,
3_31,
3_37,
3_47,
3_49,
3_53,
3_59,
3_67,
3_73,
3_79,
3_83,
3_89,
3_97,
4_01,
4_09,
4_19,
4_21,
4_31,
4_33,
4_39,
4_43,
4_49,
4_57,
4_61,
4_63,
4_67,
4_79,
4_87,
4_91,
4_99,
5_03,
5_09,
5_21,
5_23,
5_41,
5_47,
5_57,
5_63,
5_69,
5_71,
5_77,
5_87,
5_93,
5_99,
6_01,
6_07,
6_13,
6_17,
6_19,
6_31,
6_41,
6_43,
6_47,
6_53,
6_59,
6_61,
6_73,
6_77,
6_83,
6_91,
7_01,
7_09,
7_19,
7_27,
7_33,
7_39,
7_43,
7_51,
7_57,
7_61,
7_69,
7_73,
7_87,
7_97,
8_09,
8_11,
8_21,
8_23,
8_27,
8_29,
8_39,
8_53,
8_57,
8_59,
8_63,
8_77,
8_81,
8_83,
8_87,
9_07,
9_11,
9_19,
9_29,
9_37,
9_41,
9_47,
9_53,
9_67,
9_71,
9_77,
9_83,
9_91,
9_97,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(__A )
def lowerCAmelCase_ ( __A : int = 10_24 ):
'''simple docstring'''
while True:
snake_case: Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(__A ):
return num
if __name__ == "__main__":
__UpperCAmelCase = generate_large_prime()
print(("Prime number:", num))
print(("is_prime_low_num:", is_prime_low_num(num))) | 329 | 0 |
"""simple docstring"""
import unittest
from transformers.testing_utils import require_bsa
from transformers.utils import is_bsa_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
if is_bsa_available():
from transformers import MarkupLMFeatureExtractor
class lowerCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[int] , lowercase__ : int ):
__lowercase : Optional[int] = parent
def snake_case ( self : Dict ):
return {}
def snake_case__ ( ) ->Dict:
"""simple docstring"""
__lowercase : Any = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>"
__lowercase : Tuple = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n "
return [html_string_a, html_string_a]
@require_bsa
class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Any = MarkupLMFeatureExtractor if is_bsa_available() else None
def snake_case ( self : List[str] ):
__lowercase : Tuple = MarkupLMFeatureExtractionTester(self )
@property
def snake_case ( self : Union[str, Any] ):
return self.feature_extract_tester.prepare_feat_extract_dict()
def snake_case ( self : Union[str, Any] ):
# Initialize feature_extractor
__lowercase : Tuple = self.feature_extraction_class()
# Test not batched input
__lowercase : Optional[Any] = get_html_strings()[0]
__lowercase : Any = feature_extractor(lowercase__ )
# fmt: off
__lowercase : str = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]]
__lowercase : int = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]]
# fmt: on
self.assertEqual(encoding.nodes , lowercase__ )
self.assertEqual(encoding.xpaths , lowercase__ )
# Test batched
__lowercase : Any = get_html_strings()
__lowercase : int = feature_extractor(lowercase__ )
# fmt: off
__lowercase : Dict = expected_nodes + [["My First Heading", "My first paragraph."]]
__lowercase : Union[str, Any] = expected_xpaths + [["/html/body/h1", "/html/body/p"]]
self.assertEqual(len(encoding.nodes ) , 2 )
self.assertEqual(len(encoding.xpaths ) , 2 )
self.assertEqual(encoding.nodes , lowercase__ )
self.assertEqual(encoding.xpaths , lowercase__ )
| 712 |
"""simple docstring"""
from __future__ import annotations
import math
def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->list:
"""simple docstring"""
if len(_lowerCamelCase ) != 2 or len(a[0] ) != 2 or len(_lowerCamelCase ) != 2 or len(b[0] ) != 2:
raise Exception("Matrices are not 2x2" )
__lowercase : Tuple = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->Dict:
"""simple docstring"""
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(_lowerCamelCase ) )
]
def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->Tuple:
"""simple docstring"""
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(_lowerCamelCase ) )
]
def snake_case__ ( _lowerCamelCase ) ->tuple[list, list, list, list]:
"""simple docstring"""
if len(_lowerCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0:
raise Exception("Odd matrices are not supported!" )
__lowercase : Tuple = len(_lowerCamelCase )
__lowercase : Any = matrix_length // 2
__lowercase : Dict = [[a[i][j] for j in range(_lowerCamelCase, _lowerCamelCase )] for i in range(_lowerCamelCase )]
__lowercase : List[str] = [
[a[i][j] for j in range(_lowerCamelCase, _lowerCamelCase )] for i in range(_lowerCamelCase, _lowerCamelCase )
]
__lowercase : Union[str, Any] = [[a[i][j] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase )]
__lowercase : List[str] = [[a[i][j] for j in range(_lowerCamelCase )] for i in range(_lowerCamelCase, _lowerCamelCase )]
return top_left, top_right, bot_left, bot_right
def snake_case__ ( _lowerCamelCase ) ->tuple[int, int]:
"""simple docstring"""
return len(_lowerCamelCase ), len(matrix[0] )
def snake_case__ ( _lowerCamelCase ) ->None:
"""simple docstring"""
print("\n".join(str(_lowerCamelCase ) for line in matrix ) )
def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->list:
"""simple docstring"""
if matrix_dimensions(_lowerCamelCase ) == (2, 2):
return default_matrix_multiplication(_lowerCamelCase, _lowerCamelCase )
__lowercase ,__lowercase ,__lowercase ,__lowercase : Optional[Any] = split_matrix(_lowerCamelCase )
__lowercase ,__lowercase ,__lowercase ,__lowercase : Any = split_matrix(_lowerCamelCase )
__lowercase : str = actual_strassen(_lowerCamelCase, matrix_subtraction(_lowerCamelCase, _lowerCamelCase ) )
__lowercase : Dict = actual_strassen(matrix_addition(_lowerCamelCase, _lowerCamelCase ), _lowerCamelCase )
__lowercase : Union[str, Any] = actual_strassen(matrix_addition(_lowerCamelCase, _lowerCamelCase ), _lowerCamelCase )
__lowercase : Any = actual_strassen(_lowerCamelCase, matrix_subtraction(_lowerCamelCase, _lowerCamelCase ) )
__lowercase : List[Any] = actual_strassen(matrix_addition(_lowerCamelCase, _lowerCamelCase ), matrix_addition(_lowerCamelCase, _lowerCamelCase ) )
__lowercase : Optional[int] = actual_strassen(matrix_subtraction(_lowerCamelCase, _lowerCamelCase ), matrix_addition(_lowerCamelCase, _lowerCamelCase ) )
__lowercase : Optional[Any] = actual_strassen(matrix_subtraction(_lowerCamelCase, _lowerCamelCase ), matrix_addition(_lowerCamelCase, _lowerCamelCase ) )
__lowercase : str = matrix_addition(matrix_subtraction(matrix_addition(_lowerCamelCase, _lowerCamelCase ), _lowerCamelCase ), _lowerCamelCase )
__lowercase : Dict = matrix_addition(_lowerCamelCase, _lowerCamelCase )
__lowercase : int = matrix_addition(_lowerCamelCase, _lowerCamelCase )
__lowercase : Union[str, Any] = matrix_subtraction(matrix_subtraction(matrix_addition(_lowerCamelCase, _lowerCamelCase ), _lowerCamelCase ), _lowerCamelCase )
# construct the new matrix from our 4 quadrants
__lowercase : Optional[int] = []
for i in range(len(_lowerCamelCase ) ):
new_matrix.append(top_left[i] + top_right[i] )
for i in range(len(_lowerCamelCase ) ):
new_matrix.append(bot_left[i] + bot_right[i] )
return new_matrix
def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->list:
"""simple docstring"""
if matrix_dimensions(_lowerCamelCase )[1] != matrix_dimensions(_lowerCamelCase )[0]:
__lowercase : int = (
"Unable to multiply these matrices, please check the dimensions.\n"
F'Matrix A: {matrixa}\n'
F'Matrix B: {matrixa}'
)
raise Exception(_lowerCamelCase )
__lowercase : List[Any] = matrix_dimensions(_lowerCamelCase )
__lowercase : Tuple = matrix_dimensions(_lowerCamelCase )
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
__lowercase : int = max(*_lowerCamelCase, *_lowerCamelCase )
__lowercase : Any = int(math.pow(2, math.ceil(math.loga(_lowerCamelCase ) ) ) )
__lowercase : Dict = matrixa
__lowercase : str = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0, _lowerCamelCase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1], _lowerCamelCase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
if i < dimensiona[0]:
for _ in range(dimensiona[1], _lowerCamelCase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
__lowercase : Dict = actual_strassen(_lowerCamelCase, _lowerCamelCase )
# Removing the additional zeros
for i in range(0, _lowerCamelCase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1], _lowerCamelCase ):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
__A : int = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
__A : Union[str, Any] = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]]
print(strassen(matrixa, matrixa))
| 281 | 0 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=_a )
class a_ (_a ):
__lowerCAmelCase : str = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
__lowerCAmelCase : ClassVar[Features] = Features({"""audio""": Audio()} )
__lowerCAmelCase : ClassVar[Features] = Features({"""labels""": ClassLabel} )
__lowerCAmelCase : str = "audio"
__lowerCAmelCase : str = "labels"
def __UpperCamelCase ( self , snake_case_ ):
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , snake_case_ ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
_lowerCAmelCase : str = copy.deepcopy(self )
_lowerCAmelCase : str = self.label_schema.copy()
_lowerCAmelCase : List[str] = features[self.label_column]
_lowerCAmelCase : List[str] = label_schema
return task_template
@property
def __UpperCamelCase ( self ):
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 384 |
'''simple docstring'''
import os
from datetime import datetime as dt
from github import Github
UpperCamelCase_ = [
"""good first issue""",
"""good second issue""",
"""good difficult issue""",
"""enhancement""",
"""new pipeline/model""",
"""new scheduler""",
"""wip""",
]
def _UpperCAmelCase ( ) -> List[Any]:
_lowerCAmelCase : Dict = Github(os.environ["""GITHUB_TOKEN"""] )
_lowerCAmelCase : Any = g.get_repo("""huggingface/diffusers""" )
_lowerCAmelCase : Tuple = repo.get_issues(state="""open""" )
for issue in open_issues:
_lowerCAmelCase : Union[str, Any] = sorted(issue.get_comments() , key=lambda _lowerCamelCase : i.created_at , reverse=_lowerCamelCase )
_lowerCAmelCase : List[Any] = comments[0] if len(_lowerCamelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="""closed""" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="""open""" )
issue.remove_from_labels("""stale""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
issue.add_to_labels("""stale""" )
if __name__ == "__main__":
main()
| 384 | 1 |
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list:
if len(_UpperCAmelCase ) < 2:
return collection
def circle_sort_util(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool:
lowerCamelCase__ : Union[str, Any] = False
if low == high:
return swapped
lowerCamelCase__ : Dict = low
lowerCamelCase__ : int = high
while left < right:
if collection[left] > collection[right]:
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = (
collection[right],
collection[left],
)
lowerCamelCase__ : Union[str, Any] = True
left += 1
right -= 1
if left == right and collection[left] > collection[right + 1]:
lowerCamelCase__ , lowerCamelCase__ : Tuple = (
collection[right + 1],
collection[left],
)
lowerCamelCase__ : List[Any] = True
lowerCamelCase__ : Union[str, Any] = low + int((high - low) / 2 )
lowerCamelCase__ : Any = circle_sort_util(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = circle_sort_util(_UpperCAmelCase , mid + 1 , _UpperCAmelCase )
return swapped or left_swap or right_swap
lowerCamelCase__ : int = True
while is_not_sorted is True:
lowerCamelCase__ : List[str] = circle_sort_util(_UpperCAmelCase , 0 , len(_UpperCAmelCase ) - 1 )
return collection
if __name__ == "__main__":
_UpperCAmelCase : Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip()
_UpperCAmelCase : Dict = [int(item) for item in user_input.split(""",""")]
print(circle_sort(unsorted))
| 188 |
_UpperCAmelCase : str = """Tobias Carryer"""
from time import time
class lowerCAmelCase :
def __init__( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : str=int(time() ) ) -> Optional[int]: # noqa: B008
lowerCamelCase__ : List[Any] = multiplier
lowerCamelCase__ : Tuple = increment
lowerCamelCase__ : int = modulo
lowerCamelCase__ : Any = seed
def A_ ( self : Optional[int] ) -> List[Any]:
lowerCamelCase__ : List[str] = (self.multiplier * self.seed + self.increment) % self.modulo
return self.seed
if __name__ == "__main__":
# Show the LCG in action.
_UpperCAmelCase : List[Any] = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31)
while True:
print(lcg.next_number())
| 188 | 1 |
"""simple docstring"""
from typing import Union
import fire
import torch
from tqdm import tqdm
def __snake_case ( _lowercase ,_lowercase = "cpu" ,_lowercase = None ):
"""simple docstring"""
UpperCamelCase = torch.load(_lowercase ,map_location=_lowercase )
for k, v in tqdm(state_dict.items() ):
if not isinstance(_lowercase ,torch.Tensor ):
raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' )
UpperCamelCase = v.half()
if save_path is None: # overwrite src_path
UpperCamelCase = src_path
torch.save(_lowercase ,_lowercase )
if __name__ == "__main__":
fire.Fire(convert) | 34 |
from ... import PretrainedConfig
lowercase : Dict = {
"sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json",
}
class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ):
"""simple docstring"""
lowercase : List[str] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
lowercase : Union[str, Any] = 'nezha'
def __init__( self , __UpperCamelCase=2_11_28 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=64 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=0.1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , **__UpperCamelCase , ) -> int:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase )
__UpperCamelCase : int = vocab_size
__UpperCamelCase : int = hidden_size
__UpperCamelCase : Tuple = num_hidden_layers
__UpperCamelCase : Tuple = num_attention_heads
__UpperCamelCase : Optional[int] = hidden_act
__UpperCamelCase : List[str] = intermediate_size
__UpperCamelCase : Union[str, Any] = hidden_dropout_prob
__UpperCamelCase : Tuple = attention_probs_dropout_prob
__UpperCamelCase : Optional[int] = max_position_embeddings
__UpperCamelCase : str = max_relative_position
__UpperCamelCase : List[str] = type_vocab_size
__UpperCamelCase : Dict = initializer_range
__UpperCamelCase : Optional[int] = layer_norm_eps
__UpperCamelCase : int = classifier_dropout
__UpperCamelCase : List[str] = use_cache | 327 | 0 |
'''simple docstring'''
import tensorflow as tf
from ...tf_utils import shape_list
class __lowerCAmelCase ( tf.keras.layers.Layer ):
def __init__(self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 , lowerCAmelCase__=False , **lowerCAmelCase__ ):
super().__init__(**_A )
_UpperCAmelCase : Optional[Any] = vocab_size
_UpperCAmelCase : Optional[Any] = d_embed
_UpperCAmelCase : Optional[Any] = d_proj
_UpperCAmelCase : Any = cutoffs + [vocab_size]
_UpperCAmelCase : List[Any] = [0] + self.cutoffs
_UpperCAmelCase : Optional[int] = div_val
_UpperCAmelCase : Optional[int] = self.cutoffs[0]
_UpperCAmelCase : Dict = len(self.cutoffs ) - 1
_UpperCAmelCase : Optional[int] = self.shortlist_size + self.n_clusters
_UpperCAmelCase : Dict = keep_order
_UpperCAmelCase : int = []
_UpperCAmelCase : Dict = []
def snake_case_ (self , lowerCAmelCase__ ):
if self.n_clusters > 0:
_UpperCAmelCase : Union[str, Any] = self.add_weight(
shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=_A , name="""cluster_weight""" )
_UpperCAmelCase : Tuple = self.add_weight(
shape=(self.n_clusters,) , initializer="""zeros""" , trainable=_A , name="""cluster_bias""" )
if self.div_val == 1:
for i in range(len(self.cutoffs ) ):
if self.d_proj != self.d_embed:
_UpperCAmelCase : Tuple = self.add_weight(
shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=_A , name=F"out_projs_._{i}" , )
self.out_projs.append(_A )
else:
self.out_projs.append(_A )
_UpperCAmelCase : Optional[Any] = self.add_weight(
shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=_A , name=F"out_layers_._{i}_._weight" , )
_UpperCAmelCase : Optional[Any] = self.add_weight(
shape=(self.vocab_size,) , initializer="""zeros""" , trainable=_A , name=F"out_layers_._{i}_._bias" , )
self.out_layers.append((weight, bias) )
else:
for i in range(len(self.cutoffs ) ):
_UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_UpperCAmelCase : Tuple = self.d_embed // (self.div_val**i)
_UpperCAmelCase : str = self.add_weight(
shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=_A , name=F"out_projs_._{i}" )
self.out_projs.append(_A )
_UpperCAmelCase : List[str] = self.add_weight(
shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=_A , name=F"out_layers_._{i}_._weight" , )
_UpperCAmelCase : Tuple = self.add_weight(
shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=_A , name=F"out_layers_._{i}_._bias" , )
self.out_layers.append((weight, bias) )
super().build(_A )
@staticmethod
def snake_case_ (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ):
_UpperCAmelCase : Tuple = x
if proj is not None:
_UpperCAmelCase : str = tf.einsum("""ibd,ed->ibe""" , _A , _A )
return tf.einsum("""ibd,nd->ibn""" , _A , _A ) + b
@staticmethod
def snake_case_ (lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = shape_list(_A )
_UpperCAmelCase : Dict = tf.range(lp_size[0] , dtype=target.dtype )
_UpperCAmelCase : str = tf.stack([r, target] , 1 )
return tf.gather_nd(_A , _A )
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=True , lowerCAmelCase__=False ):
_UpperCAmelCase : Any = 0
if self.n_clusters == 0:
_UpperCAmelCase : Any = self._logit(_A , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] )
if target is not None:
_UpperCAmelCase : Union[str, Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_A , logits=_A )
_UpperCAmelCase : Optional[Any] = tf.nn.log_softmax(_A , axis=-1 )
else:
_UpperCAmelCase : str = shape_list(_A )
_UpperCAmelCase : int = []
_UpperCAmelCase : str = tf.zeros(hidden_sizes[:2] )
for i in range(len(self.cutoffs ) ):
_UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
if target is not None:
_UpperCAmelCase : Optional[int] = (target >= l_idx) & (target < r_idx)
_UpperCAmelCase : List[str] = tf.where(_A )
_UpperCAmelCase : List[Any] = tf.boolean_mask(_A , _A ) - l_idx
if self.div_val == 1:
_UpperCAmelCase : Union[str, Any] = self.out_layers[0][0][l_idx:r_idx]
_UpperCAmelCase : List[Any] = self.out_layers[0][1][l_idx:r_idx]
else:
_UpperCAmelCase : Optional[Any] = self.out_layers[i][0]
_UpperCAmelCase : List[str] = self.out_layers[i][1]
if i == 0:
_UpperCAmelCase : Dict = tf.concat([cur_W, self.cluster_weight] , 0 )
_UpperCAmelCase : Optional[Any] = tf.concat([cur_b, self.cluster_bias] , 0 )
_UpperCAmelCase : Tuple = self._logit(_A , _A , _A , self.out_projs[0] )
_UpperCAmelCase : Tuple = tf.nn.log_softmax(_A )
out.append(head_logprob[..., : self.cutoffs[0]] )
if target is not None:
_UpperCAmelCase : Any = tf.boolean_mask(_A , _A )
_UpperCAmelCase : List[Any] = self._gather_logprob(_A , _A )
else:
_UpperCAmelCase : Dict = self._logit(_A , _A , _A , self.out_projs[i] )
_UpperCAmelCase : List[Any] = tf.nn.log_softmax(_A )
_UpperCAmelCase : Optional[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster
_UpperCAmelCase : int = head_logprob[..., cluster_prob_idx, None] + tail_logprob
out.append(_A )
if target is not None:
_UpperCAmelCase : List[Any] = tf.boolean_mask(_A , _A )
_UpperCAmelCase : List[Any] = tf.boolean_mask(_A , _A )
_UpperCAmelCase : Tuple = self._gather_logprob(_A , _A )
cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1]
if target is not None:
loss += tf.scatter_nd(_A , -cur_logprob , shape_list(_A ) )
_UpperCAmelCase : Optional[Any] = tf.concat(_A , axis=-1 )
if target is not None:
if return_mean:
_UpperCAmelCase : Any = tf.reduce_mean(_A )
# Add the training-time loss value to the layer using `self.add_loss()`.
self.add_loss(_A )
# Log the loss as a metric (we could log arbitrary metrics,
# including different metrics for training and inference.
self.add_metric(_A , name=self.name , aggregation="""mean""" if return_mean else """""" )
return out
| 714 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
lowerCAmelCase_ : int = logging.getLogger(__name__)
@dataclass
class __lowerCAmelCase :
snake_case : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
snake_case : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
snake_case : Optional[str] = field(
default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
snake_case : Optional[str] = field(
default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
snake_case : bool = field(
default=__a , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
snake_case : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
snake_case : bool = field(
default=__a , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
@dataclass
class __lowerCAmelCase :
snake_case : Optional[str] = field(default=__a , metadata={"""help""": """The input training data file (a text file)."""} )
snake_case : Optional[str] = field(
default=__a , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
snake_case : bool = field(
default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
snake_case : Optional[int] = field(
default=__a , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
snake_case : Optional[int] = field(
default=__a , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. If passed, sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
snake_case : bool = field(
default=__a , metadata={
"""help""": (
"""Whether to pad all samples to the maximum sentence length. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch. More """
"""efficient on GPU but very bad for TPU."""
)
} , )
snake_case : Optional[int] = field(
default=__a , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
snake_case : Optional[int] = field(
default=__a , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
def snake_case_ (self ):
if self.train_file is not None:
_UpperCAmelCase : List[Any] = self.train_file.split(""".""" )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_UpperCAmelCase : List[str] = self.validation_file.split(""".""" )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __lowerCAmelCase :
snake_case : PreTrainedTokenizerBase
snake_case : Union[bool, str, PaddingStrategy] = True
snake_case : Optional[int] = None
snake_case : Optional[int] = None
def __call__(self , lowerCAmelCase__ ):
_UpperCAmelCase : List[str] = """label""" if """label""" in features[0].keys() else """labels"""
_UpperCAmelCase : Union[str, Any] = [feature.pop(lowerCAmelCase__ ) for feature in features]
_UpperCAmelCase : Union[str, Any] = len(lowerCAmelCase__ )
_UpperCAmelCase : int = len(features[0]["""input_ids"""] )
_UpperCAmelCase : Any = [
[{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features
]
_UpperCAmelCase : Dict = list(chain(*lowerCAmelCase__ ) )
_UpperCAmelCase : Optional[Any] = self.tokenizer.pad(
lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , )
# Un-flatten
_UpperCAmelCase : Optional[int] = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()}
# Add back labels
_UpperCAmelCase : Any = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa )
return batch
def __A ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_swag""" , lowerCAmelCase_ , lowerCAmelCase_ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_UpperCAmelCase : Optional[Any] = training_args.get_process_log_level()
logger.setLevel(lowerCAmelCase_ )
datasets.utils.logging.set_verbosity(lowerCAmelCase_ )
transformers.utils.logging.set_verbosity(lowerCAmelCase_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
_UpperCAmelCase : Dict = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase : Optional[int] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_UpperCAmelCase : Any = {}
if data_args.train_file is not None:
_UpperCAmelCase : str = data_args.train_file
if data_args.validation_file is not None:
_UpperCAmelCase : List[str] = data_args.validation_file
_UpperCAmelCase : Optional[Any] = data_args.train_file.split(""".""" )[-1]
_UpperCAmelCase : List[Any] = load_dataset(
lowerCAmelCase_ , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
_UpperCAmelCase : Dict = load_dataset(
"""swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_UpperCAmelCase : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_UpperCAmelCase : Tuple = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_UpperCAmelCase : Tuple = [f"ending{i}" for i in range(4 )]
_UpperCAmelCase : str = """sent1"""
_UpperCAmelCase : List[str] = """sent2"""
if data_args.max_seq_length is None:
_UpperCAmelCase : str = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
"""The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"""
""" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"""
""" override this default with `--block_size xxx`.""" )
_UpperCAmelCase : Any = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
_UpperCAmelCase : str = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(lowerCAmelCase_ ):
_UpperCAmelCase : Any = [[context] * 4 for context in examples[context_name]]
_UpperCAmelCase : Optional[Any] = examples[question_header_name]
_UpperCAmelCase : Optional[Any] = [
[f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(lowerCAmelCase_ )
]
# Flatten out
_UpperCAmelCase : Dict = list(chain(*lowerCAmelCase_ ) )
_UpperCAmelCase : Dict = list(chain(*lowerCAmelCase_ ) )
# Tokenize
_UpperCAmelCase : Optional[int] = tokenizer(
lowerCAmelCase_ , lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(lowerCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
_UpperCAmelCase : List[Any] = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
_UpperCAmelCase : Tuple = min(len(lowerCAmelCase_ ) , data_args.max_train_samples )
_UpperCAmelCase : int = train_dataset.select(range(lowerCAmelCase_ ) )
with training_args.main_process_first(desc="""train dataset map pre-processing""" ):
_UpperCAmelCase : Optional[int] = train_dataset.map(
lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
_UpperCAmelCase : Any = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
_UpperCAmelCase : List[Any] = min(len(lowerCAmelCase_ ) , data_args.max_eval_samples )
_UpperCAmelCase : Tuple = eval_dataset.select(range(lowerCAmelCase_ ) )
with training_args.main_process_first(desc="""validation dataset map pre-processing""" ):
_UpperCAmelCase : Tuple = eval_dataset.map(
lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
_UpperCAmelCase : List[str] = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=lowerCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(lowerCAmelCase_ ):
_UpperCAmelCase , _UpperCAmelCase : List[str] = eval_predictions
_UpperCAmelCase : Dict = np.argmax(lowerCAmelCase_ , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_UpperCAmelCase : Union[str, Any] = Trainer(
model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , )
# Training
if training_args.do_train:
_UpperCAmelCase : Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
_UpperCAmelCase : Any = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCAmelCase : Optional[Any] = last_checkpoint
_UpperCAmelCase : str = trainer.train(resume_from_checkpoint=lowerCAmelCase_ )
trainer.save_model() # Saves the tokenizer too for easy upload
_UpperCAmelCase : List[str] = train_result.metrics
_UpperCAmelCase : Tuple = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ )
)
_UpperCAmelCase : Any = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) )
trainer.log_metrics("""train""" , lowerCAmelCase_ )
trainer.save_metrics("""train""" , lowerCAmelCase_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
_UpperCAmelCase : List[Any] = trainer.evaluate()
_UpperCAmelCase : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ )
_UpperCAmelCase : Union[str, Any] = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) )
trainer.log_metrics("""eval""" , lowerCAmelCase_ )
trainer.save_metrics("""eval""" , lowerCAmelCase_ )
_UpperCAmelCase : Union[str, Any] = {
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """multiple-choice""",
"""dataset_tags""": """swag""",
"""dataset_args""": """regular""",
"""dataset""": """SWAG""",
"""language""": """en""",
}
if training_args.push_to_hub:
trainer.push_to_hub(**lowerCAmelCase_ )
else:
trainer.create_model_card(**lowerCAmelCase_ )
def __A ( lowerCAmelCase_ ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 156 | 0 |
'''simple docstring'''
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def snake_case_ ( __snake_case : Optional[int]) -> Any:
if is_torch_version('''<''' , '''2.0.0''') or not hasattr(SCREAMING_SNAKE_CASE_ , '''_dynamo'''):
return False
return isinstance(SCREAMING_SNAKE_CASE_ , torch._dynamo.eval_frame.OptimizedModule)
def snake_case_ ( __snake_case : List[str] , __snake_case : bool = True) -> Optional[int]:
lowerCAmelCase_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
lowerCAmelCase_ = is_compiled_module(SCREAMING_SNAKE_CASE_)
if is_compiled:
lowerCAmelCase_ = model
lowerCAmelCase_ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowerCAmelCase_ = model.module
if not keep_fpaa_wrapper:
lowerCAmelCase_ = getattr(SCREAMING_SNAKE_CASE_ , '''forward''')
lowerCAmelCase_ = model.__dict__.pop('''_original_forward''' , SCREAMING_SNAKE_CASE_)
if original_forward is not None:
while hasattr(SCREAMING_SNAKE_CASE_ , '''__wrapped__'''):
lowerCAmelCase_ = forward.__wrapped__
if forward == original_forward:
break
lowerCAmelCase_ = forward
if getattr(SCREAMING_SNAKE_CASE_ , '''_converted_to_transformer_engine''' , SCREAMING_SNAKE_CASE_):
convert_model(SCREAMING_SNAKE_CASE_ , to_transformer_engine=SCREAMING_SNAKE_CASE_)
if is_compiled:
lowerCAmelCase_ = model
lowerCAmelCase_ = compiled_model
return model
def snake_case_ ( ) -> Any:
PartialState().wait_for_everyone()
def snake_case_ ( __snake_case : List[Any] , __snake_case : List[Any]) -> List[Any]:
if PartialState().distributed_type == DistributedType.TPU:
xm.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
elif PartialState().local_process_index == 0:
torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@contextmanager
def snake_case_ ( **__snake_case : Optional[int]) -> Union[str, Any]:
for key, value in kwargs.items():
lowerCAmelCase_ = str(SCREAMING_SNAKE_CASE_)
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def snake_case_ ( __snake_case : Any) -> Optional[Any]:
if not hasattr(SCREAMING_SNAKE_CASE_ , '''__qualname__''') and not hasattr(SCREAMING_SNAKE_CASE_ , '''__name__'''):
lowerCAmelCase_ = getattr(SCREAMING_SNAKE_CASE_ , '''__class__''' , SCREAMING_SNAKE_CASE_)
if hasattr(SCREAMING_SNAKE_CASE_ , '''__qualname__'''):
return obj.__qualname__
if hasattr(SCREAMING_SNAKE_CASE_ , '''__name__'''):
return obj.__name__
return str(SCREAMING_SNAKE_CASE_)
def snake_case_ ( __snake_case : List[str] , __snake_case : List[Any]) -> str:
for key, value in source.items():
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
lowerCAmelCase_ = destination.setdefault(SCREAMING_SNAKE_CASE_ , {})
merge_dicts(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
else:
lowerCAmelCase_ = value
return destination
def snake_case_ ( __snake_case : int = None) -> Union[str, Any]:
if port is None:
lowerCAmelCase_ = 29500
with socket.socket(socket.AF_INET , socket.SOCK_STREAM) as s:
return s.connect_ex(('''localhost''', port)) == 0
| 274 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple ):
'''simple docstring'''
if (
(cp >= 0X4_e00 and cp <= 0X9_fff)
or (cp >= 0X3_400 and cp <= 0X4_dbf) #
or (cp >= 0X20_000 and cp <= 0X2a_6df) #
or (cp >= 0X2a_700 and cp <= 0X2b_73f) #
or (cp >= 0X2b_740 and cp <= 0X2b_81f) #
or (cp >= 0X2b_820 and cp <= 0X2c_eaf) #
or (cp >= 0Xf_900 and cp <= 0Xf_aff)
or (cp >= 0X2f_800 and cp <= 0X2f_a1f) #
): #
return True
return False
def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ):
'''simple docstring'''
for char in word:
lowercase__ : int = ord(SCREAMING_SNAKE_CASE_ )
if not _is_chinese_char(SCREAMING_SNAKE_CASE_ ):
return 0
return 1
def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] ):
'''simple docstring'''
lowercase__ : Optional[Any] = set()
for token in tokens:
lowercase__ : Any = len(SCREAMING_SNAKE_CASE_ ) > 1 and is_chinese(SCREAMING_SNAKE_CASE_ )
if chinese_word:
word_set.add(SCREAMING_SNAKE_CASE_ )
lowercase__ : Optional[int] = list(SCREAMING_SNAKE_CASE_ )
return word_list
def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : set() ):
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
lowercase__ : int = max([len(SCREAMING_SNAKE_CASE_ ) for w in chinese_word_set] )
lowercase__ : Union[str, Any] = bert_tokens
lowercase__ , lowercase__ : int = 0, len(SCREAMING_SNAKE_CASE_ )
while start < end:
lowercase__ : Any = True
if is_chinese(bert_word[start] ):
lowercase__ : Dict = min(end - start , SCREAMING_SNAKE_CASE_ )
for i in range(SCREAMING_SNAKE_CASE_ , 1 , -1 ):
lowercase__ : List[str] = ''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowercase__ : Optional[Any] = '##' + bert_word[j]
lowercase__ : Optional[int] = start + i
lowercase__ : Union[str, Any] = False
break
if single_word:
start += 1
return bert_word
def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : LTP , SCREAMING_SNAKE_CASE_ : BertTokenizer ):
'''simple docstring'''
lowercase__ : Any = []
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 100 ):
lowercase__ : List[str] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['cws'] ).cws
lowercase__ : Tuple = [get_chinese_word(SCREAMING_SNAKE_CASE_ ) for r in res]
ltp_res.extend(SCREAMING_SNAKE_CASE_ )
assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ )
lowercase__ : str = []
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 100 ):
lowercase__ : Any = bert_tokenizer(lines[i : i + 100] , add_special_tokens=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=512 )
bert_res.extend(res['input_ids'] )
assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ )
lowercase__ : Union[str, Any] = []
for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
lowercase__ : int = []
for id in input_ids:
lowercase__ : List[Any] = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE_ )
input_tokens.append(SCREAMING_SNAKE_CASE_ )
lowercase__ : Dict = add_sub_symbol(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowercase__ : int = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(SCREAMING_SNAKE_CASE_ ):
if token[:2] == "##":
lowercase__ : Any = token[2:]
# save chinese tokens' pos
if len(SCREAMING_SNAKE_CASE_ ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE_ ) ):
ref_id.append(SCREAMING_SNAKE_CASE_ )
ref_ids.append(SCREAMING_SNAKE_CASE_ )
assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ )
return ref_ids
def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ):
'''simple docstring'''
with open(args.file_name , 'r' , encoding='utf-8' ) as f:
lowercase__ : str = f.readlines()
lowercase__ : Optional[Any] = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowercase__ : List[str] = LTP(args.ltp ) # faster in GPU device
lowercase__ : List[Any] = BertTokenizer.from_pretrained(args.bert )
lowercase__ : Tuple = prepare_ref(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with open(args.save_path , 'w' , encoding='utf-8' ) as f:
lowercase__ : Dict = [json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' for ref in ref_ids]
f.writelines(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
snake_case_ = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
required=False,
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''',
required=False,
type=str,
default='''./resources/ltp''',
help='''resources for LTP tokenizer, usually a path''',
)
parser.add_argument(
'''--bert''',
required=False,
type=str,
default='''./resources/robert''',
help='''resources for Bert tokenizer''',
)
parser.add_argument(
'''--save_path''',
required=False,
type=str,
default='''./resources/ref.txt''',
help='''path to save res''',
)
snake_case_ = parser.parse_args()
main(args)
| 164 | 0 |
"""simple docstring"""
def snake_case ( UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ) -> List[str]:
if height >= 1:
move_tower(height - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
move_disk(UpperCamelCase__ , UpperCamelCase__ )
move_tower(height - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def snake_case ( UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ) -> Tuple:
print("""moving disk from""" , UpperCamelCase__ , """to""" , UpperCamelCase__ )
def snake_case ( ) -> Dict:
lowerCamelCase : Dict = int(input("""Height of hanoi: """ ).strip() )
move_tower(UpperCamelCase__ , """A""" , """B""" , """C""" )
if __name__ == "__main__":
main()
| 705 |
"""simple docstring"""
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class A__ :
"""simple docstring"""
def __init__( self: List[str] , __a: List[str] , __a: Dict=13 , __a: Tuple=7 , __a: Dict=False , __a: str=True , __a: List[Any]=False , __a: Dict=True , __a: Any=33 , __a: Optional[Any]=32 , __a: List[Any]=5 , __a: Any=4 , __a: Dict=37 , __a: str="gelu" , __a: str=0.1 , __a: int=0.1 , __a: Optional[int]=512 , __a: List[Any]=16 , __a: int=2 , __a: int=0.02 , __a: Optional[int]=3 , __a: str=4 , __a: Tuple=None , )-> Tuple:
lowerCamelCase : Union[str, Any] = parent
lowerCamelCase : Tuple = batch_size
lowerCamelCase : Any = seq_length
lowerCamelCase : Any = is_training
lowerCamelCase : Tuple = use_input_mask
lowerCamelCase : int = use_token_type_ids
lowerCamelCase : List[str] = use_labels
lowerCamelCase : Optional[int] = vocab_size
lowerCamelCase : Tuple = hidden_size
lowerCamelCase : List[str] = num_hidden_layers
lowerCamelCase : Optional[int] = num_attention_heads
lowerCamelCase : Optional[Any] = intermediate_size
lowerCamelCase : Optional[Any] = hidden_act
lowerCamelCase : Union[str, Any] = hidden_dropout_prob
lowerCamelCase : Optional[Any] = attention_probs_dropout_prob
lowerCamelCase : Any = max_position_embeddings
lowerCamelCase : str = type_vocab_size
lowerCamelCase : List[Any] = type_sequence_label_size
lowerCamelCase : Optional[Any] = initializer_range
lowerCamelCase : Union[str, Any] = num_labels
lowerCamelCase : Optional[Any] = num_choices
lowerCamelCase : Any = scope
def a__ ( self: Optional[int] )-> List[Any]:
lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase : Dict = None
if self.use_input_mask:
lowerCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase : Any = None
lowerCamelCase : int = None
lowerCamelCase : Union[str, Any] = None
if self.use_labels:
lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase : List[str] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self: Tuple )-> Union[str, Any]:
return EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def a__ ( self: List[Any] , __a: List[str] , __a: str , __a: Tuple , __a: List[str] , __a: List[str] , __a: str )-> int:
lowerCamelCase : Optional[int] = EsmModel(config=__a )
model.to(__a )
model.eval()
lowerCamelCase : int = model(__a , attention_mask=__a )
lowerCamelCase : str = model(__a )
lowerCamelCase : Optional[Any] = model(__a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a__ ( self: int , __a: Union[str, Any] , __a: Optional[int] , __a: List[str] , __a: str , __a: List[str] , __a: Tuple )-> int:
lowerCamelCase : str = EsmForMaskedLM(config=__a )
model.to(__a )
model.eval()
lowerCamelCase : List[Any] = model(__a , attention_mask=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self: List[str] , __a: List[Any] , __a: List[str] , __a: int , __a: Union[str, Any] , __a: List[Any] , __a: Tuple )-> List[str]:
lowerCamelCase : Tuple = self.num_labels
lowerCamelCase : Dict = EsmForTokenClassification(config=__a )
model.to(__a )
model.eval()
lowerCamelCase : int = model(__a , attention_mask=__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self: Optional[int] )-> Optional[int]:
lowerCamelCase : Any = self.prepare_config_and_inputs()
(
(
lowerCamelCase
) , (
lowerCamelCase
) , (
lowerCamelCase
) , (
lowerCamelCase
) , (
lowerCamelCase
) , (
lowerCamelCase
) ,
) : Tuple = config_and_inputs
lowerCamelCase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class A__ ( __lowercase , __lowercase , unittest.TestCase):
"""simple docstring"""
snake_case__ : Any =False
snake_case__ : Dict =(
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case__ : Dict =()
snake_case__ : Optional[int] =(
{
'''feature-extraction''': EsmModel,
'''fill-mask''': EsmForMaskedLM,
'''text-classification''': EsmForSequenceClassification,
'''token-classification''': EsmForTokenClassification,
'''zero-shot''': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case__ : Any =True
def a__ ( self: Optional[int] )-> Optional[int]:
lowerCamelCase : Optional[Any] = EsmModelTester(self )
lowerCamelCase : Any = ConfigTester(self , config_class=__a , hidden_size=37 )
def a__ ( self: List[Any] )-> Optional[Any]:
self.config_tester.run_common_tests()
def a__ ( self: int )-> Optional[Any]:
lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def a__ ( self: Tuple )-> Any:
lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase : Tuple = type
self.model_tester.create_and_check_model(*__a )
def a__ ( self: List[str] )-> Tuple:
lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__a )
def a__ ( self: int )-> Optional[Any]:
lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__a )
@slow
def a__ ( self: Any )-> List[Any]:
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase : int = EsmModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def a__ ( self: str )-> List[str]:
lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0]
lowerCamelCase : Union[str, Any] = EsmEmbeddings(config=__a )
lowerCamelCase : List[str] = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
lowerCamelCase : Union[str, Any] = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
lowerCamelCase : Optional[Any] = create_position_ids_from_input_ids(__a , model.padding_idx )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__a , __a ) ) )
def a__ ( self: Optional[int] )-> int:
lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs()[0]
lowerCamelCase : Any = EsmEmbeddings(config=__a )
lowerCamelCase : Dict = torch.empty(2 , 4 , 30 )
lowerCamelCase : List[Any] = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
lowerCamelCase : Any = torch.as_tensor([expected_single_positions, expected_single_positions] )
lowerCamelCase : List[str] = embeddings.create_position_ids_from_inputs_embeds(__a )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__a , __a ) ) )
@unittest.skip("""Esm does not support embedding resizing""" )
def a__ ( self: Any )-> Optional[Any]:
pass
@unittest.skip("""Esm does not support embedding resizing""" )
def a__ ( self: Dict )-> Dict:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def a__ ( self: List[str] )-> Dict:
pass
@require_torch
class A__ ( __lowercase):
"""simple docstring"""
@slow
def a__ ( self: Any )-> Union[str, Any]:
with torch.no_grad():
lowerCamelCase : Union[str, Any] = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" )
model.eval()
lowerCamelCase : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowerCamelCase : Tuple = model(__a )[0]
lowerCamelCase : Dict = 33
lowerCamelCase : List[str] = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape , __a )
lowerCamelCase : Tuple = torch.tensor(
[[[8.92_15, -10.58_98, -6.46_71], [-6.39_67, -13.91_14, -1.12_12], [-7.78_12, -13.95_16, -3.74_06]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
@slow
def a__ ( self: Dict )-> str:
with torch.no_grad():
lowerCamelCase : Any = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" )
model.eval()
lowerCamelCase : Optional[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowerCamelCase : Any = model(__a )[0]
# compare the actual values for a slice.
lowerCamelCase : Tuple = torch.tensor(
[[[0.14_44, 0.54_13, 0.32_48], [0.30_34, 0.00_53, 0.31_08], [0.32_28, -0.24_99, 0.34_15]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
| 42 | 0 |
'''simple docstring'''
import random
from typing import Any
def UpperCAmelCase_ ( lowerCamelCase_ ):
"""simple docstring"""
for _ in range(len(lowerCamelCase_ ) ):
lowerCAmelCase__ : Dict = random.randint(0 , len(lowerCamelCase_ ) - 1 )
lowerCAmelCase__ : Union[str, Any] = random.randint(0 , len(lowerCamelCase_ ) - 1 )
lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = data[b], data[a]
return data
if __name__ == "__main__":
snake_case = [0, 1, 2, 3, 4, 5, 6, 7]
snake_case = ["""python""", """says""", """hello""", """!"""]
print("""Fisher-Yates Shuffle:""")
print("""List""", integers, strings)
print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 378 |
'''simple docstring'''
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
snake_case = logging.get_logger(__name__)
snake_case = {"""vocab_file""": """spiece.model"""}
snake_case = {
"""vocab_file""": {
"""AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""",
"""AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""",
"""AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""",
"""AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""",
"""AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""",
}
}
snake_case = {
"""AI-Sweden/gpt-sw3-126m""": 20_48,
"""AI-Sweden/gpt-sw3-350m""": 20_48,
"""AI-Sweden/gpt-sw3-1.6b""": 20_48,
"""AI-Sweden/gpt-sw3-6.7b""": 20_48,
"""AI-Sweden/gpt-sw3-20b""": 20_48,
}
class lowerCAmelCase ( UpperCamelCase_ ):
A_ : Dict = VOCAB_FILES_NAMES
A_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : Union[str, Any] = ["""input_ids""", """attention_mask"""]
def __init__( self : List[str] , a__ : Any , a__ : Dict=False , a__ : List[Any]=False , a__ : Dict=False , a__ : Any=None , a__ : Tuple=None , a__ : str=None , a__ : Optional[int]=None , a__ : Optional[Dict[str, Any]] = None , **a__ : Union[str, Any] , ):
'''simple docstring'''
lowerCAmelCase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
lowerCAmelCase__ : List[str] = kwargs.get("name_or_path" )
if name_or_path is None:
logger.warning(
"name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,"
" you are testing the model, this can safely be ignored" )
lowerCAmelCase__ : Dict = "None"
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
lowerCAmelCase__ : Tuple = "<|endoftext|>" if eos_token is None else eos_token
lowerCAmelCase__ : List[str] = "<unk>" if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
lowerCAmelCase__ : List[str] = unk_token if pad_token is None else pad_token
lowerCAmelCase__ : Any = eos_token if bos_token is None else bos_token
else:
lowerCAmelCase__ : str = "<pad>" if pad_token is None else pad_token
lowerCAmelCase__ : Union[str, Any] = "<s>" if bos_token is None else bos_token
super().__init__(
do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , pad_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , )
lowerCAmelCase__ : Dict = do_lower_case
lowerCAmelCase__ : Union[str, Any] = remove_space
lowerCAmelCase__ : Any = keep_accents
lowerCAmelCase__ : List[str] = vocab_file
lowerCAmelCase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(a__ )
# Used for whitespace normalization in input texts
# fmt : off
lowerCAmelCase__ : List[str] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", ""}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
lowerCAmelCase__ : Dict = re.compile(
F'''[{''.join(map(a__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]''' )
def __getstate__( self : str ):
'''simple docstring'''
lowerCAmelCase__ : List[Any] = self.__dict__.copy()
lowerCAmelCase__ : List[str] = None
return state
def __setstate__( self : List[Any] , a__ : Optional[int] ):
'''simple docstring'''
lowerCAmelCase__ : Tuple = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
lowerCAmelCase__ : int = {}
lowerCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def _A ( self : str ):
'''simple docstring'''
return len(self.sp_model )
def _A ( self : List[str] , a__ : str ):
'''simple docstring'''
lowerCAmelCase__ : str = self.non_printing_characters_re.sub("" , a__ )
# Normalize whitespaces
lowerCAmelCase__ : int = "".join([char if char not in self.whitespaces else " " for char in text] )
# NFC Unicode normalization
lowerCAmelCase__ : Tuple = unicodedata.normalize("NFC" , a__ )
return text
def _A ( self : str , a__ : str , **a__ : List[Any] ):
'''simple docstring'''
lowerCAmelCase__ : Union[str, Any] = self.preprocess_text(a__ )
return self.sp_model.encode(a__ , out_type=a__ )
def _A ( self : List[str] , a__ : str ):
'''simple docstring'''
return self.sp_model.PieceToId(a__ )
def _A ( self : Optional[int] , a__ : int ):
'''simple docstring'''
return self.sp_model.IdToPiece(a__ )
@staticmethod
def _A ( a__ : str ):
'''simple docstring'''
return out_string
def _A ( self : int , a__ : List[str] ):
'''simple docstring'''
lowerCAmelCase__ : Tuple = []
lowerCAmelCase__ : Tuple = ""
lowerCAmelCase__ : str = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(a__ ) + token
lowerCAmelCase__ : Union[str, Any] = True
lowerCAmelCase__ : Dict = []
else:
current_sub_tokens.append(a__ )
lowerCAmelCase__ : Dict = False
out_string += self.sp_model.decode(a__ )
return out_string
def _A ( self : Union[str, Any] ):
'''simple docstring'''
lowerCAmelCase__ : int = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _A ( self : str , a__ : str , a__ : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(a__ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCAmelCase__ : List[str] = os.path.join(
a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , a__ )
elif not os.path.isfile(self.vocab_file ):
with open(a__ , "wb" ) as fi:
lowerCAmelCase__ : int = self.sp_model.serialized_model_proto()
fi.write(a__ )
return (out_vocab_file,)
def _A ( self : List[Any] , a__ : Union[str, List[str]] , a__ : Union[str, bool] = False ):
'''simple docstring'''
if isinstance(a__ , a__ ):
lowerCAmelCase__ : int = self.preprocess_text(a__ )
lowerCAmelCase__ : Dict = self.sp_model.encode(a__ )
else:
lowerCAmelCase__ : Union[str, Any] = [self.preprocess_text(a__ ) for t in text]
lowerCAmelCase__ : Optional[int] = self.sp_model.encode(a__ )
if return_tensors is True or return_tensors == "pt":
lowerCAmelCase__ : Union[str, Any] = torch.tensor(a__ )
return token_ids
def _A ( self : Dict , a__ : Union[int, List[int]] ):
'''simple docstring'''
return self.sp_model.decode(a__ )
def _A ( self : int , a__ : "Conversation" ):
'''simple docstring'''
lowerCAmelCase__ : Any = [F'''User: {text}''' if is_user else F'''Bot: {text}''' for is_user, text in conversation.iter_texts()]
lowerCAmelCase__ : List[str] = (
F'''{self.eos_token}{self.bos_token}''' + F'''{self.bos_token}'''.join(a__ ) + F'''{self.bos_token}Bot:'''
)
return self.encode(text=a__ )
| 378 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class lowerCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=18 , lowerCAmelCase=30 , lowerCAmelCase=4_00 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=False , ):
"""simple docstring"""
snake_case = size if size is not None else {'''height''': 20, '''width''': 20}
snake_case = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
snake_case = parent
snake_case = batch_size
snake_case = num_channels
snake_case = image_size
snake_case = min_resolution
snake_case = max_resolution
snake_case = do_resize
snake_case = size
snake_case = do_center_crop
snake_case = crop_size
snake_case = do_normalize
snake_case = image_mean
snake_case = image_std
snake_case = do_reduce_labels
def snake_case ( self ):
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def lowerCAmelCase__ ( ) -> Any:
"""simple docstring"""
snake_case = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
snake_case = Image.open(dataset[0]['file'] )
snake_case = Image.open(dataset[1]['file'] )
return image, map
def lowerCAmelCase__ ( ) -> Tuple:
"""simple docstring"""
snake_case = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
snake_case = Image.open(ds[0]['file'] )
snake_case = Image.open(ds[1]['file'] )
snake_case = Image.open(ds[2]['file'] )
snake_case = Image.open(ds[3]['file'] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
_lowerCAmelCase : Dict = BeitImageProcessor if is_vision_available() else None
def snake_case ( self ):
"""simple docstring"""
snake_case = BeitImageProcessingTester(self )
@property
def snake_case ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case ( self ):
"""simple docstring"""
snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCamelCase__ , 'do_resize' ) )
self.assertTrue(hasattr(UpperCamelCase__ , 'size' ) )
self.assertTrue(hasattr(UpperCamelCase__ , 'do_center_crop' ) )
self.assertTrue(hasattr(UpperCamelCase__ , 'center_crop' ) )
self.assertTrue(hasattr(UpperCamelCase__ , 'do_normalize' ) )
self.assertTrue(hasattr(UpperCamelCase__ , 'image_mean' ) )
self.assertTrue(hasattr(UpperCamelCase__ , 'image_std' ) )
def snake_case ( self ):
"""simple docstring"""
snake_case = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 20, 'width': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
self.assertEqual(image_processor.do_reduce_labels , UpperCamelCase__ )
snake_case = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=UpperCamelCase__ )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
self.assertEqual(image_processor.do_reduce_labels , UpperCamelCase__ )
def snake_case ( self ):
"""simple docstring"""
pass
def snake_case ( self ):
"""simple docstring"""
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase__ , Image.Image )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
snake_case = image_processing(UpperCamelCase__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def snake_case ( self ):
"""simple docstring"""
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase__ , np.ndarray )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
snake_case = image_processing(UpperCamelCase__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def snake_case ( self ):
"""simple docstring"""
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ )
for image in image_inputs:
self.assertIsInstance(UpperCamelCase__ , torch.Tensor )
# Test not batched input
snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
snake_case = image_processing(UpperCamelCase__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def snake_case ( self ):
"""simple docstring"""
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ )
snake_case = []
for image in image_inputs:
self.assertIsInstance(UpperCamelCase__ , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
snake_case = image_processing(image_inputs[0] , maps[0] , return_tensors='pt' )
self.assertEqual(
encoding['pixel_values'].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(
encoding['labels'].shape , (
1,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(encoding['labels'].dtype , torch.long )
self.assertTrue(encoding['labels'].min().item() >= 0 )
self.assertTrue(encoding['labels'].max().item() <= 2_55 )
# Test batched
snake_case = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='pt' )
self.assertEqual(
encoding['pixel_values'].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(
encoding['labels'].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(encoding['labels'].dtype , torch.long )
self.assertTrue(encoding['labels'].min().item() >= 0 )
self.assertTrue(encoding['labels'].max().item() <= 2_55 )
# Test not batched input (PIL images)
snake_case = prepare_semantic_single_inputs()
snake_case = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='pt' )
self.assertEqual(
encoding['pixel_values'].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(
encoding['labels'].shape , (
1,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(encoding['labels'].dtype , torch.long )
self.assertTrue(encoding['labels'].min().item() >= 0 )
self.assertTrue(encoding['labels'].max().item() <= 2_55 )
# Test batched input (PIL images)
snake_case = prepare_semantic_batch_inputs()
snake_case = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='pt' )
self.assertEqual(
encoding['pixel_values'].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(
encoding['labels'].shape , (
2,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
self.assertEqual(encoding['labels'].dtype , torch.long )
self.assertTrue(encoding['labels'].min().item() >= 0 )
self.assertTrue(encoding['labels'].max().item() <= 2_55 )
def snake_case ( self ):
"""simple docstring"""
snake_case = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
snake_case = prepare_semantic_single_inputs()
snake_case = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='pt' )
self.assertTrue(encoding['labels'].min().item() >= 0 )
self.assertTrue(encoding['labels'].max().item() <= 1_50 )
snake_case = True
snake_case = image_processing(UpperCamelCase__ , UpperCamelCase__ , return_tensors='pt' )
self.assertTrue(encoding['labels'].min().item() >= 0 )
self.assertTrue(encoding['labels'].max().item() <= 2_55 )
| 711 | """simple docstring"""
import os
import string
import sys
SCREAMING_SNAKE_CASE__ = 1 << 8
SCREAMING_SNAKE_CASE__ = {
"tab": ord("\t"),
"newline": ord("\r"),
"esc": 27,
"up": 65 + ARROW_KEY_FLAG,
"down": 66 + ARROW_KEY_FLAG,
"right": 67 + ARROW_KEY_FLAG,
"left": 68 + ARROW_KEY_FLAG,
"mod_int": 91,
"undefined": sys.maxsize,
"interrupt": 3,
"insert": 50,
"delete": 51,
"pg_up": 53,
"pg_down": 54,
}
SCREAMING_SNAKE_CASE__ = KEYMAP["up"]
SCREAMING_SNAKE_CASE__ = KEYMAP["left"]
if sys.platform == "win32":
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = {
b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG,
b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG,
}
for i in range(10):
SCREAMING_SNAKE_CASE__ = ord(str(i))
def lowerCAmelCase__ ( ) -> List[Any]:
"""simple docstring"""
if os.name == "nt":
import msvcrt
snake_case = 'mbcs'
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(_UpperCamelCase ) == 0:
# Read the keystroke
snake_case = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
snake_case = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
snake_case = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) )
WIN_CH_BUFFER.append(_UpperCamelCase )
if ord(_UpperCamelCase ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(1_2_6 ) )
snake_case = chr(KEYMAP['esc'] )
except KeyError:
snake_case = cha[1]
else:
snake_case = ch.decode(_UpperCamelCase )
else:
snake_case = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
snake_case = sys.stdin.fileno()
snake_case = termios.tcgetattr(_UpperCamelCase )
try:
tty.setraw(_UpperCamelCase )
snake_case = sys.stdin.read(1 )
finally:
termios.tcsetattr(_UpperCamelCase , termios.TCSADRAIN , _UpperCamelCase )
return ch
def lowerCAmelCase__ ( ) -> Union[str, Any]:
"""simple docstring"""
snake_case = get_raw_chars()
if ord(_UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(_UpperCamelCase ) == KEYMAP["esc"]:
snake_case = get_raw_chars()
if ord(_UpperCamelCase ) == KEYMAP["mod_int"]:
snake_case = get_raw_chars()
if ord(_UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(_UpperCamelCase ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 104 | 0 |
import argparse
import os
import re
_lowercase : List[Any] ='''src/diffusers'''
# Pattern that looks at the indentation in a line.
_lowercase : Optional[Any] =re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
_lowercase : Optional[Any] =re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
_lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
_lowercase : Tuple =re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
_lowercase : Union[str, Any] =re.compile(R'''\[([^\]]+)\]''')
def A__ ( lowercase: Any ) -> Tuple:
A : Optional[int] =_re_indent.search(lowercase )
return "" if search is None else search.groups()[0]
def A__ ( lowercase: str, lowercase: List[str]="", lowercase: List[Any]=None, lowercase: str=None ) -> Union[str, Any]:
A : Tuple =0
A : List[str] =code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(lowercase ):
index += 1
A : int =['\n'.join(lines[:index] )]
else:
A : Optional[Any] =[]
# We split into blocks until we get to the `end_prompt` (or the end of the block).
A : str =[lines[index]]
index += 1
while index < len(lowercase ) and (end_prompt is None or not lines[index].startswith(lowercase )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(lowercase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(lowercase ) )
if index < len(lowercase ) - 1:
A : Dict =[lines[index + 1]]
index += 1
else:
A : Union[str, Any] =[]
else:
blocks.append('\n'.join(lowercase ) )
A : Union[str, Any] =[lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(lowercase ) > 0:
blocks.append('\n'.join(lowercase ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(lowercase ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def A__ ( lowercase: str ) -> Optional[Any]:
def _inner(lowercase: Union[str, Any] ):
return key(lowercase ).lower().replace('_', '' )
return _inner
def A__ ( lowercase: int, lowercase: Optional[int]=None ) -> int:
# If no key is provided, we use a noop.
def noop(lowercase: List[str] ):
return x
if key is None:
A : Dict =noop
# Constants are all uppercase, they go first.
A : Any =[obj for obj in objects if key(lowercase ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
A : Union[str, Any] =[obj for obj in objects if key(lowercase )[0].isupper() and not key(lowercase ).isupper()]
# Functions begin with a lowercase, they go last.
A : Dict =[obj for obj in objects if not key(lowercase )[0].isupper()]
A : Optional[Any] =ignore_underscore(lowercase )
return sorted(lowercase, key=lowercase ) + sorted(lowercase, key=lowercase ) + sorted(lowercase, key=lowercase )
def A__ ( lowercase: List[Any] ) -> Tuple:
# This inner function sort imports between [ ].
def _replace(lowercase: Dict ):
A : Any =match.groups()[0]
if "," not in imports:
return F'[{imports}]'
A : str =[part.strip().replace('"', '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
A : int =keys[:-1]
return "[" + ", ".join([F'"{k}"' for k in sort_objects(lowercase )] ) + "]"
A : Any =import_statement.split('\n' )
if len(lowercase ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
A : Union[str, Any] =2 if lines[1].strip() == '[' else 1
A : List[Any] =[(i, _re_strip_line.search(lowercase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
A : Dict =sort_objects(lowercase, key=lambda lowercase : x[1] )
A : Optional[int] =[lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(lowercase ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
A : int =_re_bracket_content.sub(_replace, lines[1] )
else:
A : Any =[part.strip().replace('"', '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
A : str =keys[:-1]
A : Optional[Any] =get_indent(lines[1] ) + ', '.join([F'"{k}"' for k in sort_objects(lowercase )] )
return "\n".join(lowercase )
else:
# Finally we have to deal with imports fitting on one line
A : Any =_re_bracket_content.sub(_replace, lowercase )
return import_statement
def A__ ( lowercase: List[str], lowercase: List[Any]=True ) -> List[Any]:
with open(lowercase, 'r' ) as f:
A : Optional[Any] =f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
A : Optional[Any] =split_code_in_indented_blocks(
lowercase, start_prompt='_import_structure = {', end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1, len(lowercase ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
A : Dict =main_blocks[block_idx]
A : Any =block.split('\n' )
# Get to the start of the imports.
A : List[Any] =0
while line_idx < len(lowercase ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
A : List[str] =len(lowercase )
else:
line_idx += 1
if line_idx >= len(lowercase ):
continue
# Ignore beginning and last line: they don't contain anything.
A : Any ='\n'.join(block_lines[line_idx:-1] )
A : str =get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
A : Union[str, Any] =split_code_in_indented_blocks(lowercase, indent_level=lowercase )
# We have two categories of import key: list or _import_structure[key].append/extend
A : List[Any] =_re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
A : List[str] =[(pattern.search(lowercase ).groups()[0] if pattern.search(lowercase ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
A : Tuple =[(i, key) for i, key in enumerate(lowercase ) if key is not None]
A : Union[str, Any] =[x[0] for x in sorted(lowercase, key=lambda lowercase : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
A : List[Any] =0
A : Optional[int] =[]
for i in range(len(lowercase ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
A : Dict =sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(lowercase )
count += 1
# And we put our main block back together with its first and last line.
A : Tuple ='\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(lowercase ):
if check_only:
return True
else:
print(F'Overwriting {file}.' )
with open(lowercase, 'w' ) as f:
f.write('\n'.join(lowercase ) )
def A__ ( lowercase: Optional[Any]=True ) -> List[str]:
A : str =[]
for root, _, files in os.walk(lowercase ):
if "__init__.py" in files:
A : List[str] =sort_imports(os.path.join(lowercase, '__init__.py' ), check_only=lowercase )
if result:
A : Optional[Any] =[os.path.join(lowercase, '__init__.py' )]
if len(lowercase ) > 0:
raise ValueError(F'Would overwrite {len(lowercase )} files, run `make style`.' )
if __name__ == "__main__":
_lowercase : str =argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
_lowercase : str =parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 305 | _lowercase : str ='''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
_lowercase : List[str] =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
_lowercase : int ={
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 305 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
lowercase_ = logging.get_logger(__name__)
lowercase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
lowercase_ = {
'vocab_file': {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt',
},
'tokenizer_file': {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json'
),
'google/realm-orqa-nq-openqa': (
'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json'
),
'google/realm-orqa-nq-reader': (
'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json'
),
'google/realm-orqa-wq-openqa': (
'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json'
),
'google/realm-orqa-wq-reader': (
'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json'
),
},
}
lowercase_ = {
'google/realm-cc-news-pretrained-embedder': 5_1_2,
'google/realm-cc-news-pretrained-encoder': 5_1_2,
'google/realm-cc-news-pretrained-scorer': 5_1_2,
'google/realm-cc-news-pretrained-openqa': 5_1_2,
'google/realm-orqa-nq-openqa': 5_1_2,
'google/realm-orqa-nq-reader': 5_1_2,
'google/realm-orqa-wq-openqa': 5_1_2,
'google/realm-orqa-wq-reader': 5_1_2,
}
lowercase_ = {
'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True},
'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True},
'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True},
'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True},
'google/realm-orqa-nq-openqa': {'do_lower_case': True},
'google/realm-orqa-nq-reader': {'do_lower_case': True},
'google/realm-orqa-wq-openqa': {'do_lower_case': True},
'google/realm-orqa-wq-reader': {'do_lower_case': True},
}
class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_INIT_CONFIGURATION
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = RealmTokenizer
def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ) -> str:
'''simple docstring'''
super().__init__(
lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , )
_lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , lowerCAmelCase ) != do_lower_case
or normalizer_state.get('strip_accents' , lowerCAmelCase ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase ) != tokenize_chinese_chars
):
_lowercase =getattr(lowerCAmelCase , normalizer_state.pop('type' ) )
_lowercase =do_lower_case
_lowercase =strip_accents
_lowercase =tokenize_chinese_chars
_lowercase =normalizer_class(**lowerCAmelCase )
_lowercase =do_lower_case
def A__ ( self , lowerCAmelCase , **lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
_lowercase =PaddingStrategy.MAX_LENGTH
_lowercase =text
_lowercase =kwargs.pop('text_pair' , lowerCAmelCase )
_lowercase =kwargs.pop('return_tensors' , lowerCAmelCase )
_lowercase ={
'input_ids': [],
'attention_mask': [],
'token_type_ids': [],
}
for idx, candidate_text in enumerate(lowerCAmelCase ):
if batch_text_pair is not None:
_lowercase =batch_text_pair[idx]
else:
_lowercase =None
_lowercase =super().__call__(lowerCAmelCase , lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase )
_lowercase =encoded_candidates.get('input_ids' )
_lowercase =encoded_candidates.get('attention_mask' )
_lowercase =encoded_candidates.get('token_type_ids' )
if encoded_input_ids is not None:
output_data["input_ids"].append(lowerCAmelCase )
if encoded_attention_mask is not None:
output_data["attention_mask"].append(lowerCAmelCase )
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(lowerCAmelCase )
_lowercase ={key: item for key, item in output_data.items() if len(lowerCAmelCase ) != 0}
return BatchEncoding(lowerCAmelCase , tensor_type=lowerCAmelCase )
def A__ ( self , lowerCAmelCase , lowerCAmelCase=None ) -> Tuple:
'''simple docstring'''
_lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> List[int]:
'''simple docstring'''
_lowercase =[self.sep_token_id]
_lowercase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> Tuple[str]:
'''simple docstring'''
_lowercase =self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase )
return tuple(lowerCAmelCase )
| 380 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def a ( A__ : Tuple ) -> Any:
"""simple docstring"""
_lowercase =model.config
_lowercase =DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
_lowercase =MBartConfig(
is_decoder=A__ , is_encoder_decoder=A__ , add_cross_attention=A__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer ) , scale_embedding=A__ , add_final_layer_norm=A__ , )
return encoder_config, decoder_config
def a ( A__ : Union[str, Any] ) -> str:
"""simple docstring"""
if "encoder.model" in name:
_lowercase =name.replace('encoder.model' , 'encoder' )
if "decoder.model" in name:
_lowercase =name.replace('decoder.model' , 'decoder' )
if "patch_embed.proj" in name:
_lowercase =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
_lowercase =name.replace('patch_embed.norm' , 'embeddings.norm' )
if name.startswith('encoder' ):
if "layers" in name:
_lowercase ='encoder.' + name
if "attn.proj" in name:
_lowercase =name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name and "mask" not in name:
_lowercase =name.replace('attn' , 'attention.self' )
if "norm1" in name:
_lowercase =name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
_lowercase =name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
_lowercase =name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
_lowercase =name.replace('mlp.fc2' , 'output.dense' )
if name == "encoder.norm.weight":
_lowercase ='encoder.layernorm.weight'
if name == "encoder.norm.bias":
_lowercase ='encoder.layernorm.bias'
return name
def a ( A__ : Optional[Any] , A__ : List[Any] ) -> List[str]:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
_lowercase =orig_state_dict.pop(A__ )
if "qkv" in key:
_lowercase =key.split('.' )
_lowercase =int(key_split[3] )
_lowercase =int(key_split[5] )
_lowercase =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
_lowercase =val[:dim, :]
_lowercase =val[dim : dim * 2, :]
_lowercase =val[-dim:, :]
else:
_lowercase =val[:dim]
_lowercase =val[dim : dim * 2]
_lowercase =val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
_lowercase =val
return orig_state_dict
def a ( A__ : str , A__ : List[str]=None , A__ : List[Any]=False ) -> List[str]:
"""simple docstring"""
_lowercase =DonutModel.from_pretrained(A__ ).eval()
# load HuggingFace model
_lowercase , _lowercase =get_configs(A__ )
_lowercase =DonutSwinModel(A__ )
_lowercase =MBartForCausalLM(A__ )
_lowercase =VisionEncoderDecoderModel(encoder=A__ , decoder=A__ )
model.eval()
_lowercase =original_model.state_dict()
_lowercase =convert_state_dict(A__ , A__ )
model.load_state_dict(A__ )
# verify results on scanned document
_lowercase =load_dataset('hf-internal-testing/example-documents' )
_lowercase =dataset['test'][0]['image'].convert('RGB' )
_lowercase =XLMRobertaTokenizerFast.from_pretrained(A__ , from_slow=A__ )
_lowercase =DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] )
_lowercase =DonutProcessor(A__ , A__ )
_lowercase =processor(A__ , return_tensors='pt' ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
_lowercase ='<s_docvqa><s_question>{user_input}</s_question><s_answer>'
_lowercase ='When is the coffee break?'
_lowercase =task_prompt.replace('{user_input}' , A__ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
_lowercase ='<s_rvlcdip>'
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
_lowercase ='<s_cord>'
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
_lowercase ='s_cord-v2>'
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
_lowercase ='<s_zhtrainticket>'
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
_lowercase ='hello world'
else:
raise ValueError('Model name not supported' )
_lowercase =original_model.decoder.tokenizer(A__ , add_special_tokens=A__ , return_tensors='pt' )[
'input_ids'
]
_lowercase =original_model.encoder.model.patch_embed(A__ )
_lowercase , _lowercase =model.encoder.embeddings(A__ )
assert torch.allclose(A__ , A__ , atol=1e-3 )
# verify encoder hidden states
_lowercase =original_model.encoder(A__ )
_lowercase =model.encoder(A__ ).last_hidden_state
assert torch.allclose(A__ , A__ , atol=1e-2 )
# verify decoder hidden states
_lowercase =original_model(A__ , A__ , A__ ).logits
_lowercase =model(A__ , decoder_input_ids=A__ ).logits
assert torch.allclose(A__ , A__ , atol=1e-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(A__ )
processor.save_pretrained(A__ )
if push_to_hub:
model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' )
processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
lowercase_ = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 380 | 1 |
def snake_case_ () -> List[str]:
return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )]
__UpperCAmelCase = generate_large_matrix()
__UpperCAmelCase = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def snake_case_ (__A : list[list[int]] ) -> List[Any]:
assert all(row == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for row in grid )
assert all(list(_UpperCAmelCase ) == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for col in zip(*_UpperCAmelCase ) )
def snake_case_ (__A : list[int] ) -> Tuple:
__lowerCAmelCase : Dict = 0
__lowerCAmelCase : Dict = len(_UpperCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
__lowerCAmelCase : Optional[int] = (left + right) // 2
__lowerCAmelCase : Optional[int] = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
__lowerCAmelCase : Any = mid + 1
else:
__lowerCAmelCase : Union[str, Any] = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(_UpperCAmelCase )
def snake_case_ (__A : list[list[int]] ) -> Optional[int]:
__lowerCAmelCase : Union[str, Any] = 0
__lowerCAmelCase : Optional[Any] = len(grid[0] )
for i in range(len(_UpperCAmelCase ) ):
__lowerCAmelCase : List[str] = find_negative_index(grid[i][:bound] )
total += bound
return (len(_UpperCAmelCase ) * len(grid[0] )) - total
def snake_case_ (__A : list[list[int]] ) -> int:
return len([number for row in grid for number in row if number < 0] )
def snake_case_ (__A : list[list[int]] ) -> Dict:
__lowerCAmelCase : Any = 0
for row in grid:
for i, number in enumerate(_UpperCAmelCase ):
if number < 0:
total += len(_UpperCAmelCase ) - i
break
return total
def snake_case_ () -> str:
from timeit import timeit
print("""Running benchmarks""" )
__lowerCAmelCase : List[Any] = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
__lowerCAmelCase : Tuple = timeit(f'''{func}(grid=grid)''' , setup=_UpperCAmelCase , number=5_0_0 )
print(f'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 651 |
"""simple docstring"""
from __future__ import annotations
import os
from collections.abc import Mapping
__UpperCamelCase : Optional[Any] = tuple[int, int]
class a :
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = vertices
lowerCAmelCase = {
(min(_snake_case ), max(_snake_case )): weight for edge, weight in edges.items()
}
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
lowerCAmelCase = weight
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = Graph({min(self.vertices )} , {} )
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
while len(subgraph.vertices ) < len(self.vertices ):
lowerCAmelCase = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
lowerCAmelCase = edge
lowerCAmelCase = weight
subgraph.add_edge(_snake_case , _snake_case )
return subgraph
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "p107_network.txt" ):
lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) )
lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = {}
lowerCAmelCase = 42
lowerCAmelCase = 42
lowerCAmelCase = 42
with open(_UpperCAmelCase ) as f:
lowerCAmelCase = f.read().strip().split('\n' )
lowerCAmelCase = [line.split(',' ) for line in data]
for edgea in range(1 , len(_UpperCAmelCase ) ):
for edgea in range(_UpperCAmelCase ):
if adjaceny_matrix[edgea][edgea] != "-":
lowerCAmelCase = int(adjaceny_matrix[edgea][edgea] )
lowerCAmelCase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase )
lowerCAmelCase = graph.prims_algorithm()
lowerCAmelCase = sum(graph.edges.values() )
lowerCAmelCase = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f'''{solution() = }''')
| 4 | 0 |
'''simple docstring'''
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files" ,[
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
] ,)
def _A ( A ,A ) -> Optional[Any]:
lowercase = tmp_path_factory.mktemp("dset_infos_dir" )
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md" ,"w" ) as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---" )
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md" ,"w" ) as f:
f.write("" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json" ,"w" ) as f:
f.write("{\"default\": {\"dataset_size\": 42}}" )
lowercase = DatasetInfosDict.from_directory(lowerCAmelCase__ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 4_2
@pytest.mark.parametrize(
"dataset_info" ,[
DatasetInfo(),
DatasetInfo(
description="foo" ,features=Features({"a": Value("int32" )} ) ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train"}] ,download_size=4_2 ,),
] ,)
def _A ( A ,A ) -> Dict:
lowercase = str(lowerCAmelCase__ )
dataset_info.write_to_directory(lowerCAmelCase__ )
lowercase = DatasetInfo.from_directory(lowerCAmelCase__ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(lowerCAmelCase__ ,"dataset_info.json" ) )
def _A ( ) -> Dict:
lowercase = DatasetInfo(
description="foo" ,citation="bar" ,homepage="https://foo.bar" ,license="CC0" ,features=Features({"a": Value("int32" )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train", "num_examples": 4_2}] ,download_checksums={} ,download_size=1_3_3_7 ,post_processing_size=4_4_2 ,dataset_size=1_2_3_4 ,size_in_bytes=1_3_3_7 + 4_4_2 + 1_2_3_4 ,)
lowercase = dataset_info._to_yaml_dict()
assert sorted(lowerCAmelCase__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) )
lowercase = yaml.safe_dump(lowerCAmelCase__ )
lowercase = yaml.safe_load(lowerCAmelCase__ )
assert dataset_info_yaml_dict == reloaded
def _A ( ) -> Any:
lowercase = DatasetInfo()
lowercase = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict" ,[
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()} ),
DatasetInfosDict({"my_config_name": DatasetInfo()} ),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo" ,features=Features({"a": Value("int32" )} ) ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train"}] ,download_size=4_2 ,)
} ),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=4_2 ),
"v2": DatasetInfo(dataset_size=1_3_3_7 ),
} ),
] ,)
def _A ( A ,A ) -> Dict:
lowercase = str(lowerCAmelCase__ )
dataset_infos_dict.write_to_directory(lowerCAmelCase__ )
lowercase = DatasetInfosDict.from_directory(lowerCAmelCase__ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
lowercase = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
lowercase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(lowerCAmelCase__ ,"README.md" ) )
| 706 |
'''simple docstring'''
def _A ( A ,A ,A ,A ,A ) -> int:
if index == number_of_items:
return 0
lowercase : Optional[int] = 0
lowercase : Union[str, Any] = 0
lowercase : Dict = knapsack(A ,A ,A ,A ,index + 1 )
if weights[index] <= max_weight:
lowercase : List[str] = values[index] + knapsack(
A ,A ,A ,max_weight - weights[index] ,index + 1 )
return max(A ,A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 425 | 0 |
def _lowerCamelCase ( __lowerCamelCase ) -> list:
'''simple docstring'''
UpperCAmelCase__ : List[Any] = [0] * len(__lowerCamelCase )
for i in range(1 , len(__lowerCamelCase ) ):
# use last results for better performance - dynamic programming
UpperCAmelCase__ : List[Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
UpperCAmelCase__ : List[str] = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
UpperCAmelCase__ : int = j
return prefix_result
def _lowerCamelCase ( __lowerCamelCase ) -> int:
'''simple docstring'''
return max(prefix_function(__lowerCamelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 79 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : List[str] = {
"configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"],
"tokenization_roberta": ["RobertaTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = ["RobertaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = [
"ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaForCausalLM",
"RobertaForMaskedLM",
"RobertaForMultipleChoice",
"RobertaForQuestionAnswering",
"RobertaForSequenceClassification",
"RobertaForTokenClassification",
"RobertaModel",
"RobertaPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = [
"TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaForCausalLM",
"TFRobertaForMaskedLM",
"TFRobertaForMultipleChoice",
"TFRobertaForQuestionAnswering",
"TFRobertaForSequenceClassification",
"TFRobertaForTokenClassification",
"TFRobertaMainLayer",
"TFRobertaModel",
"TFRobertaPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : int = [
"FlaxRobertaForCausalLM",
"FlaxRobertaForMaskedLM",
"FlaxRobertaForMultipleChoice",
"FlaxRobertaForQuestionAnswering",
"FlaxRobertaForSequenceClassification",
"FlaxRobertaForTokenClassification",
"FlaxRobertaModel",
"FlaxRobertaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
__A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 602 | 0 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
UpperCAmelCase_ : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
UpperCAmelCase_ : List[Any] = {
"vocab_file": {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json",
"allenai/longformer-large-4096": (
"https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json"
),
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json"
),
},
"merges_file": {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt",
"allenai/longformer-large-4096": (
"https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt"
),
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt"
),
},
}
UpperCAmelCase_ : List[Any] = {
"allenai/longformer-base-4096": 4_096,
"allenai/longformer-large-4096": 4_096,
"allenai/longformer-large-4096-finetuned-triviaqa": 4_096,
"allenai/longformer-base-4096-extra.pos.embd.only": 4_096,
"allenai/longformer-large-4096-extra.pos.embd.only": 4_096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def UpperCamelCase ( )-> Optional[Any]:
"""simple docstring"""
A__ = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
A__ = bs[:]
A__ = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
A__ = [chr(_A ) for n in cs]
return dict(zip(_A , _A ) )
def UpperCamelCase ( _A : int )-> List[str]:
"""simple docstring"""
A__ = set()
A__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A__ = char
return pairs
class UpperCamelCase ( _UpperCAmelCase ):
lowerCAmelCase : Dict = VOCAB_FILES_NAMES
lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase : Optional[Any] = ["""input_ids""", """attention_mask"""]
def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__="replace" , UpperCAmelCase__="<s>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="<s>" , UpperCAmelCase__="<unk>" , UpperCAmelCase__="<pad>" , UpperCAmelCase__="<mask>" , UpperCAmelCase__=False , **UpperCAmelCase__ , ):
A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else bos_token
A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else eos_token
A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else sep_token
A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else cls_token
A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else unk_token
A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
A__ = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token
super().__init__(
errors=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , **UpperCAmelCase__ , )
with open(UpperCAmelCase__ , encoding="utf-8" ) as vocab_handle:
A__ = json.load(UpperCAmelCase__ )
A__ = {v: k for k, v in self.encoder.items()}
A__ = errors # how to handle errors in decoding
A__ = bytes_to_unicode()
A__ = {v: k for k, v in self.byte_encoder.items()}
with open(UpperCAmelCase__ , encoding="utf-8" ) as merges_handle:
A__ = merges_handle.read().split("\n" )[1:-1]
A__ = [tuple(merge.split() ) for merge in bpe_merges]
A__ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) )
A__ = {}
A__ = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
A__ = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
def __A ( self ):
return len(self.encoder )
def __A ( self ):
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self , UpperCAmelCase__ ):
if token in self.cache:
return self.cache[token]
A__ = tuple(UpperCAmelCase__ )
A__ = get_pairs(UpperCAmelCase__ )
if not pairs:
return token
while True:
A__ = min(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : self.bpe_ranks.get(UpperCAmelCase__ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
A__ , A__ = bigram
A__ = []
A__ = 0
while i < len(UpperCAmelCase__ ):
try:
A__ = word.index(UpperCAmelCase__ , UpperCAmelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A__ = j
if word[i] == first and i < len(UpperCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A__ = tuple(UpperCAmelCase__ )
A__ = new_word
if len(UpperCAmelCase__ ) == 1:
break
else:
A__ = get_pairs(UpperCAmelCase__ )
A__ = " ".join(UpperCAmelCase__ )
A__ = word
return word
def __A ( self , UpperCAmelCase__ ):
A__ = []
for token in re.findall(self.pat , UpperCAmelCase__ ):
A__ = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase__ ).split(" " ) )
return bpe_tokens
def __A ( self , UpperCAmelCase__ ):
return self.encoder.get(UpperCAmelCase__ , self.encoder.get(self.unk_token ) )
def __A ( self , UpperCAmelCase__ ):
return self.decoder.get(UpperCAmelCase__ )
def __A ( self , UpperCAmelCase__ ):
A__ = "".join(UpperCAmelCase__ )
A__ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ):
if not os.path.isdir(UpperCAmelCase__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
A__ = os.path.join(
UpperCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
A__ = os.path.join(
UpperCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(UpperCAmelCase__ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) + "\n" )
A__ = 0
with open(UpperCAmelCase__ , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
A__ = token_index
writer.write(" ".join(UpperCAmelCase__ ) + "\n" )
index += 1
return vocab_file, merge_file
def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A__ = [self.cls_token_id]
A__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase__ )) + [1]
return [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] + ([0] * len(UpperCAmelCase__ )) + [1]
def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ):
A__ = [self.sep_token_id]
A__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=False , **UpperCAmelCase__ ):
A__ = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase__ ) > 0 and not text[0].isspace()):
A__ = " " + text
return (text, kwargs)
| 232 |
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class UpperCamelCase ( _UpperCAmelCase , unittest.TestCase ):
lowerCAmelCase : List[Any] = FlaxAutoencoderKL
@property
def __A ( self ):
A__ = 4
A__ = 3
A__ = (32, 32)
A__ = jax.random.PRNGKey(0 )
A__ = jax.random.uniform(UpperCAmelCase__ , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def __A ( self ):
A__ = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
A__ = self.dummy_input
return init_dict, inputs_dict
| 232 | 1 |
'''simple docstring'''
class UpperCamelCase__ : # Public class to implement a graph
"""simple docstring"""
def __init__( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : str = row
UpperCAmelCase : Optional[Any] = col
UpperCAmelCase : List[str] = graph
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Any = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
UpperCAmelCase : int = [-1, 0, 1, -1, 1, -1, 0, 1]
UpperCAmelCase : int = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , snake_case ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , snake_case )
def A_ ( self ): # And finally, count all islands.
'''simple docstring'''
UpperCAmelCase : Tuple = [[False for j in range(self.COL )] for i in range(self.ROW )]
UpperCAmelCase : List[Any] = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(snake_case , snake_case , snake_case )
count += 1
return count
| 679 |
'''simple docstring'''
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
def get_masked_lm_array(__magic_name__ ):
UpperCAmelCase : Tuple = F"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"
UpperCAmelCase : List[str] = tf.train.load_variable(__magic_name__ , __magic_name__ )
if "kernel" in name:
UpperCAmelCase : str = array.transpose()
return torch.from_numpy(__magic_name__ )
def get_encoder_array(__magic_name__ ):
UpperCAmelCase : List[Any] = F"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"
UpperCAmelCase : Optional[Any] = tf.train.load_variable(__magic_name__ , __magic_name__ )
if "kernel" in name:
UpperCAmelCase : str = array.transpose()
return torch.from_numpy(__magic_name__ )
def get_encoder_layer_array(__magic_name__ , __magic_name__ ):
UpperCAmelCase : Union[str, Any] = F"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"
UpperCAmelCase : int = tf.train.load_variable(__magic_name__ , __magic_name__ )
if "kernel" in name:
UpperCAmelCase : Optional[int] = array.transpose()
return torch.from_numpy(__magic_name__ )
def get_encoder_attention_layer_array(__magic_name__ , __magic_name__ , __magic_name__ ):
UpperCAmelCase : Tuple = F"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"
UpperCAmelCase : List[str] = tf.train.load_variable(__magic_name__ , __magic_name__ )
UpperCAmelCase : int = array.reshape(__magic_name__ )
if "kernel" in name:
UpperCAmelCase : Optional[Any] = array.transpose()
return torch.from_numpy(__magic_name__ )
print(F"Loading model based on config from {config_path}..." )
UpperCAmelCase : Optional[Any] = BertConfig.from_json_file(__magic_name__ )
UpperCAmelCase : Optional[Any] = BertForMaskedLM(__magic_name__ )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
UpperCAmelCase : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
UpperCAmelCase : BertSelfAttention = layer.attention.self
UpperCAmelCase : List[Any] = get_encoder_attention_layer_array(
__magic_name__ , "_query_dense/kernel" , self_attn.query.weight.data.shape )
UpperCAmelCase : Tuple = get_encoder_attention_layer_array(
__magic_name__ , "_query_dense/bias" , self_attn.query.bias.data.shape )
UpperCAmelCase : int = get_encoder_attention_layer_array(
__magic_name__ , "_key_dense/kernel" , self_attn.key.weight.data.shape )
UpperCAmelCase : Optional[int] = get_encoder_attention_layer_array(
__magic_name__ , "_key_dense/bias" , self_attn.key.bias.data.shape )
UpperCAmelCase : Tuple = get_encoder_attention_layer_array(
__magic_name__ , "_value_dense/kernel" , self_attn.value.weight.data.shape )
UpperCAmelCase : str = get_encoder_attention_layer_array(
__magic_name__ , "_value_dense/bias" , self_attn.value.bias.data.shape )
# Self-attention Output
UpperCAmelCase : BertSelfOutput = layer.attention.output
UpperCAmelCase : str = get_encoder_attention_layer_array(
__magic_name__ , "_output_dense/kernel" , self_output.dense.weight.data.shape )
UpperCAmelCase : Union[str, Any] = get_encoder_attention_layer_array(
__magic_name__ , "_output_dense/bias" , self_output.dense.bias.data.shape )
UpperCAmelCase : str = get_encoder_layer_array(__magic_name__ , "_attention_layer_norm/gamma" )
UpperCAmelCase : List[str] = get_encoder_layer_array(__magic_name__ , "_attention_layer_norm/beta" )
# Intermediate
UpperCAmelCase : BertIntermediate = layer.intermediate
UpperCAmelCase : Dict = get_encoder_layer_array(__magic_name__ , "_intermediate_dense/kernel" )
UpperCAmelCase : Tuple = get_encoder_layer_array(__magic_name__ , "_intermediate_dense/bias" )
# Output
UpperCAmelCase : BertOutput = layer.output
UpperCAmelCase : Optional[Any] = get_encoder_layer_array(__magic_name__ , "_output_dense/kernel" )
UpperCAmelCase : Optional[Any] = get_encoder_layer_array(__magic_name__ , "_output_dense/bias" )
UpperCAmelCase : List[str] = get_encoder_layer_array(__magic_name__ , "_output_layer_norm/gamma" )
UpperCAmelCase : Any = get_encoder_layer_array(__magic_name__ , "_output_layer_norm/beta" )
# Embeddings
UpperCAmelCase : int = get_encoder_array("_position_embedding_layer/embeddings" )
UpperCAmelCase : str = get_encoder_array("_type_embedding_layer/embeddings" )
UpperCAmelCase : Optional[Any] = get_encoder_array("_embedding_norm_layer/gamma" )
UpperCAmelCase : Any = get_encoder_array("_embedding_norm_layer/beta" )
# LM Head
UpperCAmelCase : str = model.cls.predictions.transform
UpperCAmelCase : List[Any] = get_masked_lm_array("dense/kernel" )
UpperCAmelCase : List[Any] = get_masked_lm_array("dense/bias" )
UpperCAmelCase : Optional[Any] = get_masked_lm_array("layer_norm/gamma" )
UpperCAmelCase : Union[str, Any] = get_masked_lm_array("layer_norm/beta" )
UpperCAmelCase : Optional[Any] = get_masked_lm_array("embedding_table" )
# Pooling
UpperCAmelCase : str = BertPooler(config=__magic_name__ )
UpperCAmelCase : BertPooler = get_encoder_array("_pooler_layer/kernel" )
UpperCAmelCase : BertPooler = get_encoder_array("_pooler_layer/bias" )
# Export final model
model.save_pretrained(__magic_name__ )
# Integration test - should load without any errors ;)
UpperCAmelCase : Optional[int] = BertForMaskedLM.from_pretrained(__magic_name__ )
print(new_model.eval() )
print("Model conversion was done sucessfully!" )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
parser.add_argument(
"--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path."
)
parser.add_argument(
"--bert_config_file",
type=str,
required=True,
help="The config json file corresponding to the BERT model. This specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path",
type=str,
required=True,
help="Path to the output PyTorch model.",
)
a : Any = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 679 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase__ = {
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = ['PoolFormerFeatureExtractor']
lowerCAmelCase__ = ['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 719 |
lowerCAmelCase__ = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase__ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase__ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 1 | 0 |
"""simple docstring"""
import json
import os
import tempfile
from transformers.testing_utils import check_json_file_has_correct_format
class UpperCamelCase__ :
"""simple docstring"""
A__ : List[str] = None
def snake_case__ ( self ) -> Union[str, Any]:
A__ = self.feature_extraction_class(**self.feat_extract_dict )
A__ = json.loads(feat_extract.to_json_string() )
for key, value in self.feat_extract_dict.items():
self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE__ )
def snake_case__ ( self ) -> str:
A__ = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A__ = os.path.join(SCREAMING_SNAKE_CASE__ , "feat_extract.json" )
feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE__ )
A__ = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE__ )
self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() )
def snake_case__ ( self ) -> Optional[int]:
A__ = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A__ = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE__ )[0]
check_json_file_has_correct_format(SCREAMING_SNAKE_CASE__ )
A__ = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE__ )
self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() )
def snake_case__ ( self ) -> List[Any]:
A__ = self.feature_extraction_class()
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
| 104 |
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 104 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __magic_name__ ( self : Any ) -> Tuple:
SCREAMING_SNAKE_CASE__ : Optional[Any] =[[1, 2, 4], [1, 2, 3, 4]]
SCREAMING_SNAKE_CASE__ : Any =DisjunctiveConstraint(lowercase__ )
self.assertTrue(isinstance(dc.token_ids , lowercase__ ) )
with self.assertRaises(lowercase__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(lowercase__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def __magic_name__ ( self : str ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : List[Any] =[[1, 2], [1, 2, 3, 4]]
with self.assertRaises(lowercase__ ):
DisjunctiveConstraint(lowercase__ ) # fails here
def __magic_name__ ( self : Dict ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : Optional[int] =[[1, 2, 3], [1, 2, 4]]
SCREAMING_SNAKE_CASE__ : Optional[Any] =DisjunctiveConstraint(lowercase__ )
SCREAMING_SNAKE_CASE__ : Dict =dc.update(1 )
SCREAMING_SNAKE_CASE__ : Optional[int] =stepped is True and completed is False and reset is False
self.assertTrue(lowercase__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
SCREAMING_SNAKE_CASE__ : Tuple =dc.update(2 )
SCREAMING_SNAKE_CASE__ : Tuple =stepped is True and completed is False and reset is False
self.assertTrue(lowercase__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
SCREAMING_SNAKE_CASE__ : Any =dc.update(3 )
SCREAMING_SNAKE_CASE__ : Tuple =stepped is True and completed is True and reset is False
self.assertTrue(lowercase__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def __magic_name__ ( self : str ) -> Tuple:
SCREAMING_SNAKE_CASE__ : List[Any] =[[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
SCREAMING_SNAKE_CASE__ : Dict =DisjunctiveConstraint(lowercase__ )
SCREAMING_SNAKE_CASE__ : Dict =dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
SCREAMING_SNAKE_CASE__ : List[Any] =dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
SCREAMING_SNAKE_CASE__ : Dict =dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
SCREAMING_SNAKE_CASE__ : List[Any] =dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
SCREAMING_SNAKE_CASE__ : Tuple =dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
SCREAMING_SNAKE_CASE__ : str =dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
SCREAMING_SNAKE_CASE__ : str =dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] ) | 702 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class __SCREAMING_SNAKE_CASE :
def __init__( self : Optional[int] , __lowercase : Optional[int] , __lowercase : str=13 , __lowercase : int=10 , __lowercase : List[Any]=3 , __lowercase : List[str]=2 , __lowercase : int=2 , __lowercase : Dict=True , __lowercase : Optional[Any]=True , __lowercase : int=32 , __lowercase : List[Any]=5 , __lowercase : Union[str, Any]=4 , __lowercase : Any=37 , __lowercase : Optional[Any]="gelu" , __lowercase : Union[str, Any]=0.1 , __lowercase : Tuple=0.1 , __lowercase : Dict=10 , __lowercase : int=0.02 , __lowercase : str="divided_space_time" , __lowercase : Union[str, Any]=None , ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ : int =parent
SCREAMING_SNAKE_CASE__ : List[str] =batch_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] =image_size
SCREAMING_SNAKE_CASE__ : List[Any] =num_channels
SCREAMING_SNAKE_CASE__ : int =patch_size
SCREAMING_SNAKE_CASE__ : Tuple =num_frames
SCREAMING_SNAKE_CASE__ : List[Any] =is_training
SCREAMING_SNAKE_CASE__ : List[str] =use_labels
SCREAMING_SNAKE_CASE__ : Optional[Any] =hidden_size
SCREAMING_SNAKE_CASE__ : str =num_hidden_layers
SCREAMING_SNAKE_CASE__ : int =num_attention_heads
SCREAMING_SNAKE_CASE__ : Tuple =intermediate_size
SCREAMING_SNAKE_CASE__ : List[str] =hidden_act
SCREAMING_SNAKE_CASE__ : Dict =hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Union[str, Any] =attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : List[Any] =attention_type
SCREAMING_SNAKE_CASE__ : Union[str, Any] =initializer_range
SCREAMING_SNAKE_CASE__ : Any =scope
SCREAMING_SNAKE_CASE__ : int =num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
SCREAMING_SNAKE_CASE__ : List[str] =(image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE__ : str =(num_frames) * self.num_patches_per_frame + 1
def __magic_name__ ( self : Optional[int] ) -> Tuple:
SCREAMING_SNAKE_CASE__ : Optional[int] =floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE__ : List[Any] =None
if self.use_labels:
SCREAMING_SNAKE_CASE__ : Any =ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE__ : int =self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self : int ) -> Any:
SCREAMING_SNAKE_CASE__ : Union[str, Any] =TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
SCREAMING_SNAKE_CASE__ : List[Any] =self.num_labels
return config
def __magic_name__ ( self : int , __lowercase : Optional[int] , __lowercase : Dict , __lowercase : List[Any] ) -> int:
SCREAMING_SNAKE_CASE__ : Tuple =TimesformerModel(config=__lowercase )
model.to(__lowercase )
model.eval()
SCREAMING_SNAKE_CASE__ : Optional[int] =model(__lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self : List[str] , __lowercase : str , __lowercase : Tuple , __lowercase : List[Any] ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : str =TimesformerForVideoClassification(__lowercase )
model.to(__lowercase )
model.eval()
SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(__lowercase )
# verify the logits shape
SCREAMING_SNAKE_CASE__ : Tuple =torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __lowercase )
def __magic_name__ ( self : Any ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : int =self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =config_and_inputs
SCREAMING_SNAKE_CASE__ : Any ={'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
snake_case_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
snake_case_ = (
{"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def __magic_name__ ( self : str ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ : Dict =TimesformerModelTester(self )
SCREAMING_SNAKE_CASE__ : List[Any] =ConfigTester(
self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 )
def __magic_name__ ( self : str , __lowercase : Dict , __lowercase : str , __lowercase : Optional[int]=False ) -> int:
SCREAMING_SNAKE_CASE__ : str =copy.deepcopy(__lowercase )
if return_labels:
if model_class in get_values(__lowercase ):
SCREAMING_SNAKE_CASE__ : Any =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowercase )
return inputs_dict
def __magic_name__ ( self : List[Any] ) -> Any:
self.config_tester.run_common_tests()
@unittest.skip(reason='''TimeSformer does not use inputs_embeds''' )
def __magic_name__ ( self : List[Any] ) -> Optional[int]:
pass
def __magic_name__ ( self : str ) -> Tuple:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : str =model_class(__lowercase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
SCREAMING_SNAKE_CASE__ : Any =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) )
def __magic_name__ ( self : Any ) -> Any:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Optional[Any] =model_class(__lowercase )
SCREAMING_SNAKE_CASE__ : str =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE__ : List[str] =[*signature.parameters.keys()]
SCREAMING_SNAKE_CASE__ : Dict =['''pixel_values''']
self.assertListEqual(arg_names[:1] , __lowercase )
def __magic_name__ ( self : int ) -> Dict:
SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowercase )
def __magic_name__ ( self : List[str] ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__lowercase )
@slow
def __magic_name__ ( self : Optional[int] ) -> Optional[Any]:
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ : Union[str, Any] =TimesformerModel.from_pretrained(__lowercase )
self.assertIsNotNone(__lowercase )
def __magic_name__ ( self : Union[str, Any] ) -> List[str]:
if not self.has_attentions:
pass
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE__ : List[Any] =True
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : List[Any] =self.model_tester.seq_length
SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.model_tester.num_frames
SCREAMING_SNAKE_CASE__ : Optional[Any] =True
SCREAMING_SNAKE_CASE__ : str =False
SCREAMING_SNAKE_CASE__ : Tuple =True
SCREAMING_SNAKE_CASE__ : Dict =model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE__ : Optional[Any] =model(**self._prepare_for_class(__lowercase , __lowercase ) )
SCREAMING_SNAKE_CASE__ : Union[str, Any] =outputs.attentions
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
SCREAMING_SNAKE_CASE__ : List[Any] =True
SCREAMING_SNAKE_CASE__ : List[str] =model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE__ : Any =model(**self._prepare_for_class(__lowercase , __lowercase ) )
SCREAMING_SNAKE_CASE__ : List[Any] =outputs.attentions
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
SCREAMING_SNAKE_CASE__ : Optional[int] =len(__lowercase )
# Check attention is always last and order is fine
SCREAMING_SNAKE_CASE__ : Optional[int] =True
SCREAMING_SNAKE_CASE__ : Union[str, Any] =True
SCREAMING_SNAKE_CASE__ : Optional[Any] =model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(**self._prepare_for_class(__lowercase , __lowercase ) )
self.assertEqual(out_len + 1 , len(__lowercase ) )
SCREAMING_SNAKE_CASE__ : List[str] =outputs.attentions
self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def __magic_name__ ( self : Tuple ) -> List[Any]:
def check_hidden_states_output(__lowercase : Tuple , __lowercase : Dict , __lowercase : Optional[int] ):
SCREAMING_SNAKE_CASE__ : List[Any] =model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE__ : int =model(**self._prepare_for_class(__lowercase , __lowercase ) )
SCREAMING_SNAKE_CASE__ : List[Any] =outputs.hidden_states
SCREAMING_SNAKE_CASE__ : Tuple =self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__lowercase ) , __lowercase )
SCREAMING_SNAKE_CASE__ : int =self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Tuple =True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE__ : List[str] =True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
def _a( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Union[str, Any] =hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' )
SCREAMING_SNAKE_CASE__ : Any =np.load(UpperCamelCase__ )
return list(UpperCamelCase__ )
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self : Any ) -> List[str]:
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def __magic_name__ ( self : Any ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ : int =TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to(
__lowercase )
SCREAMING_SNAKE_CASE__ : List[str] =self.default_image_processor
SCREAMING_SNAKE_CASE__ : Tuple =prepare_video()
SCREAMING_SNAKE_CASE__ : Any =image_processor(video[:8] , return_tensors='''pt''' ).to(__lowercase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE__ : Optional[int] =model(**__lowercase )
# verify the logits
SCREAMING_SNAKE_CASE__ : List[str] =torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __lowercase )
SCREAMING_SNAKE_CASE__ : List[Any] =torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) ) | 665 | 0 |
'''simple docstring'''
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCamelCase : int =logging.get_logger(__name__)
_UpperCamelCase : Any ={
'nvidia/segformer-b0-finetuned-ade-512-512': (
'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json'
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class _SCREAMING_SNAKE_CASE ( _a ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = 'segformer'
def __init__( self , _snake_case=3 , _snake_case=4 , _snake_case=[2, 2, 2, 2] , _snake_case=[8, 4, 2, 1] , _snake_case=[32, 64, 1_60, 2_56] , _snake_case=[7, 3, 3, 3] , _snake_case=[4, 2, 2, 2] , _snake_case=[1, 2, 5, 8] , _snake_case=[4, 4, 4, 4] , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case=0.0_2 , _snake_case=0.1 , _snake_case=1E-6 , _snake_case=2_56 , _snake_case=2_55 , **_snake_case , ):
"""simple docstring"""
super().__init__(**lowerCAmelCase_ )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'''
''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , lowerCAmelCase_ , )
__lowerCamelCase = num_channels
__lowerCamelCase = num_encoder_blocks
__lowerCamelCase = depths
__lowerCamelCase = sr_ratios
__lowerCamelCase = hidden_sizes
__lowerCamelCase = patch_sizes
__lowerCamelCase = strides
__lowerCamelCase = mlp_ratios
__lowerCamelCase = num_attention_heads
__lowerCamelCase = hidden_act
__lowerCamelCase = hidden_dropout_prob
__lowerCamelCase = attention_probs_dropout_prob
__lowerCamelCase = classifier_dropout_prob
__lowerCamelCase = initializer_range
__lowerCamelCase = drop_path_rate
__lowerCamelCase = layer_norm_eps
__lowerCamelCase = decoder_hidden_size
__lowerCamelCase = kwargs.get('''reshape_last_stage''' , lowerCAmelCase_ )
__lowerCamelCase = semantic_loss_ignore_index
class _SCREAMING_SNAKE_CASE ( _a ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = version.parse('1.11' )
@property
def _lowerCamelCase ( self ):
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def _lowerCamelCase ( self ):
"""simple docstring"""
return 1E-4
@property
def _lowerCamelCase ( self ):
"""simple docstring"""
return 12
| 316 |
'''simple docstring'''
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
_snake_case : Any = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
_snake_case : Any = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n'
_snake_case : List[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n'
def snake_case_ (UpperCamelCase : Tuple ):
'''simple docstring'''
def remove_articles(UpperCamelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(UpperCamelCase , ''' ''' , UpperCamelCase )
def white_space_fix(UpperCamelCase : Union[str, Any] ):
return " ".join(text.split() )
def remove_punc(UpperCamelCase : str ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(UpperCamelCase : Tuple ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase ) ) ) )
def snake_case_ (UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
return int(normalize_answer(UpperCamelCase ) == normalize_answer(UpperCamelCase ) )
def snake_case_ (UpperCamelCase : List[str] , UpperCamelCase : List[str] ):
'''simple docstring'''
_a = [any(compute_exact(UpperCamelCase , UpperCamelCase ) for ref in refs ) for pred, refs in zip(UpperCamelCase , UpperCamelCase )]
return (sum(UpperCamelCase ) / len(UpperCamelCase )) * 100
def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(UpperCamelCase )
_a = Counter(UpperCamelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(UpperCamelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = keeptmpscorea / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(UpperCamelCase ) > 0:
_a = deltmpscorea / len(UpperCamelCase )
# ADDITION
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = set(UpperCamelCase ) & set(UpperCamelCase )
_a = set(UpperCamelCase ) - set(UpperCamelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
_a = addtmpscore / len(UpperCamelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ):
'''simple docstring'''
_a = len(UpperCamelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((_a) , (_a) , (_a)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def snake_case_ (UpperCamelCase : str , UpperCamelCase : bool = True , UpperCamelCase : str = "13a" , UpperCamelCase : bool = True ):
'''simple docstring'''
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase )()(UpperCamelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(UpperCamelCase , return_str=UpperCamelCase , escape=UpperCamelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase , return_str=UpperCamelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def snake_case_ (UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Dict ):
'''simple docstring'''
if not (len(UpperCamelCase ) == len(UpperCamelCase ) == len(UpperCamelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ):
sari_score += SARIsent(normalize(UpperCamelCase ) , normalize(UpperCamelCase ) , [normalize(UpperCamelCase ) for sent in refs] )
_a = sari_score / len(UpperCamelCase )
return 100 * sari_score
def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : List[str]="exp" , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=False , ):
'''simple docstring'''
_a = len(references[0] )
if any(len(UpperCamelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(UpperCamelCase )]
_a = sacrebleu.corpus_bleu(
UpperCamelCase , UpperCamelCase , smooth_method=UpperCamelCase , smooth_value=UpperCamelCase , force=UpperCamelCase , lowercase=UpperCamelCase , use_effective_order=UpperCamelCase , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def __lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ) -> Dict:
"""simple docstring"""
_a = {}
result.update({'''sari''': compute_sari(sources=lowerCAmelCase_ , predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
result.update({'''exact''': compute_em(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ )} )
return result
| 22 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
from typing import Any
class lowerCAmelCase__ :
def __init__( self , UpperCamelCase__ ):
'''simple docstring'''
A__ = data
A__ = None
class lowerCAmelCase__ :
def __init__( self ):
'''simple docstring'''
A__ = None
A__ = None
def __iter__( self ):
'''simple docstring'''
A__ = self.head
while self.head:
yield node.data
A__ = node.next
if node == self.head:
break
def __len__( self ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self ):
'''simple docstring'''
return "->".join(str(UpperCamelCase__ ) for item in iter(self ) )
def lowercase_ ( self , UpperCamelCase__ ):
'''simple docstring'''
self.insert_nth(len(self ) , UpperCamelCase__ )
def lowercase_ ( self , UpperCamelCase__ ):
'''simple docstring'''
self.insert_nth(0 , UpperCamelCase__ )
def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if index < 0 or index > len(self ):
raise IndexError("list index out of range." )
A__ = Node(UpperCamelCase__ )
if self.head is None:
A__ = new_node # first node points itself
A__ = A__ = new_node
elif index == 0: # insert at head
A__ = self.head
A__ = A__ = new_node
else:
A__ = self.head
for _ in range(index - 1 ):
A__ = temp.next
A__ = temp.next
A__ = new_node
if index == len(self ) - 1: # insert at tail
A__ = new_node
def lowercase_ ( self ):
'''simple docstring'''
return self.delete_nth(0 )
def lowercase_ ( self ):
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def lowercase_ ( self , UpperCamelCase__ = 0 ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise IndexError("list index out of range." )
A__ = self.head
if self.head == self.tail: # just one node
A__ = A__ = None
elif index == 0: # delete head node
A__ = self.tail.next.next
A__ = self.head.next
else:
A__ = self.head
for _ in range(index - 1 ):
A__ = temp.next
A__ = temp.next
A__ = temp.next.next
if index == len(self ) - 1: # delete at tail
A__ = temp
return delete_node.data
def lowercase_ ( self ):
'''simple docstring'''
return len(self ) == 0
def __a ( ) -> None:
'''simple docstring'''
A__ = CircularLinkedList()
assert len(A ) == 0
assert circular_linked_list.is_empty() is True
assert str(A ) == ""
try:
circular_linked_list.delete_front()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_tail()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_nth(-1 )
raise AssertionError
except IndexError:
assert True
try:
circular_linked_list.delete_nth(0 )
raise AssertionError
except IndexError:
assert True
assert circular_linked_list.is_empty() is True
for i in range(5 ):
assert len(A ) == i
circular_linked_list.insert_nth(A , i + 1 )
assert str(A ) == "->".join(str(A ) for i in range(1 , 6 ) )
circular_linked_list.insert_tail(6 )
assert str(A ) == "->".join(str(A ) for i in range(1 , 7 ) )
circular_linked_list.insert_head(0 )
assert str(A ) == "->".join(str(A ) for i in range(0 , 7 ) )
assert circular_linked_list.delete_front() == 0
assert circular_linked_list.delete_tail() == 6
assert str(A ) == "->".join(str(A ) for i in range(1 , 6 ) )
assert circular_linked_list.delete_nth(2 ) == 3
circular_linked_list.insert_nth(2 , 3 )
assert str(A ) == "->".join(str(A ) for i in range(1 , 6 ) )
assert circular_linked_list.is_empty() is False
if __name__ == "__main__":
import doctest
doctest.testmod() | 261 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__UpperCAmelCase =logging.get_logger(__name__)
__UpperCAmelCase ={
"""openai/imagegpt-small""": """""",
"""openai/imagegpt-medium""": """""",
"""openai/imagegpt-large""": """""",
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
lowercase__ : Dict = """imagegpt"""
lowercase__ : str = ["""past_key_values"""]
lowercase__ : Union[str, Any] = {
"""hidden_size""": """n_embd""",
"""max_position_embeddings""": """n_positions""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , UpperCamelCase__=5_12 + 1 , UpperCamelCase__=32 * 32 , UpperCamelCase__=5_12 , UpperCamelCase__=24 , UpperCamelCase__=8 , UpperCamelCase__=None , UpperCamelCase__="quick_gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , **UpperCamelCase__ , ):
'''simple docstring'''
A__ = vocab_size
A__ = n_positions
A__ = n_embd
A__ = n_layer
A__ = n_head
A__ = n_inner
A__ = activation_function
A__ = resid_pdrop
A__ = embd_pdrop
A__ = attn_pdrop
A__ = layer_norm_epsilon
A__ = initializer_range
A__ = scale_attn_weights
A__ = use_cache
A__ = scale_attn_by_inverse_layer_idx
A__ = reorder_and_upcast_attn
A__ = tie_word_embeddings
super().__init__(tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
@property
def lowercase_ ( self ):
'''simple docstring'''
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = 1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = 3 , UpperCamelCase__ = 32 , UpperCamelCase__ = 32 , ):
'''simple docstring'''
A__ = self._generate_dummy_images(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
A__ = dict(preprocessor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) )
return inputs | 261 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCAmelCase = {
'''configuration_conditional_detr''': [
'''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''ConditionalDetrConfig''',
'''ConditionalDetrOnnxConfig''',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''ConditionalDetrFeatureExtractor''']
__UpperCAmelCase = ['''ConditionalDetrImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConditionalDetrForObjectDetection''',
'''ConditionalDetrForSegmentation''',
'''ConditionalDetrModel''',
'''ConditionalDetrPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 90 | import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
_lowercase : str =logging.get_logger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
lowercase : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} )
lowercase : str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} )
lowercase : int = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowercase : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[str]:
A : Tuple =self.task_name.lower()
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[int] = "train"
lowercase : int = "dev"
lowercase : Union[str, Any] = "test"
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : GlueDataTrainingArguments
lowercase : str
lowercase : List[InputFeatures]
def __init__( self : str , SCREAMING_SNAKE_CASE__ : GlueDataTrainingArguments , SCREAMING_SNAKE_CASE__ : PreTrainedTokenizerBase , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Union[str, Split] = Split.train , SCREAMING_SNAKE_CASE__ : Optional[str] = None , ) -> List[Any]:
warnings.warn(
'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , SCREAMING_SNAKE_CASE__ , )
A : Any =args
A : Union[str, Any] =glue_processors[args.task_name]()
A : Union[str, Any] =glue_output_modes[args.task_name]
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
try:
A : Any =Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
# Load data features from cache or dataset file
A : Tuple =os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , )
A : Optional[Any] =self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
A , A : str =label_list[2], label_list[1]
A : Tuple =label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
A : int =cached_features_file + '.lock'
with FileLock(SCREAMING_SNAKE_CASE__ ):
if os.path.exists(SCREAMING_SNAKE_CASE__ ) and not args.overwrite_cache:
A : Optional[Any] =time.time()
A : str =torch.load(SCREAMING_SNAKE_CASE__ )
logger.info(
f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
else:
logger.info(f'Creating features from dataset file at {args.data_dir}' )
if mode == Split.dev:
A : int =self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
A : Dict =self.processor.get_test_examples(args.data_dir )
else:
A : Optional[Any] =self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
A : Optional[int] =examples[:limit_length]
A : int =glue_convert_examples_to_features(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_length=args.max_seq_length , label_list=SCREAMING_SNAKE_CASE__ , output_mode=self.output_mode , )
A : List[Any] =time.time()
torch.save(self.features , SCREAMING_SNAKE_CASE__ )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self : Optional[Any] ) -> Union[str, Any]:
return len(self.features )
def __getitem__( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> InputFeatures:
return self.features[i]
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
return self.label_list
| 305 | 0 |
'''simple docstring'''
from math import ceil
def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ):
_lowercase = list(range(0 , UpperCamelCase__ ) )
_lowercase = [item for sublist in list(device_map.values() ) for item in sublist]
# Duplicate check
_lowercase = []
for i in device_map_blocks:
if device_map_blocks.count(UpperCamelCase__ ) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(UpperCamelCase__ )
# Missing blocks
_lowercase = [i for i in blocks if i not in device_map_blocks]
_lowercase = [i for i in device_map_blocks if i not in blocks]
if len(UpperCamelCase__ ) != 0:
raise ValueError(
"""Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device."""
""" These attention blocks were specified more than once: """ + str(UpperCamelCase__ ) )
if len(UpperCamelCase__ ) != 0:
raise ValueError(
"""There are attention blocks for this model that are not specified in the device_map. Add these attention """
"""blocks to a device on the device_map: """ + str(UpperCamelCase__ ) )
if len(UpperCamelCase__ ) != 0:
raise ValueError(
"""The device_map contains more attention blocks than this model has. Remove these from the device_map:"""
+ str(UpperCamelCase__ ) )
def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ):
_lowercase = list(range(UpperCamelCase__ ) )
_lowercase = int(ceil(n_layers / len(UpperCamelCase__ ) ) )
_lowercase = [layers[i : i + n_blocks] for i in range(0 , UpperCamelCase__ , UpperCamelCase__ )]
return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) )
| 715 |
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( snake_case_ ):
return 1 if digit in (0, 1) else (digit * factorial(digit - 1 ))
def _SCREAMING_SNAKE_CASE ( snake_case_ ):
_lowercase = 0
_lowercase = number
while duplicate > 0:
_lowercase , _lowercase = divmod(snake_case_ , 10 )
fact_sum += factorial(snake_case_ )
return fact_sum == number
if __name__ == "__main__":
print('Program to check whether a number is a Krisnamurthy Number or not.')
_lowerCamelCase = int(input('Enter number: ').strip())
print(
F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number."""
)
| 572 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase : List[Any] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[Any] = ['MBartTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : List[Any] = ['MBartTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Tuple = [
'MBART_PRETRAINED_MODEL_ARCHIVE_LIST',
'MBartForCausalLM',
'MBartForConditionalGeneration',
'MBartForQuestionAnswering',
'MBartForSequenceClassification',
'MBartModel',
'MBartPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Any = [
'TFMBartForConditionalGeneration',
'TFMBartModel',
'TFMBartPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[Any] = [
'FlaxMBartForConditionalGeneration',
'FlaxMBartForQuestionAnswering',
'FlaxMBartForSequenceClassification',
'FlaxMBartModel',
'FlaxMBartPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart import MBartTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart_fast import MBartTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mbart import (
MBART_PRETRAINED_MODEL_ARCHIVE_LIST,
MBartForCausalLM,
MBartForConditionalGeneration,
MBartForQuestionAnswering,
MBartForSequenceClassification,
MBartModel,
MBartPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mbart import (
FlaxMBartForConditionalGeneration,
FlaxMBartForQuestionAnswering,
FlaxMBartForSequenceClassification,
FlaxMBartModel,
FlaxMBartPreTrainedModel,
)
else:
import sys
lowercase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 557 |
import numpy as np
class A_ :
'''simple docstring'''
def __init__( self: Optional[int] ):
__lowerCamelCase : int = (0, 0)
__lowerCamelCase : List[str] = None
__lowerCamelCase : int = 0
__lowerCamelCase : int = 0
__lowerCamelCase : Union[str, Any] = 0
def __eq__( self: Optional[int] , a: List[Any] ):
return self.position == cell.position
def _snake_case ( self: Any ):
print(self.position )
class A_ :
'''simple docstring'''
def __init__( self: str , a: List[str]=(5, 5) ):
__lowerCamelCase : Optional[Any] = np.zeros(a )
__lowerCamelCase : List[str] = world_size[0]
__lowerCamelCase : Optional[int] = world_size[1]
def _snake_case ( self: List[Any] ):
print(self.w )
def _snake_case ( self: Optional[int] , a: str ):
__lowerCamelCase : Tuple = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
__lowerCamelCase : Optional[int] = cell.position[0]
__lowerCamelCase : List[str] = cell.position[1]
__lowerCamelCase : Dict = []
for n in neughbour_cord:
__lowerCamelCase : Dict = current_x + n[0]
__lowerCamelCase : Optional[Any] = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
__lowerCamelCase : Optional[Any] = Cell()
__lowerCamelCase : Any = (x, y)
__lowerCamelCase : Dict = cell
neighbours.append(a )
return neighbours
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__lowerCamelCase : str = []
__lowerCamelCase : int = []
_open.append(SCREAMING_SNAKE_CASE__ )
while _open:
__lowerCamelCase : Union[str, Any] = np.argmin([n.f for n in _open] )
__lowerCamelCase : int = _open[min_f]
_closed.append(_open.pop(SCREAMING_SNAKE_CASE__ ) )
if current == goal:
break
for n in world.get_neigbours(SCREAMING_SNAKE_CASE__ ):
for c in _closed:
if c == n:
continue
__lowerCamelCase : Optional[int] = current.g + 1
__lowerCamelCase , __lowerCamelCase : int = n.position
__lowerCamelCase , __lowerCamelCase : Tuple = goal.position
__lowerCamelCase : Dict = (ya - ya) ** 2 + (xa - xa) ** 2
__lowerCamelCase : str = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(SCREAMING_SNAKE_CASE__ )
__lowerCamelCase : Optional[int] = []
while current.parent is not None:
path.append(current.position )
__lowerCamelCase : int = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
lowercase_ = Gridworld()
# Start position and goal
lowercase_ = Cell()
lowercase_ = (0, 0)
lowercase_ = Cell()
lowercase_ = (4, 4)
print(F"""path from {start.position} to {goal.position}""")
lowercase_ = astar(world, start, goal)
# Just for visual reasons.
for i in s:
lowercase_ = 1
print(world.w)
| 669 | 0 |
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowerCAmelCase__ = logging.getLogger(__name__)
lowerCAmelCase__ = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
lowerCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class snake_case :
"""simple docstring"""
__lowerCAmelCase = field(
default=__snake_case ,metadata={
"""help""": (
"""The model checkpoint for weights initialization. Leave None if you want to train a model from"""
""" scratch."""
)
} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__snake_case )} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,)
@dataclass
class snake_case :
"""simple docstring"""
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """The input training data file (a text file)."""} )
__lowerCAmelCase = field(
default=__snake_case ,metadata={
"""help""": (
"""The input training data files (multiple files in glob format). """
"""Very often splitting large files to smaller files can prevent tokenizer going out of memory"""
)
} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} )
__lowerCAmelCase = field(default=__snake_case ,metadata={"""help""": """Whether ot not to use whole word mask."""} )
__lowerCAmelCase = field(
default=0.15 ,metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} )
__lowerCAmelCase = field(
default=1 / 6 ,metadata={
"""help""": (
"""Ratio of length of a span of masked tokens to surrounding context length for permutation language"""
""" modeling."""
)
} ,)
__lowerCAmelCase = field(
default=5 ,metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} )
__lowerCAmelCase = field(
default=-1 ,metadata={
"""help""": (
"""Optional input sequence length after tokenization."""
"""The training dataset will be truncated in block of this size for training."""
"""Default to the model max input length for single sentence inputs (take into account special tokens)."""
)
} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Optional[int]:
'''simple docstring'''
def _dataset(_UpperCAmelCase , _UpperCAmelCase=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" )
return LineByLineWithRefDataset(
tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , ref_path=_UpperCAmelCase , )
return LineByLineTextDataset(tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size )
else:
return TextDataset(
tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_UpperCAmelCase , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(_UpperCAmelCase ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def __lowercase ( ) -> Optional[Any]:
'''simple docstring'''
__lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
"Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
"or remove the --do_eval argument." )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s" , _UpperCAmelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
__lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
__lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
__lowercase = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch." )
if model_args.tokenizer_name:
__lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
__lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another"
" script, save it,and load it from here, using --tokenizer_name" )
if model_args.model_name_or_path:
__lowercase = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , )
else:
logger.info("Training new model from scratch" )
__lowercase = AutoModelWithLMHead.from_config(_UpperCAmelCase )
model.resize_token_embeddings(len(_UpperCAmelCase ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
"BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"
"--mlm flag (masked language modeling)." )
if data_args.block_size <= 0:
__lowercase = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
__lowercase = min(data_args.block_size , tokenizer.max_len )
# Get datasets
__lowercase = (
get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
__lowercase = (
get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , evaluate=_UpperCAmelCase , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
__lowercase = DataCollatorForPermutationLanguageModeling(
tokenizer=_UpperCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
__lowercase = DataCollatorForWholeWordMask(
tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability )
else:
__lowercase = DataCollatorForLanguageModeling(
tokenizer=_UpperCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
__lowercase = Trainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , data_collator=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , prediction_loss_only=_UpperCAmelCase , )
# Training
if training_args.do_train:
__lowercase = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=_UpperCAmelCase )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__lowercase = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
__lowercase = trainer.evaluate()
__lowercase = math.exp(eval_output["eval_loss"] )
__lowercase = {"perplexity": perplexity}
__lowercase = os.path.join(training_args.output_dir , "eval_results_lm.txt" )
if trainer.is_world_master():
with open(_UpperCAmelCase , "w" ) as writer:
logger.info("***** Eval results *****" )
for key in sorted(result.keys() ):
logger.info(" %s = %s" , _UpperCAmelCase , str(result[key] ) )
writer.write("%s = %s\n" % (key, str(result[key] )) )
results.update(_UpperCAmelCase )
return results
def __lowercase ( _UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 576 | import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowerCAmelCase__ = logging.getLogger(__name__)
lowerCAmelCase__ = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
lowerCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class snake_case :
"""simple docstring"""
__lowerCAmelCase = field(
default=__snake_case ,metadata={
"""help""": (
"""The model checkpoint for weights initialization. Leave None if you want to train a model from"""
""" scratch."""
)
} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__snake_case )} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,)
@dataclass
class snake_case :
"""simple docstring"""
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """The input training data file (a text file)."""} )
__lowerCAmelCase = field(
default=__snake_case ,metadata={
"""help""": (
"""The input training data files (multiple files in glob format). """
"""Very often splitting large files to smaller files can prevent tokenizer going out of memory"""
)
} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} )
__lowerCAmelCase = field(default=__snake_case ,metadata={"""help""": """Whether ot not to use whole word mask."""} )
__lowerCAmelCase = field(
default=0.15 ,metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} )
__lowerCAmelCase = field(
default=1 / 6 ,metadata={
"""help""": (
"""Ratio of length of a span of masked tokens to surrounding context length for permutation language"""
""" modeling."""
)
} ,)
__lowerCAmelCase = field(
default=5 ,metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} )
__lowerCAmelCase = field(
default=-1 ,metadata={
"""help""": (
"""Optional input sequence length after tokenization."""
"""The training dataset will be truncated in block of this size for training."""
"""Default to the model max input length for single sentence inputs (take into account special tokens)."""
)
} ,)
__lowerCAmelCase = field(
default=__snake_case ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Optional[int]:
'''simple docstring'''
def _dataset(_UpperCAmelCase , _UpperCAmelCase=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" )
return LineByLineWithRefDataset(
tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , ref_path=_UpperCAmelCase , )
return LineByLineTextDataset(tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size )
else:
return TextDataset(
tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_UpperCAmelCase , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(_UpperCAmelCase ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def __lowercase ( ) -> Optional[Any]:
'''simple docstring'''
__lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
"Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
"or remove the --do_eval argument." )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s" , _UpperCAmelCase )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
__lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
__lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
__lowercase = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch." )
if model_args.tokenizer_name:
__lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
__lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another"
" script, save it,and load it from here, using --tokenizer_name" )
if model_args.model_name_or_path:
__lowercase = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , )
else:
logger.info("Training new model from scratch" )
__lowercase = AutoModelWithLMHead.from_config(_UpperCAmelCase )
model.resize_token_embeddings(len(_UpperCAmelCase ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
"BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"
"--mlm flag (masked language modeling)." )
if data_args.block_size <= 0:
__lowercase = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
__lowercase = min(data_args.block_size , tokenizer.max_len )
# Get datasets
__lowercase = (
get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
__lowercase = (
get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , evaluate=_UpperCAmelCase , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
__lowercase = DataCollatorForPermutationLanguageModeling(
tokenizer=_UpperCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
__lowercase = DataCollatorForWholeWordMask(
tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability )
else:
__lowercase = DataCollatorForLanguageModeling(
tokenizer=_UpperCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
__lowercase = Trainer(
model=_UpperCAmelCase , args=_UpperCAmelCase , data_collator=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , prediction_loss_only=_UpperCAmelCase , )
# Training
if training_args.do_train:
__lowercase = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=_UpperCAmelCase )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__lowercase = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
__lowercase = trainer.evaluate()
__lowercase = math.exp(eval_output["eval_loss"] )
__lowercase = {"perplexity": perplexity}
__lowercase = os.path.join(training_args.output_dir , "eval_results_lm.txt" )
if trainer.is_world_master():
with open(_UpperCAmelCase , "w" ) as writer:
logger.info("***** Eval results *****" )
for key in sorted(result.keys() ):
logger.info(" %s = %s" , _UpperCAmelCase , str(result[key] ) )
writer.write("%s = %s\n" % (key, str(result[key] )) )
results.update(_UpperCAmelCase )
return results
def __lowercase ( _UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 576 | 1 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def _lowerCamelCase ( snake_case = "isbn/0140328726" ):
_lowerCAmelCase = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes
if new_olid.count('/' ) != 1:
_lowerCAmelCase = F'{olid} is not a valid Open Library olid'
raise ValueError(snake_case )
return requests.get(F'https://openlibrary.org/{new_olid}.json' ).json()
def _lowerCamelCase ( snake_case ):
_lowerCAmelCase = {
'title': 'Title',
'publish_date': 'Publish date',
'authors': 'Authors',
'number_of_pages': 'Number of pages:',
'first_sentence': 'First sentence',
'isbn_10': 'ISBN (10)',
'isbn_13': 'ISBN (13)',
}
_lowerCAmelCase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
_lowerCAmelCase = [
get_openlibrary_data(author['key'] )['name'] for author in data['Authors']
]
_lowerCAmelCase = data['First sentence']['value']
for key, value in data.items():
if isinstance(snake_case , snake_case ):
_lowerCAmelCase = ', '.join(snake_case )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
_lowercase: List[Any] = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (1_0, 1_3) or not isbn.isdigit():
print(f"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""")
continue
print(f"""\nSearching Open Library for ISBN: {isbn}...\n""")
try:
_lowercase: List[Any] = summarize_book(get_openlibrary_data(f"""isbn/{isbn}"""))
print('''\n'''.join(f"""{key}: {value}""" for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f"""Sorry, there are no results for ISBN: {isbn}.""")
| 192 | import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowercase: int = logging.get_logger(__name__)
_lowercase: Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_lowercase: Dict = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
}
}
_lowercase: List[Any] = {
'''camembert-base''': 5_1_2,
}
_lowercase: Dict = '''▁'''
class lowerCamelCase__ ( UpperCAmelCase ):
UpperCamelCase__ =VOCAB_FILES_NAMES
UpperCamelCase__ =PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ =["input_ids", "attention_mask"]
def __init__( self : str , lowercase__ : int , lowercase__ : Tuple="<s>" , lowercase__ : Optional[int]="</s>" , lowercase__ : Optional[Any]="</s>" , lowercase__ : Any="<s>" , lowercase__ : Union[str, Any]="<unk>" , lowercase__ : Union[str, Any]="<pad>" , lowercase__ : Optional[int]="<mask>" , lowercase__ : str=["<s>NOTUSED", "</s>NOTUSED"] , lowercase__ : Optional[Dict[str, Any]] = None , **lowercase__ : Union[str, Any] , ):
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token
_lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , additional_special_tokens=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , )
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowercase__ ) )
_lowerCAmelCase = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
_lowerCAmelCase = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3}
_lowerCAmelCase = len(self.fairseq_tokens_to_ids )
_lowerCAmelCase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
_lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
_lowerCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None , lowercase__ : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowercase__ )) + [1]
return [1] + ([0] * len(lowercase__ )) + [1, 1] + ([0] * len(lowercase__ )) + [1]
def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : List[int] , lowercase__ : Optional[List[int]] = None ):
_lowerCAmelCase = [self.sep_token_id]
_lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
_lowerCAmelCase = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : str ):
return self.sp_model.encode(lowercase__ , out_type=lowercase__ )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Optional[Any] ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(lowercase__ ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(lowercase__ )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Tuple ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Optional[int] ):
_lowerCAmelCase = []
_lowerCAmelCase = ''
_lowerCAmelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowercase__ ) + token
_lowerCAmelCase = True
_lowerCAmelCase = []
else:
current_sub_tokens.append(lowercase__ )
_lowerCAmelCase = False
out_string += self.sp_model.decode(lowercase__ )
return out_string.strip()
def __getstate__( self : Any ):
_lowerCAmelCase = self.__dict__.copy()
_lowerCAmelCase = None
return state
def __setstate__( self : Optional[Any] , lowercase__ : Union[str, Any] ):
_lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
_lowerCAmelCase = {}
_lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : str , lowercase__ : Optional[str] = None ):
if not os.path.isdir(lowercase__ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
_lowerCAmelCase = os.path.join(
lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase__ , 'wb' ) as fi:
_lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(lowercase__ )
return (out_vocab_file,)
| 192 | 1 |
"""simple docstring"""
import string
def _a ( _SCREAMING_SNAKE_CASE ) -> None:
for key in range(len(string.ascii_uppercase ) ):
snake_case_ = """"""
for symbol in message:
if symbol in string.ascii_uppercase:
snake_case_ = string.ascii_uppercase.find(_SCREAMING_SNAKE_CASE )
snake_case_ = num - key
if num < 0:
snake_case_ = num + len(string.ascii_uppercase )
snake_case_ = translated + string.ascii_uppercase[num]
else:
snake_case_ = translated + symbol
print(f"""Decryption using Key #{key}: {translated}""" )
def _a ( ) -> None:
snake_case_ = input("""Encrypted message: """ )
snake_case_ = message.upper()
decrypt(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 716 |
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = 'Input must be a string of 8 numbers plus letter'
__SCREAMING_SNAKE_CASE : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE'
def _a ( _SCREAMING_SNAKE_CASE ) -> bool:
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
snake_case_ = f"""Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}"""
raise TypeError(_SCREAMING_SNAKE_CASE )
snake_case_ = spanish_id.replace("""-""" , """""" ).upper()
if len(_SCREAMING_SNAKE_CASE ) != 9:
raise ValueError(_SCREAMING_SNAKE_CASE )
try:
snake_case_ = int(spanish_id_clean[0:8] )
snake_case_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(_SCREAMING_SNAKE_CASE ) from ex
if letter.isdigit():
raise ValueError(_SCREAMING_SNAKE_CASE )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 2 | 0 |
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
_UpperCamelCase : Tuple = BertJapaneseTokenizer
_UpperCamelCase : Optional[int] = False
_UpperCamelCase : Dict = True
def __a ( self ):
super().setUp()
_lowercase : Optional[int] = [
'[UNK]',
'[CLS]',
'[SEP]',
'こんにちは',
'こん',
'にちは',
'ばんは',
'##こん',
'##にちは',
'##ばんは',
'世界',
'##世界',
'、',
'##、',
'。',
'##。',
]
_lowercase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def __a ( self , _lowerCAmelCase ):
_lowercase : Dict = 'こんにちは、世界。 \nこんばんは、世界。'
_lowercase : Dict = 'こんにちは 、 世界 。 こんばんは 、 世界 。'
return input_text, output_text
def __a ( self , _lowerCAmelCase ):
_lowercase : str = self.get_input_output_texts(_a )
_lowercase : Dict = tokenizer.encode(_a , add_special_tokens=_a )
_lowercase : List[Any] = tokenizer.decode(_a , clean_up_tokenization_spaces=_a )
return text, ids
def __a ( self ):
pass # TODO add if relevant
def __a ( self ):
pass # TODO add if relevant
def __a ( self ):
pass # TODO add if relevant
def __a ( self ):
_lowercase : Tuple = self.tokenizer_class(self.vocab_file )
_lowercase : Optional[int] = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' )
self.assertListEqual(_a , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] )
def __a ( self ):
_lowercase : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' )
self.assertIsNotNone(_a )
_lowercase : int = 'こんにちは、世界。\nこんばんは、世界。'
_lowercase : List[str] = tokenizer.tokenize(_a )
self.assertListEqual(_a , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] )
_lowercase : Optional[Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' )
with open(_a , 'wb' ) as handle:
pickle.dump(_a , _a )
with open(_a , 'rb' ) as handle:
_lowercase : List[Any] = pickle.load(_a )
_lowercase : Dict = tokenizer_new.tokenize(_a )
self.assertListEqual(_a , _a )
def __a ( self ):
_lowercase : List[str] = MecabTokenizer(mecab_dic='ipadic' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , )
def __a ( self ):
try:
_lowercase : List[str] = MecabTokenizer(mecab_dic='unidic_lite' )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , )
def __a ( self ):
try:
_lowercase : List[str] = MecabTokenizer(mecab_dic='unidic' )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , )
def __a ( self ):
_lowercase : List[Any] = MecabTokenizer(do_lower_case=_a , mecab_dic='ipadic' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , )
def __a ( self ):
try:
_lowercase : int = MecabTokenizer(
do_lower_case=_a , normalize_text=_a , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' )
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , )
def __a ( self ):
_lowercase : Dict = MecabTokenizer(normalize_text=_a , mecab_dic='ipadic' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , )
@require_sudachi
def __a ( self ):
_lowercase : List[str] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' )
self.assertIsNotNone(_a )
_lowercase : Dict = 'こんにちは、世界。\nこんばんは、世界。'
_lowercase : List[Any] = tokenizer.tokenize(_a )
self.assertListEqual(_a , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] )
_lowercase : List[str] = os.path.join(self.tmpdirname , 'tokenizer.bin' )
with open(_a , 'wb' ) as handle:
pickle.dump(_a , _a )
with open(_a , 'rb' ) as handle:
_lowercase : Union[str, Any] = pickle.load(_a )
_lowercase : Tuple = tokenizer_new.tokenize(_a )
self.assertListEqual(_a , _a )
@require_sudachi
def __a ( self ):
_lowercase : Optional[Any] = SudachiTokenizer(sudachi_dict_type='core' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , )
@require_sudachi
def __a ( self ):
_lowercase : int = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' )
self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] )
@require_sudachi
def __a ( self ):
_lowercase : Dict = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' )
self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] )
@require_sudachi
def __a ( self ):
_lowercase : Optional[Any] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' )
self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] )
@require_sudachi
def __a ( self ):
_lowercase : Optional[int] = SudachiTokenizer(do_lower_case=_a , sudachi_dict_type='core' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , )
@require_sudachi
def __a ( self ):
_lowercase : str = SudachiTokenizer(normalize_text=_a , sudachi_dict_type='core' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , )
@require_sudachi
def __a ( self ):
_lowercase : Dict = SudachiTokenizer(trim_whitespace=_a , sudachi_dict_type='core' )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , )
@require_jumanpp
def __a ( self ):
_lowercase : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' )
self.assertIsNotNone(_a )
_lowercase : Any = 'こんにちは、世界。\nこんばんは、世界。'
_lowercase : Optional[Any] = tokenizer.tokenize(_a )
self.assertListEqual(_a , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] )
_lowercase : Union[str, Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' )
with open(_a , 'wb' ) as handle:
pickle.dump(_a , _a )
with open(_a , 'rb' ) as handle:
_lowercase : str = pickle.load(_a )
_lowercase : int = tokenizer_new.tokenize(_a )
self.assertListEqual(_a , _a )
@require_jumanpp
def __a ( self ):
_lowercase : List[Any] = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , )
@require_jumanpp
def __a ( self ):
_lowercase : Any = JumanppTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , )
@require_jumanpp
def __a ( self ):
_lowercase : int = JumanppTokenizer(normalize_text=_a )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , )
@require_jumanpp
def __a ( self ):
_lowercase : Any = JumanppTokenizer(trim_whitespace=_a )
self.assertListEqual(
tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , )
@require_jumanpp
def __a ( self ):
_lowercase : str = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , )
def __a ( self ):
_lowercase : List[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは']
_lowercase : List[Any] = {}
for i, token in enumerate(_a ):
_lowercase : Tuple = i
_lowercase : Dict = WordpieceTokenizer(vocab=_a , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] )
self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] )
self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] )
def __a ( self ):
_lowercase : str = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' )
_lowercase : List[str] = tokenizer.subword_tokenizer
_lowercase : int = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' )
self.assertListEqual(_a , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] )
_lowercase : List[Any] = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' )
self.assertListEqual(_a , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] )
def __a ( self ):
_lowercase : Optional[int] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' )
_lowercase : List[Any] = tokenizer.encode('ありがとう。' , add_special_tokens=_a )
_lowercase : List[Any] = tokenizer.encode('どういたしまして。' , add_special_tokens=_a )
_lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_a )
_lowercase : Tuple = tokenizer.build_inputs_with_special_tokens(_a , _a )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
_UpperCamelCase : Union[str, Any] = BertJapaneseTokenizer
_UpperCamelCase : List[str] = False
def __a ( self ):
super().setUp()
_lowercase : Optional[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。']
_lowercase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def __a ( self , **_lowerCAmelCase ):
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **_a )
def __a ( self , _lowerCAmelCase ):
_lowercase : str = 'こんにちは、世界。 \nこんばんは、世界。'
_lowercase : Dict = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。'
return input_text, output_text
def __a ( self ):
pass # TODO add if relevant
def __a ( self ):
pass # TODO add if relevant
def __a ( self ):
pass # TODO add if relevant
def __a ( self ):
_lowercase : str = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' )
_lowercase : Optional[int] = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' )
self.assertListEqual(
_a , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_a ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] )
def __a ( self ):
_lowercase : Tuple = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。']
_lowercase : List[Any] = {}
for i, token in enumerate(_a ):
_lowercase : Dict = i
_lowercase : Union[str, Any] = CharacterTokenizer(vocab=_a , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] )
self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] )
def __a ( self ):
_lowercase : Any = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' )
_lowercase : Any = tokenizer.encode('ありがとう。' , add_special_tokens=_a )
_lowercase : Dict = tokenizer.encode('どういたしまして。' , add_special_tokens=_a )
_lowercase : Tuple = tokenizer.build_inputs_with_special_tokens(_a )
_lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_a , _a )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
_lowercase : Optional[int] = 'cl-tohoku/bert-base-japanese'
_lowercase : List[Any] = AutoTokenizer.from_pretrained(_a )
self.assertIsInstance(_a , _a )
class lowerCAmelCase_ ( unittest.TestCase ):
def __a ( self ):
_lowercase : Tuple = 'cl-tohoku/bert-base-japanese'
with self.assertLogs('transformers' , level='WARNING' ) as cm:
BertTokenizer.from_pretrained(_a )
self.assertTrue(
cm.records[0].message.startswith(
'The tokenizer class you load from this checkpoint is not the same type as the class this function'
' is called from.' ) )
_lowercase : List[str] = 'bert-base-cased'
with self.assertLogs('transformers' , level='WARNING' ) as cm:
BertJapaneseTokenizer.from_pretrained(_a )
self.assertTrue(
cm.records[0].message.startswith(
'The tokenizer class you load from this checkpoint is not the same type as the class this function'
' is called from.' ) )
| 66 |
'''simple docstring'''
from __future__ import annotations
_UpperCamelCase = 10
def a_ ( _lowerCAmelCase ) -> list[int]:
__lowerCamelCase : str = 1
__lowerCamelCase : Union[str, Any] = max(_lowerCAmelCase )
while placement <= max_digit:
# declare and initialize empty buckets
__lowerCamelCase : list[list] = [[] for _ in range(_lowerCAmelCase )]
# split list_of_ints between the buckets
for i in list_of_ints:
__lowerCamelCase : List[str] = int((i / placement) % RADIX )
buckets[tmp].append(_lowerCAmelCase )
# put each buckets' contents into list_of_ints
__lowerCamelCase : Dict = 0
for b in range(_lowerCAmelCase ):
for i in buckets[b]:
__lowerCamelCase : List[str] = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 459 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class _lowerCAmelCase ( unittest.TestCase ):
def __init__( self : Any , a : str , a : str=7 , a : Optional[Any]=3 , a : Optional[Any]=18 , a : List[Any]=30 , a : int=400 , a : Tuple=True , a : str=None , a : List[str]=True , a : str=False , a : Any=True , a : Any=True , a : Optional[Any]=[0.5, 0.5, 0.5] , a : List[Any]=[0.5, 0.5, 0.5] , ) -> List[str]:
"""simple docstring"""
lowercase = parent
lowercase = batch_size
lowercase = num_channels
lowercase = image_size
lowercase = min_resolution
lowercase = max_resolution
lowercase = do_resize
lowercase = size if size is not None else {'''height''': 18, '''width''': 20}
lowercase = do_thumbnail
lowercase = do_align_axis
lowercase = do_pad
lowercase = do_normalize
lowercase = image_mean
lowercase = image_std
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
__lowerCAmelCase : str = DonutImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
lowercase = DonutImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a , '''do_resize''' ) )
self.assertTrue(hasattr(_a , '''size''' ) )
self.assertTrue(hasattr(_a , '''do_thumbnail''' ) )
self.assertTrue(hasattr(_a , '''do_align_long_axis''' ) )
self.assertTrue(hasattr(_a , '''do_pad''' ) )
self.assertTrue(hasattr(_a , '''do_normalize''' ) )
self.assertTrue(hasattr(_a , '''image_mean''' ) )
self.assertTrue(hasattr(_a , '''image_std''' ) )
def _lowerCAmelCase ( self : Optional[Any] ) -> int:
"""simple docstring"""
lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} )
lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
# Previous config had dimensions in (width, height) order
lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} )
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
pass
@is_flaky()
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
# Initialize image_processing
lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
lowercase = image_processing(_a , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
@is_flaky()
def _lowerCAmelCase ( self : Tuple ) -> Any:
"""simple docstring"""
# Initialize image_processing
lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a )
for image in image_inputs:
self.assertIsInstance(_a , np.ndarray )
# Test not batched input
lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
lowercase = image_processing(_a , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
@is_flaky()
def _lowerCAmelCase ( self : str ) -> Union[str, Any]:
"""simple docstring"""
# Initialize image_processing
lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a )
for image in image_inputs:
self.assertIsInstance(_a , torch.Tensor )
# Test not batched input
lowercase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
lowercase = image_processing(_a , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , ) | 721 |
"""simple docstring"""
def A_ ( __UpperCamelCase : int = 1 , __UpperCamelCase : int = 10_00 ):
lowercase = 1
lowercase = 0
for divide_by_number in range(__UpperCamelCase , digit + 1 ):
lowercase = []
lowercase = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(__UpperCamelCase ):
lowercase = len(__UpperCamelCase )
lowercase = divide_by_number
else:
has_been_divided.append(__UpperCamelCase )
lowercase = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod() | 396 | 0 |
def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> list[str]:
return [sentence[i : i + ngram_size] for i in range(len(__lowerCAmelCase ) - ngram_size + 1 )]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 509 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
A__ : List[str] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def snake_case_ ( self : Dict , _snake_case : Tuple , _snake_case : List[str] , _snake_case : Tuple ):
__lowercase : Optional[Any] = hf_hub_download(
repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' )
__lowercase : Optional[Any] = VideoClassificationPipeline(model=_snake_case , image_processor=_snake_case , top_k=2 )
__lowercase : List[Any] = [
example_video_filepath,
'''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''',
]
return video_classifier, examples
def snake_case_ ( self : int , _snake_case : str , _snake_case : Union[str, Any] ):
for example in examples:
__lowercase : Union[str, Any] = video_classifier(_snake_case )
self.assertEqual(
_snake_case , [
{'''score''': ANY(_snake_case ), '''label''': ANY(_snake_case )},
{'''score''': ANY(_snake_case ), '''label''': ANY(_snake_case )},
] , )
@require_torch
def snake_case_ ( self : Optional[Any] ):
__lowercase : Union[str, Any] = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification'''
__lowercase : str = VideoMAEFeatureExtractor(
size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} )
__lowercase : str = pipeline(
'''video-classification''' , model=_snake_case , feature_extractor=_snake_case , frame_sampling_rate=4 )
__lowercase : List[str] = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' )
__lowercase : List[str] = video_classifier(_snake_case , top_k=2 )
self.assertEqual(
nested_simplify(_snake_case , decimals=4 ) , [{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}] , )
__lowercase : List[Any] = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(_snake_case , decimals=4 ) , [
[{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}],
[{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}],
] , )
@require_tf
def snake_case_ ( self : int ):
pass
| 509 | 1 |
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = inspect.getfile(accelerate.test_utils )
SCREAMING_SNAKE_CASE_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] )
SCREAMING_SNAKE_CASE_ = ['''accelerate''', '''launch''']
SCREAMING_SNAKE_CASE_ = Path.home() / '''.cache/huggingface/accelerate'''
SCREAMING_SNAKE_CASE_ = '''default_config.yaml'''
SCREAMING_SNAKE_CASE_ = config_folder / config_file
SCREAMING_SNAKE_CASE_ = config_folder / '''_default_config.yaml'''
SCREAMING_SNAKE_CASE_ = Path('tests/test_configs' )
@classmethod
def __lowerCamelCase( cls ):
"""simple docstring"""
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path )
@classmethod
def __lowerCamelCase( cls ):
"""simple docstring"""
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path )
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : List[Any] = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() )
def __lowerCamelCase( self ):
"""simple docstring"""
for config in sorted(self.test_config_path.glob("""**/*.yaml""" ) ):
with self.subTest(config_file=UpperCamelCase__ ):
execute_subprocess_async(
self.base_cmd + ["""--config_file""", str(UpperCamelCase__ ), self.test_file_path] , env=os.environ.copy() )
def __lowerCamelCase( self ):
"""simple docstring"""
execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy() )
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = '''test-tpu'''
SCREAMING_SNAKE_CASE_ = '''us-central1-a'''
SCREAMING_SNAKE_CASE_ = '''ls'''
SCREAMING_SNAKE_CASE_ = ['''accelerate''', '''tpu-config''']
SCREAMING_SNAKE_CASE_ = '''cd /usr/share'''
SCREAMING_SNAKE_CASE_ = '''tests/test_samples/test_command_file.sh'''
SCREAMING_SNAKE_CASE_ = '''Running gcloud compute tpus tpu-vm ssh'''
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : List[str] = run_command(
self.cmd
+ ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=UpperCamelCase__ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase__ , )
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : List[Any] = run_command(
self.cmd
+ [
"""--config_file""",
"""tests/test_configs/0_12_0.yaml""",
"""--command""",
self.command,
"""--tpu_zone""",
self.tpu_zone,
"""--tpu_name""",
self.tpu_name,
"""--debug""",
] , return_stdout=UpperCamelCase__ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase__ , )
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : Optional[int] = run_command(
self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=UpperCamelCase__ )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , )
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : Union[str, Any] = run_command(
self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=UpperCamelCase__ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , UpperCamelCase__ , )
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : Union[str, Any] = run_command(
self.cmd
+ [
"""--config_file""",
"""tests/test_configs/latest.yaml""",
"""--command""",
self.command,
"""--command""",
"""echo \"Hello World\"""",
"""--debug""",
] , return_stdout=UpperCamelCase__ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , UpperCamelCase__ , )
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : List[str] = run_command(
self.cmd
+ ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=UpperCamelCase__ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , )
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : Any = run_command(
self.cmd
+ [
"""--config_file""",
"""tests/test_configs/0_12_0.yaml""",
"""--command_file""",
self.command_file,
"""--tpu_zone""",
self.tpu_zone,
"""--tpu_name""",
self.tpu_name,
"""--debug""",
] , return_stdout=UpperCamelCase__ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , )
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : List[str] = run_command(
self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=UpperCamelCase__ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , )
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : Optional[Any] = run_command(
self.cmd
+ [
"""--config_file""",
"""tests/test_configs/latest.yaml""",
"""--install_accelerate""",
"""--accelerate_version""",
"""12.0.0""",
"""--debug""",
] , return_stdout=UpperCamelCase__ , )
self.assertIn(
f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , UpperCamelCase__ , )
| 711 |
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
def UpperCAmelCase ( A__ , A__ ) -> str:
try:
with open(A__ , """rb""" ) as flax_state_f:
_snake_case : str = from_bytes(A__ , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(A__ ) as f:
if f.read().startswith("""version""" ):
raise OSError(
"""You seem to have cloned a repository without having git-lfs installed. Please"""
""" install git-lfs and run `git lfs install` followed by `git lfs pull` in the"""
""" folder you cloned.""" )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(f'''Unable to convert {model_file} to Flax deserializable object. ''' )
return load_flax_weights_in_pytorch_model(A__ , A__ )
def UpperCAmelCase ( A__ , A__ ) -> Any:
try:
import torch # noqa: F401
except ImportError:
logger.error(
"""Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see"""
""" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"""
""" instructions.""" )
raise
# check if we have bf16 weights
_snake_case : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda A__ : x.dtype == jnp.bfloataa , A__ ) ).values()
if any(A__ ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"""Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """
"""before loading those in PyTorch model.""" )
_snake_case : Any = jax.tree_util.tree_map(
lambda A__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , A__ )
_snake_case : int = """"""
_snake_case : Union[str, Any] = flatten_dict(A__ , sep=""".""" )
_snake_case : List[Any] = pt_model.state_dict()
# keep track of unexpected & missing keys
_snake_case : Optional[int] = []
_snake_case : int = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
_snake_case : Union[str, Any] = flax_key_tuple.split(""".""" )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
_snake_case : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""]
_snake_case : Optional[Any] = jnp.transpose(A__ , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
_snake_case : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""]
_snake_case : Union[str, Any] = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
_snake_case : int = flax_key_tuple_array[:-1] + ["""weight"""]
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(A__ ):
_snake_case : Optional[int] = (
flax_key_tuple_string.replace("""_0""" , """.0""" )
.replace("""_1""" , """.1""" )
.replace("""_2""" , """.2""" )
.replace("""_3""" , """.3""" )
.replace("""_4""" , """.4""" )
.replace("""_5""" , """.5""" )
.replace("""_6""" , """.6""" )
.replace("""_7""" , """.7""" )
.replace("""_8""" , """.8""" )
.replace("""_9""" , """.9""" )
)
_snake_case : Optional[Any] = """.""".join(A__ )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '''
f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
else:
# add weight to pytorch dict
_snake_case : List[str] = np.asarray(A__ ) if not isinstance(A__ , np.ndarray ) else flax_tensor
_snake_case : Tuple = torch.from_numpy(A__ )
# remove from missing keys
missing_keys.remove(A__ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(A__ )
pt_model.load_state_dict(A__ )
# re-transform missing_keys to list
_snake_case : List[Any] = list(A__ )
if len(A__ ) > 0:
logger.warning(
"""Some weights of the Flax model were not used when initializing the PyTorch model"""
f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'''
f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'''
""" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"""
f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'''
""" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"""
""" FlaxBertForSequenceClassification model).""" )
if len(A__ ) > 0:
logger.warning(
f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'''
f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'''
""" use it for predictions and inference.""" )
return pt_model
| 519 | 0 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.