code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("""At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training""") # TF training parameters SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> List[Any]: return TrainCommand(SCREAMING_SNAKE_CASE__ ) class snake_case_ ( a_ ): @staticmethod def snake_case_ ( a_ ): a_ : Optional[Any] = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=a_ , required=a_ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=a_ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=a_ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=a_ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=a_ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=a_ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=a_ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=a_ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=a_ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=a_ , default=3_2 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=a_ , default=6_4 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=a_ , default=3e-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=a_ , default=1e-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=a_ ) def __init__( self , a_ ): a_ : List[str] = logging.get_logger("transformers-cli/training" ) a_ : Dict = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=a_ ) a_ : Tuple = args.output a_ : List[str] = args.column_label a_ : Tuple = args.column_text a_ : Any = args.column_id self.logger.info(F"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": a_ : Tuple = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"""Loading dataset from {args.train_data}""" ) a_ : Any = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) a_ : Tuple = None if args.validation_data: self.logger.info(F"""Loading validation dataset from {args.validation_data}""" ) a_ : int = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) a_ : Optional[int] = args.validation_split a_ : int = args.train_batch_size a_ : List[str] = args.valid_batch_size a_ : Dict = args.learning_rate a_ : Any = args.adam_epsilon def snake_case_ ( self ): if self.framework == "tf": return self.run_tf() return self.run_torch() def snake_case_ ( self ): raise NotImplementedError def snake_case_ ( self ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
237
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case_ ( a_ ): __lowerCAmelCase = "efficientnet" def __init__( self , a_ = 3 , a_ = 6_0_0 , a_ = 2.0 , a_ = 3.1 , a_ = 8 , a_ = [3, 3, 5, 3, 5, 5, 3] , a_ = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , a_ = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , a_ = [] , a_ = [1, 2, 2, 2, 1, 2, 1] , a_ = [1, 2, 2, 3, 3, 4, 1] , a_ = [1, 6, 6, 6, 6, 6, 6] , a_ = 0.25 , a_ = "swish" , a_ = 2_5_6_0 , a_ = "mean" , a_ = 0.02 , a_ = 0.001 , a_ = 0.99 , a_ = 0.5 , a_ = 0.2 , **a_ , ): super().__init__(**a_ ) a_ : Tuple = num_channels a_ : Any = image_size a_ : Dict = width_coefficient a_ : int = depth_coefficient a_ : Optional[Any] = depth_divisor a_ : Optional[int] = kernel_sizes a_ : Dict = in_channels a_ : Dict = out_channels a_ : Union[str, Any] = depthwise_padding a_ : Any = strides a_ : Optional[int] = num_block_repeats a_ : Tuple = expand_ratios a_ : str = squeeze_expansion_ratio a_ : Optional[int] = hidden_act a_ : List[str] = hidden_dim a_ : int = pooling_type a_ : Optional[int] = initializer_range a_ : List[Any] = batch_norm_eps a_ : Tuple = batch_norm_momentum a_ : List[Any] = dropout_rate a_ : Dict = drop_connect_rate a_ : str = sum(a_ ) * 4 class snake_case_ ( a_ ): __lowerCAmelCase = version.parse("1.11" ) @property def snake_case_ ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case_ ( self ): return 1e-5
237
1
from __future__ import annotations from typing import Any class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Tuple = num_of_nodes _SCREAMING_SNAKE_CASE : list[list[int]] = [] _SCREAMING_SNAKE_CASE : dict[int, int] = {} def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: self.m_edges.append([u_node, v_node, weight] ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> List[Any]: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def UpperCamelCase_ ( self , __lowerCamelCase ) -> Dict: if self.m_component[u_node] != u_node: for k in self.m_component: _SCREAMING_SNAKE_CASE : str = self.find_component(lowercase_ ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: if component_size[u_node] <= component_size[v_node]: _SCREAMING_SNAKE_CASE : Optional[int] = v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_ ) elif component_size[u_node] >= component_size[v_node]: _SCREAMING_SNAKE_CASE : Optional[Any] = self.find_component(lowercase_ ) component_size[u_node] += component_size[v_node] self.set_component(lowercase_ ) def UpperCamelCase_ ( self ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = [] _SCREAMING_SNAKE_CASE : Any = 0 _SCREAMING_SNAKE_CASE : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) _SCREAMING_SNAKE_CASE : int = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _SCREAMING_SNAKE_CASE : Optional[int] = edge _SCREAMING_SNAKE_CASE : Tuple = self.m_component[u] _SCREAMING_SNAKE_CASE : Dict = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _SCREAMING_SNAKE_CASE : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_ ): _SCREAMING_SNAKE_CASE : Optional[Any] = edge _SCREAMING_SNAKE_CASE : str = self.m_component[u] _SCREAMING_SNAKE_CASE : Optional[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 _SCREAMING_SNAKE_CASE : List[str] = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def lowerCamelCase__ (): pass if __name__ == "__main__": import doctest doctest.testmod()
704
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'speech_to_text_2' __snake_case = ['past_key_values'] __snake_case = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __lowerCamelCase=1_0_0_0_0 , __lowerCamelCase=6 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=4 , __lowerCamelCase=0.0 , __lowerCamelCase=True , __lowerCamelCase="relu" , __lowerCamelCase=2_5_6 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.02 , __lowerCamelCase=2 , __lowerCamelCase=True , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase=1_0_2_4 , **__lowerCamelCase , ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size _SCREAMING_SNAKE_CASE : List[Any] = d_model _SCREAMING_SNAKE_CASE : Dict = decoder_ffn_dim _SCREAMING_SNAKE_CASE : Tuple = decoder_layers _SCREAMING_SNAKE_CASE : List[str] = decoder_attention_heads _SCREAMING_SNAKE_CASE : Optional[int] = dropout _SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout _SCREAMING_SNAKE_CASE : List[Any] = activation_dropout _SCREAMING_SNAKE_CASE : Dict = activation_function _SCREAMING_SNAKE_CASE : Optional[int] = init_std _SCREAMING_SNAKE_CASE : List[str] = decoder_layerdrop _SCREAMING_SNAKE_CASE : int = use_cache _SCREAMING_SNAKE_CASE : int = decoder_layers _SCREAMING_SNAKE_CASE : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True _SCREAMING_SNAKE_CASE : str = max_target_positions super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
381
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _A ( SCREAMING_SNAKE_CASE = "" ): UpperCAmelCase__: Optional[Any] = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" UpperCAmelCase__: str = BeautifulSoup(requests.get(__lowerCAmelCase ).text ,"html.parser" ) UpperCAmelCase__: Union[str, Any] = soup.find_all("td" ,attrs="titleColumn" ) UpperCAmelCase__: Union[str, Any] = soup.find_all("td" ,class_="ratingColumn imdbRating" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__lowerCAmelCase ,__lowerCAmelCase ) } def _A ( SCREAMING_SNAKE_CASE = "IMDb_Top_250_Movies.csv" ): UpperCAmelCase__: List[Any] = get_imdb_top_aaa_movies() with open(__lowerCAmelCase ,"w" ,newline="" ) as out_file: UpperCAmelCase__: Optional[Any] = csv.writer(__lowerCAmelCase ) writer.writerow(["Movie title", "IMDb rating"] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
113
import numpy as np def __lowercase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float ): return np.where(vector > 0 , __lowerCAmelCase , (alpha * (np.exp(__lowerCAmelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
335
0
class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[Any] , _A : Dict , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = name __SCREAMING_SNAKE_CASE : int = val def __str__( self : Dict ): """simple docstring""" return F'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self : List[Any] , _A : Optional[int] ): """simple docstring""" return self.val < other.val class __UpperCamelCase : """simple docstring""" def __init__( self : List[Any] , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = {} __SCREAMING_SNAKE_CASE : Union[str, Any] = {} __SCREAMING_SNAKE_CASE : Tuple = self.build_heap(_A ) def __getitem__( self : Union[str, Any] , _A : Optional[Any] ): """simple docstring""" return self.get_value(_A ) def UpperCAmelCase__ ( self : List[str] , _A : List[str] ): """simple docstring""" return (idx - 1) // 2 def UpperCAmelCase__ ( self : Any , _A : str ): """simple docstring""" return idx * 2 + 1 def UpperCAmelCase__ ( self : List[str] , _A : int ): """simple docstring""" return idx * 2 + 2 def UpperCAmelCase__ ( self : Optional[int] , _A : str ): """simple docstring""" return self.heap_dict[key] def UpperCAmelCase__ ( self : str , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = len(_A ) - 1 __SCREAMING_SNAKE_CASE : Optional[int] = self.get_parent_idx(_A ) for idx, i in enumerate(_A ): __SCREAMING_SNAKE_CASE : List[Any] = idx __SCREAMING_SNAKE_CASE : int = i.val for i in range(_A , -1 , -1 ): self.sift_down(_A , _A ) return array def UpperCAmelCase__ ( self : str , _A : int , _A : List[str] ): """simple docstring""" while True: __SCREAMING_SNAKE_CASE : str = self.get_left_child_idx(_A ) # noqa: E741 __SCREAMING_SNAKE_CASE : Tuple = self.get_right_child_idx(_A ) __SCREAMING_SNAKE_CASE : Any = idx if l < len(_A ) and array[l] < array[idx]: __SCREAMING_SNAKE_CASE : List[Any] = l if r < len(_A ) and array[r] < array[smallest]: __SCREAMING_SNAKE_CASE : Optional[int] = r if smallest != idx: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = array[smallest], array[idx] ( ( __SCREAMING_SNAKE_CASE ), ( __SCREAMING_SNAKE_CASE ), ) : Union[str, Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) __SCREAMING_SNAKE_CASE : Optional[int] = smallest else: break def UpperCAmelCase__ ( self : Optional[int] , _A : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_parent_idx(_A ) while p >= 0 and self.heap[p] > self.heap[idx]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = self.heap[idx], self.heap[p] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) __SCREAMING_SNAKE_CASE : Optional[int] = p __SCREAMING_SNAKE_CASE : Optional[int] = self.get_parent_idx(_A ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return self.heap[0] def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = self.heap[-1], self.heap[0] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def UpperCAmelCase__ ( self : int , _A : Dict ): """simple docstring""" self.heap.append(_A ) __SCREAMING_SNAKE_CASE : Tuple = len(self.heap ) - 1 __SCREAMING_SNAKE_CASE : Tuple = node.val self.sift_up(len(self.heap ) - 1 ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" return len(self.heap ) == 0 def UpperCAmelCase__ ( self : int , _A : List[str] , _A : Union[str, Any] ): """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" __SCREAMING_SNAKE_CASE : Union[str, Any] = new_value __SCREAMING_SNAKE_CASE : Any = new_value self.sift_up(self.idx_of_element[node] ) lowercase_ = Node("""R""", -1) lowercase_ = Node("""B""", 6) lowercase_ = Node("""A""", 3) lowercase_ = Node("""X""", 1) lowercase_ = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array lowercase_ = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
131
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowercase_ = logging.get_logger(__name__) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = R'''\w+[.]\d+''' __SCREAMING_SNAKE_CASE : Optional[int] = re.findall(snake_case , snake_case ) for pat in pats: __SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(snake_case , '''_'''.join(pat.split('''.''' ) ) ) return key def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __SCREAMING_SNAKE_CASE : str = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE : Any = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE : List[str] = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": __SCREAMING_SNAKE_CASE : Dict = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __SCREAMING_SNAKE_CASE : int = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __SCREAMING_SNAKE_CASE : str = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( snake_case , snake_case , snake_case=42 ): """simple docstring""" # Step 1: Convert pytorch tensor to numpy __SCREAMING_SNAKE_CASE : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __SCREAMING_SNAKE_CASE : Dict = flax_model.init_weights(PRNGKey(snake_case ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = flatten_dict(snake_case ) __SCREAMING_SNAKE_CASE : Dict = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __SCREAMING_SNAKE_CASE : int = rename_key(snake_case ) __SCREAMING_SNAKE_CASE : Dict = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = rename_key_and_reshape_tensor(snake_case , snake_case , snake_case ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown __SCREAMING_SNAKE_CASE : Any = jnp.asarray(snake_case ) return unflatten_dict(snake_case )
131
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __UpperCAmelCase ( __a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Optional[Any] = VideoMAEConfig() set_architecture_configs(__a ,__a ) if "finetuned" not in model_name: _a : Optional[Any] = False if "finetuned" in model_name: _a : str = '''huggingface/label-files''' if "kinetics" in model_name: _a : Optional[int] = 400 _a : Union[str, Any] = '''kinetics400-id2label.json''' elif "ssv2" in model_name: _a : List[Any] = 174 _a : List[Any] = '''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) _a : str = json.load(open(hf_hub_download(__a ,__a ,repo_type='''dataset''' ) ,'''r''' ) ) _a : str = {int(__a ): v for k, v in idalabel.items()} _a : str = idalabel _a : Tuple = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( __a : List[Any] ,__a : str ) -> List[str]: """simple docstring""" if "small" in model_name: _a : Any = 384 _a : int = 1_536 _a : Optional[int] = 12 _a : Optional[int] = 16 _a : Dict = 12 _a : Any = 3 _a : Any = 192 _a : int = 768 elif "large" in model_name: _a : List[str] = 1_024 _a : Optional[int] = 4_096 _a : Tuple = 24 _a : Optional[Any] = 16 _a : List[Any] = 12 _a : str = 8 _a : Tuple = 512 _a : List[str] = 2_048 elif "huge" in model_name: _a : Optional[int] = 1_280 _a : Optional[Any] = 5_120 _a : Union[str, Any] = 32 _a : str = 16 _a : Optional[Any] = 12 _a : List[str] = 8 _a : Union[str, Any] = 640 _a : Optional[Any] = 2_560 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def __UpperCAmelCase ( __a : Union[str, Any] ) -> Dict: """simple docstring""" if "encoder." in name: _a : Tuple = name.replace('''encoder.''' ,'''''' ) if "cls_token" in name: _a : Dict = name.replace('''cls_token''' ,'''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: _a : str = name.replace('''decoder_pos_embed''' ,'''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: _a : Optional[int] = name.replace('''pos_embed''' ,'''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _a : Union[str, Any] = name.replace('''patch_embed.proj''' ,'''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a : Optional[Any] = name.replace('''patch_embed.norm''' ,'''videomae.embeddings.norm''' ) if "decoder.blocks" in name: _a : List[str] = name.replace('''decoder.blocks''' ,'''decoder.decoder_layers''' ) if "blocks" in name: _a : Union[str, Any] = name.replace('''blocks''' ,'''videomae.encoder.layer''' ) if "attn.proj" in name: _a : str = name.replace('''attn.proj''' ,'''attention.output.dense''' ) if "attn" in name and "bias" not in name: _a : Optional[int] = name.replace('''attn''' ,'''attention.self''' ) if "attn" in name: _a : List[str] = name.replace('''attn''' ,'''attention.attention''' ) if "norm1" in name: _a : int = name.replace('''norm1''' ,'''layernorm_before''' ) if "norm2" in name: _a : Union[str, Any] = name.replace('''norm2''' ,'''layernorm_after''' ) if "mlp.fc1" in name: _a : List[str] = name.replace('''mlp.fc1''' ,'''intermediate.dense''' ) if "mlp.fc2" in name: _a : int = name.replace('''mlp.fc2''' ,'''output.dense''' ) if "decoder_embed" in name: _a : Union[str, Any] = name.replace('''decoder_embed''' ,'''decoder.decoder_embed''' ) if "decoder_norm" in name: _a : List[str] = name.replace('''decoder_norm''' ,'''decoder.decoder_norm''' ) if "decoder_pred" in name: _a : List[str] = name.replace('''decoder_pred''' ,'''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _a : Dict = name.replace('''norm.weight''' ,'''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _a : Dict = name.replace('''norm.bias''' ,'''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: _a : Optional[int] = name.replace('''head''' ,'''classifier''' ) return name def __UpperCAmelCase ( __a : Dict ,__a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): _a : List[str] = orig_state_dict.pop(__a ) if key.startswith('''encoder.''' ): _a : int = key.replace('''encoder.''' ,'''''' ) if "qkv" in key: _a : List[str] = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): _a : Dict = config.decoder_hidden_size _a : List[str] = int(key_split[2] ) _a : Any = '''decoder.decoder_layers.''' if "weight" in key: _a : Tuple = val[:dim, :] _a : Union[str, Any] = val[dim : dim * 2, :] _a : List[Any] = val[-dim:, :] else: _a : Union[str, Any] = config.hidden_size _a : Tuple = int(key_split[1] ) _a : str = '''videomae.encoder.layer.''' if "weight" in key: _a : Optional[int] = val[:dim, :] _a : int = val[dim : dim * 2, :] _a : Union[str, Any] = val[-dim:, :] else: _a : int = val return orig_state_dict def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : List[Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' ,filename='''eating_spaghetti.npy''' ,repo_type='''dataset''' ) _a : Dict = np.load(__a ) return list(__a ) def __UpperCAmelCase ( __a : Optional[int] ,__a : Any ,__a : Tuple ,__a : Union[str, Any] ) -> List[Any]: """simple docstring""" _a : Optional[Any] = get_videomae_config(__a ) if "finetuned" in model_name: _a : int = VideoMAEForVideoClassification(__a ) else: _a : Tuple = VideoMAEForPreTraining(__a ) # download original checkpoint, hosted on Google Drive _a : Tuple = '''pytorch_model.bin''' gdown.cached_download(__a ,__a ,quiet=__a ) _a : Dict = torch.load(__a ,map_location='''cpu''' ) if "model" in files: _a : Tuple = files['''model'''] else: _a : str = files['''module'''] _a : int = convert_state_dict(__a ,__a ) model.load_state_dict(__a ) model.eval() # verify model on basic input _a : Tuple = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) _a : Union[str, Any] = prepare_video() _a : Any = image_processor(__a ,return_tensors='''pt''' ) if "finetuned" not in model_name: _a : Optional[Any] = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' ,filename='''bool_masked_pos.pt''' ) _a : Dict = torch.load(__a ) _a : Optional[int] = model(**__a ) _a : str = outputs.logits _a : Tuple = [ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _a : Optional[Any] = torch.Size([1, 400] ) _a : str = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": _a : Any = torch.Size([1, 174] ) _a : int = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": _a : List[Any] = torch.Size([1, 1_408, 1_536] ) _a : Dict = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": _a : Union[str, Any] = torch.Size([1, 1_408, 1_536] ) _a : List[str] = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one _a : Union[str, Any] = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": _a : str = torch.Size([1, 1_408, 1_536] ) _a : str = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": _a : int = torch.Size([1, 400] ) _a : Dict = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": _a : Optional[int] = torch.Size([1, 400] ) _a : List[Any] = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": _a : int = torch.Size([1, 400] ) _a : str = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": _a : Tuple = torch.Size([1, 400] ) _a : Union[str, Any] = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": _a : Optional[Any] = torch.Size([1, 1_408, 1_536] ) _a : str = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _a : List[str] = torch.Size([1, 174] ) _a : Optional[Any] = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": _a : List[Any] = torch.Size([1, 1_408, 1_536] ) _a : Tuple = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": _a : Union[str, Any] = torch.Size([1, 174] ) _a : Union[str, Any] = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(F"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] ,__a ,atol=1E-4 ) else: print('''Logits:''' ,logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] ,__a ,atol=1E-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": _a : Optional[int] = outputs.loss assert torch.allclose(__a ,__a ,atol=1E-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__a ) model.save_pretrained(__a ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(__a ,organization='''nielsr''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''', type=str, help=( '''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct''' ''' download link.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''/Users/nielsrogge/Documents/VideoMAE/Test''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
14
"""simple docstring""" import itertools import math def lowerCamelCase ( _UpperCamelCase : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Tuple = 2 while True: if is_prime(_UpperCamelCase ): yield num num += 1 def lowerCamelCase ( _UpperCamelCase : int = 1_0_0_0_1 ) -> int: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , _UpperCamelCase ) ) if __name__ == "__main__": print(F"{solution() = }")
139
0
from __future__ import annotations def UpperCamelCase__( UpperCamelCase__ : list[list[int]] )->int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(UpperCamelCase__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(UpperCamelCase__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
212
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__: str = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: Union[str, Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: Union[str, Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys a__: Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
212
1
import math __A : List[str] = 10 __A : Any = 7 __A : str = BALLS_PER_COLOUR * NUM_COLOURS def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 20 ) -> str: """simple docstring""" _A = math.comb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _SCREAMING_SNAKE_CASE ) _A = NUM_COLOURS * (1 - missing_colour / total) return F"{result:.9f}" if __name__ == "__main__": print(solution(20))
27
UpperCamelCase = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] UpperCamelCase = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] UpperCamelCase = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] UpperCamelCase = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] UpperCamelCase = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] UpperCamelCase = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] UpperCamelCase = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] UpperCamelCase = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
520
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCamelCase__ : '''simple docstring''' def __init__( self :Optional[int] , a :Optional[int] , a :List[Any]=1_3 , a :str=7 , a :int=True , a :Union[str, Any]=True , a :Any=True , a :Tuple=True , a :List[str]=9_9 , a :str=6_4 , a :List[Any]=3_2 , a :List[Any]=5 , a :Optional[Any]=4 , a :Optional[int]=3_7 , a :Union[str, Any]="gelu" , a :str=0.1 , a :List[str]=0.1 , a :Any=5_1_2 , a :Dict=1_6 , a :int=2 , a :List[str]=0.02 , a :Optional[Any]=3 , a :Dict=4 , a :List[str]=None , ) -> Union[str, Any]: __UpperCamelCase : List[Any] = parent __UpperCamelCase : List[Any] = batch_size __UpperCamelCase : Union[str, Any] = seq_length __UpperCamelCase : Optional[int] = is_training __UpperCamelCase : List[str] = use_input_mask __UpperCamelCase : List[str] = use_token_type_ids __UpperCamelCase : Tuple = use_labels __UpperCamelCase : Optional[Any] = vocab_size __UpperCamelCase : int = hidden_size __UpperCamelCase : Any = embedding_size __UpperCamelCase : Any = num_hidden_layers __UpperCamelCase : str = num_attention_heads __UpperCamelCase : Tuple = intermediate_size __UpperCamelCase : Optional[Any] = hidden_act __UpperCamelCase : List[Any] = hidden_dropout_prob __UpperCamelCase : Optional[Any] = attention_probs_dropout_prob __UpperCamelCase : int = max_position_embeddings __UpperCamelCase : Any = type_vocab_size __UpperCamelCase : Dict = type_sequence_label_size __UpperCamelCase : Union[str, Any] = initializer_range __UpperCamelCase : str = num_labels __UpperCamelCase : Union[str, Any] = num_choices __UpperCamelCase : Dict = scope def _lowerCamelCase ( self :Optional[Any] ) -> Optional[Any]: __UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Union[str, Any] = None if self.use_input_mask: __UpperCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : Any = None if self.use_token_type_ids: __UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : List[Any] = None __UpperCamelCase : Any = None __UpperCamelCase : Optional[Any] = None if self.use_labels: __UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self :Optional[int] ) -> Optional[int]: return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self :int , a :str , a :Union[str, Any] , a :Optional[int] , a :int , a :Optional[Any] , a :List[Any] , a :str ) -> Tuple: __UpperCamelCase : Union[str, Any] = MobileBertModel(config=a ) model.to(a ) model.eval() __UpperCamelCase : Optional[int] = model(a , attention_mask=a , token_type_ids=a ) __UpperCamelCase : List[Any] = model(a , token_type_ids=a ) __UpperCamelCase : int = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self :Any , a :List[Any] , a :Tuple , a :List[Any] , a :List[Any] , a :int , a :int , a :Union[str, Any] ) -> Dict: __UpperCamelCase : Any = MobileBertForMaskedLM(config=a ) model.to(a ) model.eval() __UpperCamelCase : List[Any] = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self :Tuple , a :int , a :List[Any] , a :List[str] , a :List[Any] , a :Tuple , a :List[str] , a :Optional[Any] ) -> Tuple: __UpperCamelCase : int = MobileBertForNextSentencePrediction(config=a ) model.to(a ) model.eval() __UpperCamelCase : List[str] = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self :Union[str, Any] , a :Optional[int] , a :str , a :Optional[Any] , a :List[str] , a :Union[str, Any] , a :Tuple , a :Tuple ) -> List[str]: __UpperCamelCase : int = MobileBertForPreTraining(config=a ) model.to(a ) model.eval() __UpperCamelCase : Tuple = model( a , attention_mask=a , token_type_ids=a , labels=a , next_sentence_label=a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self :List[str] , a :List[str] , a :str , a :Tuple , a :List[Any] , a :Any , a :str , a :int ) -> Optional[Any]: __UpperCamelCase : Union[str, Any] = MobileBertForQuestionAnswering(config=a ) model.to(a ) model.eval() __UpperCamelCase : str = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self :Optional[int] , a :List[Any] , a :str , a :List[str] , a :Tuple , a :Any , a :List[Any] , a :List[Any] ) -> List[Any]: __UpperCamelCase : Optional[Any] = self.num_labels __UpperCamelCase : Optional[int] = MobileBertForSequenceClassification(a ) model.to(a ) model.eval() __UpperCamelCase : Dict = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self :int , a :Dict , a :List[Any] , a :int , a :List[str] , a :Dict , a :Tuple , a :List[Any] ) -> Dict: __UpperCamelCase : str = self.num_labels __UpperCamelCase : Optional[int] = MobileBertForTokenClassification(config=a ) model.to(a ) model.eval() __UpperCamelCase : Any = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self :Optional[Any] , a :List[str] , a :Tuple , a :List[Any] , a :Tuple , a :int , a :List[Any] , a :List[str] ) -> Tuple: __UpperCamelCase : Tuple = self.num_choices __UpperCamelCase : Any = MobileBertForMultipleChoice(config=a ) model.to(a ) model.eval() __UpperCamelCase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase : Dict = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self :List[str] ) -> List[Any]: __UpperCamelCase : Tuple = self.prepare_config_and_inputs() ( __UpperCamelCase ) : List[str] = config_and_inputs __UpperCamelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __lowercase , __lowercase , unittest.TestCase): '''simple docstring''' _A = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _A = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) _A = True def _lowerCamelCase ( self :Any , a :Union[str, Any] , a :Tuple , a :Tuple=False ) -> List[Any]: __UpperCamelCase : str = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class in get_values(a ): __UpperCamelCase : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a ) __UpperCamelCase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _lowerCamelCase ( self :List[Any] ) -> Optional[Any]: __UpperCamelCase : str = MobileBertModelTester(self ) __UpperCamelCase : str = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _lowerCamelCase ( self :Optional[int] ) -> Tuple: self.config_tester.run_common_tests() def _lowerCamelCase ( self :Optional[int] ) -> str: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*a ) def _lowerCamelCase ( self :Optional[int] ) -> List[str]: __UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*a ) def _lowerCamelCase ( self :Tuple ) -> int: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*a ) def _lowerCamelCase ( self :Any ) -> Optional[int]: __UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*a ) def _lowerCamelCase ( self :Any ) -> Optional[Any]: __UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*a ) def _lowerCamelCase ( self :Any ) -> Optional[Any]: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*a ) def _lowerCamelCase ( self :int ) -> int: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*a ) def _lowerCamelCase ( self :Union[str, Any] ) -> Dict: __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*a ) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple) -> str: '''simple docstring''' return torch.tensor( _lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , ) lowercase : List[str] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @slow def _lowerCamelCase ( self :Optional[Any] ) -> List[Any]: __UpperCamelCase : str = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(a ) __UpperCamelCase : List[str] = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): __UpperCamelCase : Optional[int] = model(a )[0] __UpperCamelCase : Optional[int] = torch.Size((1, 9, 5_1_2) ) self.assertEqual(output.shape , a ) __UpperCamelCase : Any = torch.tensor( [ [ [-2.4_7_3_6_5_2_6E0_7, 8.2_6_9_1_6_5_6E0_4, 1.6_5_2_1_8_3_8E0_5], [-5.7_5_4_1_7_0_4E-0_1, 3.9_0_5_6_0_2_2E0_0, 4.4_0_1_1_5_0_7E0_0], [2.6_0_4_7_3_5_9E0_0, 1.5_6_7_7_6_5_2E0_0, -1.7_3_2_4_1_8_8E-0_1], ] ] , device=a , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __UpperCamelCase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __UpperCamelCase : List[Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
713
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowercase : Any = 'pytorch_model.bin' lowercase : List[str] = 'pytorch_model.bin.index.json' lowercase : List[Any] = 'adapter_config.json' lowercase : str = 'adapter_model.bin' lowercase : List[str] = 'adapter_model.safetensors' lowercase : Any = 'tf_model.h5' lowercase : str = 'tf_model.h5.index.json' lowercase : Any = 'model.ckpt' lowercase : Optional[int] = 'flax_model.msgpack' lowercase : Dict = 'flax_model.msgpack.index.json' lowercase : Dict = 'model.safetensors' lowercase : Dict = 'model.safetensors.index.json' lowercase : Union[str, Any] = 'config.json' lowercase : Tuple = 'preprocessor_config.json' lowercase : Tuple = FEATURE_EXTRACTOR_NAME lowercase : Dict = 'generation_config.json' lowercase : Dict = 'modelcard.json' lowercase : Optional[int] = '▁' lowercase : Any = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowercase : List[Any] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowercase : Tuple = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowercase : Any = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any]) -> List[str]: '''simple docstring''' if version.parse(_lowerCamelCase) < version.parse(_lowerCamelCase): if "dev" in min_version: __UpperCamelCase : List[str] = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: __UpperCamelCase : Optional[Any] = F'This example requires a minimum version of {min_version},' error_message += F' but the version found is {__version__}.\n' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers.")
94
0
'''simple docstring''' from math import asin, atan, cos, radians, sin, sqrt, tan lowerCAmelCase_ : List[str] = 6378137.0 lowerCAmelCase_ : Dict = 6356752.314245 lowerCAmelCase_ : List[Any] = 6378137 def _lowerCamelCase (__lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : Tuple ) -> float: a__ = (AXIS_A - AXIS_B) / AXIS_A a__ = atan((1 - flattening) * tan(radians(__lowerCAmelCase ) ) ) a__ = atan((1 - flattening) * tan(radians(__lowerCAmelCase ) ) ) a__ = radians(__lowerCAmelCase ) a__ = radians(__lowerCAmelCase ) # Equation a__ = sin((phi_a - phi_a) / 2 ) a__ = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda a__ = sqrt(sin_sq_phi + (cos(__lowerCAmelCase ) * cos(__lowerCAmelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
489
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __UpperCAmelCase ( unittest.TestCase ): A__ : List[Any] = StableDiffusionLDMaDPipeline A__ : List[str] = TEXT_TO_IMAGE_PARAMS A__ : str = TEXT_TO_IMAGE_BATCH_PARAMS A__ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self ): torch.manual_seed(0 ) lowerCamelCase__ =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCamelCase__ =DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) lowerCamelCase__ =AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase__ =CLIPTextModel(_lowerCamelCase ) lowerCamelCase__ =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase__ ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _a ( self , _lowerCamelCase , _lowerCamelCase=0 ): if str(_lowerCamelCase ).startswith("mps" ): lowerCamelCase__ =torch.manual_seed(_lowerCamelCase ) else: lowerCamelCase__ =torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowerCamelCase__ ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _a ( self ): lowerCamelCase__ ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ =self.get_dummy_components() lowerCamelCase__ =StableDiffusionLDMaDPipeline(**_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_dummy_inputs(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb[0, -3:, -3:, -1] lowerCamelCase__ =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCamelCase__ =np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) lowerCamelCase__ =np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def _a ( self ): lowerCamelCase__ =self.get_dummy_components() lowerCamelCase__ =StableDiffusionLDMaDPipeline(**_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_dummy_inputs(_lowerCamelCase ) lowerCamelCase__ =3 * [inputs["prompt"]] # forward lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb_slice_a[0, -3:, -3:, -1] lowerCamelCase__ =depth_slice_a[0, -3:, -1] lowerCamelCase__ =self.get_dummy_inputs(_lowerCamelCase ) lowerCamelCase__ =3 * [inputs.pop("prompt" )] lowerCamelCase__ =ldmad_pipe.tokenizer( _lowerCamelCase , padding="max_length" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_lowerCamelCase , return_tensors="pt" , ) lowerCamelCase__ =text_inputs["input_ids"].to(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe.text_encoder(_lowerCamelCase )[0] lowerCamelCase__ =prompt_embeds # forward lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb_slice_a[0, -3:, -3:, -1] lowerCamelCase__ =depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def _a ( self ): lowerCamelCase__ ="cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ =self.get_dummy_components() lowerCamelCase__ =PNDMScheduler(skip_prk_steps=_lowerCamelCase ) lowerCamelCase__ =StableDiffusionLDMaDPipeline(**_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_dummy_inputs(_lowerCamelCase ) lowerCamelCase__ ="french fries" lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase , negative_prompt=_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb[0, -3:, -3:, -1] lowerCamelCase__ =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCamelCase__ =np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) lowerCamelCase__ =np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def _a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCamelCase , _lowerCamelCase="cpu" , _lowerCamelCase=torch.floataa , _lowerCamelCase=0 ): lowerCamelCase__ =torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowerCamelCase__ =np.random.RandomState(_lowerCamelCase ).standard_normal((1, 4, 64, 64) ) lowerCamelCase__ =torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase , dtype=_lowerCamelCase ) lowerCamelCase__ ={ "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _a ( self ): lowerCamelCase__ =StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) lowerCamelCase__ =ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_inputs(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =rgb[0, -3:, -3:, -1].flatten() lowerCamelCase__ =rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) lowerCamelCase__ =np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) lowerCamelCase__ =np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def _a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCamelCase , _lowerCamelCase="cpu" , _lowerCamelCase=torch.floataa , _lowerCamelCase=0 ): lowerCamelCase__ =torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowerCamelCase__ =np.random.RandomState(_lowerCamelCase ).standard_normal((1, 4, 64, 64) ) lowerCamelCase__ =torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase , dtype=_lowerCamelCase ) lowerCamelCase__ ={ "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _a ( self ): lowerCamelCase__ =StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_inputs(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =0.4_9_5_5_8_6 lowerCamelCase__ =0.3_3_7_9_5_5_1_5 lowerCamelCase__ =1_1_2.4_8_5_1_8 lowerCamelCase__ =9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def _a ( self ): lowerCamelCase__ =StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowerCamelCase__ =self.get_inputs(_lowerCamelCase ) lowerCamelCase__ =ldmad_pipe(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =output.rgb, output.depth lowerCamelCase__ =0.4_1_9_4_1_2_7 lowerCamelCase__ =0.3_5_3_7_5_5_8_6 lowerCamelCase__ =0.5_6_3_8_5_0_2 lowerCamelCase__ =0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
530
0
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowercase : Optional[int] =logging.get_logger(__name__) _lowercase : Any ={ "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE (lowercase__ ): A__ = 'codegen' A__ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : str , __UpperCamelCase : Union[str, Any]=50400 , __UpperCamelCase : int=2048 , __UpperCamelCase : Dict=2048 , __UpperCamelCase : Tuple=4096 , __UpperCamelCase : Optional[int]=28 , __UpperCamelCase : Dict=16 , __UpperCamelCase : Tuple=64 , __UpperCamelCase : Dict=None , __UpperCamelCase : Tuple="gelu_new" , __UpperCamelCase : int=0.0 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : int=1e-5 , __UpperCamelCase : Union[str, Any]=0.02 , __UpperCamelCase : List[str]=True , __UpperCamelCase : Tuple=50256 , __UpperCamelCase : Optional[Any]=50256 , __UpperCamelCase : Any=False , **__UpperCamelCase : int , ) -> Tuple: """simple docstring""" snake_case__ : List[Any] = vocab_size snake_case__ : Optional[int] = n_ctx snake_case__ : List[Any] = n_positions snake_case__ : Optional[Any] = n_embd snake_case__ : Any = n_layer snake_case__ : Union[str, Any] = n_head snake_case__ : Union[str, Any] = n_inner snake_case__ : Union[str, Any] = rotary_dim snake_case__ : Tuple = activation_function snake_case__ : Union[str, Any] = resid_pdrop snake_case__ : Optional[Any] = embd_pdrop snake_case__ : List[str] = attn_pdrop snake_case__ : Optional[Any] = layer_norm_epsilon snake_case__ : Tuple = initializer_range snake_case__ : Dict = use_cache snake_case__ : Optional[Any] = bos_token_id snake_case__ : List[str] = eos_token_id super().__init__( bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , tie_word_embeddings=__UpperCamelCase , **__UpperCamelCase ) class _SCREAMING_SNAKE_CASE (lowercase__ ): def __init__( self : Union[str, Any] , __UpperCamelCase : PretrainedConfig , __UpperCamelCase : str = "default" , __UpperCamelCase : List[PatchingSpec] = None , __UpperCamelCase : bool = False , ) -> Any: """simple docstring""" super().__init__(__UpperCamelCase , task=__UpperCamelCase , patching_specs=__UpperCamelCase , use_past=__UpperCamelCase ) if not getattr(self._config , '''pad_token_id''' , __UpperCamelCase ): # TODO: how to do that better? snake_case__ : Any = 0 @property def lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" snake_case__ : Optional[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCamelCase , direction='''inputs''' ) snake_case__ : Optional[int] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: snake_case__ : Any = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" return self._config.n_layer @property def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" return self._config.n_head def lowerCAmelCase ( self : Optional[Any] , __UpperCamelCase : PreTrainedTokenizer , __UpperCamelCase : int = -1 , __UpperCamelCase : int = -1 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" snake_case__ : List[Any] = super(__UpperCamelCase , self ).generate_dummy_inputs( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) # We need to order the input in the way they appears in the forward() snake_case__ : Optional[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case__ , snake_case__ : List[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values snake_case__ : List[Any] = seqlen + 2 snake_case__ : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) snake_case__ : Optional[int] = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(self.num_layers ) ] snake_case__ : int = common_inputs['''attention_mask'''] if self.use_past: snake_case__ : List[Any] = ordered_inputs['''attention_mask'''].dtype snake_case__ : Optional[int] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return 13
574
'''simple docstring''' from pathlib import Path import fire def __UpperCAmelCase ( UpperCamelCase__ :str , UpperCamelCase__ :str , UpperCamelCase__ :int ) -> List[Any]: snake_case__ : int = Path(UpperCamelCase__ ) snake_case__ : Tuple = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): snake_case__ : List[str] = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case__ : Union[str, Any] = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
574
1
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments UpperCAmelCase__ = logging.getLogger(__name__) @dataclass class a ( lowerCAmelCase_ ): _snake_case : Optional[float] = field( default=0.0 , metadata={'help': 'The label smoothing epsilon to apply (if not zero).'} ) _snake_case : bool = field(default=lowerCAmelCase_ , metadata={'help': 'Whether to SortishSamler or not.'} ) _snake_case : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) _snake_case : bool = field(default=lowerCAmelCase_ , metadata={'help': 'whether to use adafactor'} ) _snake_case : Optional[float] = field( default=lowerCAmelCase_ , metadata={'help': 'Encoder layer dropout probability. Goes into model.config.'} ) _snake_case : Optional[float] = field( default=lowerCAmelCase_ , metadata={'help': 'Decoder layer dropout probability. Goes into model.config.'} ) _snake_case : Optional[float] = field(default=lowerCAmelCase_ , metadata={'help': 'Dropout probability. Goes into model.config.'} ) _snake_case : Optional[float] = field( default=lowerCAmelCase_ , metadata={'help': 'Attention dropout probability. Goes into model.config.'} ) _snake_case : Optional[str] = field( default='linear' , metadata={'help': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
277
"""simple docstring""" from collections.abc import Generator def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = 0, 1 while True: _UpperCAmelCase , _UpperCAmelCase = b, a + b yield b def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 1 _UpperCAmelCase = fibonacci_generator() while len(str(next(lowercase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
277
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } __SCREAMING_SNAKE_CASE = {'mgp-str': 2_7} class lowerCAmelCase__ ( _UpperCamelCase ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , A__ : Dict , A__ : str="[GO]" , A__ : Optional[int]="[GO]" , A__ : int="[s]" , A__ : Tuple="[GO]" , **A__ : Any ) -> Tuple: '''simple docstring''' super().__init__( unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: a__ : Tuple = json.load(_UpperCAmelCase ) a__ : Optional[int] = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' return len(self.vocab ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Union[str, Any] ) -> List[str]: '''simple docstring''' a__ : str = [] for s in text: char_tokens.extend(_UpperCAmelCase ) return char_tokens def __lowerCAmelCase ( self : Optional[Any] , A__ : str ) -> str: '''simple docstring''' return self.vocab.get(_UpperCAmelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self : Optional[Any] , A__ : int ) -> Any: '''simple docstring''' return self.decoder.get(_UpperCAmelCase ) def __lowerCAmelCase ( self : str , A__ : List[str] , A__ : Union[str, Any] = None ) -> List[str]: '''simple docstring''' if not os.path.isdir(_UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_UpperCAmelCase ) ) return a__ : Optional[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '''\n''' ) return (vocab_file,)
713
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = '▁' __SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } __SCREAMING_SNAKE_CASE = { 'facebook/nllb-200-distilled-600M': 1_0_2_4, } # fmt: off __SCREAMING_SNAKE_CASE = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = [] __UpperCamelCase = [] def __init__( self : Union[str, Any] , A__ : List[str] , A__ : Union[str, Any]="<s>" , A__ : str="</s>" , A__ : Dict="</s>" , A__ : Union[str, Any]="<s>" , A__ : int="<unk>" , A__ : int="<pad>" , A__ : Any="<mask>" , A__ : List[str]=None , A__ : Union[str, Any]=None , A__ : Optional[int]=None , A__ : Optional[Dict[str, Any]] = None , A__ : int=None , A__ : Tuple=False , **A__ : str , ) -> List[Any]: '''simple docstring''' a__ : str = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token a__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs a__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , cls_token=A__ , pad_token=A__ , mask_token=A__ , tokenizer_file=A__ , src_lang=A__ , tgt_lang=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=A__ , **A__ , ) a__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A__ ) ) a__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token a__ : Dict = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a__ : List[str] = 1 a__ : List[Any] = len(self.sp_model ) a__ : Tuple = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(A__ ) } a__ : List[Any] = {v: k for k, v in self.lang_code_to_id.items()} a__ : Any = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} a__ : str = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) a__ : Tuple = src_lang if src_lang is not None else '''eng_Latn''' a__ : Dict = self.lang_code_to_id[self._src_lang] a__ : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[Any] ) -> List[Any]: '''simple docstring''' a__ : List[Any] = self.__dict__.copy() a__ : Optional[Any] = None a__ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self : int , A__ : int ) -> List[Any]: '''simple docstring''' a__ : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a__ : str = {} a__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def __lowerCAmelCase ( self : List[str] , A__ : str ) -> None: '''simple docstring''' a__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self : Dict , A__ : List[int] , A__ : Optional[List[int]] = None , A__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ , token_ids_a=A__ , already_has_special_tokens=A__ ) a__ : List[str] = [1] * len(self.prefix_tokens ) a__ : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A__ )) + suffix_ones return prefix_ones + ([0] * len(A__ )) + ([0] * len(A__ )) + suffix_ones def __lowerCAmelCase ( self : Any , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self : int , A__ : List[int] , A__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ : Optional[int] = [self.sep_token_id] a__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : Dict , A__ : Optional[int] , A__ : str , A__ : Optional[str] , A__ : Optional[str] , **A__ : Union[str, Any] ) -> Tuple: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) a__ : List[Any] = src_lang a__ : List[Any] = self(A__ , add_special_tokens=A__ , return_tensors=A__ , **A__ ) a__ : Union[str, Any] = self.convert_tokens_to_ids(A__ ) a__ : Union[str, Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : List[str] = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self : Union[str, Any] , A__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(A__ , out_type=A__ ) def __lowerCAmelCase ( self : Any , A__ : List[str] ) -> Optional[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a__ : Tuple = self.sp_model.PieceToId(A__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self : List[Any] , A__ : int ) -> Union[str, Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self : Union[str, Any] , A__ : Any ) -> Tuple: '''simple docstring''' a__ : Optional[Any] = ''''''.join(A__ ).replace(A__ , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self : Optional[Any] , A__ : str , A__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return a__ : Tuple = os.path.join( A__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , '''wb''' ) as fi: a__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,) def __lowerCAmelCase ( self : Optional[Any] , A__ : List[str] , A__ : str = "eng_Latn" , A__ : Optional[List[str]] = None , A__ : str = "fra_Latn" , **A__ : Any , ) -> BatchEncoding: '''simple docstring''' a__ : Optional[Any] = src_lang a__ : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(A__ , A__ , **A__ ) def __lowerCAmelCase ( self : Tuple ) -> str: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self : int , A__ : Union[str, Any] ) -> None: '''simple docstring''' a__ : List[str] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: a__ : Union[str, Any] = [] a__ : Dict = [self.eos_token_id, self.cur_lang_code] else: a__ : Tuple = [self.cur_lang_code] a__ : List[Any] = [self.eos_token_id] def __lowerCAmelCase ( self : Dict , A__ : str ) -> None: '''simple docstring''' a__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: a__ : Optional[Any] = [] a__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: a__ : List[str] = [self.cur_lang_code] a__ : str = [self.eos_token_id]
340
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
45
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = (UnCLIPScheduler,) def snake_case__ ( self , **lowerCAmelCase_ ): __lowercase = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**lowerCAmelCase_ ) return config def snake_case__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def snake_case__ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def snake_case__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def snake_case__ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowerCAmelCase_ ) def snake_case__ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def snake_case__ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="fixed_small_log" ) __lowercase = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0E-1_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="learned_range" ) __lowercase = scheduler_class(**lowerCAmelCase_ ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCAmelCase_ ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowerCAmelCase_ ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowerCAmelCase_ ) - -0.0_01_00_11 < 1E-5 def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase_ ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual __lowercase = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase_ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual __lowercase = model(lowerCAmelCase_ , lowerCAmelCase_ ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase_ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def snake_case__ ( self ): pass def snake_case__ ( self ): pass
321
0
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=None , ): snake_case__ : Dict = parent snake_case__ : Dict = batch_size snake_case__ : Tuple = image_size snake_case__ : int = patch_size snake_case__ : str = num_channels snake_case__ : List[Any] = is_training snake_case__ : Optional[Any] = use_labels snake_case__ : List[Any] = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : int = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Any = type_sequence_label_size snake_case__ : Optional[int] = initializer_range snake_case__ : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ : Dict = (image_size // patch_size) ** 2 snake_case__ : List[str] = num_patches + 1 def __UpperCamelCase ( self ): snake_case__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Optional[int] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = ViTMSNModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = self.type_sequence_label_size snake_case__ : Dict = ViTMSNForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ : str = 1 snake_case__ : List[str] = ViTMSNForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : int = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ : List[Any] = config_and_inputs snake_case__ : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = ViTMSNModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : List[str] = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def __UpperCamelCase ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = ViTMSNModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> str: '''simple docstring''' snake_case__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): torch.manual_seed(2 ) snake_case__ : int = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = self.default_image_processor snake_case__ : str = prepare_img() snake_case__ : Any = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits snake_case__ : str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : Any = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
713
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase__ = Features({'''audio''': Audio()} ) lowerCamelCase__ = Features({'''transcription''': Value('''string''' )} ) lowerCamelCase__ = "audio" lowerCamelCase__ = "transcription" def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features." ) if not isinstance(features[self.audio_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f"Column {self.audio_column} is not an Audio type." ) snake_case__ : List[Any] = copy.deepcopy(self ) snake_case__ : Dict = self.input_schema.copy() snake_case__ : List[str] = features[self.audio_column] snake_case__ : str = input_schema return task_template @property def __UpperCamelCase ( self ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
419
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''')) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''') @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ]) class lowerCAmelCase ( unittest.TestCase): def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=lowerCamelCase__ , ) assert hasattr(self , '''env''' ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE=1 ) -> List[str]: '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-single''' , instance_count=lowerCamelCase__ , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase__ , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' TrainingJobAnalytics(lowerCamelCase__ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = self.create_estimator() # run training estimator.fit() # result dataframe __snake_case = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __snake_case = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) __snake_case = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __snake_case = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , lowerCamelCase__ )
24
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker __A = "CompVis/stable-diffusion-v1-1" __A = "CompVis/stable-diffusion-v1-2" __A = "CompVis/stable-diffusion-v1-3" __A = "CompVis/stable-diffusion-v1-4" class A ( __UpperCAmelCase ): def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ) -> Optional[int]: '''simple docstring''' super()._init_() lowercase__ = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) lowercase__ = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) lowercase__ = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) lowercase__ = StableDiffusionPipeline( vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , requires_safety_checker=lowerCamelCase__ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , lowerCamelCase__ ) for k in self.config.keys() if not k.startswith("""_""" )} def A__ ( self , lowerCamelCase__ = "auto" ) -> int: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase__ ) def A__ ( self ) -> Dict: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase__ ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> str: '''simple docstring''' return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> str: '''simple docstring''' return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' lowercase__ = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(lowerCamelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 lowercase__ = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.2 lowercase__ = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.3 lowercase__ = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.4 lowercase__ = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
325
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 10**-10 ): _UpperCAmelCase : List[str] = a while True: _UpperCAmelCase : str = Decimal(__lowerCAmelCase ) - ( Decimal(eval(__lowerCAmelCase ) ) / Decimal(eval(str(diff(__lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__lowerCAmelCase ) ) < precision: # noqa: S307 return float(__lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
40
'''simple docstring''' import os def __lowerCAmelCase (): _UpperCAmelCase : List[Any] = os.path.join(os.path.dirname(__lowerCAmelCase ) , "num.txt" ) with open(__lowerCAmelCase ) as file_hand: return str(sum(int(__lowerCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
40
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Union[str, Any]: '''simple docstring''' a_ = checkpoint a_ = {} a_ = vae_state_dict["encoder.conv_in.weight"] a_ = vae_state_dict["encoder.conv_in.bias"] a_ = vae_state_dict["encoder.conv_out.weight"] a_ = vae_state_dict["encoder.conv_out.bias"] a_ = vae_state_dict["encoder.norm_out.weight"] a_ = vae_state_dict["encoder.norm_out.bias"] a_ = vae_state_dict["decoder.conv_in.weight"] a_ = vae_state_dict["decoder.conv_in.bias"] a_ = vae_state_dict["decoder.conv_out.weight"] a_ = vae_state_dict["decoder.conv_out.bias"] a_ = vae_state_dict["decoder.norm_out.weight"] a_ = vae_state_dict["decoder.norm_out.bias"] a_ = vae_state_dict["quant_conv.weight"] a_ = vae_state_dict["quant_conv.bias"] a_ = vae_state_dict["post_quant_conv.weight"] a_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only a_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) a_ = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(lowercase__ ) } # Retrieves the keys for the decoder up blocks only a_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) a_ = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(lowercase__ ) } for i in range(lowercase__ ): a_ = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: a_ = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) a_ = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) a_ = renew_vae_resnet_paths(lowercase__ ) a_ = {"old": F"""down.{i}.block""", "new": F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(lowercase__ ,lowercase__ ,lowercase__ ,additional_replacements=[meta_path] ,config=lowercase__ ) a_ = [key for key in vae_state_dict if "encoder.mid.block" in key] a_ = 2 for i in range(1 ,num_mid_res_blocks + 1 ): a_ = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] a_ = renew_vae_resnet_paths(lowercase__ ) a_ = {"old": F"""mid.block_{i}""", "new": F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowercase__ ,lowercase__ ,lowercase__ ,additional_replacements=[meta_path] ,config=lowercase__ ) a_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] a_ = renew_vae_attention_paths(lowercase__ ) a_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(lowercase__ ,lowercase__ ,lowercase__ ,additional_replacements=[meta_path] ,config=lowercase__ ) conv_attn_to_linear(lowercase__ ) for i in range(lowercase__ ): a_ = num_up_blocks - 1 - i a_ = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: a_ = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] a_ = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] a_ = renew_vae_resnet_paths(lowercase__ ) a_ = {"old": F"""up.{block_id}.block""", "new": F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(lowercase__ ,lowercase__ ,lowercase__ ,additional_replacements=[meta_path] ,config=lowercase__ ) a_ = [key for key in vae_state_dict if "decoder.mid.block" in key] a_ = 2 for i in range(1 ,num_mid_res_blocks + 1 ): a_ = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] a_ = renew_vae_resnet_paths(lowercase__ ) a_ = {"old": F"""mid.block_{i}""", "new": F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowercase__ ,lowercase__ ,lowercase__ ,additional_replacements=[meta_path] ,config=lowercase__ ) a_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] a_ = renew_vae_attention_paths(lowercase__ ) a_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(lowercase__ ,lowercase__ ,lowercase__ ,additional_replacements=[meta_path] ,config=lowercase__ ) conv_attn_to_linear(lowercase__ ) return new_checkpoint def __UpperCAmelCase (lowercase__ ,lowercase__ ,) -> Optional[int]: '''simple docstring''' a_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) a_ = io.BytesIO(r.content ) a_ = OmegaConf.load(lowercase__ ) a_ = 512 a_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open a_ = {} with safe_open(lowercase__ ,framework="pt" ,device="cpu" ) as f: for key in f.keys(): a_ = f.get_tensor(lowercase__ ) else: a_ = torch.load(lowercase__ ,map_location=lowercase__ )["state_dict"] # Convert the VAE model. a_ = create_vae_diffusers_config(lowercase__ ,image_size=lowercase__ ) a_ = custom_convert_ldm_vae_checkpoint(lowercase__ ,lowercase__ ) a_ = AutoencoderKL(**lowercase__ ) vae.load_state_dict(lowercase__ ) vae.save_pretrained(lowercase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') a_ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
685
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowercase__ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase (lowercase__ = 10001 ) -> int: '''simple docstring''' try: a_ = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) a_ = [] a_ = 2 while len(lowercase__ ) < nth: if is_prime(lowercase__ ): primes.append(lowercase__ ) num += 1 else: num += 1 return primes[len(lowercase__ ) - 1] if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' import inspect import unittest class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def UpperCamelCase_ ( self ): '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps SCREAMING_SNAKE_CASE : int = inspect.getmembers(A, inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": SCREAMING_SNAKE_CASE : Optional[Any] = 'k-diffusion' elif backend == "invisible_watermark": SCREAMING_SNAKE_CASE : Any = 'invisible-watermark' assert backend in deps, F"{backend} is not in the deps table!"
508
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } UpperCamelCase_ = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off UpperCamelCase_ = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[int] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = PRETRAINED_VOCAB_FILES_MAP A : Tuple = ['''input_ids''', '''attention_mask'''] A : Tuple = MBartTokenizer A : List[int] = [] A : List[int] = [] def __init__( self, A=None, A=None, A="<s>", A="</s>", A="</s>", A="<s>", A="<unk>", A="<pad>", A="<mask>", A=None, A=None, A=None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(A, lstrip=A, rstrip=A ) if isinstance(A, A ) else mask_token super().__init__( vocab_file=A, tokenizer_file=A, bos_token=A, eos_token=A, sep_token=A, cls_token=A, unk_token=A, pad_token=A, mask_token=A, src_lang=A, tgt_lang=A, additional_special_tokens=A, **A, ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : str = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : int = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : Tuple = { lang_code: self.convert_tokens_to_ids(A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : Tuple = src_lang if src_lang is not None else 'en_XX' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self, A, A, A, A, **A ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE : Optional[Any] = src_lang SCREAMING_SNAKE_CASE : Optional[Any] = self(A, add_special_tokens=A, return_tensors=A, **A ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : str = tgt_lang_id return inputs def UpperCamelCase_ ( self, A, A = "en_XX", A = None, A = "ro_RO", **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : str = tgt_lang return super().prepare_seqaseq_batch(A, A, **A ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : int = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens ) ), ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return SCREAMING_SNAKE_CASE : List[str] = os.path.join( A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file, A ) return (out_vocab_file,)
508
1
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = CpmAntTokenizer _a = False def __lowercase ( self : Union[str, Any] ): super().setUp() lowerCAmelCase = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def __lowercase ( self : Optional[Any] ): lowerCAmelCase = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) lowerCAmelCase = """今天天气真好!""" lowerCAmelCase = ["""今天""", """天气""", """真""", """好""", """!"""] lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = """今天天气真好!""" lowerCAmelCase = [tokenizer.bos_token] + tokens lowerCAmelCase = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) lowerCAmelCase = tokenizer.decode(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase )
169
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase (snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : List[str] ) -> str: '''simple docstring''' with open(snake_case__ ) as metadata_file: lowerCAmelCase = json.load(snake_case__ ) lowerCAmelCase = LukeConfig(use_entity_aware_attention=snake_case__ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path lowerCAmelCase = torch.load(snake_case__ , map_location="""cpu""" )["""module"""] # Load the entity vocab file lowerCAmelCase = load_original_entity_vocab(snake_case__ ) # add an entry for [MASK2] lowerCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowerCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks lowerCAmelCase = AddedToken("""<ent>""" , lstrip=snake_case__ , rstrip=snake_case__ ) lowerCAmelCase = AddedToken("""<ent2>""" , lstrip=snake_case__ , rstrip=snake_case__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(snake_case__ ) with open(os.path.join(snake_case__ , """tokenizer_config.json""" ) , """r""" ) as f: lowerCAmelCase = json.load(snake_case__ ) lowerCAmelCase = """MLukeTokenizer""" with open(os.path.join(snake_case__ , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) with open(os.path.join(snake_case__ , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(snake_case__ , snake_case__ ) lowerCAmelCase = MLukeTokenizer.from_pretrained(snake_case__ ) # Initialize the embeddings of the special tokens lowerCAmelCase = tokenizer.convert_tokens_to_ids(["""@"""] )[0] lowerCAmelCase = tokenizer.convert_tokens_to_ids(["""#"""] )[0] lowerCAmelCase = state_dict["""embeddings.word_embeddings.weight"""] lowerCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) lowerCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) lowerCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowerCAmelCase = state_dict[bias_name] lowerCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) lowerCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) lowerCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCAmelCase = f'''encoder.layer.{layer_index}.attention.self.''' lowerCAmelCase = state_dict[prefix + matrix_name] lowerCAmelCase = state_dict[prefix + matrix_name] lowerCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCAmelCase = state_dict["""entity_embeddings.entity_embeddings.weight"""] lowerCAmelCase = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowerCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowerCAmelCase = state_dict["""entity_predictions.bias"""] lowerCAmelCase = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowerCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowerCAmelCase = LukeForMaskedLM(config=snake_case__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): lowerCAmelCase = state_dict[key] else: lowerCAmelCase = state_dict[key] lowerCAmelCase , lowerCAmelCase = model.load_state_dict(snake_case__ , strict=snake_case__ ) if set(snake_case__ ) != {"luke.embeddings.position_ids"}: raise ValueError(f'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(snake_case__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowerCAmelCase = MLukeTokenizer.from_pretrained(snake_case__ , task="""entity_classification""" ) lowerCAmelCase = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" lowerCAmelCase = (0, 9) lowerCAmelCase = tokenizer(snake_case__ , entity_spans=[span] , return_tensors="""pt""" ) lowerCAmelCase = model(**snake_case__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase = torch.Size((1, 33, 768) ) lowerCAmelCase = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase = torch.Size((1, 1, 768) ) lowerCAmelCase = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowerCAmelCase = MLukeTokenizer.from_pretrained(snake_case__ ) lowerCAmelCase = """Tokyo is the capital of <mask>.""" lowerCAmelCase = (24, 30) lowerCAmelCase = tokenizer(snake_case__ , entity_spans=[span] , return_tensors="""pt""" ) lowerCAmelCase = model(**snake_case__ ) lowerCAmelCase = encoding["""input_ids"""][0].tolist() lowerCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) lowerCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(snake_case__ ) lowerCAmelCase = outputs.entity_logits[0][0].argmax().item() lowerCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(snake_case__ ) ) model.save_pretrained(snake_case__ ) def lowercase (snake_case__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase = ["""[MASK]""", """[PAD]""", """[UNK]"""] lowerCAmelCase = [json.loads(snake_case__ ) for line in open(snake_case__ )] lowerCAmelCase = {} for entry in data: lowerCAmelCase = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowerCAmelCase = entity_id break lowerCAmelCase = f'''{language}:{entity_name}''' lowerCAmelCase = entity_id return new_mapping if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
169
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } lowercase_ = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } lowercase_ = { "ctrl": 2_56, } lowercase_ = { "Pregnancy": 16_86_29, "Christianity": 76_75, "Explain": 10_64_23, "Fitness": 6_34_40, "Saving": 6_31_63, "Ask": 2_71_71, "Ass": 9_59_85, "Joke": 16_35_09, "Questions": 4_56_22, "Thoughts": 4_96_05, "Retail": 5_23_42, "Feminism": 16_43_38, "Writing": 1_19_92, "Atheism": 19_22_63, "Netflix": 4_86_16, "Computing": 3_96_39, "Opinion": 4_32_13, "Alone": 4_49_67, "Funny": 5_89_17, "Gaming": 4_03_58, "Human": 40_88, "India": 13_31, "Joker": 7_71_38, "Diet": 3_62_06, "Legal": 1_18_59, "Norman": 49_39, "Tip": 7_26_89, "Weight": 5_23_43, "Movies": 4_62_73, "Running": 2_34_25, "Science": 20_90, "Horror": 3_77_93, "Confession": 6_05_72, "Finance": 1_22_50, "Politics": 1_63_60, "Scary": 19_19_85, "Support": 1_26_54, "Technologies": 3_25_16, "Teenage": 6_61_60, "Event": 3_27_69, "Learned": 6_74_60, "Notion": 18_27_70, "Wikipedia": 3_75_83, "Books": 66_65, "Extract": 7_60_50, "Confessions": 10_27_01, "Conspiracy": 7_59_32, "Links": 6_36_74, "Narcissus": 15_04_25, "Relationship": 5_47_66, "Relationships": 13_47_96, "Reviews": 4_16_71, "News": 42_56, "Translation": 2_68_20, "multilingual": 12_84_06, } def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' __snake_case : Tuple = set() __snake_case : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case : Tuple = char __snake_case : Optional[Any] = set(__SCREAMING_SNAKE_CASE ) return pairs class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[Any] = VOCAB_FILES_NAMES A : List[Any] = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = CONTROL_CODES def __init__( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int]="<unk>" , **_lowerCAmelCase : Any ): super().__init__(unk_token=_lowerCAmelCase , **_lowerCAmelCase ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: __snake_case : int = json.load(_lowerCAmelCase ) __snake_case : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(_lowerCAmelCase , encoding="""utf-8""" ) as merges_handle: __snake_case : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __snake_case : List[str] = [tuple(merge.split() ) for merge in merges] __snake_case : Union[str, Any] = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __snake_case : Any = {} @property def snake_case__ ( self : Optional[Any] ): return len(self.encoder ) def snake_case__ ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def snake_case__ ( self : List[Any] , _lowerCAmelCase : Tuple ): if token in self.cache: return self.cache[token] __snake_case : Any = tuple(_lowerCAmelCase ) __snake_case : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __snake_case : List[str] = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: __snake_case : Union[str, Any] = min(_lowerCAmelCase , key=lambda _lowerCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __snake_case : int = bigram __snake_case : List[str] = [] __snake_case : Optional[Any] = 0 while i < len(_lowerCAmelCase ): try: __snake_case : Dict = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case : Union[str, Any] = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case : Optional[Any] = tuple(_lowerCAmelCase ) __snake_case : Optional[Any] = new_word if len(_lowerCAmelCase ) == 1: break else: __snake_case : str = get_pairs(_lowerCAmelCase ) __snake_case : Any = """@@ """.join(_lowerCAmelCase ) __snake_case : List[str] = word[:-4] __snake_case : Union[str, Any] = word return word def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Tuple ): __snake_case : List[str] = [] __snake_case : Union[str, Any] = re.findall(r"""\S+\n?""" , _lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(""" """ ) ) ) return split_tokens def snake_case__ ( self : Tuple , _lowerCAmelCase : Optional[int] ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case__ ( self : Dict , _lowerCAmelCase : str ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def snake_case__ ( self : Dict , _lowerCAmelCase : Optional[int] ): __snake_case : str = """ """.join(_lowerCAmelCase ).replace("""@@ """ , """""" ).strip() return out_string def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case : List[Any] = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case : int = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) __snake_case : Optional[int] = 0 with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) __snake_case : Any = token_index writer.write(""" """.join(_lowerCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
711
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : str=3 , _lowerCAmelCase : Union[str, Any]=32 , _lowerCAmelCase : str=3 , _lowerCAmelCase : int=10 , _lowerCAmelCase : str=[8, 16, 32, 64] , _lowerCAmelCase : Union[str, Any]=[1, 1, 2, 1] , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]="relu" , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Dict=["stage2", "stage3", "stage4"] , _lowerCAmelCase : List[str]=[2, 3, 4] , _lowerCAmelCase : List[Any]=1 , ): __snake_case : Union[str, Any] = parent __snake_case : Any = batch_size __snake_case : Optional[Any] = image_size __snake_case : Tuple = num_channels __snake_case : Dict = embeddings_size __snake_case : Any = hidden_sizes __snake_case : Optional[int] = depths __snake_case : List[str] = is_training __snake_case : str = use_labels __snake_case : str = hidden_act __snake_case : Optional[Any] = num_labels __snake_case : str = scope __snake_case : List[Any] = len(_lowerCAmelCase ) __snake_case : int = out_features __snake_case : Union[str, Any] = out_indices __snake_case : Tuple = num_groups def snake_case__ ( self : List[str] ): __snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : List[Any] = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Optional[int] ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def snake_case__ ( self : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] ): __snake_case : Any = BitModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case__ ( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple ): __snake_case : Any = self.num_labels __snake_case : Dict = BitForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Optional[Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Dict ): __snake_case : Tuple = BitBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Any = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case : Optional[Any] = None __snake_case : Dict = BitBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Tuple = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def snake_case__ ( self : Tuple ): __snake_case : List[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : List[Any] = config_and_inputs __snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): A : Tuple = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () A : Any = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) A : Dict = False A : List[str] = False A : str = False A : List[Any] = False A : str = False def snake_case__ ( self : Any ): __snake_case : List[str] = BitModelTester(self ) __snake_case : Any = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def snake_case__ ( self : int ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : Union[str, Any] ): return @unittest.skip(reason="""Bit does not output attentions""" ) def snake_case__ ( self : Optional[Any] ): pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def snake_case__ ( self : int ): pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def snake_case__ ( self : Union[str, Any] ): pass def snake_case__ ( self : int ): __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(_lowerCAmelCase ) __snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Any = [*signature.parameters.keys()] __snake_case : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def snake_case__ ( self : Any ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def snake_case__ ( self : Tuple ): __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCAmelCase ) def snake_case__ ( self : Dict ): __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(config=_lowerCAmelCase ) for name, module in model.named_modules(): if isinstance(_lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def snake_case__ ( self : Optional[int] ): def check_hidden_states_output(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): __snake_case : str = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __snake_case : Optional[Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __snake_case : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[Any] = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __snake_case : Tuple = layer_type __snake_case : List[str] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : List[str] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def snake_case__ ( self : Tuple ): pass def snake_case__ ( self : List[Any] ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def snake_case__ ( self : str ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[int] = BitModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def snake_case__ ( self : Union[str, Any] ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case__ ( self : Any ): __snake_case : List[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCAmelCase ) __snake_case : str = self.default_image_processor __snake_case : List[str] = prepare_img() __snake_case : Optional[Any] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Any = model(**_lowerCAmelCase ) # verify the logits __snake_case : List[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __snake_case : List[str] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ): A : Union[str, Any] = (BitBackbone,) if is_torch_available() else () A : List[str] = BitConfig A : Any = False def snake_case__ ( self : Optional[int] ): __snake_case : int = BitModelTester(self )
390
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') a : Any = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a : Tuple = '''>>zh<<''' a : str = '''Helsinki-NLP/''' if is_torch_available(): a : Optional[Any] = '''pt''' elif is_tf_available(): a : Tuple = '''tf''' else: a : Optional[Any] = '''jax''' @require_sentencepiece class a_ ( __lowerCAmelCase , unittest.TestCase ): a : Optional[Any] = MarianTokenizer a : Union[str, Any] = False a : int = True def _snake_case ( self : Optional[int] ) ->Dict: '''simple docstring''' super().setUp() _UpperCAmelCase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] _UpperCAmelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) _UpperCAmelCase = Path(self.tmpdirname ) save_json(lowerCamelCase_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowerCamelCase_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCamelCase_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowerCamelCase_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) _UpperCAmelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Optional[Any] , **__UpperCamelCase : Tuple ) ->List[str]: '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Dict ) ->List[Any]: '''simple docstring''' return ( "This is a test", "This is a test", ) def _snake_case ( self : Dict ) ->int: '''simple docstring''' _UpperCAmelCase = """</s>""" _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def _snake_case ( self : str ) ->List[str]: '''simple docstring''' _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowerCamelCase_ ) , 9 ) def _snake_case ( self : Optional[Any] ) ->Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def _snake_case ( self : int ) ->List[str]: '''simple docstring''' _UpperCAmelCase = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" ) _UpperCAmelCase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) _UpperCAmelCase = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowerCamelCase_ , batch.input_ids[0] ) _UpperCAmelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCamelCase_ ) _UpperCAmelCase = [x.name for x in Path(lowerCamelCase_ ).glob("""*""" )] self.assertIn("""source.spm""" , lowerCamelCase_ ) MarianTokenizer.from_pretrained(lowerCamelCase_ ) def _snake_case ( self : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def _snake_case ( self : List[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def _snake_case ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) _UpperCAmelCase = """Tämä on testi""" _UpperCAmelCase = """This is a test""" _UpperCAmelCase = [76, 7, 20_47, 2] _UpperCAmelCase = [69, 12, 11, 9_40, 2] _UpperCAmelCase = tokenizer(lowerCamelCase_ ).input_ids self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _UpperCAmelCase = tokenizer(text_target=lowerCamelCase_ ).input_ids self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _UpperCAmelCase = tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
555
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' _enforce_args(UpperCamelCase_ , UpperCamelCase_ ) if n == 0: return 0 UpperCamelCase = float("""-inf""" ) for i in range(1 , n + 1 ): UpperCamelCase = max( UpperCamelCase_ , prices[i - 1] + naive_cut_rod_recursive(n - i , UpperCamelCase_ ) ) return max_revue def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' _enforce_args(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: UpperCamelCase = float("""-inf""" ) for i in range(1 , n + 1 ): UpperCamelCase = max( UpperCamelCase_ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , UpperCamelCase_ , UpperCamelCase_ ) , ) UpperCamelCase = max_revenue return max_rev[n] def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' _enforce_args(UpperCamelCase_ , UpperCamelCase_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. UpperCamelCase = [float("""-inf""" ) for _ in range(n + 1 )] UpperCamelCase = 0 for i in range(1 , n + 1 ): UpperCamelCase = max_rev[i] for j in range(1 , i + 1 ): UpperCamelCase = max(UpperCamelCase_ , prices[j - 1] + max_rev[i - j] ) UpperCamelCase = max_revenue_i return max_rev[n] def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' if n < 0: UpperCamelCase = f"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(UpperCamelCase_ ) if n > len(UpperCamelCase_ ): UpperCamelCase = ( """Each integral piece of rod must have a corresponding price. """ f"""Got n = {n} but length of prices = {len(UpperCamelCase_ )}""" ) raise ValueError(UpperCamelCase_ ) def lowercase( ) -> str: '''simple docstring''' UpperCamelCase = [6, 10, 12, 15, 20, 23] UpperCamelCase = len(UpperCamelCase_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. UpperCamelCase = 36 UpperCamelCase = top_down_cut_rod(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = bottom_up_cut_rod(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = naive_cut_rod_recursive(UpperCamelCase_ , UpperCamelCase_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
537
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( lowerCAmelCase__ :float , lowerCAmelCase__ :float , lowerCAmelCase__ :float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
197
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :int ) -> list: '''simple docstring''' lowercase = word.split() def justify(lowerCAmelCase__ :list , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> str: lowercase = max_width - width lowercase = len(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowercase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowercase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowercase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowerCAmelCase__ ): num_spaces_between_words_list[i] += 1 lowercase = [] for i in range(lowerCAmelCase__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowerCAmelCase__ ) lowercase = [] lowercase = [] lowercase = 0 for word in words: if width + len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowerCAmelCase__ ) width += len(lowerCAmelCase__ ) else: # justify the line and add it to result answer.append(justify(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) # reset new line and new width lowercase , lowercase = [word], len(lowerCAmelCase__ ) lowercase = max_width - width - len(lowerCAmelCase__ ) answer.append(""" """.join(lowerCAmelCase__ ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
197
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["""image_processor""", """tokenizer"""] lowercase_ = """ViTImageProcessor""" lowercase_ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__(self : Any , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : List[str]) ->str: '''simple docstring''' lowerCamelCase__: Dict =None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a_ , ) lowerCamelCase__: int =kwargs.pop("feature_extractor") lowerCamelCase__: Any =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(a_ , a_) def __call__(self : Dict , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : List[Any]) ->Dict: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images.") if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt.") if text is not None: lowerCamelCase__: List[Any] =self.tokenizer(a_ , return_tensors=a_ , **a_) if visual_prompt is not None: lowerCamelCase__: Union[str, Any] =self.image_processor(a_ , return_tensors=a_ , **a_) if images is not None: lowerCamelCase__: Any =self.image_processor(a_ , return_tensors=a_ , **a_) if visual_prompt is not None and images is not None: lowerCamelCase__: List[Any] ={ 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCamelCase__: List[str] =image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCamelCase__: Tuple ={ 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**a_) , tensor_type=a_) def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any]) ->Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_) def SCREAMING_SNAKE_CASE_ (self : Any , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int]) ->int: '''simple docstring''' return self.tokenizer.decode(*a_ , **a_) @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a_ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a_ , ) return self.image_processor
59
'''simple docstring''' from __future__ import annotations def a_ ( __UpperCAmelCase ) -> list[int]: """simple docstring""" snake_case: Tuple =[True] * limit snake_case: Optional[int] =False snake_case: Union[str, Any] =False snake_case: List[Any] =True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case: str =i * 2 while index < limit: snake_case: List[Any] =False snake_case: List[str] =index + i snake_case: Union[str, Any] =[2] for i in range(3 , __UpperCAmelCase , 2 ): if is_prime[i]: primes.append(__UpperCAmelCase ) return primes def a_ ( __UpperCAmelCase = 1_00_00_00 ) -> int: """simple docstring""" snake_case: str =prime_sieve(__UpperCAmelCase ) snake_case: str =0 snake_case: str =0 for i in range(len(__UpperCAmelCase ) ): for j in range(i + length , len(__UpperCAmelCase ) ): snake_case: Tuple =sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case: List[str] =j - i snake_case: Optional[int] =sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
350
0
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: List[str] , __A: VQModel , __A: UNetaDModel , __A: DDIMScheduler ) -> Tuple: super().__init__() self.register_modules(vqvae=__A , unet=__A , scheduler=__A ) @torch.no_grad() def __call__( self: Optional[Any] , __A: int = 1 , __A: Optional[Union[torch.Generator, List[torch.Generator]]] = None , __A: float = 0.0 , __A: int = 50 , __A: Optional[str] = "pil" , __A: bool = True , **__A: int , ) -> Union[Tuple, ImagePipelineOutput]: _A = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__A , ) _A = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _A = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__A ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _A = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _A = {} if accepts_eta: _A = eta for t in self.progress_bar(self.scheduler.timesteps ): _A = self.scheduler.scale_model_input(__A , __A ) # predict the noise residual _A = self.unet(__A , __A ).sample # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step(__A , __A , __A , **__A ).prev_sample # decode the image latents with the VAE _A = self.vqvae.decode(__A ).sample _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(__A ) if not return_dict: return (image,) return ImagePipelineOutput(images=__A )
62
import flax.linen as nn import jax import jax.numpy as jnp class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" A_ = 42 A_ = jnp.floataa def __A ( self: Tuple ) -> Tuple: _A = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __A: Dict ) -> Tuple: _A ,_A ,_A ,_A = hidden_states.shape _A = jax.image.resize( __A , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) _A = self.conv(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" A_ = 42 A_ = jnp.floataa def __A ( self: List[str] ) -> Tuple: _A = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Union[str, Any] , __A: List[Any] ) -> Union[str, Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _A = self.conv(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" A_ = 42 A_ = None A_ = 0.0 A_ = None A_ = jnp.floataa def __A ( self: Dict ) -> Dict: _A = self.in_channels if self.out_channels is None else self.out_channels _A = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _A = nn.Conv( __A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _A = nn.Dense(__A , dtype=self.dtype ) _A = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _A = nn.Dropout(self.dropout_prob ) _A = nn.Conv( __A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _A = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _A = None if use_nin_shortcut: _A = nn.Conv( __A , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self: Dict , __A: List[Any] , __A: List[Any] , __A: Any=True ) -> List[Any]: _A = hidden_states _A = self.norma(__A ) _A = nn.swish(__A ) _A = self.conva(__A ) _A = self.time_emb_proj(nn.swish(__A ) ) _A = jnp.expand_dims(jnp.expand_dims(__A , 1 ) , 1 ) _A = hidden_states + temb _A = self.norma(__A ) _A = nn.swish(__A ) _A = self.dropout(__A , __A ) _A = self.conva(__A ) if self.conv_shortcut is not None: _A = self.conv_shortcut(__A ) return hidden_states + residual
62
1
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int=False ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Any = OmegaConf.load(__UpperCAmelCase ) if display: print(yaml.dump(OmegaConf.to_container(__UpperCAmelCase ) ) ) return config def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Dict=None ) -> List[str]: """simple docstring""" if conf_path is None: UpperCAmelCase_ : List[str] = '''./model_checkpoints/vqgan_only.yaml''' UpperCAmelCase_ : Dict = load_config(__UpperCAmelCase , display=__UpperCAmelCase ) UpperCAmelCase_ : str = VQModel(**config.model.params ) if ckpt_path is None: UpperCAmelCase_ : Tuple = '''./model_checkpoints/vqgan_only.pt''' UpperCAmelCase_ : int = torch.load(__UpperCAmelCase , map_location=__UpperCAmelCase ) if ".ckpt" in ckpt_path: UpperCAmelCase_ : str = sd['''state_dict'''] model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) model.to(__UpperCAmelCase ) del sd return model def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple ) -> str: """simple docstring""" UpperCAmelCase_ : int = model.encode(__UpperCAmelCase ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) UpperCAmelCase_ : Any = model.decode(__UpperCAmelCase ) return xrec def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any]=False ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Any = string.rsplit("." , 1 ) if reload: UpperCAmelCase_ : Optional[Any] = importlib.import_module(__UpperCAmelCase ) importlib.reload(__UpperCAmelCase ) return getattr(importlib.import_module(__UpperCAmelCase , package=__UpperCAmelCase ) , cls ) def a__ ( _SCREAMING_SNAKE_CASE : int ) -> Tuple: """simple docstring""" if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def a__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int]=True , _SCREAMING_SNAKE_CASE : Any=True ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Dict = instantiate_from_config(__UpperCAmelCase ) if sd is not None: model.load_state_dict(__UpperCAmelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ) -> Optional[int]: """simple docstring""" if ckpt: UpperCAmelCase_ : Any = torch.load(__UpperCAmelCase , map_location="cpu" ) UpperCAmelCase_ : Optional[Any] = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: UpperCAmelCase_ : Union[str, Any] = {'''state_dict''': None} UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : str = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=__UpperCAmelCase , eval_mode=__UpperCAmelCase )['''model'''] return model, global_step
71
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCamelCase : str = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = test_results.split(''' ''' ) lowerCamelCase_ : Tuple = 0 lowerCamelCase_ : Optional[int] = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCamelCase_ : Optional[Any] = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__UpperCAmelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Tuple = {} lowerCamelCase_ : List[Any] = None lowerCamelCase_ : Any = False for line in failures_short_lines.split('''\n''' ): if re.search(R'''_ \[doctest\]''' , __UpperCAmelCase ): lowerCamelCase_ : Union[str, Any] = True lowerCamelCase_ : Optional[Any] = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): lowerCamelCase_ : str = line lowerCamelCase_ : List[Any] = False return failures class lowerCAmelCase__ : def __init__( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = title lowerCamelCase_ : Dict = doc_test_results['''time_spent'''].split(''',''' )[0] lowerCamelCase_ : str = doc_test_results['''success'''] lowerCamelCase_ : int = doc_test_results['''failures'''] lowerCamelCase_ : List[Any] = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCamelCase_ : Union[str, Any] = doc_test_results @property def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_ : Dict = [self._time_spent] lowerCamelCase_ : Optional[int] = 0 for time in time_spent: lowerCamelCase_ : Tuple = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(UpperCamelCase_ ) == 1: lowerCamelCase_ : int = [0, 0, time_parts[0]] lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return F"""{int(UpperCamelCase_ )}h{int(UpperCamelCase_ )}m{int(UpperCamelCase_ )}s""" @property def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ : Any = 40 lowerCamelCase_ : Tuple = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(UpperCamelCase_ , UpperCamelCase_ )} lowerCamelCase_ : int = '''''' for category, failures in category_failures.items(): if len(UpperCamelCase_ ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(UpperCamelCase_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_ : str = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(UpperCamelCase_ ) @staticmethod def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Any = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(UpperCamelCase_ )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=UpperCamelCase_ , ) def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) lowerCamelCase_ : Optional[int] = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else '''All tests passed.''' lowerCamelCase_ : Union[str, Any] = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=UpperCamelCase_ , ) def __UpperCamelCase ( self : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : str = '''''' for key, value in failures.items(): lowerCamelCase_ : List[Any] = value[:200] + ''' [Truncated]''' if len(UpperCamelCase_ ) > 250 else value failures_text += F"""*{key}*\n_{value}_\n\n""" lowerCamelCase_ : List[str] = job_name lowerCamelCase_ : List[str] = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: lowerCamelCase_ : List[str] = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def __UpperCamelCase ( self : Dict ) -> List[str]: """simple docstring""" if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) lowerCamelCase_ : Dict = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) lowerCamelCase_ : List[Any] = sorted(self.doc_test_results.items() , key=lambda UpperCamelCase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): lowerCamelCase_ : str = F"""*Num failures* :{len(job_result['failed'] )} \n""" lowerCamelCase_ : Any = job_result['''failures'''] lowerCamelCase_ : Any = self.get_reply_blocks(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , text=UpperCamelCase_ ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F"""Results for {job}""" , blocks=UpperCamelCase_ , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def __snake_case (): """simple docstring""" lowerCamelCase_ : Any = os.environ['''GITHUB_RUN_ID'''] lowerCamelCase_ : Dict = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" lowerCamelCase_ : Tuple = requests.get(__UpperCAmelCase ).json() lowerCamelCase_ : Union[str, Any] = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) lowerCamelCase_ : Union[str, Any] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__UpperCAmelCase ): lowerCamelCase_ : Optional[Any] = requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , __UpperCAmelCase ) return {} def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : List[Any] = {} if os.path.exists(__UpperCAmelCase ): lowerCamelCase_ : Optional[Any] = os.listdir(__UpperCAmelCase ) for file in files: try: with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , encoding='''utf-8''' ) as f: lowerCamelCase_ : str = f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(__UpperCAmelCase , __UpperCAmelCase )}.""" ) from e return _artifact def __snake_case (): """simple docstring""" class lowerCAmelCase__ : def __init__( self : Any , UpperCamelCase_ : str ) -> int: """simple docstring""" lowerCamelCase_ : Optional[int] = name lowerCamelCase_ : str = [] def __str__( self : int ) -> Tuple: """simple docstring""" return self.name def __UpperCamelCase ( self : List[str] , UpperCamelCase_ : str ) -> List[str]: """simple docstring""" self.paths.append({'''name''': self.name, '''path''': path} ) lowerCamelCase_ : Dict[str, Artifact] = {} lowerCamelCase_ : List[str] = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCamelCase_ : List[Any] = directory if artifact_name not in _available_artifacts: lowerCamelCase_ : List[Any] = Artifact(__UpperCAmelCase ) _available_artifacts[artifact_name].add_path(__UpperCAmelCase ) return _available_artifacts if __name__ == "__main__": __lowerCamelCase : List[Any] = get_job_links() __lowerCamelCase : str = retrieve_available_artifacts() __lowerCamelCase : Tuple = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCamelCase : Optional[Any] = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCamelCase : str = github_actions_job_links.get("""run_doctests""") __lowerCamelCase : Optional[int] = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowerCamelCase : Tuple = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = handle_test_results(artifact["""stats"""]) __lowerCamelCase : Union[str, Any] = failed __lowerCamelCase : str = success __lowerCamelCase : int = time_spent[1:-1] + """, """ __lowerCamelCase : List[Any] = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowerCamelCase : List[Any] = line.replace("""FAILED """, """""") __lowerCamelCase : List[str] = line.split()[0].replace("""\n""", """""") if "::" in line: __lowerCamelCase , __lowerCamelCase : Optional[Any] = line.split("""::""") else: __lowerCamelCase , __lowerCamelCase : str = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCamelCase : Tuple = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCamelCase : List[Any] = all_failures[test] if test in all_failures else """N/A""" __lowerCamelCase : Optional[int] = failure break __lowerCamelCase : Dict = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
501
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _lowerCAmelCase = logging.getLogger(__name__) class __A ( a ): """simple docstring""" def __init__( self , _lowerCamelCase=-1 )-> Union[str, Any]: # in NER datasets, the last column is usually reserved for NER label lowercase__ = label_idx def snake_case_( self , _lowerCamelCase , _lowerCamelCase )-> List[InputExample]: if isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(_lowerCamelCase , f'''{mode}.txt''' ) lowercase__ = 1 lowercase__ = [] with open(_lowerCamelCase , encoding='''utf-8''' ) as f: lowercase__ = [] lowercase__ = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_lowerCamelCase , labels=_lowerCamelCase ) ) guid_index += 1 lowercase__ = [] lowercase__ = [] else: lowercase__ = line.split(''' ''' ) words.append(splits[0] ) if len(_lowerCamelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_lowerCamelCase , labels=_lowerCamelCase ) ) return examples def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )-> List[Any]: lowercase__ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(_lowerCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(_lowerCamelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def snake_case_( self , _lowerCamelCase )-> List[str]: if path: with open(_lowerCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __A ( a ): """simple docstring""" def __init__( self )-> List[str]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def snake_case_( self , _lowerCamelCase )-> List[str]: if path: with open(_lowerCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __A ( a ): """simple docstring""" def snake_case_( self , _lowerCamelCase , _lowerCamelCase )-> List[InputExample]: if isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(_lowerCamelCase , f'''{mode}.txt''' ) lowercase__ = 1 lowercase__ = [] with open(_lowerCamelCase , encoding='''utf-8''' ) as f: for sentence in parse_incr(_lowerCamelCase ): lowercase__ = [] lowercase__ = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_lowerCamelCase , labels=_lowerCamelCase ) ) guid_index += 1 return examples def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )-> Union[str, Any]: lowercase__ = 0 for sentence in parse_incr(_lowerCamelCase ): lowercase__ = preds_list[example_id] lowercase__ = '''''' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(_lowerCamelCase ) example_id += 1 def snake_case_( self , _lowerCamelCase )-> List[str]: if path: with open(_lowerCamelCase , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
717
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __A ( a ): """simple docstring""" A_ = '' A_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) A_ = None # compression type in fsspec. ex: "gzip" A_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _lowerCamelCase = "" , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase )-> List[str]: super().__init__(self , **_lowerCamelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowercase__ = fsspec.open( _lowerCamelCase , mode='''rb''' , protocol=_lowerCamelCase , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowercase__ = os.path.basename(self.file.path.split('''::''' )[0] ) lowercase__ = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowercase__ = None @classmethod def snake_case_( cls , _lowerCamelCase )-> List[Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(_lowerCamelCase ).lstrip('''/''' ) def snake_case_( self )-> List[str]: if self.dir_cache is None: lowercase__ = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowercase__ = {f['''name''']: f} def snake_case_( self , _lowerCamelCase )-> List[str]: return self.file.open().read() def snake_case_( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , )-> Tuple: lowercase__ = self._strip_protocol(_lowerCamelCase ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class __A ( a ): """simple docstring""" A_ = 'bz2' A_ = 'bz2' A_ = '.bz2' class __A ( a ): """simple docstring""" A_ = 'gzip' A_ = 'gzip' A_ = '.gz' class __A ( a ): """simple docstring""" A_ = 'lz4' A_ = 'lz4' A_ = '.lz4' class __A ( a ): """simple docstring""" A_ = 'xz' A_ = 'xz' A_ = '.xz' class __A ( a ): """simple docstring""" A_ = 'zstd' A_ = 'zstd' A_ = '.zst' def __init__( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = DEFAULT_BLOCK_SIZE , **_lowerCamelCase , )-> Tuple: super().__init__( fo=_lowerCamelCase , mode=_lowerCamelCase , target_protocol=_lowerCamelCase , target_options=_lowerCamelCase , block_size=_lowerCamelCase , **_lowerCamelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowercase__ = self.file.__enter__ class __A : """simple docstring""" def __init__( self , _lowerCamelCase )-> Union[str, Any]: lowercase__ = file_ def __enter__( self )-> int: self._file.__enter__() return self def __exit__( self , *_lowerCamelCase , **_lowerCamelCase )-> List[str]: self._file.__exit__(*_lowerCamelCase , **_lowerCamelCase ) def __iter__( self )-> int: return iter(self._file ) def snake_case_( self )-> List[Any]: return next(self._file ) def __getattr__( self , _lowerCamelCase )-> Any: return getattr(self._file , _lowerCamelCase ) def fixed_enter(*_lowerCamelCase , **_lowerCamelCase ): return WrappedFile(_enter(*_lowerCamelCase , **_lowerCamelCase ) ) lowercase__ = fixed_enter
318
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a :str = logging.get_logger(__name__) if is_vision_available(): import PIL class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = ["""pixel_values"""] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BICUBIC , _a = True , _a = None , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , _a = True , **_a , ) -> None: """simple docstring""" super().__init__(**_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = size if size is not None else {"""shortest_edge""": 224} SCREAMING_SNAKE_CASE__ : Tuple = get_size_dict(_a , default_to_square=_a ) SCREAMING_SNAKE_CASE__ : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} SCREAMING_SNAKE_CASE__ : int = get_size_dict(_a , default_to_square=_a , param_name="""crop_size""" ) SCREAMING_SNAKE_CASE__ : List[Any] = do_resize SCREAMING_SNAKE_CASE__ : str = size SCREAMING_SNAKE_CASE__ : Optional[int] = resample SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_center_crop SCREAMING_SNAKE_CASE__ : str = crop_size SCREAMING_SNAKE_CASE__ : Optional[int] = do_rescale SCREAMING_SNAKE_CASE__ : Tuple = rescale_factor SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize SCREAMING_SNAKE_CASE__ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE__ : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE__ : Any = do_convert_rgb def _a ( self , _a , _a , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = get_resize_output_image_size(_a , size=size["""shortest_edge"""] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def _a ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_a , size=(size["""height"""], size["""width"""]) , data_format=_a , **_a ) def _a ( self , _a , _a , _a = None , **_a , ) -> List[Any]: """simple docstring""" return rescale(_a , scale=_a , data_format=_a , **_a ) def _a ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: """simple docstring""" return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def _a ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ : Any = size if size is not None else self.size SCREAMING_SNAKE_CASE__ : Optional[Any] = get_size_dict(_a , param_name="""size""" , default_to_square=_a ) SCREAMING_SNAKE_CASE__ : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ : List[Any] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ : Optional[Any] = get_size_dict(_a , param_name="""crop_size""" , default_to_square=_a ) SCREAMING_SNAKE_CASE__ : Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : int = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ : List[str] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ : int = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE__ : List[Any] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : Optional[int] = [to_numpy_array(_a ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ : int = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ : List[Any] = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : int = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ : Dict = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] SCREAMING_SNAKE_CASE__ : Optional[int] = [to_channel_dimension_format(_a , _a ) for image in images] SCREAMING_SNAKE_CASE__ : Any = {"""pixel_values""": images} return BatchFeature(data=_a , tensor_type=_a )
680
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> list[float]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = coefficient_matrix.shape SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE__ : Tuple = F'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(__lowerCAmelCase ) if colsa != 1: SCREAMING_SNAKE_CASE__ : str = F'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(__lowerCAmelCase ) if rowsa != rowsa: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ F'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(__lowerCAmelCase ) if len(__lowerCAmelCase ) != rowsa: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( """Number of initial values must be equal to number of rows in coefficient """ F'''matrix but received {len(__lowerCAmelCase )} and {rowsa}''' ) raise ValueError(__lowerCAmelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) SCREAMING_SNAKE_CASE__ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = table.shape strictly_diagonally_dominant(__lowerCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Any = [] for row in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : List[str] = 0 for col in range(__lowerCAmelCase ): if col == row: SCREAMING_SNAKE_CASE__ : int = table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE__ : Any = (temp + val) / denom new_val.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = new_val return [float(__lowerCAmelCase ) for i in new_val] def _lowercase ( __lowerCAmelCase ) -> bool: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = table.shape SCREAMING_SNAKE_CASE__ : str = True for i in range(0 , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : str = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
680
1
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowercase ( unittest.TestCase ): @slow def __snake_case( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) SCREAMING_SNAKE_CASE = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(_UpperCamelCase ) from datasets import load_dataset SCREAMING_SNAKE_CASE = load_dataset("nielsr/rvlcdip-demo" ) SCREAMING_SNAKE_CASE = dataset["train"][0]["image"].convert("RGB" ) SCREAMING_SNAKE_CASE = image_processor(_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE = torch.Size((1, 16) ) self.assertEqual(logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=_UpperCamelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
713
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : def __init__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Dict=13 , _UpperCamelCase : List[Any]=64 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : int=3 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=32 , _UpperCamelCase : str=5 , _UpperCamelCase : Tuple=4 , _UpperCamelCase : Any=37 , _UpperCamelCase : List[str]="gelu" , _UpperCamelCase : int=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Optional[int]=10 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Union[str, Any]=[1, 16, 4, 4] , _UpperCamelCase : Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size SCREAMING_SNAKE_CASE = (self.image_size // 32) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def __snake_case( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 16, 32], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_UpperCamelCase , ) def __snake_case( self : Dict , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case( self : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = ViTHybridForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ : List[Any] = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : Any = False lowercase__ : Optional[int] = False def __snake_case( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def __snake_case( self : Optional[Any] ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __snake_case( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __snake_case( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __snake_case( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=_UpperCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": SCREAMING_SNAKE_CASE = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def __snake_case( self : Any ) -> List[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = ViTHybridModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : List[Any] ) -> Any: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __snake_case( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow @require_accelerate def __snake_case( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # model predicts one of the 1000 ImageNet classes SCREAMING_SNAKE_CASE = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
647
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowercase : int = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowercase : List[str] = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() ) lowercase : Optional[Any] = '''|'''.join(sys.argv[1:]) lowercase : Dict = re.compile(rF"""^({joined_dirs}).*?\.py$""") lowercase : str = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
568
import comet # From: unbabel-comet import torch import datasets lowercase : List[Any] = datasets.logging.get_logger(__name__) lowercase : List[str] = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' lowercase : Dict = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' lowercase : Tuple = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence" ), "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Any: if self.config_name == "default": snake_case_ : Union[str, Any] = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) ) else: snake_case_ : int = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) -> Dict: if gpus is None: snake_case_ : Union[str, Any] = 1 if torch.cuda.is_available() else 0 snake_case_ : str = {"src": sources, "mt": predictions, "ref": references} snake_case_ : Dict = [dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for t in zip(*data.values() )] snake_case_ , snake_case_ : Union[str, Any] = self.scorer.predict(_SCREAMING_SNAKE_CASE , gpus=_SCREAMING_SNAKE_CASE , progress_bar=_SCREAMING_SNAKE_CASE ) return {"mean_score": mean_score, "scores": scores}
568
1
import math def lowercase__ ( __A: float ,__A: float ): '''simple docstring''' if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_6_0: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__A ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
501
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __lowerCamelCase : int = NewType('''DataClass''', Any) __lowerCamelCase : Optional[Any] = NewType('''DataClassType''', Any) def lowercase__ ( __A: List[Any] ): '''simple docstring''' if isinstance(__A ,__A ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def lowercase__ ( __A: list ): '''simple docstring''' __magic_name__ : Dict = {str(__A ): choice for choice in choices} return lambda __A : str_to_choice.get(__A ,__A ) def lowercase__ ( *, __A: Union[str, List[str]] = None ,__A: str = None ,__A: Any = dataclasses.MISSING ,__A: Callable[[], Any] = dataclasses.MISSING ,__A: dict = None ,**__A: Optional[int] ,): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __magic_name__ : Optional[Any] = {} if aliases is not None: __magic_name__ : str = aliases if help is not None: __magic_name__ : Optional[int] = help return dataclasses.field(metadata=__A ,default=__A ,default_factory=__A ,**__A ) class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' UpperCamelCase__ =42 def __init__( self : List[str] , lowerCamelCase_ : Union[DataClassType, Iterable[DataClassType]] , **lowerCamelCase_ : str ) -> Optional[Any]: # To make the default appear when using --help if "formatter_class" not in kwargs: __magic_name__ : List[str] = ArgumentDefaultsHelpFormatter super().__init__(**lowerCamelCase_ ) if dataclasses.is_dataclass(lowerCamelCase_ ): __magic_name__ : Union[str, Any] = [dataclass_types] __magic_name__ : Tuple = list(lowerCamelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowerCamelCase_ ) @staticmethod def UpperCAmelCase__ ( lowerCamelCase_ : ArgumentParser , lowerCamelCase_ : dataclasses.Field ) -> str: __magic_name__ : int = F'''--{field.name}''' __magic_name__ : str = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowerCamelCase_ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __magic_name__ : Union[str, Any] = kwargs.pop('''aliases''' , [] ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): __magic_name__ : Tuple = [aliases] __magic_name__ : Optional[int] = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(lowerCamelCase_ , '''UnionType''' ) and isinstance(lowerCamelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowerCamelCase_ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F''' Problem encountered in field \'{field.name}\'.''' ) if type(lowerCamelCase_ ) not in field.type.__args__: # filter `str` in Union __magic_name__ : int = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __magic_name__ : str = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __magic_name__ : List[str] = ( field.type.__args__[0] if isinstance(lowerCamelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) __magic_name__ : Union[str, Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __magic_name__ : Any = {} if origin_type is Literal or (isinstance(field.type , lowerCamelCase_ ) and issubclass(field.type , lowerCamelCase_ )): if origin_type is Literal: __magic_name__ : Optional[int] = field.type.__args__ else: __magic_name__ : Dict = [x.value for x in field.type] __magic_name__ : Union[str, Any] = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __magic_name__ : List[Any] = field.default else: __magic_name__ : List[str] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __magic_name__ : Union[str, Any] = copy(lowerCamelCase_ ) # Hack because type=bool in argparse does not behave as we want. __magic_name__ : str = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __magic_name__ : Union[str, Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __magic_name__ : int = default # This tells argparse we accept 0 or 1 value after --field_name __magic_name__ : Tuple = '''?''' # This is the value that will get picked if we do --field_name (without value) __magic_name__ : Any = True elif isclass(lowerCamelCase_ ) and issubclass(lowerCamelCase_ , lowerCamelCase_ ): __magic_name__ : Tuple = field.type.__args__[0] __magic_name__ : List[str] = '''+''' if field.default_factory is not dataclasses.MISSING: __magic_name__ : int = field.default_factory() elif field.default is dataclasses.MISSING: __magic_name__ : str = True else: __magic_name__ : Tuple = field.type if field.default is not dataclasses.MISSING: __magic_name__ : str = field.default elif field.default_factory is not dataclasses.MISSING: __magic_name__ : Any = field.default_factory() else: __magic_name__ : Any = True parser.add_argument(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __magic_name__ : Dict = False parser.add_argument(F'''--no_{field.name}''' , action='''store_false''' , dest=field.name , **lowerCamelCase_ ) def UpperCAmelCase__ ( self : Any , lowerCamelCase_ : DataClassType ) -> Optional[int]: if hasattr(lowerCamelCase_ , '''_argument_group_name''' ): __magic_name__ : Tuple = self.add_argument_group(dtype._argument_group_name ) else: __magic_name__ : Any = self try: __magic_name__ : Dict[str, type] = get_type_hints(lowerCamelCase_ ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowerCamelCase_ ): __magic_name__ : Any = '''.'''.join(map(lowerCamelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(lowerCamelCase_ ): if not field.init: continue __magic_name__ : Tuple = type_hints[field.name] self._parse_dataclass_field(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : List[Any]=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __magic_name__ : int = [] if args_filename: args_files.append(Path(lowerCamelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __magic_name__ : str = ArgumentParser() args_file_parser.add_argument(lowerCamelCase_ , type=lowerCamelCase_ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __magic_name__ , __magic_name__ : List[str] = args_file_parser.parse_known_args(args=lowerCamelCase_ ) __magic_name__ : List[Any] = vars(lowerCamelCase_ ).get(args_file_flag.lstrip('''-''' ) , lowerCamelCase_ ) if cmd_args_file_paths: args_files.extend([Path(lowerCamelCase_ ) for p in cmd_args_file_paths] ) __magic_name__ : List[str] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __magic_name__ : Optional[int] = file_args + args if args is not None else file_args + sys.argv[1:] __magic_name__ , __magic_name__ : Tuple = self.parse_known_args(args=lowerCamelCase_ ) __magic_name__ : Any = [] for dtype in self.dataclass_types: __magic_name__ : str = {f.name for f in dataclasses.fields(lowerCamelCase_ ) if f.init} __magic_name__ : Tuple = {k: v for k, v in vars(lowerCamelCase_ ).items() if k in keys} for k in keys: delattr(lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ : Optional[Any] = dtype(**lowerCamelCase_ ) outputs.append(lowerCamelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowerCamelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def UpperCAmelCase__ ( self : int , lowerCamelCase_ : Dict[str, Any] , lowerCamelCase_ : bool = False ) -> Tuple[DataClass, ...]: __magic_name__ : int = set(args.keys() ) __magic_name__ : Any = [] for dtype in self.dataclass_types: __magic_name__ : int = {f.name for f in dataclasses.fields(lowerCamelCase_ ) if f.init} __magic_name__ : List[str] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __magic_name__ : Optional[Any] = dtype(**lowerCamelCase_ ) outputs.append(lowerCamelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(lowerCamelCase_ )}''' ) return tuple(lowerCamelCase_ ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : bool = False ) -> Tuple[DataClass, ...]: with open(Path(lowerCamelCase_ ) , encoding='''utf-8''' ) as open_json_file: __magic_name__ : Any = json.loads(open_json_file.read() ) __magic_name__ : Tuple = self.parse_dict(lowerCamelCase_ , allow_extra_keys=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def UpperCAmelCase__ ( self : str , lowerCamelCase_ : str , lowerCamelCase_ : bool = False ) -> Tuple[DataClass, ...]: __magic_name__ : Any = self.parse_dict(yaml.safe_load(Path(lowerCamelCase_ ).read_text() ) , allow_extra_keys=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
501
1
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets UpperCAmelCase_ : List[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' UpperCAmelCase_ : Any = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' UpperCAmelCase_ : Tuple = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def A_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : bool , _lowerCAmelCase : Optional[Dict[int, int]] = None , _lowerCAmelCase : bool = False , ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): _lowerCamelCase : Any = new_id # turn into Numpy arrays _lowerCamelCase : str = np.array(_lowerCAmelCase ) _lowerCamelCase : List[str] = np.array(_lowerCAmelCase ) if reduce_labels: _lowerCamelCase : Optional[int] = 255 _lowerCamelCase : Tuple = label - 1 _lowerCamelCase : List[Any] = 255 _lowerCamelCase : int = label != ignore_index _lowerCamelCase : str = np.not_equal(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : List[str] = pred_label[mask] _lowerCamelCase : str = np.array(_lowerCAmelCase )[mask] _lowerCamelCase : Union[str, Any] = pred_label[pred_label == label] _lowerCamelCase : int = np.histogram(_lowerCAmelCase , bins=_lowerCAmelCase , range=(0, num_labels - 1) )[0] _lowerCamelCase : Dict = np.histogram(_lowerCAmelCase , bins=_lowerCAmelCase , range=(0, num_labels - 1) )[0] _lowerCamelCase : Tuple = np.histogram(_lowerCAmelCase , bins=_lowerCAmelCase , range=(0, num_labels - 1) )[0] _lowerCamelCase : List[str] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : bool , _lowerCAmelCase : Optional[Dict[int, int]] = None , _lowerCAmelCase : bool = False , ): """simple docstring""" _lowerCamelCase : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCamelCase : Union[str, Any] = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCamelCase : Optional[int] = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCamelCase : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Optional[int] = intersect_and_union( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : bool , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Dict[int, int]] = None , _lowerCAmelCase : bool = False , ): """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = total_intersect_and_union( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # compute metrics _lowerCamelCase : Tuple = {} _lowerCamelCase : Union[str, Any] = total_area_intersect.sum() / total_area_label.sum() _lowerCamelCase : Optional[Any] = total_area_intersect / total_area_union _lowerCamelCase : str = total_area_intersect / total_area_label _lowerCamelCase : Union[str, Any] = np.nanmean(_lowerCAmelCase ) _lowerCamelCase : Dict = np.nanmean(_lowerCAmelCase ) _lowerCamelCase : Any = all_acc _lowerCamelCase : Tuple = iou _lowerCamelCase : str = acc if nan_to_num is not None: _lowerCamelCase : str = {metric: np.nan_to_num(_lowerCAmelCase , nan=_lowerCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def lowerCamelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ),reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ],) def lowerCamelCase_ ( self : List[Any],__A : Dict,__A : Dict,__A : int,__A : bool,__A : Optional[int] = None,__A : Optional[Dict[int, int]] = None,__A : bool = False,): _lowerCamelCase : Optional[int] = mean_iou( results=__A,gt_seg_maps=__A,num_labels=__A,ignore_index=__A,nan_to_num=__A,label_map=__A,reduce_labels=__A,) return iou_result
44
def __UpperCamelCase (lowerCAmelCase : list[int] ) -> int: if not numbers: return 0 if not isinstance(lowerCAmelCase, (list, tuple) ) or not all( isinstance(lowerCAmelCase, lowerCAmelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) A = A = A = numbers[0] for i in range(1, len(lowerCAmelCase ) ): # update the maximum and minimum subarray products A = numbers[i] if number < 0: A , A = min_till_now, max_till_now A = max(lowerCAmelCase, max_till_now * number ) A = min(lowerCAmelCase, min_till_now * number ) # update the maximum product found till now A = max(lowerCAmelCase, lowerCAmelCase ) return max_prod
699
0
from __future__ import annotations class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase) -> Tuple: __UpperCamelCase :List[Any] = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''') if len(A__) != 0: __UpperCamelCase :Optional[Any] = len(rows[0]) if cols == 0: raise error for row in rows: if len(A__) != cols: raise error for value in row: if not isinstance(A__ , (int, float)): raise error __UpperCamelCase :List[Any] = rows else: __UpperCamelCase :Union[str, Any] = [] def UpperCamelCase__ ( self) -> List[Any]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def UpperCamelCase__ ( self) -> Optional[Any]: return len(self.rows) @property def UpperCamelCase__ ( self) -> Optional[int]: return len(self.rows[0]) @property def UpperCamelCase__ ( self) -> str: return (self.num_rows, self.num_columns) @property def UpperCamelCase__ ( self) -> List[Any]: return self.order[0] == self.order[1] def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Any = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(A__) def UpperCamelCase__ ( self) -> Tuple: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def UpperCamelCase__ ( self) -> Any: return bool(self.determinant()) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :str = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(A__).determinant() def UpperCamelCase__ ( self , __lowercase , __lowercase) -> List[str]: if (row + column) % 2 == 0: return self.get_minor(A__ , A__) return -1 * self.get_minor(A__ , A__) def UpperCamelCase__ ( self) -> Dict: return Matrix( [ [self.get_minor(A__ , A__) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def UpperCamelCase__ ( self) -> Union[str, Any]: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :Tuple = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(A__) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Optional[int] = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''') return self.adjugate() * (1 / determinant) def __repr__( self) -> Tuple: return str(self.rows) def __str__( self) -> Optional[int]: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(A__) for value in row]) + '''.]''' for row in self.rows ]) + "]" ) def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Tuple: __UpperCamelCase :List[Any] = TypeError('''Row must be a list containing all ints and/or floats''') if not isinstance(A__ , A__): raise type_error for value in row: if not isinstance(A__ , (int, float)): raise type_error if len(A__) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''') if position is None: self.rows.append(A__) else: __UpperCamelCase :Optional[int] = self.rows[0:position] + [row] + self.rows[position:] def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Dict: __UpperCamelCase :Any = TypeError( '''Column must be a list containing all ints and/or floats''') if not isinstance(A__ , A__): raise type_error for value in column: if not isinstance(A__ , (int, float)): raise type_error if len(A__) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''') if position is None: __UpperCamelCase :int = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: __UpperCamelCase :Dict = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self , __lowercase) -> Optional[int]: if not isinstance(A__ , A__): return NotImplemented return self.rows == other.rows def __ne__( self , __lowercase) -> List[Any]: return not self == other def __neg__( self) -> Dict: return self * -1 def __add__( self , __lowercase) -> str: if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self , __lowercase) -> Tuple: if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self , __lowercase) -> str: if isinstance(A__ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(A__ , A__): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''') return Matrix( [ [Matrix.dot_product(A__ , A__) for column in other.columns()] for row in self.rows ]) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''') def __pow__( self , __lowercase) -> List[str]: if not isinstance(A__ , A__): raise TypeError('''A Matrix can only be raised to the power of an int''') if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''') __UpperCamelCase :Union[str, Any] = self for _ in range(other - 1): result *= self return result @classmethod def UpperCamelCase__ ( cls , __lowercase , __lowercase) -> Optional[int]: return sum(row[i] * column[i] for i in range(len(A__))) if __name__ == "__main__": import doctest doctest.testmod()
720
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __lowercase = datasets.load_iris() __lowercase = np.array(data['''data''']) __lowercase = np.array(data['''target''']) __lowercase = data['''target_names'''] __lowercase , __lowercase , __lowercase , __lowercase = train_test_split(X, y) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return np.linalg.norm(np.array(SCREAMING_SNAKE_CASE ) - np.array(SCREAMING_SNAKE_CASE ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ): '''simple docstring''' __UpperCamelCase :Optional[int] = zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # List of distances of all points from the point to be classified __UpperCamelCase :List[str] = [] for data_point in data: __UpperCamelCase :Optional[int] = euclidean_distance(data_point[0] , SCREAMING_SNAKE_CASE ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCamelCase :Any = [i[1] for i in sorted(SCREAMING_SNAKE_CASE )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCamelCase :Union[str, Any] = Counter(SCREAMING_SNAKE_CASE ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
452
0
from typing import Any def A ( snake_case__ : list , snake_case__ : list , snake_case__ : dict , snake_case__ : dict , snake_case__ : dict , ) -> list: '''simple docstring''' _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step __snake_case = {} __snake_case = {} for state in states_space: __snake_case = observations_space[0] __snake_case = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __snake_case = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__ ) ): __snake_case = observations_space[o] __snake_case = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __snake_case = '' __snake_case = -1 for k_state in states_space: __snake_case = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __snake_case = probability __snake_case = k_state # Update probabilities and pointers dicts __snake_case = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __snake_case = arg_max # The final observation __snake_case = observations_space[len(snake_case__ ) - 1] # argmax for given final observation __snake_case = '' __snake_case = -1 for k_state in states_space: __snake_case = probabilities[(k_state, final_observation)] if probability > max_probability: __snake_case = probability __snake_case = k_state __snake_case = arg_max # Process pointers backwards __snake_case = last_state __snake_case = [] for o in range(len(snake_case__ ) - 1 , -1 , -1 ): result.append(snake_case__ ) __snake_case = pointers[previous, observations_space[o]] result.reverse() return result def A ( snake_case__ : Any , snake_case__ : Any , snake_case__ : Any , snake_case__ : Any , snake_case__ : Any , ) -> None: '''simple docstring''' _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__ ) _validate_dicts( snake_case__ , snake_case__ , snake_case__ ) def A ( snake_case__ : Any , snake_case__ : Any , snake_case__ : Any , snake_case__ : Any , snake_case__ : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def A ( snake_case__ : Any , snake_case__ : Any ) -> None: '''simple docstring''' _validate_list(snake_case__ , 'observations_space' ) _validate_list(snake_case__ , 'states_space' ) def A ( snake_case__ : Any , snake_case__ : str ) -> None: '''simple docstring''' if not isinstance(_object , snake_case__ ): __snake_case = f"{var_name} must be a list" raise ValueError(snake_case__ ) else: for x in _object: if not isinstance(snake_case__ , snake_case__ ): __snake_case = f"{var_name} must be a list of strings" raise ValueError(snake_case__ ) def A ( snake_case__ : Any , snake_case__ : Any , snake_case__ : Any , ) -> None: '''simple docstring''' _validate_dict(snake_case__ , 'initial_probabilities' , snake_case__ ) _validate_nested_dict(snake_case__ , 'transition_probabilities' ) _validate_nested_dict(snake_case__ , 'emission_probabilities' ) def A ( snake_case__ : Any , snake_case__ : str ) -> None: '''simple docstring''' _validate_dict(_object , snake_case__ , snake_case__ ) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def A ( snake_case__ : Any , snake_case__ : str , snake_case__ : type , snake_case__ : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , snake_case__ ): __snake_case = f"{var_name} must be a dict" raise ValueError(snake_case__ ) if not all(isinstance(snake_case__ , snake_case__ ) for x in _object ): __snake_case = f"{var_name} all keys must be strings" raise ValueError(snake_case__ ) if not all(isinstance(snake_case__ , snake_case__ ) for x in _object.values() ): __snake_case = 'nested dictionary ' if nested else '' __snake_case = f"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(snake_case__ ) if __name__ == "__main__": from doctest import testmod testmod()
313
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase__ : List[Any] = 4 UpperCAmelCase__ : Optional[Any] = 3 class __lowercase ( lowerCamelCase__ ): pass def A ( snake_case__ : List[str] ) -> str: '''simple docstring''' for shard in shards: for i in range(snake_case__ ): yield {"i": i, "shard": shard} def A ( ) -> List[str]: '''simple docstring''' __snake_case = int(os.environ['RANK'] ) __snake_case = int(os.environ['WORLD_SIZE'] ) __snake_case = ArgumentParser() parser.add_argument('--streaming' , type=snake_case__ ) parser.add_argument('--local_rank' , type=snake_case__ ) parser.add_argument('--num_workers' , type=snake_case__ , default=0 ) __snake_case = parser.parse_args() __snake_case = args.streaming __snake_case = args.num_workers __snake_case = {'shards': [f"shard_{shard_idx}" for shard_idx in range(snake_case__ )]} __snake_case = IterableDataset.from_generator(snake_case__ , gen_kwargs=snake_case__ ) if not streaming: __snake_case = Dataset.from_list(list(snake_case__ ) ) __snake_case = split_dataset_by_node(snake_case__ , rank=snake_case__ , world_size=snake_case__ ) __snake_case = torch.utils.data.DataLoader(snake_case__ , num_workers=snake_case__ ) __snake_case = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
313
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowercase_ ( a__ ): __UpperCAmelCase = DistilBertTokenizer __UpperCAmelCase = DistilBertTokenizerFast __UpperCAmelCase = True @slow def __a ( self ): UpperCamelCase__ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) UpperCamelCase__ = tokenizer.encode("sequence builders" , add_special_tokens=a ) UpperCamelCase__ = tokenizer.encode("multi-sequence build" , add_special_tokens=a ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
706
'''simple docstring''' def _UpperCamelCase ( __A ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(__A , __A ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _UpperCamelCase ( __A ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(__A , __A ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
223
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __A ( a ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase )-> List[Any]: lowercase__ = params lowercase__ = np.array(_lowerCamelCase ) lowercase__ = np.array([len(_lowerCamelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , _lowerCamelCase )-> List[str]: return (self.token_ids[index], self.lengths[index]) def __len__( self )-> Optional[Any]: return len(self.lengths ) def snake_case_( self )-> str: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def snake_case_( self )-> Union[str, Any]: lowercase__ = self.params.max_model_input_size lowercase__ = self.lengths > max_len logger.info(f'''Splitting {sum(_lowerCamelCase )} too long sequences.''' ) def divide_chunks(_lowerCamelCase , _lowerCamelCase ): return [l[i : i + n] for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase )] lowercase__ = [] lowercase__ = [] if self.params.mlm: lowercase__ , lowercase__ = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: lowercase__ , lowercase__ = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase__ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: lowercase__ = np.insert(_lowerCamelCase , 0 , _lowerCamelCase ) if sub_s[-1] != sep_id: lowercase__ = np.insert(_lowerCamelCase , len(_lowerCamelCase ) , _lowerCamelCase ) assert len(_lowerCamelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_lowerCamelCase ) new_tok_ids.extend(_lowerCamelCase ) new_lengths.extend([len(_lowerCamelCase ) for l in sub_seqs] ) lowercase__ = np.array(_lowerCamelCase ) lowercase__ = np.array(_lowerCamelCase ) def snake_case_( self )-> Tuple: lowercase__ = len(self ) lowercase__ = self.lengths > 1_1 lowercase__ = self.token_ids[indices] lowercase__ = self.lengths[indices] lowercase__ = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def snake_case_( self )-> str: if "unk_token" not in self.params.special_tok_ids: return else: lowercase__ = self.params.special_tok_ids['''unk_token'''] lowercase__ = len(self ) lowercase__ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase__ = (unk_occs / self.lengths) < 0.5 lowercase__ = self.token_ids[indices] lowercase__ = self.lengths[indices] lowercase__ = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def snake_case_( self )-> Dict: if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def snake_case_( self , _lowerCamelCase )-> Dict: lowercase__ = [t[0] for t in batch] lowercase__ = [t[1] for t in batch] assert len(_lowerCamelCase ) == len(_lowerCamelCase ) # Max for paddings lowercase__ = max(_lowerCamelCase ) # Pad token ids if self.params.mlm: lowercase__ = self.params.special_tok_ids['''pad_token'''] else: lowercase__ = self.params.special_tok_ids['''unk_token'''] lowercase__ = [list(t.astype(_lowerCamelCase ) ) + [pad_idx] * (max_seq_len_ - len(_lowerCamelCase )) for t in token_ids] assert len(tk_ ) == len(_lowerCamelCase ) assert all(len(_lowerCamelCase ) == max_seq_len_ for t in tk_ ) lowercase__ = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase__ = torch.tensor(_lowerCamelCase ) # (bs) return tk_t, lg_t
161
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( a_ : str = "" ): __a = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' __a = BeautifulSoup(requests.get(a_ ).text , 'html.parser' ) __a = soup.find_all('td' , attrs='titleColumn' ) __a = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(a_ , a_ ) } def SCREAMING_SNAKE_CASE ( a_ : str = "IMDb_Top_250_Movies.csv" ): __a = get_imdb_top_aaa_movies() with open(a_ , 'w' , newline='' ) as out_file: __a = csv.writer(a_ ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
539
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __a ( self ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = ["a", "b", "c"] # Defaults to last layer if both are None lowercase__ : Optional[Any] = get_aligned_output_features_output_indices(lowerCamelCase , lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , ["c"] ) self.assertEqual(lowerCamelCase , [2] ) # Out indices set to match out features lowercase__ : int = get_aligned_output_features_output_indices(["a", "c"] , lowerCamelCase , lowerCamelCase ) self.assertEqual(lowerCamelCase , ["a", "c"] ) self.assertEqual(lowerCamelCase , [0, 2] ) # Out features set to match out indices lowercase__ : int = get_aligned_output_features_output_indices(lowerCamelCase , [0, 2] , lowerCamelCase ) self.assertEqual(lowerCamelCase , ["a", "c"] ) self.assertEqual(lowerCamelCase , [0, 2] ) # Out features selected from negative indices lowercase__ : Optional[Any] = get_aligned_output_features_output_indices(lowerCamelCase , [-3, -1] , lowerCamelCase ) self.assertEqual(lowerCamelCase , ["a", "c"] ) self.assertEqual(lowerCamelCase , [-3, -1] ) def __a ( self ) -> Optional[Any]: """simple docstring""" with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["a", "b"] , (0, 1) , lowerCamelCase ) # Out features must be a list with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(lowerCamelCase , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(lowerCamelCase , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(lowerCamelCase ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def __a ( self ) -> int: """simple docstring""" lowercase__ : str = BackboneMixin() lowercase__ : Union[str, Any] = ["a", "b", "c"] lowercase__ : Dict = ["a", "c"] lowercase__ : Optional[int] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowercase__ : List[str] = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowercase__ : Union[str, Any] = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
709
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __a : str = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __a : Dict = parser.parse_args() __a : List[str] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __a : Optional[int] = CLIPImageProcessor() __a : Tuple = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __a : Any = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
298
0
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: """simple docstring""" if height >= 1: move_tower(height - 1 , lowercase_ , lowercase_ , lowercase_ ) move_disk(lowercase_ , lowercase_ ) move_tower(height - 1 , lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" print('''moving disk from''' , lowercase_ , '''to''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" A__ = int(input('''Height of hanoi: ''' ).strip() ) move_tower(lowercase_ , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
87
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''mobilenet_v1''' def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : Optional[Any]=224 , UpperCAmelCase__ : Optional[int]=1.0 , UpperCAmelCase__ : Optional[int]=8 , UpperCAmelCase__ : Tuple="relu6" , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Dict=0.999 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : Optional[int]=0.001 , **UpperCAmelCase__ : Dict , ) ->List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase__) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''') A__ = num_channels A__ = image_size A__ = depth_multiplier A__ = min_depth A__ = hidden_act A__ = tf_padding A__ = classifier_dropout_prob A__ = initializer_range A__ = layer_norm_eps class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self : Any) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([('''pixel_values''', {0: '''batch'''})]) @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})]) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})]) @property def SCREAMING_SNAKE_CASE ( self : int) ->float: '''simple docstring''' return 1e-4
87
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
144
def _a ( lowerCamelCase__ ) -> int: lowerCamelCase_ : List[Any] = [] lowerCamelCase_ : int = set({'(', '[', '{'} ) lowerCamelCase_ : Optional[Any] = set({')', ']', '}'} ) lowerCamelCase_ : Dict = {'{': '}', '[': ']', '(': ')'} for i in range(len(lowerCamelCase__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCamelCase__ ) == 0 or (len(lowerCamelCase__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCamelCase__ ) == 0 def _a ( ) -> str: lowerCamelCase_ : Dict = input('Enter sequence of brackets: ' ) if is_balanced(lowerCamelCase__ ): print(lowerCamelCase__ , 'is balanced' ) else: print(lowerCamelCase__ , 'is not balanced' ) if __name__ == "__main__": main()
144
1
"""simple docstring""" from collections.abc import Sequence def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = False ) -> float: if not arr: return 0 a_ : Dict = 0 if allow_empty_subarrays else float("-inf" ) a_ : Dict = 0.0 for num in arr: a_ : Union[str, Any] = max(0 if allow_empty_subarrays else num, curr_sum + num ) a_ : List[Any] = max(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"""{max_subarray_sum(nums) = }""")
237
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_ = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
237
1
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , __a , __a = None , __a = None , __a = None , __a = False , __a = False , __a = None , __a = None , **__a , ): super().__init__( __a , split=__a , features=__a , cache_dir=__a , keep_in_memory=__a , streaming=__a , num_proc=__a , **__a , ) __lowerCamelCase : List[Any] = field __lowerCamelCase : Dict = path_or_paths if isinstance(__a , __a ) else {self.split: path_or_paths} __lowerCamelCase : str = Json( cache_dir=__a , data_files=__a , features=__a , field=__a , **__a , ) def snake_case_ ( self ): # Build iterable dataset if self.streaming: __lowerCamelCase : str = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCamelCase : Any = None __lowerCamelCase : Any = None __lowerCamelCase : str = None __lowerCamelCase : int = None self.builder.download_and_prepare( download_config=__a , download_mode=__a , verification_mode=__a , base_path=__a , num_proc=self.num_proc , ) __lowerCamelCase : List[Any] = self.builder.as_dataset( split=self.split , verification_mode=__a , in_memory=self.keep_in_memory ) return dataset class __lowercase: '''simple docstring''' def __init__( self , __a , __a , __a = None , __a = None , **__a , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) __lowerCamelCase : Optional[int] = dataset __lowerCamelCase : Optional[int] = path_or_buf __lowerCamelCase : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowerCamelCase : str = num_proc __lowerCamelCase : Optional[Any] = 'utf-8' __lowerCamelCase : Optional[int] = to_json_kwargs def snake_case_ ( self ): __lowerCamelCase : Tuple = self.to_json_kwargs.pop('path_or_buf' , __a ) __lowerCamelCase : Any = self.to_json_kwargs.pop('orient' , 'records' ) __lowerCamelCase : List[Any] = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) __lowerCamelCase : Tuple = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) __lowerCamelCase : int = self.to_json_kwargs.pop('compression' , __a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=__a ) as buffer: __lowerCamelCase : int = self._write(file_obj=__a , orient=__a , lines=__a , index=__a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ' was passed. Please provide a local path instead.' ) __lowerCamelCase : Dict = self._write( file_obj=self.path_or_buf , orient=__a , lines=__a , index=__a , **self.to_json_kwargs ) return written def snake_case_ ( self , __a ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = args __lowerCamelCase : int = query_table( table=self.dataset.data , key=slice(__a , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowerCamelCase : List[str] = batch.to_pandas().to_json( path_or_buf=__a , orient=__a , lines=__a , index=__a , **__a ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def snake_case_ ( self , __a , __a , __a , __a , **__a , ): __lowerCamelCase : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): __lowerCamelCase : List[str] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__a ) else: __lowerCamelCase , __lowerCamelCase : Optional[int] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __a , __a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(__a ) return written
263
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ : Dict = logging.get_logger(__name__) a_ : List[Any] = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } a_ : Tuple = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } a_ : Optional[Any] = '''</w>''' a_ : Dict = '''@@ ''' def UpperCAmelCase ( A__: Optional[Any] ) -> Optional[int]: __lowerCamelCase : Any = set() __lowerCamelCase : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCamelCase : Optional[int] = char return pairs # Speech2Text2 has no max input length a_ : Union[str, Any] = {'''facebook/s2t-wav2vec2-large-en-de''': 10_24} class __lowercase( lowercase__ ): '''simple docstring''' __a : List[str] = VOCAB_FILES_NAMES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Dict = ['input_ids', 'attention_mask'] def __init__( self , __a , __a="<s>" , __a="<pad>" , __a="</s>" , __a="<unk>" , __a=False , __a=None , **__a , ): super().__init__( unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , do_lower_case=__a , **__a , ) __lowerCamelCase : List[Any] = do_lower_case with open(__a , encoding='utf-8' ) as vocab_handle: __lowerCamelCase : str = json.load(__a ) __lowerCamelCase : int = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) __lowerCamelCase : str = None __lowerCamelCase : Optional[int] = None else: with open(__a , encoding='utf-8' ) as merges_handle: __lowerCamelCase : Optional[int] = merges_handle.read().split('\n' )[:-1] __lowerCamelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] __lowerCamelCase : Any = dict(zip(__a , range(len(__a ) ) ) ) __lowerCamelCase : List[str] = {} @property def snake_case_ ( self ): return len(self.decoder ) def snake_case_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self , __a ): __lowerCamelCase : Optional[Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __lowerCamelCase : Union[str, Any] = get_pairs(__a ) if not pairs: return token while True: __lowerCamelCase : Dict = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __lowerCamelCase , __lowerCamelCase : Optional[Any] = bigram __lowerCamelCase : Tuple = [] __lowerCamelCase : Union[str, Any] = 0 while i < len(__a ): try: __lowerCamelCase : Union[str, Any] = word.index(__a , __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCamelCase : Any = j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCamelCase : List[str] = tuple(__a ) __lowerCamelCase : Any = new_word if len(__a ) == 1: break else: __lowerCamelCase : Tuple = get_pairs(__a ) __lowerCamelCase : Optional[int] = ' '.join(__a ) if word == "\n " + BPE_TOKEN_MERGES: __lowerCamelCase : str = '\n' + BPE_TOKEN_MERGES if word.endswith(__a ): __lowerCamelCase : Tuple = word.replace(__a , '' ) __lowerCamelCase : Optional[Any] = word.replace(' ' , __a ) __lowerCamelCase : Union[str, Any] = word return word def snake_case_ ( self , __a ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: __lowerCamelCase : Any = text.lower() __lowerCamelCase : Union[str, Any] = text.split() __lowerCamelCase : str = [] for token in text: if token: split_tokens.extend(list(self.bpe(__a ).split(' ' ) ) ) return split_tokens def snake_case_ ( self , __a ): return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def snake_case_ ( self , __a ): __lowerCamelCase : int = self.decoder.get(__a , self.unk_token ) return result def snake_case_ ( self , __a ): __lowerCamelCase : Any = ' '.join(__a ) # make sure @@ tokens are concatenated __lowerCamelCase : Union[str, Any] = ''.join(string.split(__a ) ) return string def snake_case_ ( self , __a , __a = None ): if not os.path.isdir(__a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCamelCase : int = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Any = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + '\n' ) __lowerCamelCase : Optional[int] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__a , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) __lowerCamelCase : Optional[int] = token_index writer.write(' '.join(__a ) + '\n' ) index += 1 return (vocab_file, merges_file)
263
1
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __UpperCamelCase : str = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): def __init__( self :Any , *__magic_name__ :Any , **__magic_name__ :Union[str, Any] ): '''simple docstring''' super().__init__(*_lowercase , **_lowercase ) self.check_model_type(_lowercase ) def lowerCamelCase__ ( self :List[str] , __magic_name__ :Tuple=None , __magic_name__ :str=None , __magic_name__ :Optional[Any]=None , **__magic_name__ :List[str] ): '''simple docstring''' a = {}, {} if padding is not None: a = padding if truncation is not None: a = truncation if top_k is not None: a = top_k return preprocess_params, {}, postprocess_params def __call__( self :Optional[int] , __magic_name__ :Union["Image.Image", str] , __magic_name__ :str = None , **__magic_name__ :Optional[Any] ): '''simple docstring''' if isinstance(_lowercase , (Image.Image, str) ) and isinstance(_lowercase , _lowercase ): a = {"image": image, "question": question} else: a = image a = super().__call__(_lowercase , **_lowercase ) return results def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Optional[Any] , __magic_name__ :List[str]=False , __magic_name__ :List[Any]=False ): '''simple docstring''' a = load_image(inputs["""image"""] ) a = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=_lowercase , truncation=_lowercase ) a = self.image_processor(images=_lowercase , return_tensors=self.framework ) model_inputs.update(_lowercase ) return model_inputs def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :Optional[int] ): '''simple docstring''' a = self.model(**_lowercase ) return model_outputs def lowerCamelCase__ ( self :Dict , __magic_name__ :Tuple , __magic_name__ :int=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: a = self.model.config.num_labels if self.framework == "pt": a = model_outputs.logits.sigmoid()[0] a = probs.topk(_lowercase ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) a = scores.tolist() a = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_lowercase , _lowercase )]
468
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging A = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[int] , lowerCamelCase_: List[Any] ): """simple docstring""" snake_case : Optional[Any] = set() snake_case : Optional[int] = [] def parse_line(lowerCamelCase_: Union[str, Any] ): for line in fp: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): snake_case : Optional[Any] = line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase_ ) > 0: snake_case : str = "\n".join(lowerCamelCase_ ) # Only keep the warnings specified in `targets` if any(f''': {x}: ''' in warning for x in targets ): selected_warnings.add(lowerCamelCase_ ) buffer.clear() continue else: snake_case : Dict = line.strip() buffer.append(lowerCamelCase_ ) if from_gh: for filename in os.listdir(lowerCamelCase_ ): snake_case : Tuple = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if not os.path.isdir(lowerCamelCase_ ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase_ ) as fp: parse_line(lowerCamelCase_ ) else: try: with zipfile.ZipFile(lowerCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase_ ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase_ ) as fp: parse_line(lowerCamelCase_ ) except Exception: logger.warning( f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Union[str, Any] , lowerCamelCase_: Any ): """simple docstring""" snake_case : Dict = set() snake_case : str = [os.path.join(lowerCamelCase_ , lowerCamelCase_ ) for p in os.listdir(lowerCamelCase_ ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase_ , lowerCamelCase_ ) ) return selected_warnings if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Dict ): """simple docstring""" return values.split("," ) A = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) A = parser.parse_args() A = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links A = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts A = extract_warnings(args.output_dir, args.targets) A = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
449
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[int] = "Speech2TextFeatureExtractor" lowerCamelCase__ : Any = "Speech2TextTokenizer" def __init__( self , a , a ) -> Union[str, Any]: super().__init__(a , a ) lowercase__ : List[str] = self.feature_extractor lowercase__ : str = False def __call__( self , *a , **a ) -> Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a , **a ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowercase__ : int = kwargs.pop('raw_speech' ) else: lowercase__ : Optional[Any] = kwargs.pop('audio' , a ) lowercase__ : Optional[int] = kwargs.pop('sampling_rate' , a ) lowercase__ : int = kwargs.pop('text' , a ) if len(a ) > 0: lowercase__ : Dict = args[0] lowercase__ : str = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowercase__ : Dict = self.feature_extractor(a , *a , sampling_rate=a , **a ) if text is not None: lowercase__ : Optional[int] = self.tokenizer(a , **a ) if text is None: return inputs elif audio is None: return encodings else: lowercase__ : Tuple = encodings['input_ids'] return inputs def _UpperCAmelCase ( self , *a , **a ) -> str: return self.tokenizer.batch_decode(*a , **a ) def _UpperCAmelCase ( self , *a , **a ) -> List[str]: return self.tokenizer.decode(*a , **a ) @contextmanager def _UpperCAmelCase ( self ) -> int: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowercase__ : Optional[int] = True lowercase__ : str = self.tokenizer yield lowercase__ : Union[str, Any] = self.feature_extractor lowercase__ : List[Any] = False
645
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
1
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = ['image_processor', 'tokenizer'] UpperCamelCase__ = 'BlipImageProcessor' UpperCamelCase__ = 'AutoTokenizer' def __init__( self , snake_case_ , snake_case_ , snake_case_ ): super().__init__(snake_case_ , snake_case_ ) # add QFormer tokenizer lowercase =qformer_tokenizer def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ): if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) lowercase =BatchFeature() if text is not None: lowercase =self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) encoding.update(snake_case_ ) lowercase =self.qformer_tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) lowercase =qformer_text_encoding.pop('''input_ids''' ) lowercase =qformer_text_encoding.pop('''attention_mask''' ) if images is not None: lowercase =self.image_processor(snake_case_ , return_tensors=snake_case_ ) encoding.update(snake_case_ ) return encoding def _A( self , *snake_case_ , **snake_case_ ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def _A( self , *snake_case_ , **snake_case_ ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _A( self ): lowercase =self.tokenizer.model_input_names lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _A( self , snake_case_ , **snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) lowercase =os.path.join(snake_case_ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(snake_case_ ) return super().save_pretrained(snake_case_ , **snake_case_ ) @classmethod def _A( cls , snake_case_ , **snake_case_ ): lowercase =AutoTokenizer.from_pretrained(snake_case_ , subfolder='''qformer_tokenizer''' ) lowercase =cls._get_arguments_from_pretrained(snake_case_ , **snake_case_ ) args.append(snake_case_ ) return cls(*snake_case_ )
72
from math import sqrt def snake_case_ ( _SCREAMING_SNAKE_CASE ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0_0_1 ): __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(_SCREAMING_SNAKE_CASE ): count += 1 while count != nth: number += 2 if is_prime(_SCREAMING_SNAKE_CASE ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
402
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class A__ : lowerCAmelCase__ : CommonSchedulerState # setable values lowerCAmelCase__ : jnp.ndarray lowerCAmelCase__ : jnp.ndarray lowerCAmelCase__ : Optional[int] = None @classmethod def a__ ( cls : List[str] , _UpperCAmelCase : CommonSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ) -> Optional[int]: """simple docstring""" return cls(common=_UpperCAmelCase , init_noise_sigma=_UpperCAmelCase , timesteps=_UpperCAmelCase ) @dataclass class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : DDPMSchedulerState class A__ ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = [e.name for e in FlaxKarrasDiffusionSchedulers] lowerCAmelCase__ : jnp.dtype @property def a__ ( self : List[str] ) -> str: """simple docstring""" return True @register_to_config def __init__( self : Dict , _UpperCAmelCase : int = 10_00 , _UpperCAmelCase : float = 0.0_001 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : str = "linear" , _UpperCAmelCase : Optional[jnp.ndarray] = None , _UpperCAmelCase : str = "fixed_small" , _UpperCAmelCase : bool = True , _UpperCAmelCase : str = "epsilon" , _UpperCAmelCase : jnp.dtype = jnp.floataa , ) -> Tuple: """simple docstring""" __lowercase = dtype def a__ ( self : Tuple , _UpperCAmelCase : Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: __lowercase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __lowercase = jnp.array(1.0 , dtype=self.dtype ) __lowercase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_UpperCAmelCase , init_noise_sigma=_UpperCAmelCase , timesteps=_UpperCAmelCase , ) def a__ ( self : List[str] , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : Optional[int] = None ) -> jnp.ndarray: """simple docstring""" return sample def a__ ( self : Optional[Any] , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : int , _UpperCAmelCase : Tuple = () ) -> DDPMSchedulerState: """simple docstring""" __lowercase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __lowercase = (jnp.arange(0 , _UpperCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase , ) def a__ ( self : Tuple , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Dict=None ) -> Any: """simple docstring""" __lowercase = state.common.alphas_cumprod[t] __lowercase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowercase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __lowercase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __lowercase = jnp.clip(_UpperCAmelCase , a_min=1e-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __lowercase = jnp.log(jnp.clip(_UpperCAmelCase , a_min=1e-2_0 ) ) elif variance_type == "fixed_large": __lowercase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __lowercase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __lowercase = variance __lowercase = state.common.betas[t] __lowercase = (predicted_variance + 1) / 2 __lowercase = frac * max_log + (1 - frac) * min_log return variance def a__ ( self : Tuple , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : Optional[jax.random.KeyArray] = None , _UpperCAmelCase : bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" __lowercase = timestep if key is None: __lowercase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __lowercase , __lowercase = jnp.split(_UpperCAmelCase , sample.shape[1] , axis=1 ) else: __lowercase = None # 1. compute alphas, betas __lowercase = state.common.alphas_cumprod[t] __lowercase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __lowercase = 1 - alpha_prod_t __lowercase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowercase = model_output elif self.config.prediction_type == "v_prediction": __lowercase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowercase = jnp.clip(_UpperCAmelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __lowercase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __lowercase = jax.random.split(_UpperCAmelCase , num=1 ) __lowercase = jax.random.normal(_UpperCAmelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_UpperCAmelCase , _UpperCAmelCase , predicted_variance=_UpperCAmelCase ) ** 0.5) * noise __lowercase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __lowercase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_UpperCAmelCase , state=_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __len__( self : int ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
706
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
0
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=24 , UpperCamelCase_=2 , UpperCamelCase_=6 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=None , UpperCamelCase_=10_00 , ) -> Any: __lowercase : Optional[Any] = parent __lowercase : List[str] = batch_size __lowercase : Any = seq_length __lowercase : List[Any] = is_training __lowercase : Optional[Any] = use_input_mask __lowercase : Dict = use_token_type_ids __lowercase : int = use_labels __lowercase : Any = vocab_size __lowercase : str = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : Tuple = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : List[str] = hidden_act __lowercase : Tuple = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : str = max_position_embeddings __lowercase : str = type_vocab_size __lowercase : Tuple = type_sequence_label_size __lowercase : Tuple = initializer_range __lowercase : Dict = num_labels __lowercase : List[Any] = scope __lowercase : Optional[Any] = range_bbox def _lowerCamelCase ( self ) -> int: __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowercase : int = bbox[i, j, 3] __lowercase : str = bbox[i, j, 1] __lowercase : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: __lowercase : Tuple = bbox[i, j, 2] __lowercase : Optional[int] = bbox[i, j, 0] __lowercase : List[Any] = t __lowercase : Union[str, Any] = None if self.use_input_mask: __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowercase : Tuple = None if self.use_token_type_ids: __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Any = None __lowercase : Optional[int] = None if self.use_labels: __lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Any = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _lowerCamelCase ( self ) -> List[Any]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Union[str, Any]: __lowercase : int = LiltModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Any = model(UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) __lowercase : int = model(UpperCamelCase_ , bbox=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) __lowercase : List[Any] = model(UpperCamelCase_ , bbox=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Dict: __lowercase : Any = self.num_labels __lowercase : Dict = LiltForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : List[Any] = model( UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> List[Any]: __lowercase : Optional[Any] = LiltForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : List[str] = model( UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : List[str] = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : str = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( snake_case , snake_case , snake_case , unittest.TestCase ): UpperCamelCase =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase =( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase =False UpperCamelCase =False def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: return True def _lowerCamelCase ( self ) -> Any: __lowercase : Union[str, Any] = LiltModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def _lowerCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : str = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ ) @slow def _lowerCamelCase ( self ) -> List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Dict = LiltModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : List[Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(UpperCamelCase_ ) __lowercase : Union[str, Any] = torch.tensor([[1, 2]] , device=UpperCamelCase_ ) __lowercase : Optional[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCamelCase_ ) # forward pass with torch.no_grad(): __lowercase : Tuple = model(input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ ) __lowercase : Dict = torch.Size([1, 2, 7_68] ) __lowercase : str = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=UpperCamelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCamelCase_ , atol=1E-3 ) )
76
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().tearDown() gc.collect() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase : int = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" ,from_pt=snake_case ,dtype=jnp.bfloataa ) lowercase , lowercase : str = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,controlnet=snake_case ,from_pt=snake_case ,dtype=jnp.bfloataa ) lowercase : Any = controlnet_params lowercase : List[str] = """bird""" lowercase : Tuple = jax.device_count() lowercase : Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) lowercase : Tuple = pipe.prepare_image_inputs([canny_image] * num_samples ) lowercase : str = jax.random.PRNGKey(0 ) lowercase : Any = jax.random.split(snake_case ,jax.device_count() ) lowercase : Optional[int] = replicate(snake_case ) lowercase : Optional[int] = shard(snake_case ) lowercase : List[str] = shard(snake_case ) lowercase : str = pipe( prompt_ids=snake_case ,image=snake_case ,params=snake_case ,prng_seed=snake_case ,num_inference_steps=50 ,jit=snake_case ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase : Optional[int] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase : List[str] = images[0, 253:256, 253:256, -1] lowercase : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase : Optional[Any] = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase , lowercase : Any = FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" ,from_pt=snake_case ,dtype=jnp.bfloataa ) lowercase , lowercase : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,controlnet=snake_case ,from_pt=snake_case ,dtype=jnp.bfloataa ) lowercase : Any = controlnet_params lowercase : Union[str, Any] = """Chef in the kitchen""" lowercase : int = jax.device_count() lowercase : str = pipe.prepare_text_inputs([prompts] * num_samples ) lowercase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) lowercase : Optional[Any] = pipe.prepare_image_inputs([pose_image] * num_samples ) lowercase : Optional[int] = jax.random.PRNGKey(0 ) lowercase : Dict = jax.random.split(snake_case ,jax.device_count() ) lowercase : int = replicate(snake_case ) lowercase : str = shard(snake_case ) lowercase : Dict = shard(snake_case ) lowercase : Optional[Any] = pipe( prompt_ids=snake_case ,image=snake_case ,params=snake_case ,prng_seed=snake_case ,num_inference_steps=50 ,jit=snake_case ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase : Optional[Any] = images[0, 253:256, 253:256, -1] lowercase : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase : Tuple = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
336
0
import os import numpy import onnx def _snake_case (_snake_case : Optional[Any] , _snake_case : Optional[int]) -> Tuple: _lowercase =a.name _lowercase =b.name _lowercase ='' _lowercase ='' _lowercase =a == b _lowercase =name_a _lowercase =name_b return res def _snake_case (_snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Any) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input): if input_name == name: node_proto.input.insert(_snake_case , _snake_case) node_proto.input.pop(i + 1) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _snake_case , _snake_case) _graph_replace_input_with(node_proto.attribute[1].g , _snake_case , _snake_case) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _snake_case , _snake_case) def _snake_case (_snake_case : Optional[Any] , _snake_case : str , _snake_case : Union[str, Any]) -> Dict: for n in graph_proto.node: _node_replace_input_with(_snake_case , _snake_case , _snake_case) def _snake_case (_snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : List[Any]) -> Optional[Any]: _lowercase =list(model.graph.initializer) _lowercase =list(model_without_ext.graph.initializer) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _lowercase =inits[i].name _lowercase =inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i]) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _snake_case , _snake_case) def _snake_case (_snake_case : int) -> Any: _lowercase =os.path.dirname(_snake_case) _lowercase =os.path.basename(_snake_case) _lowercase =onnx.load(os.path.join(_snake_case , _snake_case)) _lowercase =list(model.graph.initializer) _lowercase =set() _lowercase ={} _lowercase =[] _lowercase =0 for i in range(len(_snake_case)): if i in dup_set: continue for j in range(i + 1 , len(_snake_case)): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j]): dup_set.add(_snake_case) dup_set.add(_snake_case) _lowercase =inits[j].data_type _lowercase =numpy.prod(inits[j].dims) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , _snake_case) total_reduced_size += mem_size _lowercase =inits[i].name _lowercase =inits[j].name if name_i in dup_map: dup_map[name_i].append(_snake_case) else: _lowercase =[name_j] ind_to_replace.append((j, i)) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB') _lowercase =sorted(_snake_case) _remove_dup_initializers_from_model(_snake_case , _snake_case , _snake_case) _lowercase ='optimized_' + model_file_name _lowercase =os.path.join(_snake_case , _snake_case) onnx.save(_snake_case , _snake_case) return new_model
557
import os def _snake_case (_snake_case : Optional[Any]) -> int: _lowercase =len(grid[0]) _lowercase =len(_snake_case) _lowercase =0 _lowercase =0 _lowercase =0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_snake_case): for j in range(n_rows - 3): _lowercase =grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _lowercase =grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _lowercase =( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _lowercase =( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _lowercase =max( _snake_case , _snake_case , _snake_case , _snake_case) if max_product > largest: _lowercase =max_product return largest def _snake_case () -> str: _lowercase =[] with open(os.path.dirname(_snake_case) + '/grid.txt') as file: for line in file: grid.append(line.strip('\n').split(' ')) _lowercase =[[int(_snake_case) for i in grid[j]] for j in range(len(_snake_case))] return largest_product(_snake_case) if __name__ == "__main__": print(solution())
557
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[str] = """vision-encoder-decoder""" _snake_case : Optional[Any] = True def __init__( self :List[Any] , **lowerCamelCase__ :List[str] ): super().__init__(**lowerCamelCase__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase__ :List[Any] = kwargs.pop("""encoder""" ) UpperCamelCase__ :Any = encoder_config.pop("""model_type""" ) UpperCamelCase__ :Optional[int] = kwargs.pop("""decoder""" ) UpperCamelCase__ :Optional[Any] = decoder_config.pop("""model_type""" ) UpperCamelCase__ :Optional[Any] = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ :Dict = True @classmethod def __a ( cls :Union[str, Any] , lowerCamelCase__ :PretrainedConfig , lowerCamelCase__ :PretrainedConfig , **lowerCamelCase__ :List[Any] ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) UpperCamelCase__ :Dict = True UpperCamelCase__ :Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Any = copy.deepcopy(self.__dict__ ) UpperCamelCase__ :str = self.encoder.to_dict() UpperCamelCase__ :Any = self.decoder.to_dict() UpperCamelCase__ :List[Any] = self.__class__.model_type return output class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[Any] = version.parse("""1.11""" ) @property def __a ( self :int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __a ( self :Union[str, Any] ): return 1e-4 @property def __a ( self :List[Any] ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class lowerCAmelCase_ ( lowercase ): """simple docstring""" @property def __a ( self :Optional[Any] ): UpperCamelCase__ :str = OrderedDict() UpperCamelCase__ :Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} UpperCamelCase__ :List[str] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} UpperCamelCase__ :str = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def __a ( self :int , lowerCamelCase__ :"PreTrainedTokenizerBase" , lowerCamelCase__ :int = -1 , lowerCamelCase__ :int = -1 , lowerCamelCase__ :bool = False , lowerCamelCase__ :Optional["TensorType"] = None , ): import torch UpperCamelCase__ :Dict = OrderedDict() UpperCamelCase__ :Tuple = super().generate_dummy_inputs( lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ :str = dummy_input["""input_ids"""].shape UpperCamelCase__ :str = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase__ :Optional[Any] = dummy_input.pop("""input_ids""" ) UpperCamelCase__ :List[Any] = dummy_input.pop("""attention_mask""" ) UpperCamelCase__ :str = torch.zeros(lowerCamelCase__ ) return common_inputs class lowerCAmelCase_ ( lowercase ): """simple docstring""" @property def __a ( self :List[str] ): pass def __a ( self :List[str] , lowerCamelCase__ :PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(lowerCamelCase__ ) def __a ( self :Dict , lowerCamelCase__ :PretrainedConfig , lowerCamelCase__ :PretrainedConfig , lowerCamelCase__ :str = "default" ): UpperCamelCase__ :Tuple = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCamelCase__ , lowerCamelCase__ )
45
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCAmelCase : Tuple = r""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `\" / \"`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `\" // \"`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `\"train\"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `\"compressed\"`) The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and `\"compressed\"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a \"dummy\" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "rag" __magic_name__ = True def __init__( self , snake_case__=None , snake_case__=True , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=" / " , snake_case__=" // " , snake_case__=5 , snake_case__=300 , snake_case__=768 , snake_case__=8 , snake_case__="wiki_dpr" , snake_case__="train" , snake_case__="compressed" , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=0.0 , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=True , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__( bos_token_id=snake_case__ , pad_token_id=snake_case__ , eos_token_id=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , prefix=snake_case__ , vocab_size=snake_case__ , **snake_case__ , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _lowerCAmelCase : Optional[Any] = kwargs.pop('question_encoder' ) _lowerCAmelCase : List[Any] = question_encoder_config.pop('model_type' ) _lowerCAmelCase : List[str] = kwargs.pop('generator' ) _lowerCAmelCase : Tuple = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _lowerCAmelCase : Union[str, Any] = AutoConfig.for_model(snake_case__ , **snake_case__ ) _lowerCAmelCase : List[str] = AutoConfig.for_model(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[int] = reduce_loss _lowerCAmelCase : Optional[Any] = label_smoothing _lowerCAmelCase : Dict = exclude_bos_score _lowerCAmelCase : Optional[int] = do_marginalize _lowerCAmelCase : List[str] = title_sep _lowerCAmelCase : Optional[Any] = doc_sep _lowerCAmelCase : str = n_docs _lowerCAmelCase : Optional[int] = max_combined_length _lowerCAmelCase : Dict = dataset _lowerCAmelCase : Optional[int] = dataset_split _lowerCAmelCase : str = index_name _lowerCAmelCase : Tuple = retrieval_vector_size _lowerCAmelCase : Any = retrieval_batch_size _lowerCAmelCase : Any = passages_path _lowerCAmelCase : Tuple = index_path _lowerCAmelCase : Any = use_dummy_dataset _lowerCAmelCase : Union[str, Any] = output_retrieved _lowerCAmelCase : List[str] = do_deduplication _lowerCAmelCase : Optional[int] = use_cache if self.forced_eos_token_id is None: _lowerCAmelCase : Tuple = getattr(self.generator , 'forced_eos_token_id' , snake_case__ ) @classmethod def a ( cls , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : List[str] = self.question_encoder.to_dict() _lowerCAmelCase : Optional[Any] = self.generator.to_dict() _lowerCAmelCase : Optional[int] = self.__class__.model_type return output
444
0
"""simple docstring""" import os def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ = "input.txt" ): with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) ) as input_file: SCREAMING_SNAKE_CASE = [ [int(SCREAMING_SNAKE_CASE_ ) for element in line.split(',' )] for line in input_file.readlines() ] SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = len(matrix[0] ) SCREAMING_SNAKE_CASE = [[-1 for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )] for i in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1, SCREAMING_SNAKE_CASE_ ): for i in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1, SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j], minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2, -1, -1 ): SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j], minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
704
"""simple docstring""" import os import sys import unittest snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) snake_case = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') snake_case = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = get_test_to_tester_mapping(lowercase__ ) SCREAMING_SNAKE_CASE = get_test_to_tester_mapping(lowercase__ ) SCREAMING_SNAKE_CASE = {'BertModelTest': 'BertModelTester'} SCREAMING_SNAKE_CASE = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(lowercase__ ) , lowercase__ ) self.assertEqual(get_test_info.to_json(lowercase__ ) , lowercase__ ) def A ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = get_model_to_test_mapping(lowercase__ ) SCREAMING_SNAKE_CASE = get_model_to_test_mapping(lowercase__ ) SCREAMING_SNAKE_CASE = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } SCREAMING_SNAKE_CASE = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(lowercase__ ) , lowercase__ ) self.assertEqual(get_test_info.to_json(lowercase__ ) , lowercase__ ) def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = get_model_to_tester_mapping(lowercase__ ) SCREAMING_SNAKE_CASE = get_model_to_tester_mapping(lowercase__ ) SCREAMING_SNAKE_CASE = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } SCREAMING_SNAKE_CASE = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(lowercase__ ) , lowercase__ ) self.assertEqual(get_test_info.to_json(lowercase__ ) , lowercase__ )
406
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE :List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys SCREAMING_SNAKE_CASE :Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
628
from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase_ : """simple docstring""" def __init__( self ) -> List[str]: __UpperCamelCase = {} def __lowercase( self , _SCREAMING_SNAKE_CASE ) -> None: __UpperCamelCase = {} def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: if nodea not in self.connections: self.add_node(_SCREAMING_SNAKE_CASE ) if nodea not in self.connections: self.add_node(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = probability def __lowercase( self ) -> list[str]: return list(self.connections ) def __lowercase( self , _SCREAMING_SNAKE_CASE ) -> str: __UpperCamelCase = 0 __UpperCamelCase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _a ( __lowercase , __lowercase , __lowercase ) -> dict[str, int]: """simple docstring""" __UpperCamelCase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__lowercase , __lowercase , __lowercase ) __UpperCamelCase = Counter(graph.get_nodes() ) __UpperCamelCase = start for _ in range(__lowercase ): __UpperCamelCase = graph.transition(__lowercase ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
383
0
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class snake_case_ ( a_ ): __lowerCAmelCase = "detr" __lowerCAmelCase = ["past_key_values"] __lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , a_=True , a_=None , a_=3 , a_=1_0_0 , a_=6 , a_=2_0_4_8 , a_=8 , a_=6 , a_=2_0_4_8 , a_=8 , a_=0.0 , a_=0.0 , a_=True , a_="relu" , a_=2_5_6 , a_=0.1 , a_=0.0 , a_=0.0 , a_=0.02 , a_=1.0 , a_=False , a_="sine" , a_="resnet50" , a_=True , a_=False , a_=1 , a_=5 , a_=2 , a_=1 , a_=1 , a_=5 , a_=2 , a_=0.1 , **a_ , ): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) a_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(a_ , a_ ): a_ : Any = backbone_config.get("model_type" ) a_ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] a_ : List[str] = config_class.from_dict(a_ ) # set timm attributes to None a_ , a_ , a_ : Optional[Any] = None, None, None a_ : Dict = use_timm_backbone a_ : str = backbone_config a_ : List[str] = num_channels a_ : Optional[Any] = num_queries a_ : Optional[int] = d_model a_ : Optional[int] = encoder_ffn_dim a_ : List[str] = encoder_layers a_ : Optional[int] = encoder_attention_heads a_ : Optional[int] = decoder_ffn_dim a_ : Tuple = decoder_layers a_ : Dict = decoder_attention_heads a_ : str = dropout a_ : Any = attention_dropout a_ : str = activation_dropout a_ : List[Any] = activation_function a_ : Union[str, Any] = init_std a_ : List[str] = init_xavier_std a_ : Dict = encoder_layerdrop a_ : str = decoder_layerdrop a_ : Optional[int] = encoder_layers a_ : Any = auxiliary_loss a_ : Union[str, Any] = position_embedding_type a_ : List[str] = backbone a_ : List[Any] = use_pretrained_backbone a_ : List[str] = dilation # Hungarian matcher a_ : List[Any] = class_cost a_ : List[str] = bbox_cost a_ : List[Any] = giou_cost # Loss coefficients a_ : Tuple = mask_loss_coefficient a_ : Optional[Any] = dice_loss_coefficient a_ : Tuple = bbox_loss_coefficient a_ : Optional[Any] = giou_loss_coefficient a_ : Union[str, Any] = eos_coefficient super().__init__(is_encoder_decoder=a_ , **a_ ) @property def snake_case_ ( self ): return self.encoder_attention_heads @property def snake_case_ ( self ): return self.d_model @classmethod def snake_case_ ( cls , a_ , **a_ ): return cls(backbone_config=a_ , **a_ ) def snake_case_ ( self ): a_ : List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: a_ : Union[str, Any] = self.backbone_config.to_dict() a_ : Union[str, Any] = self.__class__.model_type return output class snake_case_ ( a_ ): __lowerCAmelCase = version.parse("1.11" ) @property def snake_case_ ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def snake_case_ ( self ): return 1e-5 @property def snake_case_ ( self ): return 1_2
370
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Tuple: a_ : List[Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] ) a_ : List[str] = MaskFormerConfig(backbone_config=SCREAMING_SNAKE_CASE__ ) a_ : Dict = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok a_ : List[str] = 847 a_ : Optional[Any] = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok a_ : List[str] = 150 a_ : Tuple = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok a_ : Union[str, Any] = 171 a_ : Union[str, Any] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO a_ : Optional[Any] = 133 a_ : List[str] = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok a_ : Union[str, Any] = 19 a_ : Any = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok a_ : int = 65 a_ : Any = "mapillary-vistas-id2label.json" a_ : List[str] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, repo_type="dataset" ), "r" ) ) a_ : Optional[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} return config def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> List[Any]: a_ : str = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> int: a_ : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = val def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> List[Any]: a_ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) a_ : str = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a_ : Tuple = in_proj_weight[:dim, :] a_ : Union[str, Any] = in_proj_bias[: dim] a_ : Dict = in_proj_weight[ dim : dim * 2, : ] a_ : Tuple = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : str = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Dict: # fmt: off a_ : List[str] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) a_ : Optional[int] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) a_ : int = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a_ : int = in_proj_weight[: hidden_size, :] a_ : Tuple = in_proj_bias[:config.hidden_size] a_ : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] a_ : Dict = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size :, :] a_ : List[str] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) a_ : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) a_ : str = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[: hidden_size, :] a_ : Optional[Any] = in_proj_bias[:config.hidden_size] a_ : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] a_ : str = in_proj_bias[hidden_size : hidden_size * 2] a_ : List[Any] = in_proj_weight[-hidden_size :, :] a_ : Dict = in_proj_bias[-hidden_size :] # fmt: on def lowerCAmelCase_ ( ) -> torch.Tensor: a_ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = False ) -> Optional[int]: a_ : List[Any] = get_maskformer_config(SCREAMING_SNAKE_CASE__ ) # load original state_dict with open(SCREAMING_SNAKE_CASE__, "rb" ) as f: a_ : int = pickle.load(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys a_ : List[Any] = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) read_in_swin_q_k_v(SCREAMING_SNAKE_CASE__, config.backbone_config ) read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # update to torch tensors for key, value in state_dict.items(): a_ : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # load 🤗 model a_ : Tuple = MaskFormerForInstanceSegmentation(SCREAMING_SNAKE_CASE__ ) model.eval() for name, param in model.named_parameters(): print(SCREAMING_SNAKE_CASE__, param.shape ) a_ , a_ : int = model.load_state_dict(SCREAMING_SNAKE_CASE__, strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(SCREAMING_SNAKE_CASE__ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results a_ : List[Any] = prepare_img() if "vistas" in model_name: a_ : int = 65 elif "cityscapes" in model_name: a_ : str = 65_535 else: a_ : int = 255 a_ : List[str] = True if "ade" in model_name else False a_ : Any = MaskFormerImageProcessor(ignore_index=SCREAMING_SNAKE_CASE__, reduce_labels=SCREAMING_SNAKE_CASE__ ) a_ : int = image_processor(SCREAMING_SNAKE_CASE__, return_tensors="pt" ) a_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) print("Logits:", outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": a_ : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], SCREAMING_SNAKE_CASE__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
370
1
"""simple docstring""" import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = "conditional_detr" snake_case = ["past_key_values"] snake_case = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Tuple=3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=300 , SCREAMING_SNAKE_CASE_ : Dict=6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2048 , SCREAMING_SNAKE_CASE_ : List[str]=8 , SCREAMING_SNAKE_CASE_ : Dict=6 , SCREAMING_SNAKE_CASE_ : Dict=2048 , SCREAMING_SNAKE_CASE_ : List[Any]=8 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Any="relu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=256 , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : str=0.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE_ : Dict=0.0_2 , SCREAMING_SNAKE_CASE_ : int=1.0 , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : List[Any]="sine" , SCREAMING_SNAKE_CASE_ : List[str]="resnet50" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : str=5 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : Optional[int]=2 , SCREAMING_SNAKE_CASE_ : Dict=5 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : Dict=0.2_5 , **SCREAMING_SNAKE_CASE_ : Any , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCamelCase__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A_ , A_ ): lowerCamelCase__ = backbone_config.get("""model_type""" ) lowerCamelCase__ = CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ = config_class.from_dict(A_ ) lowerCamelCase__ = use_timm_backbone lowerCamelCase__ = backbone_config lowerCamelCase__ = num_channels lowerCamelCase__ = num_queries lowerCamelCase__ = d_model lowerCamelCase__ = encoder_ffn_dim lowerCamelCase__ = encoder_layers lowerCamelCase__ = encoder_attention_heads lowerCamelCase__ = decoder_ffn_dim lowerCamelCase__ = decoder_layers lowerCamelCase__ = decoder_attention_heads lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = activation_dropout lowerCamelCase__ = activation_function lowerCamelCase__ = init_std lowerCamelCase__ = init_xavier_std lowerCamelCase__ = encoder_layerdrop lowerCamelCase__ = decoder_layerdrop lowerCamelCase__ = encoder_layers lowerCamelCase__ = auxiliary_loss lowerCamelCase__ = position_embedding_type lowerCamelCase__ = backbone lowerCamelCase__ = use_pretrained_backbone lowerCamelCase__ = dilation # Hungarian matcher lowerCamelCase__ = class_cost lowerCamelCase__ = bbox_cost lowerCamelCase__ = giou_cost # Loss coefficients lowerCamelCase__ = mask_loss_coefficient lowerCamelCase__ = dice_loss_coefficient lowerCamelCase__ = cls_loss_coefficient lowerCamelCase__ = bbox_loss_coefficient lowerCamelCase__ = giou_loss_coefficient lowerCamelCase__ = focal_alpha super().__init__(is_encoder_decoder=A_ , **A_ ) @property def __UpperCAmelCase ( self : Optional[Any] ): return self.encoder_attention_heads @property def __UpperCAmelCase ( self : Any ): return self.d_model def __UpperCAmelCase ( self : Tuple ): lowerCamelCase__ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCamelCase__ = self.backbone_config.to_dict() lowerCamelCase__ = self.__class__.model_type return output class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = version.parse("1.11" ) @property def __UpperCAmelCase ( self : Union[str, Any] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __UpperCAmelCase ( self : Union[str, Any] ): return 1e-5 @property def __UpperCAmelCase ( self : Optional[Any] ): return 12
129
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __snake_case (unittest.TestCase ): def __init__( self: Any , A_: Optional[int] , A_: Any=7 , A_: Union[str, Any]=3 , A_: List[Any]=30 , A_: int=4_00 , A_: Any=True , A_: str=None , A_: Dict=True , A_: Optional[Any]=[0.5, 0.5, 0.5] , A_: List[Any]=[0.5, 0.5, 0.5] , A_: Any=True , A_: Optional[Any]=1 / 2_55 , A_: int=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __lowerCamelCase = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = do_normalize __lowerCamelCase = image_mean __lowerCamelCase = image_std __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad def __a ( self: Tuple ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __a ( self: int , A_: List[str] , A_: List[Any]=False ): if not batched: __lowerCamelCase = image_inputs[0] if isinstance(A_ , Image.Image ): __lowerCamelCase ,__lowerCamelCase = image.size else: __lowerCamelCase ,__lowerCamelCase = image.shape[1], image.shape[2] if w < h: __lowerCamelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCamelCase = self.size["""shortest_edge"""] elif w > h: __lowerCamelCase = self.size["""shortest_edge"""] __lowerCamelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCamelCase = self.size["""shortest_edge"""] __lowerCamelCase = self.size["""shortest_edge"""] else: __lowerCamelCase = [] for image in image_inputs: __lowerCamelCase ,__lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCamelCase = max(A_ , key=lambda A_ : item[0] )[0] __lowerCamelCase = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __snake_case (lowerCamelCase , unittest.TestCase ): __a = DetaImageProcessor if is_vision_available() else None def __a ( self: Tuple ): __lowerCamelCase = DetaImageProcessingTester(self ) @property def __a ( self: Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self: Tuple ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , """image_mean""" ) ) self.assertTrue(hasattr(A_ , """image_std""" ) ) self.assertTrue(hasattr(A_ , """do_normalize""" ) ) self.assertTrue(hasattr(A_ , """do_resize""" ) ) self.assertTrue(hasattr(A_ , """do_rescale""" ) ) self.assertTrue(hasattr(A_ , """do_pad""" ) ) self.assertTrue(hasattr(A_ , """size""" ) ) def __a ( self: List[Any] ): __lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , A_ ) def __a ( self: Any ): pass def __a ( self: Optional[Any] ): # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCamelCase ,__lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase ,__lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) __lowerCamelCase = image_processing(A_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self: int ): # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCamelCase ,__lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase = image_processing(A_ , return_tensors="""pt""" ).pixel_values __lowerCamelCase ,__lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self: Dict ): # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCamelCase ,__lowerCamelCase = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase = image_processing(A_ , return_tensors="""pt""" ).pixel_values __lowerCamelCase ,__lowerCamelCase = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __a ( self: List[str] ): # prepare image and target __lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __lowerCamelCase = json.loads(f.read() ) __lowerCamelCase = {"""image_id""": 3_97_69, """annotations""": target} # encode them __lowerCamelCase = DetaImageProcessor() __lowerCamelCase = image_processing(images=A_ , annotations=A_ , return_tensors="""pt""" ) # verify pixel values __lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , A_ ) __lowerCamelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area __lowerCamelCase = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A_ ) ) # verify boxes __lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A_ ) __lowerCamelCase = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A_ , atol=1E-3 ) ) # verify image_id __lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A_ ) ) # verify is_crowd __lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A_ ) ) # verify class_labels __lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A_ ) ) # verify orig_size __lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A_ ) ) # verify size __lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A_ ) ) @slow def __a ( self: Tuple ): # prepare image, target and masks_path __lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __lowerCamelCase = json.loads(f.read() ) __lowerCamelCase = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} __lowerCamelCase = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __lowerCamelCase = DetaImageProcessor(format="""coco_panoptic""" ) __lowerCamelCase = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors="""pt""" ) # verify pixel values __lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , A_ ) __lowerCamelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area __lowerCamelCase = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , A_ ) ) # verify boxes __lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , A_ ) __lowerCamelCase = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , A_ , atol=1E-3 ) ) # verify image_id __lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , A_ ) ) # verify is_crowd __lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , A_ ) ) # verify class_labels __lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , A_ ) ) # verify masks __lowerCamelCase = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , A_ ) # verify orig_size __lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , A_ ) ) # verify size __lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , A_ ) )
281
0
import os A__ : List[str] = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 1_00, 'D': 5_00, 'M': 10_00} def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = 0 lowercase__ = 0 while index < len(lowerCamelCase_ ) - 1: lowercase__ = SYMBOLS[numerals[index]] lowercase__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = '''''' lowercase__ = num // 1000 numerals += m_count * "M" num %= 1000 lowercase__ = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowercase__ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a ( lowerCamelCase_ = "/p089_roman.txt" ): '''simple docstring''' lowercase__ = 0 with open(os.path.dirname(lowerCamelCase_ ) + roman_numerals_filename ) as filea: lowercase__ = filea.readlines() for line in lines: lowercase__ = line.strip() lowercase__ = parse_roman_numerals(lowerCamelCase_ ) lowercase__ = generate_roman_numerals(lowerCamelCase_ ) savings += len(lowerCamelCase_ ) - len(lowerCamelCase_ ) return savings if __name__ == "__main__": print(F"{solution() = }")
708
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: '''simple docstring''' snake_case : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 snake_case : Optional[int] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. snake_case : Tuple = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
638
'''simple docstring''' from __future__ import annotations import queue class snake_case__ : """simple docstring""" def __init__( self : int , UpperCamelCase__ : Optional[int] ) -> Dict: """simple docstring""" snake_case : Union[str, Any] = data snake_case : Tuple = None snake_case : int = None def _UpperCamelCase ( ) -> TreeNode: '''simple docstring''' print('''\n********Press N to stop entering at any point of time********\n''' ) snake_case : List[Any] = input('''Enter the value of the root node: ''' ).strip().lower() snake_case : queue.Queue = queue.Queue() snake_case : List[Any] = TreeNode(int(SCREAMING_SNAKE_CASE__ ) ) q.put(SCREAMING_SNAKE_CASE__ ) while not q.empty(): snake_case : List[str] = q.get() snake_case : List[str] = F'Enter the left node of {node_found.data}: ' snake_case : List[Any] = input(SCREAMING_SNAKE_CASE__ ).strip().lower() or '''n''' if check == "n": return tree_node snake_case : Any = TreeNode(int(SCREAMING_SNAKE_CASE__ ) ) snake_case : List[str] = left_node q.put(SCREAMING_SNAKE_CASE__ ) snake_case : Union[str, Any] = F'Enter the right node of {node_found.data}: ' snake_case : Optional[Any] = input(SCREAMING_SNAKE_CASE__ ).strip().lower() or '''n''' if check == "n": return tree_node snake_case : Any = TreeNode(int(SCREAMING_SNAKE_CASE__ ) ) snake_case : Union[str, Any] = right_node q.put(SCREAMING_SNAKE_CASE__ ) raise def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case : queue.Queue = queue.Queue() q.put(SCREAMING_SNAKE_CASE__ ) while not q.empty(): snake_case : Any = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case : queue.Queue = queue.Queue() q.put(SCREAMING_SNAKE_CASE__ ) while not q.empty(): snake_case : str = [] while not q.empty(): snake_case : int = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case : list[TreeNode] = [] snake_case : Union[str, Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(SCREAMING_SNAKE_CASE__ ) snake_case : Dict = n.left # end of while means current node doesn't have left child snake_case : List[Any] = stack.pop() # start to traverse its right child snake_case : Any = n.right def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case : list[TreeNode] = [] snake_case : Dict = node while n or stack: while n: stack.append(SCREAMING_SNAKE_CASE__ ) snake_case : List[str] = n.left snake_case : Union[str, Any] = stack.pop() print(n.data , end=''',''' ) snake_case : int = n.right def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> None: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not node: return snake_case ,snake_case : Dict = [], [] snake_case : Optional[int] = node stacka.append(SCREAMING_SNAKE_CASE__ ) while stacka: # to find the reversed order of post order, store it in stack2 snake_case : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(SCREAMING_SNAKE_CASE__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = "" , SCREAMING_SNAKE_CASE__=50 , SCREAMING_SNAKE_CASE__="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char snake_case ,snake_case : Any = divmod(width - len(SCREAMING_SNAKE_CASE__ ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) lowercase__ = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
638
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=1024 ): lowercase__ , lowercase__ = [], [] lowercase__ = list(zip(__magic_name__ , __magic_name__ ) ) lowercase__ , lowercase__ = sorted_examples[0] def is_too_big(__magic_name__ ): return tok(__magic_name__ , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): lowercase__ = new_src + " " + src lowercase__ = new_tgt + " " + tgt if is_too_big(__magic_name__ ) or is_too_big(__magic_name__ ): # cant fit, finalize example finished_src.append(__magic_name__ ) finished_tgt.append(__magic_name__ ) lowercase__ , lowercase__ = src, tgt else: # can fit, keep adding lowercase__ , lowercase__ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__magic_name__ ) finished_tgt.append(__magic_name__ ) return finished_src, finished_tgt def _A ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase__ = Path(__magic_name__ ) save_path.mkdir(exist_ok=__magic_name__ ) for split in ["train"]: lowercase__ , lowercase__ = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' lowercase__ = [x.rstrip() for x in Path(__magic_name__ ).open().readlines()] lowercase__ = [x.rstrip() for x in Path(__magic_name__ ).open().readlines()] lowercase__ , lowercase__ = pack_examples(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) print(f'''packed {split} split from {len(__magic_name__ )} examples -> {len(__magic_name__ )}.''' ) Path(save_path / f'''{split}.source''' ).open("w" ).write("\n".join(__magic_name__ ) ) Path(save_path / f'''{split}.target''' ).open("w" ).write("\n".join(__magic_name__ ) ) for split in ["val", "test"]: lowercase__ , lowercase__ = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(__magic_name__ , save_path / f'''{split}.source''' ) shutil.copyfile(__magic_name__ , save_path / f'''{split}.target''' ) def _A ( ): lowercase__ = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=__magic_name__ , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=__magic_name__ , default=128 ) parser.add_argument("--data_dir" , type=__magic_name__ ) parser.add_argument("--save_path" , type=__magic_name__ ) lowercase__ = parser.parse_args() lowercase__ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__magic_name__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
611
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): __lowerCamelCase = CycleDiffusionPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } __lowerCamelCase = PipelineTesterMixin.required_optional_params - {'latents'} __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=10_00 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowercase__ = CLIPTextModel(_lowercase ) lowercase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase ( self :Optional[Any] , _lowercase :List[Any] , _lowercase :Union[str, Any]=0 ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase ) ).to(_lowercase ) lowercase__ = image / 2 + 0.5 if str(_lowercase ).startswith("mps" ): lowercase__ = torch.manual_seed(_lowercase ) else: lowercase__ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) lowercase__ = { "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = CycleDiffusionPipeline(**_lowercase ) lowercase__ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = pipe(**_lowercase ) lowercase__ = output.images lowercase__ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowercase__ = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' lowercase__ = self.get_dummy_components() for name, module in components.items(): if hasattr(_lowercase , "half" ): lowercase__ = module.half() lowercase__ = CycleDiffusionPipeline(**_lowercase ) lowercase__ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = pipe(**_lowercase ) lowercase__ = output.images lowercase__ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowercase__ = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase ( self :Tuple ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) lowercase__ = init_image.resize((5_12, 5_12) ) lowercase__ = "CompVis/stable-diffusion-v1-4" lowercase__ = DDIMScheduler.from_pretrained(_lowercase , subfolder="scheduler" ) lowercase__ = CycleDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , safety_checker=_lowercase , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() lowercase__ = "A black colored car" lowercase__ = "A blue colored car" lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type="np" , ) lowercase__ = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) lowercase__ = init_image.resize((5_12, 5_12) ) lowercase__ = "CompVis/stable-diffusion-v1-4" lowercase__ = DDIMScheduler.from_pretrained(_lowercase , subfolder="scheduler" ) lowercase__ = CycleDiffusionPipeline.from_pretrained(_lowercase , scheduler=_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() lowercase__ = "A black colored car" lowercase__ = "A blue colored car" lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( prompt=_lowercase , source_prompt=_lowercase , image=_lowercase , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=_lowercase , output_type="np" , ) lowercase__ = output.images assert np.abs(image - expected_image ).max() < 2e-2
611
1
import os def UpperCamelCase_( ): """simple docstring""" _lowerCAmelCase :str = os.path.join(os.path.dirname(__magic_name__ ) , 'num.txt' ) with open(__magic_name__ ) as file_hand: return str(sum(int(__magic_name__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
687
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : """simple docstring""" def __init__( self: List[Any] , _UpperCAmelCase: int , _UpperCAmelCase: MutableSequence[float] ): if len(_UpperCAmelCase ) != degree + 1: raise ValueError( 'The number of coefficients should be equal to the degree + 1.' ) _lowerCAmelCase :list[float] = list(_UpperCAmelCase ) _lowerCAmelCase :Optional[Any] = degree def __add__( self: str , _UpperCAmelCase: Polynomial ): if self.degree > polynomial_a.degree: _lowerCAmelCase :Any = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _UpperCAmelCase ) else: _lowerCAmelCase :List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _UpperCAmelCase ) def __sub__( self: str , _UpperCAmelCase: Polynomial ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Union[str, Any] ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: int , _UpperCAmelCase: Polynomial ): _lowerCAmelCase :list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: int | float ): _lowerCAmelCase :int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Union[str, Any] ): _lowerCAmelCase :Dict = '' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_UpperCAmelCase ) return polynomial def __repr__( self: Optional[Any] ): return self.__str__() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase :list[float] = [0] * self.degree for i in range(self.degree ): _lowerCAmelCase :Tuple = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int | float = 0 ): _lowerCAmelCase :list[float] = [0] * (self.degree + 2) _lowerCAmelCase :str = constant for i in range(self.degree + 1 ): _lowerCAmelCase :List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _UpperCAmelCase ) def __eq__( self: List[Any] , _UpperCAmelCase: object ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: Optional[Any] , _UpperCAmelCase: object ): return not self.__eq__(_UpperCAmelCase )
687
1
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase__ ( _A ): """simple docstring""" _UpperCamelCase : Any = 'EncodecFeatureExtractor' _UpperCamelCase : List[Any] = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self , snake_case , snake_case ): '''simple docstring''' super().__init__(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__ = self.feature_extractor UpperCamelCase__ = False def snake_case__ ( self , snake_case=None , snake_case=None , snake_case=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=__lowerCamelCase , language=__lowerCamelCase , no_timestamps=__lowerCamelCase ) def __call__( self , *snake_case , **snake_case ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase__ = kwargs.pop("audio" , __lowerCamelCase ) UpperCamelCase__ = kwargs.pop("sampling_rate" , __lowerCamelCase ) UpperCamelCase__ = kwargs.pop("text" , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: UpperCamelCase__ = args[0] UpperCamelCase__ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: UpperCamelCase__ = self.tokenizer(__lowerCamelCase , **__lowerCamelCase ) if audio is not None: UpperCamelCase__ = self.feature_extractor(__lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , **__lowerCamelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCamelCase__ = audio_inputs["input_values"] if "padding_mask" in audio_inputs: UpperCamelCase__ = audio_inputs["padding_mask"] return inputs def snake_case__ ( self , *snake_case , **snake_case ): '''simple docstring''' UpperCamelCase__ = kwargs.pop("audio" , __lowerCamelCase ) UpperCamelCase__ = kwargs.pop("padding_mask" , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: UpperCamelCase__ = args[0] UpperCamelCase__ = args[1:] if audio_values is not None: return self._decode_audio(__lowerCamelCase , padding_mask=__lowerCamelCase ) else: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def snake_case__ ( self , *snake_case , **snake_case ): '''simple docstring''' return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) def snake_case__ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCamelCase__ = to_numpy(__lowerCamelCase ) UpperCamelCase__ = audio_values.shape if padding_mask is None: return list(__lowerCamelCase ) UpperCamelCase__ = to_numpy(__lowerCamelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCamelCase__ = seq_len - padding_mask.shape[-1] UpperCamelCase__ = 1 - self.feature_extractor.padding_value UpperCamelCase__ = np.pad(__lowerCamelCase , ((0, 0), (0, difference)) , "constant" , constant_values=__lowerCamelCase ) UpperCamelCase__ = audio_values.tolist() for i in range(__lowerCamelCase ): UpperCamelCase__ = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCamelCase__ = sliced_audio.reshape(__lowerCamelCase , -1 ) return audio_values
717
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCamelCase = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def UpperCamelCase_( _A :Dict , _A :Union[str, Any] , _A :Optional[int]=8 )-> Dict: UpperCamelCase__ = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 UpperCamelCase__ = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' super().__init__() self.register_modules( text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , movq=snake_case , ) UpperCamelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' if latents is None: UpperCamelCase__ = randn_tensor(snake_case , generator=snake_case , device=snake_case , dtype=snake_case ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) UpperCamelCase__ = latents.to(snake_case ) UpperCamelCase__ = latents * scheduler.init_noise_sigma return latents def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case=None , ): '''simple docstring''' UpperCamelCase__ = len(snake_case ) if isinstance(snake_case , snake_case ) else 1 # get prompt text embeddings UpperCamelCase__ = self.tokenizer( snake_case , padding="max_length" , truncation=snake_case , max_length=77 , return_attention_mask=snake_case , add_special_tokens=snake_case , return_tensors="pt" , ) UpperCamelCase__ = text_inputs.input_ids UpperCamelCase__ = self.tokenizer(snake_case , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(snake_case , snake_case ): UpperCamelCase__ = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase__ = text_input_ids.to(snake_case ) UpperCamelCase__ = text_inputs.attention_mask.to(snake_case ) UpperCamelCase__, UpperCamelCase__ = self.text_encoder( input_ids=snake_case , attention_mask=snake_case ) UpperCamelCase__ = prompt_embeds.repeat_interleave(snake_case , dim=0 ) UpperCamelCase__ = text_encoder_hidden_states.repeat_interleave(snake_case , dim=0 ) UpperCamelCase__ = text_mask.repeat_interleave(snake_case , dim=0 ) if do_classifier_free_guidance: UpperCamelCase__ = 42 if negative_prompt is None: UpperCamelCase__ = [""] * batch_size elif type(snake_case ) is not type(snake_case ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !=''' F''' {type(snake_case )}.''' ) elif isinstance(snake_case , snake_case ): UpperCamelCase__ = [negative_prompt] elif batch_size != len(snake_case ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: UpperCamelCase__ = negative_prompt UpperCamelCase__ = self.tokenizer( snake_case , padding="max_length" , max_length=77 , truncation=snake_case , return_attention_mask=snake_case , add_special_tokens=snake_case , return_tensors="pt" , ) UpperCamelCase__ = uncond_input.input_ids.to(snake_case ) UpperCamelCase__ = uncond_input.attention_mask.to(snake_case ) UpperCamelCase__, UpperCamelCase__ = self.text_encoder( input_ids=snake_case , attention_mask=snake_case ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ = negative_prompt_embeds.shape[1] UpperCamelCase__ = negative_prompt_embeds.repeat(1 , snake_case ) UpperCamelCase__ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case ) UpperCamelCase__ = uncond_text_encoder_hidden_states.shape[1] UpperCamelCase__ = uncond_text_encoder_hidden_states.repeat(1 , snake_case , 1 ) UpperCamelCase__ = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , snake_case , -1 ) UpperCamelCase__ = uncond_text_mask.repeat_interleave(snake_case , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ = torch.cat([negative_prompt_embeds, prompt_embeds] ) UpperCamelCase__ = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) UpperCamelCase__ = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def snake_case__ ( self , snake_case=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCamelCase__ = torch.device(F'''cuda:{gpu_id}''' ) UpperCamelCase__ = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case , snake_case ) def snake_case__ ( self , snake_case=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCamelCase__ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase__ = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: UpperCamelCase__, UpperCamelCase__ = cpu_offload_with_hook(snake_case , snake_case , prev_module_hook=snake_case ) if self.safety_checker is not None: UpperCamelCase__, UpperCamelCase__ = cpu_offload_with_hook(self.safety_checker , snake_case , prev_module_hook=snake_case ) # We'll offload the last model manually. UpperCamelCase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case__ ( self ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case ) def __call__( self , snake_case , snake_case , snake_case , snake_case = None , snake_case = 512 , snake_case = 512 , snake_case = 100 , snake_case = 4.0 , snake_case = 1 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , ): '''simple docstring''' if isinstance(snake_case , snake_case ): UpperCamelCase__ = 1 elif isinstance(snake_case , snake_case ): UpperCamelCase__ = len(snake_case ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(snake_case )}''' ) UpperCamelCase__ = self._execution_device UpperCamelCase__ = batch_size * num_images_per_prompt UpperCamelCase__ = guidance_scale > 1.0 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = self._encode_prompt( snake_case , snake_case , snake_case , snake_case , snake_case ) if isinstance(snake_case , snake_case ): UpperCamelCase__ = torch.cat(snake_case , dim=0 ) if isinstance(snake_case , snake_case ): UpperCamelCase__ = torch.cat(snake_case , dim=0 ) if do_classifier_free_guidance: UpperCamelCase__ = image_embeds.repeat_interleave(snake_case , dim=0 ) UpperCamelCase__ = negative_image_embeds.repeat_interleave(snake_case , dim=0 ) UpperCamelCase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=snake_case ) self.scheduler.set_timesteps(snake_case , device=snake_case ) UpperCamelCase__ = self.scheduler.timesteps UpperCamelCase__ = self.unet.config.in_channels UpperCamelCase__, UpperCamelCase__ = get_new_h_w(snake_case , snake_case , self.movq_scale_factor ) # create initial latent UpperCamelCase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , snake_case , snake_case , snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(snake_case ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} UpperCamelCase__ = self.unet( sample=snake_case , timestep=snake_case , encoder_hidden_states=snake_case , added_cond_kwargs=snake_case , return_dict=snake_case , )[0] if do_classifier_free_guidance: UpperCamelCase__, UpperCamelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase__, UpperCamelCase__ = noise_pred.chunk(2 ) UpperCamelCase__, UpperCamelCase__ = variance_pred.chunk(2 ) UpperCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase__, UpperCamelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step( snake_case , snake_case , snake_case , generator=snake_case , ).prev_sample # post-processing UpperCamelCase__ = self.movq.decode(snake_case , force_not_quantize=snake_case )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: UpperCamelCase__ = image * 0.5 + 0.5 UpperCamelCase__ = image.clamp(0 , 1 ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case )
185
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] a_ = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
147
0
from __future__ import annotations from random import random from typing import Generic, TypeVar A__: Optional[int] = TypeVar('''KT''') A__: Dict = TypeVar('''VT''') class _a ( Generic[KT, VT]): """simple docstring""" def __init__( self: Union[str, Any] , __lowerCamelCase: KT | str = "root" , __lowerCamelCase: VT | None = None ): '''simple docstring''' UpperCamelCase__: int = key UpperCamelCase__: List[Any] = value UpperCamelCase__: list[Node[KT, VT]] = [] def __repr__( self: int ): '''simple docstring''' return F"Node({self.key}: {self.value})" @property def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' return len(self.forward ) class _a ( Generic[KT, VT]): """simple docstring""" def __init__( self: Union[str, Any] , __lowerCamelCase: float = 0.5 , __lowerCamelCase: int = 16 ): '''simple docstring''' UpperCamelCase__: Node[KT, VT] = Node[KT, VT]() UpperCamelCase__: Dict = 0 UpperCamelCase__: List[Any] = p UpperCamelCase__: str = max_level def __str__( self: List[str] ): '''simple docstring''' UpperCamelCase__: List[Any] = list(self ) if len(__lowerCamelCase ) == 0: return F"SkipList(level={self.level})" UpperCamelCase__: int = max((len(str(__lowerCamelCase ) ) for item in items) , default=4 ) UpperCamelCase__: Optional[Any] = max(__lowerCamelCase , 4 ) + 4 UpperCamelCase__: List[str] = self.head UpperCamelCase__: Tuple = [] UpperCamelCase__: Dict = node.forward.copy() lines.append(F"[{node.key}]".ljust(__lowerCamelCase , "-" ) + "* " * len(__lowerCamelCase ) ) lines.append(" " * label_size + "| " * len(__lowerCamelCase ) ) while len(node.forward ) != 0: UpperCamelCase__: int = node.forward[0] lines.append( F"[{node.key}]".ljust(__lowerCamelCase , "-" ) + " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) ) lines.append(" " * label_size + "| " * len(__lowerCamelCase ) ) UpperCamelCase__: Dict = node.forward lines.append("None".ljust(__lowerCamelCase ) + "* " * len(__lowerCamelCase ) ) return F"SkipList(level={self.level})\n" + "\n".join(__lowerCamelCase ) def __iter__( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = self.head while len(node.forward ) != 0: yield node.forward[0].key UpperCamelCase__: Any = node.forward[0] def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCAmelCase_ ( self: Any , __lowerCamelCase: Optional[int] ): '''simple docstring''' UpperCamelCase__: str = [] UpperCamelCase__: Any = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: UpperCamelCase__: Union[str, Any] = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__lowerCamelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCAmelCase_ ( self: Optional[Any] , __lowerCamelCase: KT ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__: Optional[int] = self._locate_node(__lowerCamelCase ) if node is not None: for i, update_node in enumerate(__lowerCamelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: UpperCamelCase__: List[Any] = node.forward[i] else: UpperCamelCase__: Any = update_node.forward[:i] def UpperCAmelCase_ ( self: Any , __lowerCamelCase: KT , __lowerCamelCase: VT ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__: Optional[Any] = self._locate_node(__lowerCamelCase ) if node is not None: UpperCamelCase__: int = value else: UpperCamelCase__: List[str] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __lowerCamelCase ): update_vector.append(self.head ) UpperCamelCase__: Tuple = level UpperCamelCase__: Any = Node(__lowerCamelCase , __lowerCamelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__lowerCamelCase ) else: UpperCamelCase__: List[Any] = new_node def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: VT ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__: Optional[int] = self._locate_node(__lowerCamelCase ) if node is not None: return node.value return None def lowerCAmelCase_ ( ): UpperCamelCase__: List[str] = SkipList() skip_list.insert("Key1" ,3) skip_list.insert("Key2" ,12) skip_list.insert("Key3" ,41) skip_list.insert("Key4" ,-19) UpperCamelCase__: str = skip_list.head UpperCamelCase__: Dict = {} while node.level != 0: UpperCamelCase__: Optional[Any] = node.forward[0] UpperCamelCase__: Tuple = node.value assert len(A_) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def lowerCAmelCase_ ( ): UpperCamelCase__: Any = SkipList() skip_list.insert("Key1" ,10) skip_list.insert("Key1" ,12) skip_list.insert("Key5" ,7) skip_list.insert("Key7" ,10) skip_list.insert("Key10" ,5) skip_list.insert("Key7" ,7) skip_list.insert("Key5" ,5) skip_list.insert("Key10" ,10) UpperCamelCase__: Union[str, Any] = skip_list.head UpperCamelCase__: Optional[Any] = {} while node.level != 0: UpperCamelCase__: Optional[int] = node.forward[0] UpperCamelCase__: Tuple = node.value if len(A_) != 4: print() assert len(A_) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def lowerCAmelCase_ ( ): UpperCamelCase__: Optional[int] = SkipList() assert skip_list.find("Some key") is None def lowerCAmelCase_ ( ): UpperCamelCase__: Any = SkipList() skip_list.insert("Key2" ,20) assert skip_list.find("Key2") == 20 skip_list.insert("Some Key" ,10) skip_list.insert("Key2" ,8) skip_list.insert("V" ,13) assert skip_list.find("Y") is None assert skip_list.find("Key2") == 8 assert skip_list.find("Some Key") == 10 assert skip_list.find("V") == 13 def lowerCAmelCase_ ( ): UpperCamelCase__: Tuple = SkipList() skip_list.delete("Some key") assert len(skip_list.head.forward) == 0 def lowerCAmelCase_ ( ): UpperCamelCase__: Any = SkipList() skip_list.insert("Key1" ,12) skip_list.insert("V" ,13) skip_list.insert("X" ,14) skip_list.insert("Key2" ,15) skip_list.delete("V") skip_list.delete("Key2") assert skip_list.find("V") is None assert skip_list.find("Key2") is None def lowerCAmelCase_ ( ): UpperCamelCase__: Optional[Any] = SkipList() skip_list.insert("Key1" ,12) skip_list.insert("V" ,13) skip_list.insert("X" ,14) skip_list.insert("Key2" ,15) skip_list.delete("V") assert skip_list.find("V") is None assert skip_list.find("X") == 14 assert skip_list.find("Key1") == 12 assert skip_list.find("Key2") == 15 skip_list.delete("X") assert skip_list.find("V") is None assert skip_list.find("X") is None assert skip_list.find("Key1") == 12 assert skip_list.find("Key2") == 15 skip_list.delete("Key1") assert skip_list.find("V") is None assert skip_list.find("X") is None assert skip_list.find("Key1") is None assert skip_list.find("Key2") == 15 skip_list.delete("Key2") assert skip_list.find("V") is None assert skip_list.find("X") is None assert skip_list.find("Key1") is None assert skip_list.find("Key2") is None def lowerCAmelCase_ ( ): UpperCamelCase__: List[Any] = SkipList() skip_list.insert("Key1" ,12) skip_list.insert("V" ,13) skip_list.insert("X" ,1_42) skip_list.insert("Key2" ,15) skip_list.delete("X") def traverse_keys(A_): yield node.key for forward_node in node.forward: yield from traverse_keys(A_) assert len(set(traverse_keys(skip_list.head))) == 4 def lowerCAmelCase_ ( ): def is_sorted(A_): return all(next_item >= item for item, next_item in zip(A_ ,lst[1:])) UpperCamelCase__: Tuple = SkipList() for i in range(10): skip_list.insert(A_ ,A_) assert is_sorted(list(A_)) skip_list.delete(5) skip_list.delete(8) skip_list.delete(2) assert is_sorted(list(A_)) skip_list.insert(-12 ,-12) skip_list.insert(77 ,77) assert is_sorted(list(A_)) def lowerCAmelCase_ ( ): for _ in range(1_00): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def lowerCAmelCase_ ( ): UpperCamelCase__: Optional[Any] = SkipList() skip_list.insert(2 ,"2") skip_list.insert(4 ,"4") skip_list.insert(6 ,"4") skip_list.insert(4 ,"5") skip_list.insert(8 ,"4") skip_list.insert(9 ,"4") skip_list.delete(4) print(A_) if __name__ == "__main__": import doctest doctest.testmod() main()
221
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _a ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Tuple = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: List[str] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: Tuple = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: List[str] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase__: int = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Any ): '''simple docstring''' UpperCamelCase__: List[Any] = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase__: Optional[int] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] UpperCamelCase__: Tuple = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Tuple = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCamelCase__: Union[str, Any] = "fp16" self.assertFalse(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: str = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] UpperCamelCase__: List[Any] = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: Dict = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] UpperCamelCase__: Dict = "fp16" self.assertTrue(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) ) def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Any = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase__: Optional[int] = "fp16" self.assertFalse(is_safetensors_compatible(__lowerCamelCase , variant=__lowerCamelCase ) )
221
1
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = ["image_processor", "tokenizer"] a_ = "OwlViTImageProcessor" a_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): '''simple docstring''' a_ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase_ , ) a_ : List[Any] = kwargs.pop("""feature_extractor""" ) a_ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="max_length" , lowerCAmelCase_="np" , **lowerCAmelCase_ ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and not isinstance(text[0] , lowerCAmelCase_ )): a_ : Union[str, Any] = [self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ )] elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(text[0] , lowerCAmelCase_ ): a_ : Optional[int] = [] # Maximum number of queries across batch a_ : List[str] = max([len(lowerCAmelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCAmelCase_ ) != max_num_queries: a_ : Optional[Any] = t + [""" """] * (max_num_queries - len(lowerCAmelCase_ )) a_ : Tuple = self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) encodings.append(lowerCAmelCase_ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": a_ : List[str] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) a_ : Tuple = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp a_ : Union[str, Any] = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) a_ : int = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch a_ : Any = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) a_ : Union[str, Any] = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf a_ : int = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) a_ : int = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) a_ : Any = BatchEncoding() a_ : List[str] = input_ids a_ : Dict = attention_mask if query_images is not None: a_ : Optional[Any] = BatchEncoding() a_ : Tuple = self.image_processor( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ).pixel_values a_ : Any = query_pixel_values if images is not None: a_ : Optional[int] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and images is not None: a_ : Union[str, Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: a_ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def _lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): '''simple docstring''' return self.image_processor.post_process(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): '''simple docstring''' return self.image_processor.post_process_object_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _lowerCAmelCase ( self ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase_ , ) return self.image_processor_class @property def _lowerCAmelCase ( self ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase_ , ) return self.image_processor
577
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case: Dict = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case: str = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __snake_case: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
577
1
def a__ ( snake_case , snake_case ): """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def a__ ( snake_case , snake_case=0 ): """simple docstring""" return sorted(snake_case , key=lambda snake_case : x[column] ) def a__ ( snake_case , snake_case , snake_case=float('''inf''' ) ): """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , snake_case ): __SCREAMING_SNAKE_CASE : Tuple = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE : Optional[int] = current_dis return min_dis def a__ ( snake_case , snake_case , snake_case=float('''inf''' ) ): """simple docstring""" for i in range(min(6 , points_counts - 1 ) , snake_case ): for j in range(max(0 , i - 6 ) , snake_case ): __SCREAMING_SNAKE_CASE : Dict = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __SCREAMING_SNAKE_CASE : int = current_dis return min_dis def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" # base case if points_counts <= 3: return dis_between_closest_pair(snake_case , snake_case ) # recursion __SCREAMING_SNAKE_CASE : Optional[Any] = points_counts // 2 __SCREAMING_SNAKE_CASE : Dict = closest_pair_of_points_sqr( snake_case , points_sorted_on_y[:mid] , snake_case ) __SCREAMING_SNAKE_CASE : List[str] = closest_pair_of_points_sqr( snake_case , points_sorted_on_y[mid:] , points_counts - mid ) __SCREAMING_SNAKE_CASE : List[Any] = min(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(snake_case ) __SCREAMING_SNAKE_CASE : Dict = dis_between_closest_in_strip( snake_case , len(snake_case ) , snake_case ) return min(snake_case , snake_case ) def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = column_based_sort(snake_case , column=0 ) __SCREAMING_SNAKE_CASE : List[Any] = column_based_sort(snake_case , column=1 ) return ( closest_pair_of_points_sqr( snake_case , snake_case , snake_case ) ) ** 0.5 if __name__ == "__main__": lowercase_ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
131
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # load base model __SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained(snake_case , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __SCREAMING_SNAKE_CASE : Any = load_file(snake_case ) __SCREAMING_SNAKE_CASE : Tuple = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __SCREAMING_SNAKE_CASE : List[str] = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline.text_encoder else: __SCREAMING_SNAKE_CASE : int = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) __SCREAMING_SNAKE_CASE : Any = pipeline.unet # find the target layer __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_infos.pop(0 ) while len(snake_case ) > -1: try: __SCREAMING_SNAKE_CASE : Dict = curr_layer.__getattr__(snake_case ) if len(snake_case ) > 0: __SCREAMING_SNAKE_CASE : Optional[int] = layer_infos.pop(0 ) elif len(snake_case ) == 0: break except Exception: if len(snake_case ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __SCREAMING_SNAKE_CASE : Any = layer_infos.pop(0 ) __SCREAMING_SNAKE_CASE : int = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(snake_case ) else: pair_keys.append(snake_case ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __SCREAMING_SNAKE_CASE : List[str] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __SCREAMING_SNAKE_CASE : Any = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(snake_case , snake_case ).unsqueeze(2 ).unsqueeze(3 ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict[pair_keys[0]].to(torch.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(snake_case , snake_case ) # update visited list for item in pair_keys: visited.append(snake_case ) return pipeline if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") lowercase_ = parser.parse_args() lowercase_ = args.base_model_path lowercase_ = args.checkpoint_path lowercase_ = args.dump_path lowercase_ = args.lora_prefix_unet lowercase_ = args.lora_prefix_text_encoder lowercase_ = args.alpha lowercase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowercase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
131
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __A : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = ['input_features', 'is_longer'] def __init__( self , snake_case_=64 , snake_case_=4_8000 , snake_case_=480 , snake_case_=10 , snake_case_=1024 , snake_case_=0.0 , snake_case_=False , snake_case_ = 0 , snake_case_ = 1_4000 , snake_case_ = None , snake_case_ = "fusion" , snake_case_ = "repeatpad" , **snake_case_ , ): super().__init__( feature_size=snake_case_ , sampling_rate=snake_case_ , padding_value=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) _A = top_db _A = truncation _A = padding _A = fft_window_size _A = (fft_window_size >> 1) + 1 _A = hop_length _A = max_length_s _A = max_length_s * sampling_rate _A = sampling_rate _A = frequency_min _A = frequency_max _A = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm=snake_case_ , mel_scale='htk' , ) _A = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm='slaney' , mel_scale='slaney' , ) def lowerCAmelCase__ ( self ): _A = copy.deepcopy(self.__dict__ ) _A = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = spectrogram( snake_case_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case_ , log_mel='dB' , ) return log_mel_spectrogram.T def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ ): _A = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _A = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _A = [0] # randomly choose index for each part _A = np.random.choice(ranges[0] ) _A = np.random.choice(ranges[1] ) _A = np.random.choice(ranges[2] ) _A = mel[idx_front : idx_front + chunk_frames, :] _A = mel[idx_middle : idx_middle + chunk_frames, :] _A = mel[idx_back : idx_back + chunk_frames, :] _A = torch.tensor(mel[None, None, :] ) _A = torch.nn.functional.interpolate( snake_case_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=snake_case_ ) _A = mel_shrink[0][0].numpy() _A = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": _A = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _A = len(snake_case_ ) - max_length _A = np.random.randint(0 , overflow + 1 ) _A = waveform[idx : idx + max_length] _A = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _A = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) _A = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _A = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _A = np.stack([mel, mel, mel, mel] , axis=0 ) _A = False else: _A = self._random_mel_fusion(snake_case_ , snake_case_ , snake_case_ ) _A = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented" ) else: _A = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _A = int(max_length / len(snake_case_ ) ) _A = np.stack(np.tile(snake_case_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _A = int(max_length / len(snake_case_ ) ) _A = np.stack(np.tile(snake_case_ , snake_case_ ) ) _A = np.pad(snake_case_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _A = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) _A = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _A = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , **snake_case_ , ): _A = truncation if truncation is not None else self.truncation _A = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _A = isinstance(snake_case_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) _A = is_batched_numpy or ( isinstance(snake_case_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(snake_case_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case_ , np.ndarray ): _A = np.asarray(snake_case_ , dtype=np.floataa ) elif isinstance(snake_case_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _A = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _A = [np.asarray(snake_case_ )] # convert to mel spectrogram, truncate and pad if needed. _A = [ self._get_input_mel(snake_case_ , max_length if max_length else self.nb_max_samples , snake_case_ , snake_case_ ) for waveform in raw_speech ] _A = [] _A = [] for mel, longer in padded_inputs: input_mel.append(snake_case_ ) is_longer.append(snake_case_ ) if truncation == "fusion" and sum(snake_case_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _A = np.random.randint(0 , len(snake_case_ ) ) _A = True if isinstance(input_mel[0] , snake_case_ ): _A = [np.asarray(snake_case_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _A = [[longer] for longer in is_longer] _A = {'input_features': input_mel, 'is_longer': is_longer} _A = BatchFeature(snake_case_ ) if return_tensors is not None: _A = input_features.convert_to_tensors(snake_case_ ) return input_features
27
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) UpperCAmelCase__ : List[Any] = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(__UpperCamelCase ) # Let's go UpperCAmelCase__ : int = parser.parse_args() if not hasattr(__UpperCamelCase , """func""" ): parser.print_help() exit(1 ) # Run UpperCAmelCase__ : Union[str, Any] = args.func(__UpperCamelCase ) service.run() if __name__ == "__main__": main()
65
0
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _lowerCamelCase ( a_ , unittest.TestCase ): _lowerCamelCase :Dict = FlaxAutoencoderKL @property def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = 4 lowerCAmelCase__ : Tuple = 3 lowerCAmelCase__ : Union[str, Any] = (32, 32) lowerCAmelCase__ : Dict = jax.random.PRNGKey(0 ) lowerCAmelCase__ : Optional[int] = jax.random.uniform(UpperCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" lowerCAmelCase__ : Dict = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } lowerCAmelCase__ : List[Any] = self.dummy_input return init_dict, inputs_dict
507
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _A = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _A = direct_transformers_import(PATH_TO_TRANSFORMERS) _A = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _A = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") _A = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowercase_ ( __UpperCAmelCase ) -> str: lowerCAmelCase__ : Union[str, Any] = None # source code of `config_class` lowerCAmelCase__ : List[Any] = inspect.getsource(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = _re_checkpoint.findall(__UpperCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): lowerCAmelCase__ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase__ : Dict = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowerCAmelCase__ : Optional[Any] = ckpt_name break return checkpoint def lowercase_ ( ) -> Dict: lowerCAmelCase__ : Union[str, Any] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowerCAmelCase__ : Dict = get_checkpoint_from_config_class(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: lowerCAmelCase__ : int = """\n""".join(sorted(__UpperCAmelCase ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
507
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase_ = input_file.read() UpperCamelCase_ = regexp.search(_UpperCAmelCase ) return match def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase_ = regexp.finditer(_UpperCAmelCase ) UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
23
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ :List[Any] = logging.get_logger(__name__) lowerCAmelCase__ :int = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class __a ( UpperCAmelCase ): _a : Dict = 'blenderbot-small' _a : Tuple = ['past_key_values'] _a : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=50265 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2 , **_SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = d_model _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = encoder_layers _UpperCAmelCase = encoder_attention_heads _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = encoder_layerdrop _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = use_cache _UpperCAmelCase = encoder_layers _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , forced_eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class __a ( UpperCAmelCase ): @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _UpperCAmelCase = {0: 'batch'} _UpperCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} _UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _UpperCAmelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _UpperCAmelCase , _UpperCAmelCase = self.num_layers for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} _UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} else: _UpperCAmelCase = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = super().outputs else: _UpperCAmelCase = super(_SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: _UpperCAmelCase , _UpperCAmelCase = self.num_layers for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} _UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Generate decoder inputs _UpperCAmelCase = seq_length if not self.use_past else 1 _UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _UpperCAmelCase = dict(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs['input_ids'].shape _UpperCAmelCase = common_inputs['decoder_input_ids'].shape[1] _UpperCAmelCase , _UpperCAmelCase = self.num_attention_heads _UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase = decoder_seq_length + 3 _UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _UpperCAmelCase = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] , dim=1 ) _UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _UpperCAmelCase , _UpperCAmelCase = self.num_layers _UpperCAmelCase = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - min_num_layers _UpperCAmelCase = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. _UpperCAmelCase = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) ) return common_inputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _UpperCAmelCase , _UpperCAmelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCAmelCase = seqlen + 2 _UpperCAmelCase , _UpperCAmelCase = self.num_layers _UpperCAmelCase , _UpperCAmelCase = self.num_attention_heads _UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCAmelCase = common_inputs['attention_mask'].dtype _UpperCAmelCase = torch.cat( [common_inputs['attention_mask'], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 ) _UpperCAmelCase = [ (torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(_SCREAMING_SNAKE_CASE ) ] return common_inputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCAmelCase = tokenizer.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence _UpperCAmelCase = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _UpperCAmelCase = dict(tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) return common_inputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) elif self.task == "causal-lm": _UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) return common_inputs def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCAmelCase = super()._flatten_past_key_values_(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = super(_SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
618
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( _a ,unittest.TestCase ): lowercase_ = UnCLIPImageVariationPipeline lowercase_ = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase_ = IMAGE_VARIATION_BATCH_PARAMS lowercase_ = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase_ = False @property def __lowerCAmelCase ( self : int ) -> str: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Any ) -> str: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim @property def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" return 1_00 @property def __lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(lowerCAmelCase_ ) @property def __lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(lowerCAmelCase_ ) @property def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) _a = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } _a = UnCLIPTextProjModel(**lowerCAmelCase_ ) return model @property def __lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" torch.manual_seed(0 ) _a = { '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } _a = UNetaDConditionModel(**lowerCAmelCase_ ) return model @property def __lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" torch.manual_seed(0 ) _a = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def __lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" torch.manual_seed(1 ) _a = UNetaDModel(**self.dummy_super_res_kwargs ) return model def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _a = self.dummy_decoder _a = self.dummy_text_proj _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_super_res_first _a = self.dummy_super_res_last _a = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=10_00 , ) _a = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=10_00 , ) _a = CLIPImageProcessor(crop_size=32 , size=32 ) _a = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : Dict=True ) -> Tuple: """simple docstring""" _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) if str(lowerCAmelCase_ ).startswith('''mps''' ): _a = torch.manual_seed(lowerCAmelCase_ ) else: _a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) if pil_image: _a = input_image * 0.5 + 0.5 _a = input_image.clamp(0 , 1 ) _a = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _a = DiffusionPipeline.numpy_to_pil(lowerCAmelCase_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**lowerCAmelCase_ ) _a = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = pipe(**lowerCAmelCase_ ) _a = output.images _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = pipe( **lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**lowerCAmelCase_ ) _a = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = pipe(**lowerCAmelCase_ ) _a = output.images _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = pipe( **lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**lowerCAmelCase_ ) _a = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] _a = pipe(**lowerCAmelCase_ ) _a = output.images _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] _a = pipe( **lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) _a = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _a = torch.device('''cpu''' ) class A : lowercase_ = 1 _a = self.get_dummy_components() _a = self.pipeline_class(**lowerCAmelCase_ ) _a = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _a = pipe.decoder.dtype _a = 1 _a = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) _a = pipe.prepare_latents( lowerCAmelCase_ , dtype=lowerCAmelCase_ , device=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , scheduler=DummyScheduler() ) _a = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) _a = pipe.prepare_latents( lowerCAmelCase_ , dtype=lowerCAmelCase_ , device=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , scheduler=DummyScheduler() ) _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = pipe( **lowerCAmelCase_ , decoder_latents=lowerCAmelCase_ , super_res_latents=lowerCAmelCase_ ).images _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) # Don't pass image, instead pass embedding _a = pipeline_inputs.pop('''image''' ) _a = pipe.image_encoder(lowerCAmelCase_ ).image_embeds _a = pipe( **lowerCAmelCase_ , decoder_latents=lowerCAmelCase_ , super_res_latents=lowerCAmelCase_ , image_embeddings=lowerCAmelCase_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def __lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" _a = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor _a = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=lowerCAmelCase_ , expected_max_diff=lowerCAmelCase_ ) @skip_mps def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _a = torch_device == '''cpu''' _a = True _a = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=lowerCAmelCase_ , relax_max_difference=lowerCAmelCase_ , additional_params_copy_to_batched_inputs=lowerCAmelCase_ , ) def __lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" _a = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes _a = [2, 3] self._test_inference_batch_consistent( batch_sizes=lowerCAmelCase_ , additional_params_copy_to_batched_inputs=lowerCAmelCase_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowerCAmelCase_ ) @skip_mps def __lowerCAmelCase ( self : str ) -> Any: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" return super().test_save_load_local() @skip_mps def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return super().test_save_load_optional_components() @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) _a = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) _a = pipeline.to(lowerCAmelCase_ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a = pipeline( lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type='''np''' , ) _a = output.images[0] assert image.shape == (2_56, 2_56, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ , 15 )
700
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( _a ,unittest.TestCase ): lowercase_ = UnCLIPImageVariationPipeline lowercase_ = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase_ = IMAGE_VARIATION_BATCH_PARAMS lowercase_ = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase_ = False @property def __lowerCAmelCase ( self : int ) -> str: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Any ) -> str: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim @property def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" return 1_00 @property def __lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(lowerCAmelCase_ ) @property def __lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(lowerCAmelCase_ ) @property def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) _a = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } _a = UnCLIPTextProjModel(**lowerCAmelCase_ ) return model @property def __lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" torch.manual_seed(0 ) _a = { '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } _a = UNetaDConditionModel(**lowerCAmelCase_ ) return model @property def __lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" torch.manual_seed(0 ) _a = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def __lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" torch.manual_seed(1 ) _a = UNetaDModel(**self.dummy_super_res_kwargs ) return model def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _a = self.dummy_decoder _a = self.dummy_text_proj _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_super_res_first _a = self.dummy_super_res_last _a = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=10_00 , ) _a = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=10_00 , ) _a = CLIPImageProcessor(crop_size=32 , size=32 ) _a = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : Dict=True ) -> Tuple: """simple docstring""" _a = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) if str(lowerCAmelCase_ ).startswith('''mps''' ): _a = torch.manual_seed(lowerCAmelCase_ ) else: _a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) if pil_image: _a = input_image * 0.5 + 0.5 _a = input_image.clamp(0 , 1 ) _a = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _a = DiffusionPipeline.numpy_to_pil(lowerCAmelCase_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**lowerCAmelCase_ ) _a = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = pipe(**lowerCAmelCase_ ) _a = output.images _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = pipe( **lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**lowerCAmelCase_ ) _a = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = pipe(**lowerCAmelCase_ ) _a = output.images _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = pipe( **lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**lowerCAmelCase_ ) _a = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] _a = pipe(**lowerCAmelCase_ ) _a = output.images _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] _a = pipe( **lowerCAmelCase_ , return_dict=lowerCAmelCase_ , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) _a = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _a = torch.device('''cpu''' ) class A : lowercase_ = 1 _a = self.get_dummy_components() _a = self.pipeline_class(**lowerCAmelCase_ ) _a = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _a = pipe.decoder.dtype _a = 1 _a = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) _a = pipe.prepare_latents( lowerCAmelCase_ , dtype=lowerCAmelCase_ , device=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , scheduler=DummyScheduler() ) _a = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) _a = pipe.prepare_latents( lowerCAmelCase_ , dtype=lowerCAmelCase_ , device=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , scheduler=DummyScheduler() ) _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) _a = pipe( **lowerCAmelCase_ , decoder_latents=lowerCAmelCase_ , super_res_latents=lowerCAmelCase_ ).images _a = self.get_dummy_inputs(lowerCAmelCase_ , pil_image=lowerCAmelCase_ ) # Don't pass image, instead pass embedding _a = pipeline_inputs.pop('''image''' ) _a = pipe.image_encoder(lowerCAmelCase_ ).image_embeds _a = pipe( **lowerCAmelCase_ , decoder_latents=lowerCAmelCase_ , super_res_latents=lowerCAmelCase_ , image_embeddings=lowerCAmelCase_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def __lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" _a = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor _a = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=lowerCAmelCase_ , expected_max_diff=lowerCAmelCase_ ) @skip_mps def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _a = torch_device == '''cpu''' _a = True _a = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=lowerCAmelCase_ , relax_max_difference=lowerCAmelCase_ , additional_params_copy_to_batched_inputs=lowerCAmelCase_ , ) def __lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" _a = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes _a = [2, 3] self._test_inference_batch_consistent( batch_sizes=lowerCAmelCase_ , additional_params_copy_to_batched_inputs=lowerCAmelCase_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowerCAmelCase_ ) @skip_mps def __lowerCAmelCase ( self : str ) -> Any: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" return super().test_save_load_local() @skip_mps def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return super().test_save_load_optional_components() @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) _a = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) _a = pipeline.to(lowerCAmelCase_ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase_ ) _a = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a = pipeline( lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type='''np''' , ) _a = output.images[0] assert image.shape == (2_56, 2_56, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ , 15 )
377
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v1''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a="relu6" , _a=True , _a=0.9_9_9 , _a=0.0_2 , _a=0.0_0_1 , **_a , ) -> Tuple: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = min_depth lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Union[str, Any]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> List[Any]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> List[Any]: return 1E-4
122
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _a: int = """src/diffusers""" # Matches is_xxx_available() _a: Tuple = re.compile(r"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla _a: Any = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") _a: Union[str, Any] = """ {0} = None """ _a: Tuple = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ _a: Tuple = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def __lowerCAmelCase ( A ): UpperCAmelCase_ = _re_backend.findall(A ) if len(A ) == 0: return None return "_and_".join(A ) def __lowerCAmelCase ( ): with open(os.path.join(A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase_ = 0 UpperCAmelCase_ = {} # Go through the end of the file while line_index < len(A ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase_ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCAmelCase_ = [] # Until we unindent, add backend objects to the list while line_index < len(A ) and len(lines[line_index] ) > 1: UpperCAmelCase_ = lines[line_index] UpperCAmelCase_ = _re_single_line_import.search(A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(A ) > 0: UpperCAmelCase_ = objects else: line_index += 1 return backend_specific_objects def __lowerCAmelCase ( A , A ): if name.isupper(): return DUMMY_CONSTANT.format(A ) elif name.islower(): return DUMMY_FUNCTION.format(A , A ) else: return DUMMY_CLASS.format(A , A ) def __lowerCAmelCase ( A=None ): if backend_specific_objects is None: UpperCAmelCase_ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase_ = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase_ = "[" + ", ".join(F"\"{b}\"" for b in backend.split("_and_" ) ) + "]" UpperCAmelCase_ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(A , A ) for o in objects] ) UpperCAmelCase_ = dummy_file return dummy_files def __lowerCAmelCase ( A=False ): UpperCAmelCase_ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase_ = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCAmelCase_ = os.path.join(A , "utils" ) UpperCAmelCase_ = { backend: os.path.join(A , F"dummy_{short_names.get(A , A )}_objects.py" ) for backend in dummy_files.keys() } UpperCAmelCase_ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(A ): with open(A , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCAmelCase_ = f.read() else: UpperCAmelCase_ = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"Updating diffusers.utils.dummy_{short_names.get(A , A )}_objects.py as the main " "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F"diffusers.utils.dummy_{short_names.get(A , A )}_objects.py. Run `make fix-copies` " "to fix this." ) if __name__ == "__main__": _a: Dict = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _a: Any = parser.parse_args() check_dummies(args.fix_and_overwrite)
162
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowerCamelCase = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: List[str] , UpperCamelCase__: int = None , UpperCamelCase__: List[str] = None , UpperCamelCase__: Tuple = None , UpperCamelCase__: str = None , UpperCamelCase__: List[Any] = None , UpperCamelCase__: List[Any] = False , ): SCREAMING_SNAKE_CASE__ = bnb_quantization_config.load_in_abit SCREAMING_SNAKE_CASE__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) SCREAMING_SNAKE_CASE__ = [] # custom device map if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(device_map.keys() ) > 1: SCREAMING_SNAKE_CASE__ = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: SCREAMING_SNAKE_CASE__ = get_keys_to_not_convert(UpperCamelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(UpperCamelCase__ ) # compatibility with peft SCREAMING_SNAKE_CASE__ = load_in_abit SCREAMING_SNAKE_CASE__ = load_in_abit SCREAMING_SNAKE_CASE__ = get_parameter_device(UpperCamelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) SCREAMING_SNAKE_CASE__ = replace_with_bnb_layers(UpperCamelCase__ , UpperCamelCase__ , modules_to_not_convert=UpperCamelCase__ ) # convert param to the right dtype SCREAMING_SNAKE_CASE__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: SCREAMING_SNAKE_CASE__ = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(UpperCamelCase__ ): param.to(UpperCamelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): SCREAMING_SNAKE_CASE__ = replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , modules_to_not_convert=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = get_quantized_model_device_map( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , max_memory=UpperCamelCase__ , no_split_module_classes=UpperCamelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=UpperCamelCase__ , offload_state_dict=UpperCamelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(UpperCamelCase__ , device_map=UpperCamelCase__ , offload_dir=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: List[Any]=None , UpperCamelCase__: Optional[Any]=None , UpperCamelCase__: List[str]=None ): if device_map is None: if torch.cuda.is_available(): SCREAMING_SNAKE_CASE__ = {'''''': torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{\'\':torch.cuda.current_device()}`.""" ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or """ """\'sequential\'.""" ) SCREAMING_SNAKE_CASE__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = special_dtypes SCREAMING_SNAKE_CASE__ = no_split_module_classes SCREAMING_SNAKE_CASE__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": SCREAMING_SNAKE_CASE__ = get_balanced_memory( UpperCamelCase__ , low_zero=(device_map == """balanced_low_0""") , max_memory=UpperCamelCase__ , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ = max_memory SCREAMING_SNAKE_CASE__ = infer_auto_device_map(UpperCamelCase__ , **UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # check if don't have any quantized module on the cpu SCREAMING_SNAKE_CASE__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules SCREAMING_SNAKE_CASE__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: str , UpperCamelCase__: Any=None , UpperCamelCase__: Union[str, Any]=None ): if modules_to_not_convert is None: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = _replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int]=None , UpperCamelCase__: Dict=None , ): SCREAMING_SNAKE_CASE__ = False for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ = [] current_key_name.append(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` SCREAMING_SNAKE_CASE__ = '''.'''.join(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: SCREAMING_SNAKE_CASE__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=UpperCamelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: SCREAMING_SNAKE_CASE__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can\'t be both False""" ) SCREAMING_SNAKE_CASE__ = module.weight.data if module.bias is not None: SCREAMING_SNAKE_CASE__ = module.bias.data bnb_module.requires_grad_(UpperCamelCase__ ) setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = True if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ = _replace_with_bnb_layers( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ): with init_empty_weights(): SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` SCREAMING_SNAKE_CASE__ = find_tied_parameters(UpperCamelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ , [] ) SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ = False if hasattr(UpperCamelCase__ , """base_model_prefix""" ): SCREAMING_SNAKE_CASE__ = not hasattr(UpperCamelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ = list(model.named_children() ) SCREAMING_SNAKE_CASE__ = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ = set(UpperCamelCase__ ) - set(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = list(set(UpperCamelCase__ ) ) + list(UpperCamelCase__ ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ = ['''.weight''', '''.bias'''] SCREAMING_SNAKE_CASE__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ = name.replace(UpperCamelCase__ , """""" ) filtered_module_names.append(UpperCamelCase__ ) return filtered_module_names def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): for m in model.modules(): if isinstance(UpperCamelCase__ , bnb.nn.Linearabit ): return True return False def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): return next(parameter.parameters() ).device def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any ): if fpaa_statistics is None: set_module_tensor_to_device(UpperCamelCase__ , UpperCamelCase__ , 0 , dtype=UpperCamelCase__ , value=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = param_name SCREAMING_SNAKE_CASE__ = model if "." in tensor_name: SCREAMING_SNAKE_CASE__ = tensor_name.split(""".""" ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) SCREAMING_SNAKE_CASE__ = new_module SCREAMING_SNAKE_CASE__ = splits[-1] # offload weights SCREAMING_SNAKE_CASE__ = False offload_weight(module._parameters[tensor_name] , UpperCamelCase__ , UpperCamelCase__ , index=UpperCamelCase__ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , UpperCamelCase__ , index=UpperCamelCase__ , ) else: offload_weight(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , index=UpperCamelCase__ ) offload_weight(UpperCamelCase__ , param_name.replace("""weight""" , """SCB""" ) , UpperCamelCase__ , index=UpperCamelCase__ ) set_module_tensor_to_device(UpperCamelCase__ , UpperCamelCase__ , """meta""" , dtype=UpperCamelCase__ , value=torch.empty(*param.size() ) )
717
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , UpperCamelCase__ , ) if isinstance(UpperCamelCase__ , torch.Tensor ): return image elif isinstance(UpperCamelCase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ = [image] if isinstance(image[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = image[0].size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 SCREAMING_SNAKE_CASE__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] SCREAMING_SNAKE_CASE__ = np.concatenate(UpperCamelCase__ , axis=0 ) SCREAMING_SNAKE_CASE__ = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE__ = image.transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__ = 2.0 * image - 1.0 SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) elif isinstance(image[0] , torch.Tensor ): SCREAMING_SNAKE_CASE__ = torch.cat(UpperCamelCase__ , dim=0 ) return image def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(UpperCamelCase__ , torch.Tensor ): return mask elif isinstance(UpperCamelCase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ = [mask] if isinstance(mask[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = mask[0].size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE__ = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] SCREAMING_SNAKE_CASE__ = np.concatenate(UpperCamelCase__ , axis=0 ) SCREAMING_SNAKE_CASE__ = mask.astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) elif isinstance(mask[0] , torch.Tensor ): SCREAMING_SNAKE_CASE__ = torch.cat(UpperCamelCase__ , dim=0 ) return mask class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = 42 def __init__( self :Any , __A :List[Any] , __A :Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() self.register_modules(unet=__A , scheduler=__A ) @torch.no_grad() def __call__( self :str , __A :Union[torch.Tensor, PIL.Image.Image] , __A :Union[torch.Tensor, PIL.Image.Image] , __A :int = 250 , __A :float = 0.0 , __A :int = 10 , __A :int = 10 , __A :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __A :Optional[str] = "pil" , __A :bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" SCREAMING_SNAKE_CASE__ = image SCREAMING_SNAKE_CASE__ = _preprocess_image(__A ) SCREAMING_SNAKE_CASE__ = original_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE__ = _preprocess_mask(__A ) SCREAMING_SNAKE_CASE__ = mask_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE__ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__A , __A ) and len(__A ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__A )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE__ = original_image.shape SCREAMING_SNAKE_CASE__ = randn_tensor(__A , generator=__A , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__A , __A , __A , self.device ) SCREAMING_SNAKE_CASE__ = eta SCREAMING_SNAKE_CASE__ = self.scheduler.timesteps[0] + 1 SCREAMING_SNAKE_CASE__ = generator[0] if isinstance(__A , __A ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual SCREAMING_SNAKE_CASE__ = self.unet(__A , __A ).sample # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step(__A , __A , __A , __A , __A , __A ).prev_sample else: # compute the reverse: x_t-1 -> x_t SCREAMING_SNAKE_CASE__ = self.scheduler.undo_step(__A , __A , __A ) SCREAMING_SNAKE_CASE__ = t SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__A ) if not return_dict: return (image,) return ImagePipelineOutput(images=__A )
59
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCAmelCase ( unittest.TestCase): def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = 1 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) return image @property def lowerCAmelCase ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __snake_case = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(SCREAMING_SNAKE_CASE_ ) @property def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' def extract(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): class lowerCAmelCase : def __init__( self ) -> Tuple: '''simple docstring''' __snake_case = torch.ones([0] ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' self.pixel_values.to(SCREAMING_SNAKE_CASE_ ) return self return Out() return extract def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case = self.dummy_cond_unet __snake_case = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) __snake_case = self.dummy_vae __snake_case = self.dummy_text_encoder __snake_case = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __snake_case = 77 __snake_case = self.dummy_image.to(SCREAMING_SNAKE_CASE_ ) __snake_case = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __snake_case = AltDiffusionImgaImgPipeline( unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , ) __snake_case = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=SCREAMING_SNAKE_CASE_ ) __snake_case = alt_pipe.to(SCREAMING_SNAKE_CASE_ ) alt_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = """A painting of a squirrel eating a burger""" __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = alt_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=SCREAMING_SNAKE_CASE_ , ) __snake_case = output.images __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = alt_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0] __snake_case = image[0, -3:, -3:, -1] __snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = self.dummy_cond_unet __snake_case = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) __snake_case = self.dummy_vae __snake_case = self.dummy_text_encoder __snake_case = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __snake_case = 77 __snake_case = self.dummy_image.to(SCREAMING_SNAKE_CASE_ ) # put models in fp16 __snake_case = unet.half() __snake_case = vae.half() __snake_case = bert.half() # make sure here that pndm scheduler skips prk __snake_case = AltDiffusionImgaImgPipeline( unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=self.dummy_extractor , ) __snake_case = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=SCREAMING_SNAKE_CASE_ ) __snake_case = alt_pipe.to(SCREAMING_SNAKE_CASE_ ) alt_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __snake_case = """A painting of a squirrel eating a burger""" __snake_case = torch.manual_seed(0 ) __snake_case = alt_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type='''np''' , image=SCREAMING_SNAKE_CASE_ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 __snake_case = init_image.resize((760, 504) ) __snake_case = """BAAI/AltDiffusion""" __snake_case = AltDiffusionImgaImgPipeline.from_pretrained( SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() __snake_case = """A fantasy landscape, trending on artstation""" __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , strength=0.75 , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE_ , output_type='''np''' , ) __snake_case = output.images[0] __snake_case = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) __snake_case = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase): def lowerCAmelCase ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case = init_image.resize((768, 512) ) __snake_case = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) __snake_case = """BAAI/AltDiffusion""" __snake_case = AltDiffusionImgaImgPipeline.from_pretrained( SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() __snake_case = """A fantasy landscape, trending on artstation""" __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , strength=0.75 , guidance_scale=7.5 , generator=SCREAMING_SNAKE_CASE_ , output_type='''np''' , ) __snake_case = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
24
def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Optional[int] ): """simple docstring""" UpperCAmelCase_: List[str] = 0 UpperCAmelCase_: Tuple = len(lowerCAmelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_: Dict = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase__ ): return None UpperCAmelCase_: str = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase_: int = left UpperCAmelCase_: str = point elif point > right: UpperCAmelCase_: List[str] = right UpperCAmelCase_: Optional[int] = point else: if item < current_item: UpperCAmelCase_: Optional[Any] = point - 1 else: UpperCAmelCase_: Any = point + 1 return None def lowerCAmelCase_ (lowerCAmelCase__: Dict , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Any , lowerCAmelCase__: Any ): """simple docstring""" if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_: Union[str, Any] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) elif point > right: return interpolation_search_by_recursion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , point - 1 ) else: return interpolation_search_by_recursion( lowerCAmelCase__ , lowerCAmelCase__ , point + 1 , lowerCAmelCase__ ) def lowerCAmelCase_ (lowerCAmelCase__: Dict ): """simple docstring""" if collection != sorted(lowerCAmelCase__ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys a : Optional[Any] = 0 if debug == 1: a : int = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') a : int = 67 a : Any = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('Not found')
556
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase_ :Any = DDIMPipeline UpperCAmelCase_ :str = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCAmelCase_ :List[str] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } UpperCAmelCase_ :Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCAmelCase_ :str = False def __lowerCAmelCase ( self ) -> Any: torch.manual_seed(0 ) lowerCAmelCase_ :Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) lowerCAmelCase_ :List[Any] = DDIMScheduler() lowerCAmelCase_ :int = {"""unet""": unet, """scheduler""": scheduler} return components def __lowerCAmelCase ( self , __A , __A=0 ) -> List[str]: if str(_a ).startswith("""mps""" ): lowerCAmelCase_ :int = torch.manual_seed(_a ) else: lowerCAmelCase_ :int = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ :List[Any] = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Optional[Any] = """cpu""" lowerCAmelCase_ :Any = self.get_dummy_components() lowerCAmelCase_ :int = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ :List[Any] = self.get_dummy_inputs(_a ) lowerCAmelCase_ :List[str] = pipe(**_a ).images lowerCAmelCase_ :Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowerCAmelCase_ :Union[str, Any] = np.array( [1.0_00E00, 5.7_17E-01, 4.7_17E-01, 1.0_00E00, 0.0_00E00, 1.0_00E00, 3.0_00E-04, 0.0_00E00, 9.0_00E-04] ) lowerCAmelCase_ :Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1E-3 ) def __lowerCAmelCase ( self ) -> List[str]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __lowerCAmelCase ( self ) -> str: super().test_save_load_local(expected_max_difference=3E-3 ) def __lowerCAmelCase ( self ) -> Dict: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __lowerCAmelCase ( self ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :str = """google/ddpm-cifar10-32""" lowerCAmelCase_ :Optional[int] = UNetaDModel.from_pretrained(_a ) lowerCAmelCase_ :Tuple = DDIMScheduler() lowerCAmelCase_ :str = DDIMPipeline(unet=_a , scheduler=_a ) ddim.to(_a ) ddim.set_progress_bar_config(disable=_a ) lowerCAmelCase_ :int = torch.manual_seed(0 ) lowerCAmelCase_ :Tuple = ddim(generator=_a , eta=0.0 , output_type="""numpy""" ).images lowerCAmelCase_ :Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ :Tuple = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :int = """google/ddpm-ema-bedroom-256""" lowerCAmelCase_ :Any = UNetaDModel.from_pretrained(_a ) lowerCAmelCase_ :str = DDIMScheduler.from_pretrained(_a ) lowerCAmelCase_ :Optional[Any] = DDIMPipeline(unet=_a , scheduler=_a ) ddpm.to(_a ) ddpm.set_progress_bar_config(disable=_a ) lowerCAmelCase_ :Dict = torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = ddpm(generator=_a , output_type="""numpy""" ).images lowerCAmelCase_ :Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase_ :Tuple = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
710
"""simple docstring""" import numpy as np def _snake_case ( lowercase__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def _snake_case ( lowercase__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
256
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _lowercase : List[str] = logging.get_logger(__name__) _lowercase : Tuple = { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "longformer" def __init__( self : List[str] , _lowercase : Union[List[int], int] = 5_12 , _lowercase : int = 2 , _lowercase : int = 1 , _lowercase : int = 0 , _lowercase : int = 2 , _lowercase : int = 3_05_22 , _lowercase : int = 7_68 , _lowercase : int = 12 , _lowercase : int = 12 , _lowercase : int = 30_72 , _lowercase : str = "gelu" , _lowercase : float = 0.1 , _lowercase : float = 0.1 , _lowercase : int = 5_12 , _lowercase : int = 2 , _lowercase : float = 0.02 , _lowercase : float = 1E-12 , _lowercase : bool = False , **_lowercase : List[str] , ): super().__init__(pad_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = attention_window __UpperCAmelCase = sep_token_id __UpperCAmelCase = bos_token_id __UpperCAmelCase = eos_token_id __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = onnx_export class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : List[str] , _lowercase : "PretrainedConfig" , _lowercase : str = "default" , _lowercase : "List[PatchingSpec]" = None ): super().__init__(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = True @property def a ( self : Dict ): if self.task == "multiple-choice": __UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def a ( self : int ): __UpperCAmelCase = super().outputs if self.task == "default": __UpperCAmelCase = {0: '''batch'''} return outputs @property def a ( self : Any ): return 1E-4 @property def a ( self : Optional[Any] ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def a ( self : List[str] , _lowercase : "PreTrainedTokenizerBase" , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): __UpperCAmelCase = super().generate_dummy_inputs( preprocessor=_lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __UpperCAmelCase = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global __UpperCAmelCase = 1 return inputs
49
from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : Optional[int] = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : int = 'van' def __init__( self , __UpperCamelCase=2_24 , __UpperCamelCase=3 , __UpperCamelCase=[7, 3, 3, 3] , __UpperCamelCase=[4, 2, 2, 2] , __UpperCamelCase=[64, 1_28, 3_20, 5_12] , __UpperCamelCase=[3, 3, 12, 3] , __UpperCamelCase=[8, 8, 4, 4] , __UpperCamelCase="gelu" , __UpperCamelCase=0.02 , __UpperCamelCase=1E-6 , __UpperCamelCase=1E-2 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , **__UpperCamelCase , ) -> Dict: '''simple docstring''' super().__init__(**__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = image_size __UpperCamelCase : int = num_channels __UpperCamelCase : str = patch_sizes __UpperCamelCase : Optional[int] = strides __UpperCamelCase : str = hidden_sizes __UpperCamelCase : str = depths __UpperCamelCase : Dict = mlp_ratios __UpperCamelCase : Union[str, Any] = hidden_act __UpperCamelCase : List[str] = initializer_range __UpperCamelCase : Tuple = layer_norm_eps __UpperCamelCase : List[Any] = layer_scale_init_value __UpperCamelCase : Optional[int] = drop_path_rate __UpperCamelCase : Optional[int] = dropout_rate
327
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _lowercase = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") _lowercase = parser.parse_args() if args.model_type == "bert": _lowercase = BertForMaskedLM.from_pretrained(args.model_name) _lowercase = "bert" else: raise ValueError("args.model_type should be \"bert\".") _lowercase = model.state_dict() _lowercase = {} for w in ["word_embeddings", "position_embeddings"]: _lowercase = state_dict[F"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: _lowercase = state_dict[F"{prefix}.embeddings.LayerNorm.{w}"] _lowercase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _lowercase = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] _lowercase = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] _lowercase = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] _lowercase = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] _lowercase = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] _lowercase = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] _lowercase = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] _lowercase = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 _lowercase = state_dict["cls.predictions.decoder.weight"] _lowercase = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: _lowercase = state_dict[F"cls.predictions.transform.dense.{w}"] _lowercase = state_dict[F"cls.predictions.transform.LayerNorm.{w}"] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
526
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowercase = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["MobileViTFeatureExtractor"] _lowercase = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
526
1
'''simple docstring''' import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _SCREAMING_SNAKE_CASE = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } _SCREAMING_SNAKE_CASE = logging.WARNING def _lowerCAmelCase ( ): __lowercase = os.getenv('''DATASETS_VERBOSITY''' , lowerCamelCase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option DATASETS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def _lowerCAmelCase ( ): return __name__.split('''.''' )[0] def _lowerCAmelCase ( ): return logging.getLogger(_get_library_name() ) def _lowerCAmelCase ( ): # Apply our default configuration to the library root logger. __lowercase = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def _lowerCAmelCase ( ): __lowercase = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def _lowerCAmelCase ( lowerCamelCase_ : Optional[str] = None ): if name is None: __lowercase = _get_library_name() return logging.getLogger(lowerCamelCase_ ) def _lowerCAmelCase ( ): return _get_library_root_logger().getEffectiveLevel() def _lowerCAmelCase ( lowerCamelCase_ : int ): _get_library_root_logger().setLevel(lowerCamelCase_ ) def _lowerCAmelCase ( ): return set_verbosity(lowerCamelCase_ ) def _lowerCAmelCase ( ): return set_verbosity(lowerCamelCase_ ) def _lowerCAmelCase ( ): return set_verbosity(lowerCamelCase_ ) def _lowerCAmelCase ( ): return set_verbosity(lowerCamelCase_ ) def _lowerCAmelCase ( ): __lowercase = False def _lowerCAmelCase ( ): __lowercase = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class __lowercase : '''simple docstring''' def __init__(self ,*_lowerCamelCase ,**_lowerCamelCase ) -> Tuple: # pylint: disable=unused-argument '''simple docstring''' __lowercase = args[0] if args else None def __iter__(self ) -> Any: '''simple docstring''' return iter(self._iterator ) def __getattr__(self ,_lowerCamelCase ) -> Tuple: '''simple docstring''' def empty_fn(*_lowerCamelCase ,**_lowerCamelCase ): # pylint: disable=unused-argument return return empty_fn def __enter__(self ) -> Union[str, Any]: '''simple docstring''' return self def __exit__(self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Any: '''simple docstring''' return _SCREAMING_SNAKE_CASE = True class __lowercase : '''simple docstring''' def __call__(self ,*_lowerCamelCase ,_lowerCamelCase=False ,**_lowerCamelCase ) -> str: '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*_lowerCamelCase ,**_lowerCamelCase ) else: return EmptyTqdm(*_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ,*_lowerCamelCase ,**_lowerCamelCase ) -> List[str]: '''simple docstring''' __lowercase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_lowerCamelCase ,**_lowerCamelCase ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() _SCREAMING_SNAKE_CASE = _tqdm_cls() def _lowerCAmelCase ( ): global _tqdm_active return bool(_tqdm_active ) def _lowerCAmelCase ( ): global _tqdm_active __lowercase = True def _lowerCAmelCase ( ): global _tqdm_active __lowercase = False
502
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowercase : '''simple docstring''' @staticmethod def _UpperCAmelCase (*_lowerCamelCase ,**_lowerCamelCase ) -> int: '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' a : Optional[int] = MODEL_FOR_OBJECT_DETECTION_MAPPING def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) -> Optional[Any]: '''simple docstring''' __lowercase = ObjectDetectionPipeline(model=_lowerCamelCase ,image_processor=_lowerCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def _UpperCAmelCase (self ,_lowerCamelCase ,_lowerCamelCase ) -> Tuple: '''simple docstring''' __lowercase = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ,threshold=0.0 ) self.assertGreater(len(_lowerCamelCase ) ,0 ) for detected_object in outputs: self.assertEqual( _lowerCamelCase ,{ '''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase ), '''box''': {'''xmin''': ANY(_lowerCamelCase ), '''ymin''': ANY(_lowerCamelCase ), '''xmax''': ANY(_lowerCamelCase ), '''ymax''': ANY(_lowerCamelCase )}, } ,) import datasets __lowercase = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' ,'''image''' ,split='''test''' ) __lowercase = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] __lowercase = object_detector(_lowerCamelCase ,threshold=0.0 ) self.assertEqual(len(_lowerCamelCase ) ,len(_lowerCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(_lowerCamelCase ) ,0 ) for detected_object in outputs: self.assertEqual( _lowerCamelCase ,{ '''score''': ANY(_lowerCamelCase ), '''label''': ANY(_lowerCamelCase ), '''box''': {'''xmin''': ANY(_lowerCamelCase ), '''ymin''': ANY(_lowerCamelCase ), '''xmax''': ANY(_lowerCamelCase ), '''ymax''': ANY(_lowerCamelCase )}, } ,) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' pass @require_torch def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = '''hf-internal-testing/tiny-detr-mobilenetsv3''' __lowercase = AutoModelForObjectDetection.from_pretrained(_lowerCamelCase ) __lowercase = AutoFeatureExtractor.from_pretrained(_lowerCamelCase ) __lowercase = ObjectDetectionPipeline(model=_lowerCamelCase ,feature_extractor=_lowerCamelCase ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ,threshold=0.0 ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ] ,) __lowercase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ,threshold=0.0 ,) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], [ {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_3_7_6, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ] ,) @require_torch @slow def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' __lowercase = '''facebook/detr-resnet-50''' __lowercase = AutoModelForObjectDetection.from_pretrained(_lowerCamelCase ) __lowercase = AutoFeatureExtractor.from_pretrained(_lowerCamelCase ) __lowercase = ObjectDetectionPipeline(model=_lowerCamelCase ,feature_extractor=_lowerCamelCase ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] ,) __lowercase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] ,) @require_torch @slow def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = '''facebook/detr-resnet-50''' __lowercase = pipeline('''object-detection''' ,model=_lowerCamelCase ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] ,) __lowercase = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_9_8_2, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_9_6_0, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_9_5_5, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] ,) @require_torch @slow def _UpperCAmelCase (self ) -> Any: '''simple docstring''' __lowercase = 0.9_9_8_5 __lowercase = '''facebook/detr-resnet-50''' __lowercase = pipeline('''object-detection''' ,model=_lowerCamelCase ) __lowercase = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ,threshold=_lowerCamelCase ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.9_9_8_8, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_9_8_7, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] ,) @require_torch @require_pytesseract @slow def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = '''Narsil/layoutlmv3-finetuned-funsd''' __lowercase = 0.9_9_9_3 __lowercase = pipeline('''object-detection''' ,model=_lowerCamelCase ,threshold=_lowerCamelCase ) __lowercase = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(_lowerCamelCase ,decimals=4 ) ,[ {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, {'''score''': 0.9_9_9_3, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, ] ,)
502
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _UpperCAmelCase : def __init__( self : Any , a : Tuple , a : Any=1_3 , a : Union[str, Any]=7 , a : Any=True , a : Optional[int]=True , a : Optional[int]=True , a : int=True , a : Union[str, Any]=9_9 , a : Any=[1, 1, 2] , a : List[Any]=1 , a : Union[str, Any]=3_2 , a : Any=4 , a : Optional[int]=8 , a : Optional[Any]=3_7 , a : List[Any]="gelu_new" , a : Tuple=0.1 , a : Tuple=0.1 , a : Dict=0.0 , a : Optional[int]=5_1_2 , a : Dict=3 , a : Dict=0.02 , a : Dict=3 , a : Optional[Any]=4 , a : List[Any]=None , a : Optional[Any]=False , ): '''simple docstring''' lowercase_ : Dict = parent lowercase_ : int = batch_size lowercase_ : Optional[int] = seq_length lowercase_ : Optional[Any] = is_training lowercase_ : Dict = use_input_mask lowercase_ : Optional[int] = use_token_type_ids lowercase_ : Any = use_labels lowercase_ : Optional[Any] = vocab_size lowercase_ : int = block_sizes lowercase_ : List[str] = num_decoder_layers lowercase_ : Dict = d_model lowercase_ : Optional[int] = n_head lowercase_ : str = d_head lowercase_ : Dict = d_inner lowercase_ : List[str] = hidden_act lowercase_ : int = hidden_dropout lowercase_ : Optional[int] = attention_dropout lowercase_ : Dict = activation_dropout lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : Tuple = type_vocab_size lowercase_ : Optional[Any] = 2 lowercase_ : List[str] = num_labels lowercase_ : List[str] = num_choices lowercase_ : int = scope lowercase_ : Optional[int] = initializer_std # Used in the tests to check the size of the first attention layer lowercase_ : str = n_head # Used in the tests to check the size of the first hidden state lowercase_ : Optional[int] = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase_ : Tuple = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase_ : List[str] = self.num_hidden_layers + 2 def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : int = None if self.use_input_mask: lowercase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : int = None if self.use_token_type_ids: lowercase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : int = None lowercase_ : Dict = None lowercase_ : str = None if self.use_labels: lowercase_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Optional[Any] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase__ ( self : int , a : Tuple , a : List[Any] , a : List[str] , a : List[str] , a : Tuple , a : Union[str, Any] , a : Union[str, Any] , ): '''simple docstring''' lowercase_ : int = TFFunnelModel(config=a ) lowercase_ : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase_ : int = model(a ) lowercase_ : Dict = [input_ids, input_mask] lowercase_ : Tuple = model(a ) lowercase_ : List[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowercase_ : str = False lowercase_ : Optional[Any] = TFFunnelModel(config=a ) lowercase_ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowercase_ : Optional[int] = False lowercase_ : Dict = TFFunnelModel(config=a ) lowercase_ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowerCAmelCase__ ( self : str , a : str , a : Optional[int] , a : Tuple , a : Any , a : List[Any] , a : str , a : Any , ): '''simple docstring''' lowercase_ : int = TFFunnelBaseModel(config=a ) lowercase_ : str = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase_ : Optional[int] = model(a ) lowercase_ : Optional[int] = [input_ids, input_mask] lowercase_ : int = model(a ) lowercase_ : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowercase_ : List[str] = False lowercase_ : Optional[int] = TFFunnelBaseModel(config=a ) lowercase_ : Optional[int] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowercase_ : str = False lowercase_ : Dict = TFFunnelBaseModel(config=a ) lowercase_ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowerCAmelCase__ ( self : int , a : Dict , a : int , a : Optional[int] , a : Dict , a : Any , a : Optional[int] , a : Optional[Any] , ): '''simple docstring''' lowercase_ : Optional[Any] = TFFunnelForPreTraining(config=a ) lowercase_ : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase_ : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self : str , a : Dict , a : Any , a : Optional[Any] , a : str , a : str , a : Union[str, Any] , a : List[str] , ): '''simple docstring''' lowercase_ : Optional[Any] = TFFunnelForMaskedLM(config=a ) lowercase_ : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase_ : int = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : Tuple , a : Optional[int] , a : List[Any] , a : Tuple , a : str , a : Dict , a : int , a : Dict , ): '''simple docstring''' lowercase_ : List[str] = self.num_labels lowercase_ : List[Any] = TFFunnelForSequenceClassification(config=a ) lowercase_ : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase_ : Dict = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : List[Any] , a : List[str] , a : Any , a : int , a : str , a : Optional[Any] , a : List[str] , a : Tuple , ): '''simple docstring''' lowercase_ : List[str] = self.num_choices lowercase_ : Tuple = TFFunnelForMultipleChoice(config=a ) lowercase_ : str = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Union[str, Any] = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Tuple = tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Tuple = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowercase_ : List[str] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self : int , a : int , a : List[Any] , a : Any , a : int , a : Union[str, Any] , a : Union[str, Any] , a : Any , ): '''simple docstring''' lowercase_ : Tuple = self.num_labels lowercase_ : Tuple = TFFunnelForTokenClassification(config=a ) lowercase_ : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase_ : str = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self : List[str] , a : List[str] , a : Any , a : int , a : Optional[int] , a : str , a : Any , a : Union[str, Any] , ): '''simple docstring''' lowercase_ : List[str] = TFFunnelForQuestionAnswering(config=a ) lowercase_ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase_ : Dict = model(a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[str] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = config_and_inputs lowercase_ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( snake_case , snake_case , unittest.TestCase ): __lowerCamelCase: Union[str, Any] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __lowerCamelCase: str = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase: Tuple = False __lowerCamelCase: Union[str, Any] = False def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : List[str] = TFFunnelModelTester(self ) lowercase_ : int = ConfigTester(self , config_class=a ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) @require_tf class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __lowerCamelCase: int = False __lowerCamelCase: List[Any] = False def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[Any] = TFFunnelModelTester(self , base=a ) lowercase_ : int = ConfigTester(self , config_class=a ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*a ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a )
640
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Any = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase_ : List[str] = True for i in range(0 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : Union[str, Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : Any = False for i in range(1 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : Tuple = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : List[Any] = False return input_list if __name__ == "__main__": print('Enter list to be sorted') UpperCamelCase__ = [int(x) for x in input().split()] # inputing elements of the list in one line UpperCamelCase__ = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
640
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _snake_case ( ): """simple docstring""" print("""Making key files...""" ) make_key_files("""rsa""" , 1024 ) print("""Key files generation successful.""" ) def _snake_case ( A_ : int ): """simple docstring""" print("""Generating prime p...""" ) a_ : Any = rabinMiller.generate_large_prime(A_ ) print("""Generating prime q...""" ) a_ : Optional[int] = rabinMiller.generate_large_prime(A_ ) a_ : str = p * q print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" ) while True: a_ : Optional[int] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(A_ , (p - 1) * (q - 1) ) == 1: break print("""Calculating d that is mod inverse of e...""" ) a_ : Union[str, Any] = cryptoMath.find_mod_inverse(A_ , (p - 1) * (q - 1) ) a_ : List[Any] = (n, e) a_ : List[str] = (n, d) return (public_key, private_key) def _snake_case ( A_ : str , A_ : int ): """simple docstring""" if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print("""\nWARNING:""" ) print( f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' """Use a different name or delete these files and re-run this program.""" ) sys.exit() a_ , a_ : Optional[Any] = generate_key(A_ ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , """w""" ) as out_file: out_file.write(f'''{key_size},{public_key[0]},{public_key[1]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , """w""" ) as out_file: out_file.write(f'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
577
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights a_ : Union[str, Any] = FlaxDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) a_ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCAmelCase_ , os.listdir(lowerCAmelCase_ )[0] , """snapshots""" ) )] a_ : Any = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(""".bin""" ) for f in files ) @slow @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-pipe""" , safety_checker=lowerCAmelCase_ ) a_ : Optional[int] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) a_ : List[str] = jax.random.PRNGKey(0 ) a_ : Optional[Any] = 4 a_ : Dict = jax.device_count() a_ : Any = num_samples * [prompt] a_ : Optional[Any] = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng a_ : str = replicate(lowerCAmelCase_ ) a_ : List[Any] = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Tuple = shard(lowerCAmelCase_ ) a_ : Any = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1E-3 assert np.abs(np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 49947.875 ) < 5E-1 a_ : List[str] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCAmelCase_ ) == num_samples def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""flax""" , safety_checker=lowerCAmelCase_ ) a_ : int = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) a_ : int = jax.random.PRNGKey(0 ) a_ : Any = 50 a_ : List[str] = jax.device_count() a_ : Any = num_samples * [prompt] a_ : List[str] = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng a_ : int = replicate(lowerCAmelCase_ ) a_ : Optional[int] = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : int = shard(lowerCAmelCase_ ) a_ : Any = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 2383808.2) ) < 5E-1 def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : Dict = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase_ ) a_ : Optional[int] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) a_ : List[Any] = jax.random.PRNGKey(0 ) a_ : str = 50 a_ : List[Any] = jax.device_count() a_ : Optional[int] = num_samples * [prompt] a_ : List[str] = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng a_ : Optional[int] = replicate(lowerCAmelCase_ ) a_ : Dict = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Union[str, Any] = shard(lowerCAmelCase_ ) a_ : List[Any] = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa ) a_ : Optional[Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) a_ : Optional[Any] = jax.random.PRNGKey(0 ) a_ : str = 50 a_ : Optional[int] = jax.device_count() a_ : List[Any] = num_samples * [prompt] a_ : List[Any] = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng a_ : str = replicate(lowerCAmelCase_ ) a_ : Dict = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : Optional[Any] = shard(lowerCAmelCase_ ) a_ : Optional[Any] = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , set_alpha_to_one=lowerCAmelCase_ , steps_offset=1 , ) a_ , a_ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , ) a_ : Optional[Any] = scheduler.create_state() a_ : Dict = scheduler_state a_ : int = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) a_ : Tuple = jax.random.PRNGKey(0 ) a_ : Tuple = 50 a_ : int = jax.device_count() a_ : Any = num_samples * [prompt] a_ : Optional[int] = pipeline.prepare_inputs(lowerCAmelCase_ ) # shard inputs and rng a_ : Dict = replicate(lowerCAmelCase_ ) a_ : List[Any] = jax.random.split(lowerCAmelCase_ , lowerCAmelCase_ ) a_ : int = shard(lowerCAmelCase_ ) a_ : int = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase_ , dtype=np.floataa ).sum() - 2347693.5) ) < 5E-1 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = ( """A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of""" """ field, close up, split lighting, cinematic""" ) a_ : Optional[Any] = jax.device_count() a_ : Optional[int] = num_samples * [prompt] a_ : Optional[int] = jax.random.split(jax.random.PRNGKey(0 ) , lowerCAmelCase_ ) a_ , a_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase_ , ) a_ : Dict = replicate(lowerCAmelCase_ ) a_ : Any = pipeline.prepare_inputs(lowerCAmelCase_ ) a_ : Optional[int] = shard(lowerCAmelCase_ ) a_ : str = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) a_ : Union[str, Any] = images[2, 0, 2_56, 10:17, 1] # With memory efficient attention a_ , a_ : str = FlaxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""bf16""" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase_ , use_memory_efficient_attention=lowerCAmelCase_ , ) a_ : Optional[Any] = replicate(lowerCAmelCase_ ) a_ : int = pipeline.prepare_inputs(lowerCAmelCase_ ) a_ : Optional[int] = shard(lowerCAmelCase_ ) a_ : Union[str, Any] = pipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ).images assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3) a_ : Optional[Any] = images[2, 0, 2_56, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
577
1
from typing import TYPE_CHECKING from ...utils import _LazyModule _A : str = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _A : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
189
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
189
1
import argparse import copy def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = {} with open(lowercase__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __SCREAMING_SNAKE_CASE : Optional[Any] = [] _list.append([line.split()[1], line.split()[2]] ) __SCREAMING_SNAKE_CASE : Dict = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __SCREAMING_SNAKE_CASE : List[Any] = [] _list.append([line.split()[0], line.split()[2]] ) __SCREAMING_SNAKE_CASE : Tuple = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _UpperCamelCase ( lowercase__ , lowercase__ ): with open(lowercase__ ) as f: __SCREAMING_SNAKE_CASE : Optional[int] = f.read(1 ) __SCREAMING_SNAKE_CASE : Any = start_node __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Dict = start_node __SCREAMING_SNAKE_CASE : List[Any] = 0 while visiting not in first_solution: __SCREAMING_SNAKE_CASE : Dict = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowercase__ ) and k[0] not in first_solution: __SCREAMING_SNAKE_CASE : Tuple = k[1] __SCREAMING_SNAKE_CASE : str = k[0] first_solution.append(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = distance_of_first_solution + int(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = best_node first_solution.append(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __SCREAMING_SNAKE_CASE : Union[str, Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for n in solution[1:-1]: __SCREAMING_SNAKE_CASE : Union[str, Any] = solution.index(lowercase__ ) for kn in solution[1:-1]: __SCREAMING_SNAKE_CASE : Union[str, Any] = solution.index(lowercase__ ) if n == kn: continue __SCREAMING_SNAKE_CASE : str = copy.deepcopy(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = kn __SCREAMING_SNAKE_CASE : List[str] = n __SCREAMING_SNAKE_CASE : List[Any] = 0 for k in _tmp[:-1]: __SCREAMING_SNAKE_CASE : Optional[int] = _tmp[_tmp.index(lowercase__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __SCREAMING_SNAKE_CASE : int = distance + int(i[1] ) _tmp.append(lowercase__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __SCREAMING_SNAKE_CASE : List[str] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowercase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : List[str] = first_solution __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Dict = distance_of_first_solution __SCREAMING_SNAKE_CASE : Union[str, Any] = solution while count <= iters: __SCREAMING_SNAKE_CASE : Dict = find_neighborhood(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Any = neighborhood[index_of_best_solution] __SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase__ ) - 1 __SCREAMING_SNAKE_CASE : List[str] = False while not found: __SCREAMING_SNAKE_CASE : Any = 0 while i < len(lowercase__ ): if best_solution[i] != solution[i]: __SCREAMING_SNAKE_CASE : Any = best_solution[i] __SCREAMING_SNAKE_CASE : Optional[Any] = solution[i] break __SCREAMING_SNAKE_CASE : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : List[str] = best_solution[:-1] __SCREAMING_SNAKE_CASE : Optional[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __SCREAMING_SNAKE_CASE : List[Any] = cost __SCREAMING_SNAKE_CASE : List[Any] = solution else: __SCREAMING_SNAKE_CASE : Optional[Any] = index_of_best_solution + 1 __SCREAMING_SNAKE_CASE : List[str] = neighborhood[index_of_best_solution] if len(lowercase__ ) >= size: tabu_list.pop(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = count + 1 return best_solution_ever, best_cost def _UpperCamelCase ( lowercase__=None ): __SCREAMING_SNAKE_CASE : int = generate_neighbours(args.File ) __SCREAMING_SNAKE_CASE : str = generate_first_solution( args.File , lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = tabu_search( lowercase__ , lowercase__ , lowercase__ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
696
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( lowerCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __magic_name__ : Dict =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __magic_name__ : Union[str, Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __magic_name__ : List[Any] =proportion * 4 print(F"The estimated value of pi is {pi_estimate}" ) print(F"The numpy value of pi is {pi}" ) print(F"The total error is {abs(pi - pi_estimate )}" ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): def identity_function(lowerCamelCase ) -> float: return x __magic_name__ : Optional[int] =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __magic_name__ : str =(max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {expected_value}" ) print(F"Total error is {abs(estimated_value - expected_value )}" ) print("""******************""" ) def lowerCAmelCase_ ( lowerCamelCase ): def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __magic_name__ : Dict =area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F"Estimated value is {estimated_value}" ) print(F"Expected value is {pi}" ) print(F"Total error is {abs(estimated_value - pi )}" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
0
"""simple docstring""" import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def UpperCamelCase ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , _lowerCAmelCase ) __a = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __a = dataset_size < in_memory_max_size else: __a = False __a = is_small_dataset(_lowerCAmelCase ) assert result == expected
702
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def UpperCamelCase ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path __a = quote(_lowerCAmelCase ) return hfh.hf_hub_url(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" , revision=_lowerCAmelCase )
173
0
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() A = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=True ) -> Optional[Any]: """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(f"Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}." ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __UpperCAmelCase : List[str] = cached_file(UpperCamelCase , UpperCamelCase , force_download=not use_cached_models ) __UpperCAmelCase : Tuple = config_class.from_json_file(UpperCamelCase ) __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : str = True print(f"Building TensorFlow model from configuration: {config}" ) __UpperCAmelCase : Union[str, Any] = model_class(UpperCamelCase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __UpperCAmelCase : int = cached_file( UpperCamelCase , UpperCamelCase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __UpperCAmelCase : Union[str, Any] = load_pytorch_checkpoint_in_tfa_model(UpperCamelCase , UpperCamelCase ) if compare_with_pt_model: __UpperCAmelCase : int = tf_model(tf_model.dummy_inputs , training=UpperCamelCase ) # build the network __UpperCAmelCase : str = torch.load(UpperCamelCase , map_location="cpu" ) __UpperCAmelCase : List[Any] = pt_model_class.from_pretrained( pretrained_model_name_or_path=UpperCamelCase , config=UpperCamelCase , state_dict=UpperCamelCase ) with torch.no_grad(): __UpperCAmelCase : Dict = pt_model(**pt_model.dummy_inputs ) __UpperCAmelCase : Optional[int] = pto[0].numpy() __UpperCAmelCase : List[str] = tfo[0].numpy() __UpperCAmelCase : List[Any] = np.amax(np.abs(np_pt - np_tf ) ) print(f"Max absolute difference between models outputs {diff}" ) assert diff <= 2e-2, f"Error, model absolute difference is >2e-2: {diff}" # Save pytorch-model print(f"Save TensorFlow model to {tf_dump_path}" ) tf_model.save_weights(UpperCamelCase , save_format="h5" ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False , ) -> Any: """simple docstring""" if args_model_type is None: __UpperCAmelCase : Dict = list(MODEL_CLASSES.keys() ) else: __UpperCAmelCase : List[Any] = [args_model_type] for j, model_type in enumerate(UpperCamelCase , start=1 ): print("=" * 100 ) print(f" Converting model type {j}/{len(UpperCamelCase )}: {model_type}" ) print("=" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f"Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}." ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __UpperCAmelCase : List[Any] = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __UpperCAmelCase : int = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(UpperCamelCase , UpperCamelCase ) , start=1 ): print("-" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f" Skipping finetuned checkpoint {model_shortcut_name}" ) continue __UpperCAmelCase : Optional[Any] = model_shortcut_name elif only_convert_finetuned_models: print(f" Skipping not finetuned checkpoint {model_shortcut_name}" ) continue print( f" Converting checkpoint {i}/{len(UpperCamelCase )}: {model_shortcut_name} - model_type {model_type}" ) print("-" * 100 ) if config_shortcut_name in aws_config_map: __UpperCAmelCase : Dict = cached_file(UpperCamelCase , UpperCamelCase , force_download=not use_cached_models ) else: __UpperCAmelCase : Optional[Any] = config_shortcut_name if model_shortcut_name in aws_model_maps: __UpperCAmelCase : int = cached_file(UpperCamelCase , UpperCamelCase , force_download=not use_cached_models ) else: __UpperCAmelCase : List[str] = model_shortcut_name if os.path.isfile(UpperCamelCase ): __UpperCAmelCase : Tuple = "converted_model" convert_pt_checkpoint_to_tf( model_type=UpperCamelCase , pytorch_checkpoint_path=UpperCamelCase , config_file=UpperCamelCase , tf_dump_path=os.path.join(UpperCamelCase , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=UpperCamelCase , ) if remove_cached_files: os.remove(UpperCamelCase ) os.remove(UpperCamelCase ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( f'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") A = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
77
from __future__ import annotations import queue class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase ): """simple docstring""" a__ : Union[str, Any] = data a__ : Tuple = None a__ : Optional[Any] = None def SCREAMING_SNAKE_CASE( ) -> TreeNode: print("\n********Press N to stop entering at any point of time********\n" ) a__ : Tuple = input("Enter the value of the root node: " ).strip().lower() a__ : queue.Queue = queue.Queue() a__ : str = TreeNode(int(__UpperCamelCase ) ) q.put(__UpperCamelCase ) while not q.empty(): a__ : str = q.get() a__ : Optional[Any] = F'Enter the left node of {node_found.data}: ' a__ : List[Any] = input(__UpperCamelCase ).strip().lower() or "n" if check == "n": return tree_node a__ : Optional[int] = TreeNode(int(__UpperCamelCase ) ) a__ : List[str] = left_node q.put(__UpperCamelCase ) a__ : Dict = F'Enter the right node of {node_found.data}: ' a__ : List[str] = input(__UpperCamelCase ).strip().lower() or "n" if check == "n": return tree_node a__ : str = TreeNode(int(__UpperCamelCase ) ) a__ : Any = right_node q.put(__UpperCamelCase ) raise def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return a__ : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): a__ : Tuple = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return a__ : queue.Queue = queue.Queue() q.put(__UpperCamelCase ) while not q.empty(): a__ : int = [] while not q.empty(): a__ : Union[str, Any] = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCamelCase ) def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return a__ : list[TreeNode] = [] a__ : Optional[int] = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(__UpperCamelCase ) a__ : int = n.left # end of while means current node doesn't have left child a__ : Dict = stack.pop() # start to traverse its right child a__ : str = n.right def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return a__ : list[TreeNode] = [] a__ : Dict = node while n or stack: while n: stack.append(__UpperCamelCase ) a__ : List[Any] = n.left a__ : str = stack.pop() print(n.data , end="," ) a__ : Any = n.right def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> None: if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not node: return a__ , a__ : List[str] = [], [] a__ : List[Any] = node stacka.append(__UpperCamelCase ) while stacka: # to find the reversed order of post order, store it in stack2 a__ : Optional[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCamelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def SCREAMING_SNAKE_CASE( __UpperCamelCase = "" , __UpperCamelCase=50 , __UpperCamelCase="*" ) -> str: if not s: return "\n" + width * char a__ , a__ : int = divmod(width - len(__UpperCamelCase ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) lowerCamelCase = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
191
0
lowerCamelCase_ = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
161
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Tuple = 'vit_msn' def __init__( self , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1e-06 , lowerCamelCase=224 , lowerCamelCase=16 , lowerCamelCase=3 , lowerCamelCase=True , **lowerCamelCase , ) -> Optional[int]: super().__init__(**lowerCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
161
1
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" while b: UpperCAmelCase , UpperCAmelCase = b, a % b return a def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(_lowerCAmelCase , a % b ) def __UpperCamelCase ( ): """simple docstring""" print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
333
from abc import ABC, abstractmethod from argparse import ArgumentParser class __magic_name__ ( _a): @staticmethod @abstractmethod def _UpperCAmelCase ( __SCREAMING_SNAKE_CASE : ArgumentParser ): raise NotImplementedError() @abstractmethod def _UpperCAmelCase ( self : List[Any] ): raise NotImplementedError()
333
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : List[Any] = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __lowerCAmelCase ( __a ): snake_case : Optional[Any] = """mobilenet_v1""" def __init__(self , lowerCAmelCase__=3 , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=1.0 , lowerCAmelCase__=8 , lowerCAmelCase__="relu6" , lowerCAmelCase__=True , lowerCAmelCase__=0.9_9_9 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=0.0_0_1 , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : List[Any] = image_size _UpperCAmelCase : str = depth_multiplier _UpperCAmelCase : Optional[Any] = min_depth _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Optional[int] = tf_padding _UpperCAmelCase : int = classifier_dropout_prob _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps class __lowerCAmelCase ( __a ): snake_case : int = version.parse("""1.11""" ) @property def snake_case_ (self ): return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def snake_case_ (self ): if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def snake_case_ (self ): return 1e-4
156
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowerCAmelCase ( unittest.TestCase ): snake_case : int = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING snake_case : str = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Tuple = AudioClassificationPipeline(model=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) # test with a raw waveform _UpperCAmelCase : Any = np.zeros((3_4_0_0_0,) ) _UpperCAmelCase : Optional[Any] = np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase , _UpperCAmelCase : str = examples _UpperCAmelCase : Union[str, Any] = audio_classifier(lowerCAmelCase__ ) # by default a model is initialized with num_labels=2 self.assertEqual( lowerCAmelCase__ , [ {"""score""": ANY(lowerCAmelCase__ ), """label""": ANY(lowerCAmelCase__ )}, {"""score""": ANY(lowerCAmelCase__ ), """label""": ANY(lowerCAmelCase__ )}, ] , ) _UpperCAmelCase : int = audio_classifier(lowerCAmelCase__ , top_k=1 ) self.assertEqual( lowerCAmelCase__ , [ {"""score""": ANY(lowerCAmelCase__ ), """label""": ANY(lowerCAmelCase__ )}, ] , ) self.run_torchaudio(lowerCAmelCase__ ) @require_torchaudio def snake_case_ (self , lowerCAmelCase__ ): import datasets # test with a local file _UpperCAmelCase : Optional[int] = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) _UpperCAmelCase : List[str] = dataset[0]["""audio"""]["""array"""] _UpperCAmelCase : Union[str, Any] = audio_classifier(lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ {"""score""": ANY(lowerCAmelCase__ ), """label""": ANY(lowerCAmelCase__ )}, {"""score""": ANY(lowerCAmelCase__ ), """label""": ANY(lowerCAmelCase__ )}, ] , ) @require_torch def snake_case_ (self ): _UpperCAmelCase : int = """anton-l/wav2vec2-random-tiny-classifier""" _UpperCAmelCase : List[Any] = pipeline("""audio-classification""" , model=lowerCAmelCase__ ) _UpperCAmelCase : str = np.ones((8_0_0_0,) ) _UpperCAmelCase : Tuple = audio_classifier(lowerCAmelCase__ , top_k=4 ) _UpperCAmelCase : List[Any] = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] _UpperCAmelCase : Any = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _UpperCAmelCase : Any = {"""array""": np.ones((8_0_0_0,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _UpperCAmelCase : List[Any] = audio_classifier(lowerCAmelCase__ , top_k=4 ) self.assertIn(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def snake_case_ (self ): import datasets _UpperCAmelCase : int = """superb/wav2vec2-base-superb-ks""" _UpperCAmelCase : List[Any] = pipeline("""audio-classification""" , model=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) _UpperCAmelCase : Union[str, Any] = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) _UpperCAmelCase : Optional[int] = audio_classifier(lowerCAmelCase__ , top_k=4 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def snake_case_ (self ): pass
156
1
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _UpperCamelCase ( UpperCamelCase__ ): if not is_accelerate_available(): return method UpperCAmelCase__ : Any = version.parse(accelerate.__version__ ).base_version if version.parse(UpperCamelCase__ ) < version.parse("""0.17.0""" ): return method def wrapper(self , *UpperCamelCase__ , **UpperCamelCase__ ): if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self , *UpperCamelCase__ , **UpperCamelCase__ ) return wrapper
407
'''simple docstring''' import re from filelock import FileLock try: import nltk __A =True except (ImportError, ModuleNotFoundError): __A =False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _UpperCamelCase ( UpperCamelCase__ ): re.sub("""<n>""" , """""" , UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
407
1
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): # Initialise PyTorch model snake_case__ = RemBertConfig.from_json_file(__lowerCAmelCase ) print("Building PyTorch model from configuration: {}".format(str(__lowerCAmelCase ) ) ) snake_case__ = RemBertModel(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model print("Save PyTorch model to {}".format(__lowerCAmelCase ) ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--rembert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained RemBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
530
from math import factorial def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase = 100 ): return sum(int(__lowerCAmelCase ) for x in str(factorial(__lowerCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
530
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A__ : Optional[Any] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = ['YolosFeatureExtractor'] A__ : Any = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys A__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
153
"""simple docstring""" import math def lowercase ( __UpperCamelCase = 100 ) -> int: __magic_name__ = sum(i * i for i in range(1 , n + 1 ) ) __magic_name__ = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
490
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : List[Any] = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[int] = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __lowercase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE ( snake_case, snake_case): __snake_case = qiskit.Aer.get_backend('''aer_simulator''') # Create a Quantum Circuit acting on the q register __snake_case = qiskit.QuantumCircuit(snake_case, snake_case) # Map the quantum measurement to the classical bits circuit.measure([0], [0]) # Execute the circuit on the simulator __snake_case = qiskit.execute(snake_case, snake_case, shots=10_00) # Return the histogram data of the results of the experiment. return job.result().get_counts(snake_case) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
93
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase_ = logging.get_logger(__name__) # General docstring UpperCAmelCase_ = "RegNetConfig" # Base docstring UpperCAmelCase_ = "facebook/regnet-y-040" UpperCAmelCase_ = [1, 10_88, 7, 7] # Image classification docstring UpperCAmelCase_ = "facebook/regnet-y-040" UpperCAmelCase_ = "tabby, tabby cat" UpperCAmelCase_ = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 3 , _UpperCamelCase = 1 , _UpperCamelCase = 1 , _UpperCamelCase = "relu" , ): super().__init__() _UpperCAmelCase = nn.Convad( _UpperCamelCase , _UpperCamelCase , kernel_size=_UpperCamelCase , stride=_UpperCamelCase , padding=kernel_size // 2 , groups=_UpperCamelCase , bias=_UpperCamelCase , ) _UpperCAmelCase = nn.BatchNormad(_UpperCamelCase ) _UpperCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.convolution(_UpperCamelCase ) _UpperCAmelCase = self.normalization(_UpperCamelCase ) _UpperCAmelCase = self.activation(_UpperCamelCase ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase ): super().__init__() _UpperCAmelCase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) _UpperCAmelCase = config.num_channels def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) _UpperCAmelCase = self.embedder(_UpperCamelCase ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 2 ): super().__init__() _UpperCAmelCase = nn.Convad(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , stride=_UpperCamelCase , bias=_UpperCamelCase ) _UpperCAmelCase = nn.BatchNormad(_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.convolution(_UpperCamelCase ) _UpperCAmelCase = self.normalization(_UpperCamelCase ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__() _UpperCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) _UpperCAmelCase = nn.Sequential( nn.Convad(_UpperCamelCase , _UpperCamelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCamelCase , _UpperCamelCase , kernel_size=1 ) , nn.Sigmoid() , ) def UpperCamelCase( self , _UpperCamelCase ): # b c h w -> b c 1 1 _UpperCAmelCase = self.pooler(_UpperCamelCase ) _UpperCAmelCase = self.attention(_UpperCamelCase ) _UpperCAmelCase = hidden_state * attention return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 ): super().__init__() _UpperCAmelCase = in_channels != out_channels or stride != 1 _UpperCAmelCase = max(1 , out_channels // config.groups_width ) _UpperCAmelCase = ( RegNetShortCut(_UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) _UpperCAmelCase = nn.Sequential( RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase , groups=_UpperCamelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , activation=_UpperCamelCase ) , ) _UpperCAmelCase = ACTaFN[config.hidden_act] def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = hidden_state _UpperCAmelCase = self.layer(_UpperCamelCase ) _UpperCAmelCase = self.shortcut(_UpperCamelCase ) hidden_state += residual _UpperCAmelCase = self.activation(_UpperCamelCase ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 ): super().__init__() _UpperCAmelCase = in_channels != out_channels or stride != 1 _UpperCAmelCase = max(1 , out_channels // config.groups_width ) _UpperCAmelCase = ( RegNetShortCut(_UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) _UpperCAmelCase = nn.Sequential( RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase , groups=_UpperCamelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCamelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCamelCase , _UpperCamelCase , kernel_size=1 , activation=_UpperCamelCase ) , ) _UpperCAmelCase = ACTaFN[config.hidden_act] def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = hidden_state _UpperCAmelCase = self.layer(_UpperCamelCase ) _UpperCAmelCase = self.shortcut(_UpperCamelCase ) hidden_state += residual _UpperCAmelCase = self.activation(_UpperCamelCase ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 2 , _UpperCamelCase = 2 , ): super().__init__() _UpperCAmelCase = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer _UpperCAmelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase , ) , *[layer(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for _ in range(depth - 1 )] , ) def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = self.layers(_UpperCamelCase ) return hidden_state class __UpperCamelCase ( nn.Module ): def __init__( self , _UpperCamelCase ): super().__init__() _UpperCAmelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _UpperCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _UpperCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_UpperCamelCase , config.depths[1:] ): self.stages.append(RegNetStage(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , depth=_UpperCamelCase ) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = True ): _UpperCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCAmelCase = hidden_states + (hidden_state,) _UpperCAmelCase = stage_module(_UpperCamelCase ) if output_hidden_states: _UpperCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCamelCase , hidden_states=_UpperCamelCase ) class __UpperCamelCase ( A__ ): __A : List[str] = RegNetConfig __A : Any = """regnet""" __A : Optional[int] = """pixel_values""" __A : Any = True def UpperCamelCase( self , _UpperCamelCase ): if isinstance(_UpperCamelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(_UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase=False ): if isinstance(_UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = value UpperCAmelCase_ = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase_ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , A__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __UpperCamelCase ( A__ ): def __init__( self , _UpperCamelCase ): super().__init__(_UpperCamelCase ) _UpperCAmelCase = config _UpperCAmelCase = RegNetEmbeddings(_UpperCamelCase ) _UpperCAmelCase = RegNetEncoder(_UpperCamelCase ) _UpperCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None ): _UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.embedder(_UpperCamelCase ) _UpperCAmelCase = self.encoder( _UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase ) _UpperCAmelCase = encoder_outputs[0] _UpperCAmelCase = self.pooler(_UpperCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCamelCase , pooler_output=_UpperCamelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , A__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __UpperCamelCase ( A__ ): def __init__( self , _UpperCamelCase ): super().__init__(_UpperCamelCase ) _UpperCAmelCase = config.num_labels _UpperCAmelCase = RegNetModel(_UpperCamelCase ) # classification head _UpperCAmelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase( self , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , ): _UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase = self.regnet(_UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase ) _UpperCAmelCase = outputs.pooler_output if return_dict else outputs[1] _UpperCAmelCase = self.classifier(_UpperCamelCase ) _UpperCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCAmelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCAmelCase = '''single_label_classification''' else: _UpperCAmelCase = '''multi_label_classification''' if self.config.problem_type == "regression": _UpperCAmelCase = MSELoss() if self.num_labels == 1: _UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: _UpperCAmelCase = loss_fct(_UpperCamelCase , _UpperCamelCase ) elif self.config.problem_type == "single_label_classification": _UpperCAmelCase = CrossEntropyLoss() _UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _UpperCAmelCase = BCEWithLogitsLoss() _UpperCAmelCase = loss_fct(_UpperCamelCase , _UpperCamelCase ) if not return_dict: _UpperCAmelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCamelCase , logits=_UpperCamelCase , hidden_states=outputs.hidden_states )
32
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
1
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Dict =TransfoXLTokenizer __A : Any =False __A : Any =False def UpperCamelCase__ ( self ): super().setUp() UpperCAmelCase_ : List[Any] = [ "<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un", "running", ",", "low", "l", ] UpperCAmelCase_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase__ ( self ,**_snake_case ): UpperCAmelCase_ : List[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : str = "<unk> UNwanted , running" UpperCAmelCase_ : Dict = "<unk> unwanted, running" return input_text, output_text def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = TransfoXLTokenizer(vocab_file=self.vocab_file ,lower_case=_snake_case ) UpperCAmelCase_ : str = tokenizer.tokenize("<unk> UNwanted , running" ) self.assertListEqual(_snake_case ,["<unk>", "unwanted", ",", "running"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) ,[0, 4, 8, 7] ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = TransfoXLTokenizer(lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) ,["hello", "!", "how", "are", "you", "?"] ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : int = TransfoXLTokenizer(lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) ,["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Union[str, Any] = TransfoXLTokenizer(lower_case=_snake_case ) UpperCAmelCase_ : List[str] = "Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?" UpperCAmelCase_ : Optional[int] = [ "Hello", "(", "bracket", ")", "and", "side", "@-@", "scrolled", "[", "and", "]", "Henry", "'s", "$", "5", "@,@", "000", "with", "3", "@.@", "34", "m", ".", "What", "'s", "up", "!", "?", ] self.assertListEqual(tokenizer.tokenize(_snake_case ) ,_snake_case ) self.assertEqual(tokenizer.convert_tokens_to_string(_snake_case ) ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = len(_snake_case ) tokenizer.add_tokens(["new1", "new2"] ) tokenizer.move_added_token("new1" ,1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_snake_case ) ,original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("new1" ) ,[1] ) self.assertEqual(tokenizer.decode([1] ) ,"new1" )
323
'''simple docstring''' import csv import tweepy # Twitter API credentials _lowerCamelCase = """""" _lowerCamelCase = """""" _lowerCamelCase = """""" _lowerCamelCase = """""" def a__ ( _SCREAMING_SNAKE_CASE : str ) -> None: """simple docstring""" UpperCAmelCase_ : List[Any] = tweepy.OAuthHandler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) auth.set_access_token(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = tweepy.API(_SCREAMING_SNAKE_CASE ) # initialize a list to hold all the tweepy Tweets UpperCAmelCase_ : str = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCAmelCase_ : Dict = api.user_timeline(screen_name=_SCREAMING_SNAKE_CASE , count=2_00 ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # save the id of the oldest tweet less one UpperCAmelCase_ : Any = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_SCREAMING_SNAKE_CASE ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates UpperCAmelCase_ : Tuple = api.user_timeline( screen_name=_SCREAMING_SNAKE_CASE , count=2_00 , max_id=_SCREAMING_SNAKE_CASE ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # update the id of the oldest tweet less one UpperCAmelCase_ : Optional[int] = alltweets[-1].id - 1 print(F'''...{len(_SCREAMING_SNAKE_CASE )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCAmelCase_ : str = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''' , "w" ) as f: UpperCAmelCase_ : str = csv.writer(_SCREAMING_SNAKE_CASE ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
323
1
def a__ (__lowercase :int ) -> bool: if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True _A : Any = 4 _A : List[Any] = (1 << p) - 1 for _ in range(p - 2 ): _A : Optional[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
206
def a__ (__lowercase :str , __lowercase :str ) -> float: def get_matched_characters(__lowercase :str , __lowercase :str ) -> str: _A : Union[str, Any] = [] _A : Dict = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _A : Tuple = int(max(0 , i - limit ) ) _A : Union[str, Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__lowercase ) _A : List[Any] = f"""{_stra[0:_stra.index(__lowercase )]} {_stra[_stra.index(__lowercase ) + 1:]}""" return "".join(__lowercase ) # matching characters _A : str = get_matched_characters(__lowercase , __lowercase ) _A : Optional[Any] = get_matched_characters(__lowercase , __lowercase ) _A : Any = len(__lowercase ) # transposition _A : str = ( len([(ca, ca) for ca, ca in zip(__lowercase , __lowercase ) if ca != ca] ) // 2 ) if not match_count: _A : Optional[int] = 0.0 else: _A : str = ( 1 / 3 * ( match_count / len(__lowercase ) + match_count / len(__lowercase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _A : Any = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
206
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = torch.nn.Linear(10 , 10 ) lowerCamelCase_ = torch.optim.SGD(model.parameters() , 0.1 ) lowerCamelCase_ = Accelerator() lowerCamelCase_ = accelerator.prepare(UpperCamelCase__ ) try: pickle.loads(pickle.dumps(UpperCamelCase__ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
702
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase : """simple docstring""" @staticmethod def _lowerCAmelCase ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' pass @is_pipeline_test @require_vision class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @require_torch def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase_ = image_classifier(UpperCamelCase__ , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCamelCase__ ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) lowerCamelCase_ = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], ] , ) @require_tf def _lowerCAmelCase ( self ) -> str: '''simple docstring''' lowerCamelCase_ = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase_ = image_classifier(UpperCamelCase__ , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) lowerCamelCase_ = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], [ {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, {'''score''': 0.333, '''label''': ANY(UpperCamelCase__ )}, ], ] , ) @slow @require_torch def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase_ = image_classifier(UpperCamelCase__ , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCamelCase_ = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase_ = image_classifier(UpperCamelCase__ , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCamelCase_ = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
66
0
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = MobileBertConfig.from_json_file(__UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE_ : str = MobileBertForPreTraining(__UpperCAmelCase ) # Load weights from tf checkpoint SCREAMING_SNAKE_CASE_ : int = load_tf_weights_in_mobilebert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
421
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["DeiTFeatureExtractor"] __A = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
586
0
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _UpperCAmelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _UpperCAmelCase = """main""" # Default branch name _UpperCAmelCase = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) _UpperCAmelCase = """aaaaaaa""" # This commit does not exist, so we should 404. _UpperCAmelCase = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes _UpperCAmelCase = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def __magic_name__ ( ): print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def __magic_name__ ( ): print("""Bonjour!""" ) yield print("""Au revoir!""" ) class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class a ( unittest.TestCase ): @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Optional[int] ) -> Any: '''simple docstring''' with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Dict ) -> Any: '''simple docstring''' with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def lowerCamelCase__ ( self : str , lowerCAmelCase : int ) -> Tuple: '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def lowerCamelCase__ ( self : int ) -> Tuple: '''simple docstring''' self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""start_positions""", """end_positions"""] ) class a ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) @require_tf def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""start_positions""", """end_positions"""] ) class a ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) @require_flax def lowerCamelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' self.assertEqual(find_labels(lowerCAmelCase ) , [] ) self.assertEqual(find_labels(lowerCAmelCase ) , [] ) self.assertEqual(find_labels(lowerCAmelCase ) , [] ) class a ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(lowerCAmelCase ) , [] )
36
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __magic_name__ ( lowercase ): if "cls_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: str =name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def __magic_name__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[int] =orig_state_dict.pop(lowercase ) if "qkv" in key: SCREAMING_SNAKE_CASE_: Dict =key.split(""".""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE_: int =config.decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[int] ="""decoder.decoder_layers.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Dict =val[:dim, :] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: str =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: List[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: List[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Any =config.hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] ="""vit.encoder.layer.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim, :] SCREAMING_SNAKE_CASE_: Optional[Any] =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: Dict =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Any =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Tuple =val return orig_state_dict def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: List[Any] =1024 SCREAMING_SNAKE_CASE_: Dict =4096 SCREAMING_SNAKE_CASE_: Tuple =24 SCREAMING_SNAKE_CASE_: int =16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Union[str, Any] =14 SCREAMING_SNAKE_CASE_: Any =1280 SCREAMING_SNAKE_CASE_: Dict =5120 SCREAMING_SNAKE_CASE_: Optional[int] =32 SCREAMING_SNAKE_CASE_: Optional[Any] =16 SCREAMING_SNAKE_CASE_: Tuple =ViTMAEForPreTraining(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE_: Optional[Any] =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: str =convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple ="""https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" SCREAMING_SNAKE_CASE_: List[Any] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE_: int =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: int =image_processor(images=lowercase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_: Optional[Any] =model(**lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: Dict =torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Tuple =torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: SCREAMING_SNAKE_CASE_: Any =torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
36
1
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=False , _lowercase=True , _lowercase=False , _lowercase=False , _lowercase=1_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> Dict: '''simple docstring''' snake_case_ : Any = parent snake_case_ : str = batch_size snake_case_ : Dict = seq_length snake_case_ : List[str] = is_training snake_case_ : Tuple = use_input_mask snake_case_ : str = use_token_type_ids snake_case_ : Any = use_labels snake_case_ : Any = vocab_size snake_case_ : Union[str, Any] = hidden_size snake_case_ : Any = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : List[str] = hidden_act snake_case_ : Any = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : List[Any] = max_position_embeddings snake_case_ : Optional[Any] = type_vocab_size snake_case_ : List[str] = type_sequence_label_size snake_case_ : str = initializer_range snake_case_ : List[str] = num_labels snake_case_ : Optional[Any] = num_choices snake_case_ : str = scope def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : int = None if self.use_input_mask: snake_case_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : List[Any] = None snake_case_ : Optional[Any] = None snake_case_ : Optional[int] = None if self.use_labels: snake_case_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ : str = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Dict = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=_lowercase , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , ) return config def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = EsmForProteinFolding(config=_lowercase ).float() model.to(_lowercase ) model.eval() snake_case_ : Tuple = model(_lowercase , attention_mask=_lowercase ) snake_case_ : int = model(_lowercase ) snake_case_ : Any = model(_lowercase ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : Dict = config_and_inputs snake_case_ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = False _lowerCamelCase = (EsmForProteinFolding,) if is_torch_available() else () _lowerCamelCase = () _lowerCamelCase = {} if is_torch_available() else {} _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : str = EsmFoldModelTester(self ) snake_case_ : Union[str, Any] = ConfigTester(self , config_class=_lowercase , hidden_size=3_7 ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) @unittest.skip("""Does not support attention outputs""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass @unittest.skip def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip("""ESMFold does not support passing input embeds!""" ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip("""ESMFold does not output hidden states in the normal way.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""ESMfold does not output hidden states in the normal way.""" ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""ESMFold only has one output format.""" ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip("""ESMFold does not support input chunking.""" ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support data parallel.""" ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass @require_torch class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : List[str] = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float() model.eval() snake_case_ : Any = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) snake_case_ : Tuple = model(_lowercase )["""positions"""] snake_case_ : Any = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , _lowercase , atol=1E-4 ) )
58
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class UpperCAmelCase : def __init__( self : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple=9_9 , __lowerCamelCase : int=1_3 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Dict=9 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : List[Any]=3_2 , __lowerCamelCase : int=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Tuple=3_7 , __lowerCamelCase : Any=8 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Any=0.0_02 , __lowerCamelCase : List[str]=1 , __lowerCamelCase : str=0 , __lowerCamelCase : str=0 , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , ): UpperCAmelCase__ :Tuple = parent UpperCAmelCase__ :str = batch_size UpperCAmelCase__ :int = encoder_seq_length UpperCAmelCase__ :Optional[int] = decoder_seq_length # For common tests UpperCAmelCase__ :int = self.decoder_seq_length UpperCAmelCase__ :List[Any] = is_training UpperCAmelCase__ :Any = use_attention_mask UpperCAmelCase__ :Tuple = use_labels UpperCAmelCase__ :Optional[int] = vocab_size UpperCAmelCase__ :Optional[Any] = hidden_size UpperCAmelCase__ :Optional[Any] = num_hidden_layers UpperCAmelCase__ :Tuple = num_attention_heads UpperCAmelCase__ :str = d_ff UpperCAmelCase__ :Tuple = relative_attention_num_buckets UpperCAmelCase__ :int = dropout_rate UpperCAmelCase__ :Dict = initializer_factor UpperCAmelCase__ :int = eos_token_id UpperCAmelCase__ :Tuple = pad_token_id UpperCAmelCase__ :Tuple = decoder_start_token_id UpperCAmelCase__ :List[str] = None UpperCAmelCase__ :List[str] = decoder_layers def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return TaConfig.from_pretrained('''google/umt5-base''' ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[Any]=None , ): if attention_mask is None: UpperCAmelCase__ :Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase__ :Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase__ :List[str] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__lowerCamelCase ) if decoder_head_mask is None: UpperCAmelCase__ :Optional[Any] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__lowerCamelCase ) if cross_attn_head_mask is None: UpperCAmelCase__ :List[Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __SCREAMING_SNAKE_CASE ( self : List[str] ): UpperCAmelCase__ :Optional[int] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCAmelCase__ :List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase__ :int = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase__ :Tuple = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase__ :Dict = self.get_config() UpperCAmelCase__ :Union[str, Any] = config.num_attention_heads UpperCAmelCase__ :Dict = self.prepare_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, input_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ , UpperCAmelCase__ :int = self.prepare_config_and_inputs() return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , ): UpperCAmelCase__ :str = UMTaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase__ :Optional[int] = model( input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , decoder_attention_mask=__lowerCamelCase , ) UpperCAmelCase__ :List[Any] = model(input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ) UpperCAmelCase__ :Dict = result.last_hidden_state UpperCAmelCase__ :Tuple = result.past_key_values UpperCAmelCase__ :Dict = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__lowerCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , ): UpperCAmelCase__ :Tuple = UMTaModel(config=__lowerCamelCase ).get_decoder().to(__lowerCamelCase ).eval() # first forward pass UpperCAmelCase__ :Dict = model(__lowerCamelCase , use_cache=__lowerCamelCase ) UpperCAmelCase__ :Any = model(__lowerCamelCase ) UpperCAmelCase__ :List[str] = model(__lowerCamelCase , use_cache=__lowerCamelCase ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) + 1 ) UpperCAmelCase__ , UpperCAmelCase__ :int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ :int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCAmelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ :Union[str, Any] = model(__lowerCamelCase )['''last_hidden_state'''] UpperCAmelCase__ :str = model(__lowerCamelCase , past_key_values=__lowerCamelCase )['''last_hidden_state'''] # select random slice UpperCAmelCase__ :Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ :Any = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase__ :Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : str , ): UpperCAmelCase__ :Optional[Any] = UMTaModel(config=__lowerCamelCase ).to(__lowerCamelCase ).half().eval() UpperCAmelCase__ :Any = model(**__lowerCamelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__lowerCamelCase ).any().item() ) @require_torch class UpperCAmelCase ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): UpperCAmelCase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase = [0.8, 0.9] def __SCREAMING_SNAKE_CASE ( self : str ): UpperCAmelCase__ :Optional[Any] = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __SCREAMING_SNAKE_CASE ( self : int ): UpperCAmelCase__ :int = self.model_tester.prepare_config_and_inputs() UpperCAmelCase__ :Optional[int] = UMTaModel(config_and_inputs[0] ).to(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __lowerCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=__lowerCamelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): UpperCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ :Tuple = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] UpperCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase__ :int = config_and_inputs[0] UpperCAmelCase__ :Optional[Any] = UMTaForConditionalGeneration(__lowerCamelCase ).eval() model.to(__lowerCamelCase ) UpperCAmelCase__ :List[str] = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__lowerCamelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__lowerCamelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__lowerCamelCase ), } for attn_name, (name, mask) in zip(__lowerCamelCase , head_masking.items() ): UpperCAmelCase__ :Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCAmelCase__ :Optional[Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=__lowerCamelCase ) UpperCAmelCase__ :Union[str, Any] = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__lowerCamelCase , return_dict_in_generate=__lowerCamelCase , **__lowerCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCAmelCase__ :List[Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __SCREAMING_SNAKE_CASE ( self : Any ): UpperCAmelCase__ :Optional[Any] = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__lowerCamelCase ).to(__lowerCamelCase ) UpperCAmelCase__ :List[str] = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__lowerCamelCase , legacy=__lowerCamelCase ) UpperCAmelCase__ :Dict = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] UpperCAmelCase__ :Optional[Any] = tokenizer(__lowerCamelCase , return_tensors='''pt''' , padding=__lowerCamelCase ).input_ids # fmt: off UpperCAmelCase__ :List[Any] = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :Dict = model.generate(input_ids.to(__lowerCamelCase ) ) UpperCAmelCase__ :str = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] UpperCAmelCase__ :Dict = tokenizer.batch_decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
467
0
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" if num < 0: return False _lowerCAmelCase = num _lowerCAmelCase = 0 while num > 0: _lowerCAmelCase = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
491
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _snake_case = logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE_: str SCREAMING_SNAKE_CASE_: List[str] SCREAMING_SNAKE_CASE_: Optional[List[str]] @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE_: List[int] SCREAMING_SNAKE_CASE_: List[int] SCREAMING_SNAKE_CASE_: Optional[List[int]] = None SCREAMING_SNAKE_CASE_: Optional[List[int]] = None class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] = "train" SCREAMING_SNAKE_CASE_: Tuple = "dev" SCREAMING_SNAKE_CASE_: List[str] = "test" class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Union[Split, str] ) -> List[InputExample]: """simple docstring""" raise NotImplementedError @staticmethod def __lowerCamelCase ( UpperCAmelCase_ : str ) -> List[str]: """simple docstring""" raise NotImplementedError @staticmethod def __lowerCamelCase ( UpperCAmelCase_ : List[InputExample] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]="[CLS]" , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : str="[SEP]" , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : List[Any]=-100 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : List[Any]=True , ) -> List[InputFeatures]: """simple docstring""" _lowerCAmelCase = {label: i for i, label in enumerate(UpperCAmelCase_ )} _lowerCAmelCase = [] for ex_index, example in enumerate(UpperCAmelCase_ ): if ex_index % 10_000 == 0: logger.info('Writing example %d of %d' , UpperCAmelCase_ , len(UpperCAmelCase_ ) ) _lowerCAmelCase = [] _lowerCAmelCase = [] for word, label in zip(example.words , example.labels ): _lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase_ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(UpperCAmelCase_ ) > 0: tokens.extend(UpperCAmelCase_ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(UpperCAmelCase_ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _lowerCAmelCase = tokenizer.num_special_tokens_to_add() if len(UpperCAmelCase_ ) > max_seq_length - special_tokens_count: _lowerCAmelCase = tokens[: (max_seq_length - special_tokens_count)] _lowerCAmelCase = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _lowerCAmelCase = [sequence_a_segment_id] * len(UpperCAmelCase_ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _lowerCAmelCase = [cls_token] + tokens _lowerCAmelCase = [pad_token_label_id] + label_ids _lowerCAmelCase = [cls_token_segment_id] + segment_ids _lowerCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _lowerCAmelCase = [1 if mask_padding_with_zero else 0] * len(UpperCAmelCase_ ) # Zero-pad up to the sequence length. _lowerCAmelCase = max_seq_length - len(UpperCAmelCase_ ) if pad_on_left: _lowerCAmelCase = ([pad_token] * padding_length) + input_ids _lowerCAmelCase = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _lowerCAmelCase = ([pad_token_segment_id] * padding_length) + segment_ids _lowerCAmelCase = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(UpperCAmelCase_ ) == max_seq_length assert len(UpperCAmelCase_ ) == max_seq_length assert len(UpperCAmelCase_ ) == max_seq_length assert len(UpperCAmelCase_ ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(UpperCAmelCase_ ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(UpperCAmelCase_ ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(UpperCAmelCase_ ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(UpperCAmelCase_ ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(UpperCAmelCase_ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _lowerCAmelCase = None features.append( InputFeatures( input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , label_ids=UpperCAmelCase_ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: List[InputFeatures] SCREAMING_SNAKE_CASE_: int = nn.CrossEntropyLoss().ignore_index def __init__( self : List[Any] , UpperCAmelCase_ : TokenClassificationTask , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Split = Split.train , ) -> List[str]: """simple docstring""" _lowerCAmelCase = os.path.join( UpperCAmelCase_ , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(UpperCAmelCase_ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + '.lock' with FileLock(UpperCAmelCase_ ): if os.path.exists(UpperCAmelCase_ ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) _lowerCAmelCase = torch.load(UpperCAmelCase_ ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) _lowerCAmelCase = token_classification_task.read_examples_from_file(UpperCAmelCase_ , UpperCAmelCase_ ) # TODO clean up all this to leverage built-in features of tokenizers _lowerCAmelCase = token_classification_task.convert_examples_to_features( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=UpperCAmelCase_ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(F"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , UpperCAmelCase_ ) def __len__( self : Dict ) -> int: """simple docstring""" return len(self.features ) def __getitem__( self : List[str] , UpperCAmelCase_ : List[Any] ) -> InputFeatures: """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class _SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE_: List[InputFeatures] SCREAMING_SNAKE_CASE_: int = -1_0_0 def __init__( self : Tuple , UpperCAmelCase_ : TokenClassificationTask , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Split = Split.train , ) -> Dict: """simple docstring""" _lowerCAmelCase = token_classification_task.read_examples_from_file(UpperCAmelCase_ , UpperCAmelCase_ ) # TODO clean up all this to leverage built-in features of tokenizers _lowerCAmelCase = token_classification_task.convert_examples_to_features( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=UpperCAmelCase_ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _lowerCAmelCase = tf.data.Dataset.from_generator( UpperCAmelCase_ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: _lowerCAmelCase = tf.data.Dataset.from_generator( UpperCAmelCase_ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def __lowerCamelCase ( self : str ) -> Tuple: """simple docstring""" _lowerCAmelCase = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : List[Any] ) -> Optional[Any]: """simple docstring""" return len(self.features ) def __getitem__( self : int , UpperCAmelCase_ : List[Any] ) -> InputFeatures: """simple docstring""" return self.features[i]
491
1
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def snake_case_ ( __snake_case : float , __snake_case : float , __snake_case : float) -> dict[str, float]: if (resistance, reactance, impedance).count(0) != 1: raise ValueError('''One and only one argument must be 0''') if resistance == 0: return {"resistance": sqrt(pow(_UpperCAmelCase , 2) - pow(_UpperCAmelCase , 2))} elif reactance == 0: return {"reactance": sqrt(pow(_UpperCAmelCase , 2) - pow(_UpperCAmelCase , 2))} elif impedance == 0: return {"impedance": sqrt(pow(_UpperCAmelCase , 2) + pow(_UpperCAmelCase , 2))} else: raise ValueError('''Exactly one argument must be 0''') if __name__ == "__main__": import doctest doctest.testmod()
274
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' A_ = HfArgumentParser(_UpperCAmelCase ) A_ = parser.parse_args_into_dataclasses()[0] A_ = TensorFlowBenchmark(args=_UpperCAmelCase ) try: A_ = parser.parse_args_into_dataclasses()[0] except ValueError as e: A_ = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' A_ = ''' '''.join(str(_UpperCAmelCase ).split(''' ''' )[:-1] ) A_ = '''''' A_ = eval(str(_UpperCAmelCase ).split(''' ''' )[-1] ) A_ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: A_ = full_error_msg + begin_error_msg + str(_UpperCAmelCase ) raise ValueError(_UpperCAmelCase ) benchmark.run() if __name__ == "__main__": main()
188
0
class lowercase : def __init__( self , A_ ) -> List[str]: """simple docstring""" # we need a list not a string, so do something to change the type UpperCamelCase = arr.split(',' ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = [int(self.array[0] )] * len(self.array ) UpperCamelCase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): UpperCamelCase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) UpperCamelCase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _UpperCAmelCase : int = input("please input some numbers:") _UpperCAmelCase : int = SubArray(whole_array) _UpperCAmelCase : Union[str, Any] = array.solve_sub_array() print(("the results is:", re))
3
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _UpperCAmelCase : List[str] = None _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _UpperCAmelCase : List[str] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } _UpperCAmelCase : Optional[int] = { "camembert-base": 512, } _UpperCAmelCase : Union[str, Any] = "▁" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : str = VOCAB_FILES_NAMES __lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = ["input_ids", "attention_mask"] __lowercase : Tuple = CamembertTokenizer def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=["<s>NOTUSED", "</s>NOTUSED"] , **A_ , ) -> List[Any]: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , **A_ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
3
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _lowercase : Optional[Any] =NewType("DataClass", Any) _lowercase : List[Any] =NewType("DataClassType", Any) def lowerCAmelCase_ ( _lowercase : Dict) -> str: """simple docstring""" if isinstance(_lowercase , _lowercase): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''') def lowerCAmelCase_ ( _lowercase : list) -> Callable[[str], Any]: """simple docstring""" a__ : List[Any] = {str(_lowercase): choice for choice in choices} return lambda _lowercase: str_to_choice.get(_lowercase , _lowercase) def lowerCAmelCase_ ( *, _lowercase : Union[str, List[str]] = None , _lowercase : str = None , _lowercase : Any = dataclasses.MISSING , _lowercase : Callable[[], Any] = dataclasses.MISSING , _lowercase : dict = None , **_lowercase : Dict , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls a__ : Optional[int] = {} if aliases is not None: a__ : List[Any] = aliases if help is not None: a__ : List[str] = help return dataclasses.field(metadata=_lowercase , default=_lowercase , default_factory=_lowercase , **_lowercase) class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :Iterable[DataClassType] def __init__( self , __lowercase , **__lowercase ) -> Dict: """simple docstring""" if "formatter_class" not in kwargs: a__ : Tuple = ArgumentDefaultsHelpFormatter super().__init__(**__lowercase ) if dataclasses.is_dataclass(__lowercase ): a__ : Any = [dataclass_types] a__ : List[Any] = list(__lowercase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__lowercase ) @staticmethod def SCREAMING_SNAKE_CASE__( __lowercase , __lowercase ) -> Any: """simple docstring""" a__ : Dict = F'''--{field.name}''' a__ : int = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __lowercase ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) a__ : List[str] = kwargs.pop("""aliases""" , [] ) if isinstance(__lowercase , __lowercase ): a__ : str = [aliases] a__ : int = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(__lowercase , """UnionType""" ) and isinstance(__lowercase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__lowercase ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" F''' Problem encountered in field \'{field.name}\'.''' ) if type(__lowercase ) not in field.type.__args__: # filter `str` in Union a__ : int = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] a__ : str = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) a__ : Optional[Any] = ( field.type.__args__[0] if isinstance(__lowercase , field.type.__args__[1] ) else field.type.__args__[1] ) a__ : str = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) a__ : int = {} if origin_type is Literal or (isinstance(field.type , __lowercase ) and issubclass(field.type , __lowercase )): if origin_type is Literal: a__ : int = field.type.__args__ else: a__ : List[str] = [x.value for x in field.type] a__ : Dict = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: a__ : str = field.default else: a__ : Tuple = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument a__ : Optional[int] = copy(__lowercase ) # Hack because type=bool in argparse does not behave as we want. a__ : Dict = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. a__ : Tuple = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way a__ : List[str] = default # This tells argparse we accept 0 or 1 value after --field_name a__ : List[Any] = """?""" # This is the value that will get picked if we do --field_name (without value) a__ : Optional[int] = True elif isclass(__lowercase ) and issubclass(__lowercase , __lowercase ): a__ : Dict = field.type.__args__[0] a__ : str = """+""" if field.default_factory is not dataclasses.MISSING: a__ : List[str] = field.default_factory() elif field.default is dataclasses.MISSING: a__ : Union[str, Any] = True else: a__ : Optional[int] = field.type if field.default is not dataclasses.MISSING: a__ : Dict = field.default elif field.default_factory is not dataclasses.MISSING: a__ : Union[str, Any] = field.default_factory() else: a__ : int = True parser.add_argument(__lowercase , *__lowercase , **__lowercase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): a__ : Dict = False parser.add_argument(F'''--no_{field.name}''' , action="""store_false""" , dest=field.name , **__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[Any]: """simple docstring""" if hasattr(__lowercase , """_argument_group_name""" ): a__ : Union[str, Any] = self.add_argument_group(dtype._argument_group_name ) else: a__ : int = self try: a__ : Dict[str, type] = get_type_hints(__lowercase ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(__lowercase ): a__ : Optional[int] = """.""".join(map(__lowercase , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(__lowercase ): if not field.init: continue a__ : Tuple = type_hints[field.name] self._parse_dataclass_field(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase=None , __lowercase=False , __lowercase=True , __lowercase=None , __lowercase=None , ) -> Tuple[DataClass, ...]: """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): a__ : List[str] = [] if args_filename: args_files.append(Path(__lowercase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values a__ : int = ArgumentParser() args_file_parser.add_argument(__lowercase , type=__lowercase , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) a__ , a__ : Union[str, Any] = args_file_parser.parse_known_args(args=__lowercase ) a__ : str = vars(__lowercase ).get(args_file_flag.lstrip("""-""" ) , __lowercase ) if cmd_args_file_paths: args_files.extend([Path(__lowercase ) for p in cmd_args_file_paths] ) a__ : Union[str, Any] = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last a__ : Tuple = file_args + args if args is not None else file_args + sys.argv[1:] a__ , a__ : Tuple = self.parse_known_args(args=__lowercase ) a__ : List[str] = [] for dtype in self.dataclass_types: a__ : Optional[Any] = {f.name for f in dataclasses.fields(__lowercase ) if f.init} a__ : int = {k: v for k, v in vars(__lowercase ).items() if k in keys} for k in keys: delattr(__lowercase , __lowercase ) a__ : Optional[int] = dtype(**__lowercase ) outputs.append(__lowercase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__lowercase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: """simple docstring""" a__ : Union[str, Any] = set(args.keys() ) a__ : Tuple = [] for dtype in self.dataclass_types: a__ : Any = {f.name for f in dataclasses.fields(__lowercase ) if f.init} a__ : Tuple = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) a__ : Optional[int] = dtype(**__lowercase ) outputs.append(__lowercase ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(__lowercase )}''' ) return tuple(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: """simple docstring""" with open(Path(__lowercase ) , encoding="""utf-8""" ) as open_json_file: a__ : List[str] = json.loads(open_json_file.read() ) a__ : List[str] = self.parse_dict(__lowercase , allow_extra_keys=__lowercase ) return tuple(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = False ) -> Tuple[DataClass, ...]: """simple docstring""" a__ : List[str] = self.parse_dict(yaml.safe_load(Path(__lowercase ).read_text() ) , allow_extra_keys=__lowercase ) return tuple(__lowercase )
136
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _lowercase : int =[ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def lowerCAmelCase_ ( _lowercase : List[str] , _lowercase : Tuple=None) -> Tuple: """simple docstring""" require_version(deps[pkg] , _lowercase)
136
1
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger SCREAMING_SNAKE_CASE__ : Optional[Any] = get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = Path(__file__).parent / "model_card_template.md" SCREAMING_SNAKE_CASE__ : Union[str, Any] = uuida().hex SCREAMING_SNAKE_CASE__ : Tuple = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES SCREAMING_SNAKE_CASE__ : Optional[Any] = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES SCREAMING_SNAKE_CASE__ : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def A_ ( UpperCAmelCase__ = None ) -> str: a : Optional[int] = F'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'; torch/{_torch_version}' if is_flax_available(): ua += F'; jax/{_jax_version}' ua += F'; flax/{_flax_version}' if is_onnx_available(): ua += F'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): ua += "; " + "; ".join(F'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): ua += "; " + user_agent return ua def A_ ( UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None ) -> Optional[Any]: if token is None: a : Dict = HfFolder.get_token() if organization is None: a : Union[str, Any] = whoami(UpperCAmelCase__ )['name'] return F'{username}/{model_id}' else: return F'{organization}/{model_id}' def A_ ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(UpperCAmelCase__ , 'local_rank' ) and args.local_rank not in [-1, 0]: return a : List[str] = args.hub_token if hasattr(UpperCAmelCase__ , 'hub_token' ) else None a : Tuple = get_full_repo_name(UpperCAmelCase__ , token=UpperCAmelCase__ ) a : str = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=UpperCAmelCase__ , model_name=UpperCAmelCase__ , repo_name=UpperCAmelCase__ , dataset_name=args.dataset_name if hasattr(UpperCAmelCase__ , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(UpperCAmelCase__ , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(UpperCAmelCase__ , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(UpperCAmelCase__ , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(UpperCAmelCase__ , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(UpperCAmelCase__ , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(UpperCAmelCase__ , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(UpperCAmelCase__ , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(UpperCAmelCase__ , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(UpperCAmelCase__ , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(UpperCAmelCase__ , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a : List[Any] = os.path.join(args.output_dir , 'README.md' ) model_card.save(UpperCAmelCase__ ) def A_ ( UpperCAmelCase__ , UpperCAmelCase__ = None ) -> str: if resolved_file is None or commit_hash is not None: return commit_hash a : Dict = str(Path(UpperCAmelCase__ ).as_posix() ) a : List[Any] = re.search(r'snapshots/([^/]+)/' , UpperCAmelCase__ ) if search is None: return None a : Optional[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(UpperCAmelCase__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(hf_cache_home, "diffusers") def A_ ( UpperCAmelCase__ = None , UpperCAmelCase__ = None ) -> None: if new_cache_dir is None: a : int = DIFFUSERS_CACHE if old_cache_dir is None: a : Optional[Any] = old_diffusers_cache a : Optional[Any] = Path(UpperCAmelCase__ ).expanduser() a : Optional[Any] = Path(UpperCAmelCase__ ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a : Union[str, Any] = new_cache_dir / old_blob_path.relative_to(UpperCAmelCase__ ) new_blob_path.parent.mkdir(parents=UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) os.replace(UpperCAmelCase__ , UpperCAmelCase__ ) try: os.symlink(UpperCAmelCase__ , UpperCAmelCase__ ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): SCREAMING_SNAKE_CASE__ : str = 0 else: with open(cache_version_file) as f: try: SCREAMING_SNAKE_CASE__ : str = int(f.read()) except ValueError: SCREAMING_SNAKE_CASE__ : List[Any] = 0 if cache_version < 1: SCREAMING_SNAKE_CASE__ : Dict = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: SCREAMING_SNAKE_CASE__ : Optional[Any] = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' "the directory exists and can be written to." ) def A_ ( UpperCAmelCase__ , UpperCAmelCase__ = None ) -> str: if variant is not None: a : List[str] = weights_name.split('.' ) a : List[str] = splits[:-1] + [variant] + splits[-1:] a : int = '.'.join(UpperCAmelCase__ ) return weights_name def A_ ( UpperCAmelCase__ , *, UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , ) -> List[Any]: a : str = str(UpperCAmelCase__ ) if os.path.isfile(UpperCAmelCase__ ): return pretrained_model_name_or_path elif os.path.isdir(UpperCAmelCase__ ): if os.path.isfile(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ): # Load from a PyTorch checkpoint a : str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) ): a : Optional[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return model_file else: raise EnvironmentError( F'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(UpperCAmelCase__ ).base_version ) >= version.parse('0.20.0' ) ): try: a : List[Any] = hf_hub_download( UpperCAmelCase__ , filename=_add_variant(UpperCAmelCase__ , UpperCAmelCase__ ) , cache_dir=UpperCAmelCase__ , force_download=UpperCAmelCase__ , proxies=UpperCAmelCase__ , resume_download=UpperCAmelCase__ , local_files_only=UpperCAmelCase__ , use_auth_token=UpperCAmelCase__ , user_agent=UpperCAmelCase__ , subfolder=UpperCAmelCase__ , revision=revision or commit_hash , ) warnings.warn( F'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , UpperCAmelCase__ , ) return model_file except: # noqa: E722 warnings.warn( F'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(UpperCAmelCase__ , UpperCAmelCase__ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(UpperCAmelCase__ , UpperCAmelCase__ )}\' so that the correct variant file can be added.' , UpperCAmelCase__ , ) try: # 2. Load model file as usual a : Dict = hf_hub_download( UpperCAmelCase__ , filename=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , force_download=UpperCAmelCase__ , proxies=UpperCAmelCase__ , resume_download=UpperCAmelCase__ , local_files_only=UpperCAmelCase__ , use_auth_token=UpperCAmelCase__ , user_agent=UpperCAmelCase__ , subfolder=UpperCAmelCase__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( F'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' 'this model name. Check the model page at ' F'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( F'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( F'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' F' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' F' directory containing a file named {weights_name} or' ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( F'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' F'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' F'containing a file named {weights_name}' )
509
"""simple docstring""" # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys SCREAMING_SNAKE_CASE__ : List[str] = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
509
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ : Dict = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : List[Any] = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCamelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
115
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowerCAmelCase ( _lowercase , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" A_ = ort.SessionOptions() A_ = False return options def lowerCamelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" A_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) A_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) A_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) A_ = "A red cat sitting on a park bench" A_ = np.random.RandomState(0 ) A_ = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=_snake_case , output_type="np" , ) A_ = output.images A_ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) A_ = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" A_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) A_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) A_ = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) A_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) A_ = "A red cat sitting on a park bench" A_ = np.random.RandomState(0 ) A_ = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=_snake_case , output_type="np" , ) A_ = output.images A_ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) A_ = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
115
1
'''simple docstring''' import requests def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> None: '''simple docstring''' snake_case_ = {'''Content-Type''': '''application/json'''} snake_case_ = requests.post(SCREAMING_SNAKE_CASE_, json={'''text''': message_body}, headers=SCREAMING_SNAKE_CASE_ ) if response.status_code != 200: snake_case_ = ( '''Request to slack returned an error ''' F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
700
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: a : int = None a : int = logging.get_logger(__name__) a : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a : str = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', }, 'tokenizer_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json', }, } a : Any = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } a : Optional[int] = '▁' # Segments (not really needed) a : int = 0 a : Optional[Any] = 1 a : str = 2 a : str = 3 a : int = 4 class a ( _lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = "left" snake_case_ = XLNetTokenizer def __init__( self : int , lowercase_ : int=None , lowercase_ : Dict=None , lowercase_ : List[str]=False , lowercase_ : List[str]=True , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[Any]="<s>" , lowercase_ : int="</s>" , lowercase_ : Optional[int]="<unk>" , lowercase_ : int="<sep>" , lowercase_ : Optional[int]="<pad>" , lowercase_ : Optional[Any]="<cls>" , lowercase_ : Tuple="<mask>" , lowercase_ : Any=["<eop>", "<eod>"] , **lowercase_ : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( vocab_file=lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) snake_case_ = 3 snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def A_ ( self : Tuple , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A_ ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ = [self.sep_token_id] snake_case_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A_ ( self : int , lowercase_ : str , lowercase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
593
0
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : int = """blip_text_model""" def __init__( self , UpperCamelCase__=3_0524 , UpperCamelCase__=768 , UpperCamelCase__=768 , UpperCamelCase__=3072 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=8 , UpperCamelCase__=512 , UpperCamelCase__="gelu" , UpperCamelCase__=1e-12 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=3_0522 , UpperCamelCase__=2 , UpperCamelCase__=0 , UpperCamelCase__=102 , UpperCamelCase__=True , UpperCamelCase__=True , **UpperCamelCase__ , ) -> str: super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , sep_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase : List[Any] = vocab_size lowerCamelCase : Union[str, Any] = hidden_size lowerCamelCase : List[Any] = encoder_hidden_size lowerCamelCase : List[str] = intermediate_size lowerCamelCase : Tuple = projection_dim lowerCamelCase : List[Any] = hidden_dropout_prob lowerCamelCase : int = num_hidden_layers lowerCamelCase : List[Any] = num_attention_heads lowerCamelCase : Optional[Any] = max_position_embeddings lowerCamelCase : List[Any] = layer_norm_eps lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : str = initializer_range lowerCamelCase : List[str] = attention_probs_dropout_prob lowerCamelCase : List[Any] = is_decoder lowerCamelCase : List[Any] = use_cache @classmethod def _lowercase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : Dict = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": lowerCamelCase : List[str] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Any = """blip_vision_model""" def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=3072 , UpperCamelCase__=512 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=384 , UpperCamelCase__=16 , UpperCamelCase__="gelu" , UpperCamelCase__=1e-5 , UpperCamelCase__=0.0 , UpperCamelCase__=1e-10 , **UpperCamelCase__ , ) -> Any: super().__init__(**UpperCamelCase__ ) lowerCamelCase : Dict = hidden_size lowerCamelCase : List[Any] = intermediate_size lowerCamelCase : List[Any] = projection_dim lowerCamelCase : int = num_hidden_layers lowerCamelCase : List[Any] = num_attention_heads lowerCamelCase : int = patch_size lowerCamelCase : Optional[Any] = image_size lowerCamelCase : int = initializer_range lowerCamelCase : Optional[int] = attention_dropout lowerCamelCase : int = layer_norm_eps lowerCamelCase : Optional[Any] = hidden_act @classmethod def _lowercase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : int = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": lowerCamelCase : str = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : int = """blip""" lowerCamelCase_ : List[Any] = True def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=512 , UpperCamelCase__=2.6592 , UpperCamelCase__=256 , **UpperCamelCase__ , ) -> Optional[int]: super().__init__(**UpperCamelCase__ ) if text_config is None: lowerCamelCase : Union[str, Any] = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: lowerCamelCase : int = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) lowerCamelCase : int = BlipTextConfig(**UpperCamelCase__ ) lowerCamelCase : Tuple = BlipVisionConfig(**UpperCamelCase__ ) lowerCamelCase : Optional[int] = self.vision_config.hidden_size lowerCamelCase : Tuple = projection_dim lowerCamelCase : List[Any] = logit_scale_init_value lowerCamelCase : str = 1.0 lowerCamelCase : Optional[int] = 0.02 lowerCamelCase : Dict = image_text_hidden_size @classmethod def _lowercase ( cls , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase__ ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Dict = copy.deepcopy(self.__dict__ ) lowerCamelCase : str = self.text_config.to_dict() lowerCamelCase : str = self.vision_config.to_dict() lowerCamelCase : Any = self.__class__.model_type return output
311
0
from queue import PriorityQueue from typing import Any import numpy as np def snake_case_ (__A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue __lowerCAmelCase : int = cst_fwd.get(__A , np.inf ) __lowerCAmelCase : int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __lowerCAmelCase : List[str] = new_cost_f __lowerCAmelCase : int = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __lowerCAmelCase : Union[str, Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def snake_case_ (__A : str , __A : str , __A : dict , __A : dict ) -> int: __lowerCAmelCase : List[str] = -1 __lowerCAmelCase : int = set() __lowerCAmelCase : Any = set() __lowerCAmelCase : int = {source: 0} __lowerCAmelCase : Tuple = {destination: 0} __lowerCAmelCase : Union[str, Any] = {source: None} __lowerCAmelCase : Any = {destination: None} __lowerCAmelCase : PriorityQueue[Any] = PriorityQueue() __lowerCAmelCase : PriorityQueue[Any] = PriorityQueue() __lowerCAmelCase : Union[str, Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __lowerCAmelCase ,__lowerCAmelCase : Union[str, Any] = queue_forward.get() visited_forward.add(__A ) __lowerCAmelCase ,__lowerCAmelCase : Optional[int] = queue_backward.get() visited_backward.add(__A ) __lowerCAmelCase : int = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) __lowerCAmelCase : Tuple = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __lowerCAmelCase : List[Any] = shortest_distance return shortest_path_distance __UpperCAmelCase = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } __UpperCAmelCase = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
218
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : Optional[Any]=3 , lowerCAmelCase : str=30 , lowerCAmelCase : Optional[Any]=4_00 , lowerCAmelCase : int=True , lowerCAmelCase : Tuple=None , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[str]=1 / 2_55 , lowerCAmelCase : Any=True , ) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} __lowerCAmelCase : Any = parent __lowerCAmelCase : Union[str, Any] = batch_size __lowerCAmelCase : List[str] = num_channels __lowerCAmelCase : Tuple = min_resolution __lowerCAmelCase : int = max_resolution __lowerCAmelCase : Any = do_resize __lowerCAmelCase : Tuple = size __lowerCAmelCase : str = do_normalize __lowerCAmelCase : Dict = image_mean __lowerCAmelCase : Optional[int] = image_std __lowerCAmelCase : List[str] = do_rescale __lowerCAmelCase : List[str] = rescale_factor __lowerCAmelCase : str = do_pad def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Any , lowerCAmelCase : Dict=False ) -> str: """simple docstring""" if not batched: __lowerCAmelCase : Dict = image_inputs[0] if isinstance(lowerCAmelCase , Image.Image ): __lowerCAmelCase ,__lowerCAmelCase : str = image.size else: __lowerCAmelCase ,__lowerCAmelCase : Any = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase : List[str] = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase : Union[str, Any] = self.size["""shortest_edge"""] __lowerCAmelCase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase : Optional[Any] = self.size["""shortest_edge"""] __lowerCAmelCase : Any = self.size["""shortest_edge"""] else: __lowerCAmelCase : Optional[Any] = [] for image in image_inputs: __lowerCAmelCase ,__lowerCAmelCase : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase : Union[str, Any] = max(lowerCAmelCase , key=lambda lowerCAmelCase : item[0] )[0] __lowerCAmelCase : List[str] = max(lowerCAmelCase , key=lambda lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Dict =YolosImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : Any = YolosImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase , """size""" ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase ) __lowerCAmelCase : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: """simple docstring""" __lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input __lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase ,__lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase ,__lowerCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input __lowerCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase ,__lowerCAmelCase : str = self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase : Any = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values __lowerCAmelCase ,__lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input __lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase ,__lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase : Optional[int] = image_processing(lowerCAmelCase , return_tensors="""pt""" ).pixel_values __lowerCAmelCase ,__lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) __lowerCAmelCase : List[str] = self.image_processing_class(do_resize=lowerCAmelCase , do_normalize=lowerCAmelCase , do_rescale=lowerCAmelCase ) # create random PyTorch tensors __lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __lowerCAmelCase : Optional[Any] = image_processing_a.pad(lowerCAmelCase , return_tensors="""pt""" ) __lowerCAmelCase : Optional[int] = image_processing_a(lowerCAmelCase , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __lowerCAmelCase : List[str] = json.loads(f.read() ) __lowerCAmelCase : Tuple = {"""image_id""": 3_97_69, """annotations""": target} # encode them __lowerCAmelCase : int = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) __lowerCAmelCase : List[Any] = image_processing(images=lowerCAmelCase , annotations=lowerCAmelCase , return_tensors="""pt""" ) # verify pixel values __lowerCAmelCase : Dict = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase ) __lowerCAmelCase : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase , atol=1e-4 ) ) # verify area __lowerCAmelCase : Union[str, Any] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase ) ) # verify boxes __lowerCAmelCase : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase ) __lowerCAmelCase : Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase , atol=1e-3 ) ) # verify image_id __lowerCAmelCase : Optional[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase ) ) # verify is_crowd __lowerCAmelCase : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase ) ) # verify class_labels __lowerCAmelCase : Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase ) ) # verify orig_size __lowerCAmelCase : str = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase ) ) # verify size __lowerCAmelCase : Optional[Any] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase ) ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __lowerCAmelCase : int = json.loads(f.read() ) __lowerCAmelCase : str = {"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} __lowerCAmelCase : List[str] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __lowerCAmelCase : Any = YolosImageProcessor(format="""coco_panoptic""" ) __lowerCAmelCase : str = image_processing(images=lowerCAmelCase , annotations=lowerCAmelCase , masks_path=lowerCAmelCase , return_tensors="""pt""" ) # verify pixel values __lowerCAmelCase : Tuple = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCAmelCase ) __lowerCAmelCase : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCAmelCase , atol=1e-4 ) ) # verify area __lowerCAmelCase : Union[str, Any] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCAmelCase ) ) # verify boxes __lowerCAmelCase : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCAmelCase ) __lowerCAmelCase : int = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCAmelCase , atol=1e-3 ) ) # verify image_id __lowerCAmelCase : Tuple = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCAmelCase ) ) # verify is_crowd __lowerCAmelCase : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCAmelCase ) ) # verify class_labels __lowerCAmelCase : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCAmelCase ) ) # verify masks __lowerCAmelCase : List[Any] = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCAmelCase ) # verify orig_size __lowerCAmelCase : Dict = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCAmelCase ) ) # verify size __lowerCAmelCase : Tuple = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCAmelCase ) )
218
1