code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __a :List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __a :Union[str, Any] = [0, 25, 50] __a :Any = [25, 50, 75] __a :Tuple = fuzz.membership.trimf(X, abca) __a :List[Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __a :Union[str, Any] = np.ones(75) __a :Tuple = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __a :Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __a :Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __a :List[str] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __a :List[Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __a :Union[str, Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __a :Any = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __a :Any = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __a :Optional[int] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
86
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _A = logging.get_logger(__name__) _A = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'bart' SCREAMING_SNAKE_CASE = ['past_key_values'] SCREAMING_SNAKE_CASE = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , _lowerCamelCase=50265 , _lowerCamelCase=1024 , _lowerCamelCase=12 , _lowerCamelCase=4096 , _lowerCamelCase=16 , _lowerCamelCase=12 , _lowerCamelCase=4096 , _lowerCamelCase=16 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase="gelu" , _lowerCamelCase=1024 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=0.0 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=3 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=True , _lowerCamelCase=2 , _lowerCamelCase=2 , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : Optional[Any] = max_position_embeddings UpperCAmelCase__ : int = d_model UpperCAmelCase__ : str = encoder_ffn_dim UpperCAmelCase__ : List[str] = encoder_layers UpperCAmelCase__ : Optional[int] = encoder_attention_heads UpperCAmelCase__ : Optional[int] = decoder_ffn_dim UpperCAmelCase__ : Dict = decoder_layers UpperCAmelCase__ : int = decoder_attention_heads UpperCAmelCase__ : Optional[Any] = dropout UpperCAmelCase__ : int = attention_dropout UpperCAmelCase__ : str = activation_dropout UpperCAmelCase__ : Optional[int] = activation_function UpperCAmelCase__ : List[str] = init_std UpperCAmelCase__ : Dict = encoder_layerdrop UpperCAmelCase__ : Any = decoder_layerdrop UpperCAmelCase__ : List[str] = classifier_dropout UpperCAmelCase__ : Any = use_cache UpperCAmelCase__ : Union[str, Any] = encoder_layers UpperCAmelCase__ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , _lowerCamelCase ): UpperCAmelCase__ : List[Any] = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" ) class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @property def _a (self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase__ : Dict = {0: """batch"""} UpperCAmelCase__ : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: UpperCAmelCase__ : Dict = {0: """batch""", 1: """decoder_sequence"""} UpperCAmelCase__ : List[str] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase__ : str = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.num_layers for i in range(_lowerCamelCase ): UpperCAmelCase__ : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} UpperCAmelCase__ : int = {0: """batch""", 2: """past_sequence + sequence"""} else: UpperCAmelCase__ : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def _a (self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Any = super().outputs else: UpperCAmelCase__ : Union[str, Any] = super(_lowerCamelCase , self ).outputs if self.use_past: UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.num_layers for i in range(_lowerCamelCase ): UpperCAmelCase__ : List[str] = {0: """batch""", 2: """past_sequence + sequence"""} UpperCAmelCase__ : int = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _a (self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): """simple docstring""" UpperCAmelCase__ : int = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Generate decoder inputs UpperCAmelCase__ : int = seq_length if not self.use_past else 1 UpperCAmelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : str = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase__ : Union[str, Any] = dict(**_lowerCamelCase , **_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase__ , UpperCAmelCase__ : str = common_inputs["""input_ids"""].shape UpperCAmelCase__ : int = common_inputs["""decoder_input_ids"""].shape[1] UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.num_attention_heads UpperCAmelCase__ : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ : Optional[int] = decoder_seq_length + 3 UpperCAmelCase__ : Any = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase__ : str = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_lowerCamelCase , _lowerCamelCase )] , dim=1 ) UpperCAmelCase__ : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.num_layers UpperCAmelCase__ : Union[str, Any] = min(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : str = max(_lowerCamelCase , _lowerCamelCase ) - min_num_layers UpperCAmelCase__ : Dict = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. UpperCAmelCase__ : Dict = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowerCamelCase , _lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def _a (self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): """simple docstring""" UpperCAmelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCAmelCase__ : int = seqlen + 2 UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.num_layers UpperCAmelCase__ , UpperCAmelCase__ : str = self.num_attention_heads UpperCAmelCase__ : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ : Optional[int] = common_inputs["""attention_mask"""].dtype UpperCAmelCase__ : List[str] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) UpperCAmelCase__ : Tuple = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def _a (self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): """simple docstring""" UpperCAmelCase__ : Tuple = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ : Optional[int] = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) UpperCAmelCase__ : int = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ : List[Any] = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase__ : Optional[int] = dict(tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return common_inputs def _a (self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) elif self.task == "causal-lm": UpperCAmelCase__ : Optional[int] = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) else: UpperCAmelCase__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) return common_inputs def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Union[str, Any] = super()._flatten_past_key_values_(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: UpperCAmelCase__ : Optional[int] = super(_lowerCamelCase , self )._flatten_past_key_values_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
182
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[Any]= logging.get_logger(__name__) _a : Dict= { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class UpperCamelCase ( __lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = "transfo-xl" UpperCAmelCase : List[Any] = ["mems"] UpperCAmelCase : Tuple = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__(self : Tuple , _A : str=26_77_35 , _A : Dict=[2_00_00, 4_00_00, 20_00_00] , _A : Dict=10_24 , _A : Any=10_24 , _A : Any=16 , _A : Optional[Any]=64 , _A : Any=40_96 , _A : str=4 , _A : Dict=False , _A : Union[str, Any]=18 , _A : str=16_00 , _A : Any=10_00 , _A : Any=True , _A : int=True , _A : Tuple=0 , _A : str=-1 , _A : List[Any]=True , _A : List[Any]=0.1 , _A : int=0.0 , _A : Union[str, Any]=True , _A : Union[str, Any]="normal" , _A : str=0.01 , _A : Optional[Any]=0.01 , _A : List[str]=0.02 , _A : Dict=1E-5 , _A : Dict=0 , **_A : List[str] , ) -> Dict: __snake_case : Dict = vocab_size __snake_case : Optional[Any] = [] self.cutoffs.extend(lowerCamelCase__) if proj_share_all_but_first: __snake_case : List[str] = [False] + [True] * len(self.cutoffs) else: __snake_case : List[Any] = [False] + [False] * len(self.cutoffs) __snake_case : Dict = d_model __snake_case : Union[str, Any] = d_embed __snake_case : Tuple = d_head __snake_case : int = d_inner __snake_case : Tuple = div_val __snake_case : List[str] = pre_lnorm __snake_case : Union[str, Any] = n_layer __snake_case : Any = n_head __snake_case : Tuple = mem_len __snake_case : Dict = same_length __snake_case : int = attn_type __snake_case : Dict = clamp_len __snake_case : int = sample_softmax __snake_case : List[str] = adaptive __snake_case : Any = dropout __snake_case : int = dropatt __snake_case : Union[str, Any] = untie_r __snake_case : Dict = init __snake_case : Union[str, Any] = init_range __snake_case : Union[str, Any] = proj_init_std __snake_case : str = init_std __snake_case : List[Any] = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase__ , **lowerCamelCase__) @property def _lowercase (self : int) -> List[str]: logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def _lowercase (self : Optional[Any] , _A : Tuple) -> Union[str, Any]: raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit.")
718
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a : Optional[int]= get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class UpperCamelCase ( lowercase , unittest.TestCase ): UpperCAmelCase : List[str] = XLMProphetNetTokenizer UpperCAmelCase : int = False UpperCAmelCase : List[Any] = True def _lowercase (self : Dict) -> Dict: super().setUp() # We have a SentencePiece fixture for testing __snake_case : Tuple = XLMProphetNetTokenizer(_A , keep_accents=_A) tokenizer.save_pretrained(self.tmpdirname) def _lowercase (self : str) -> Optional[int]: __snake_case : List[str] = '[PAD]' __snake_case : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A) , _A) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A) , _A) def _lowercase (self : Dict) -> str: __snake_case : int = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '[PAD]') self.assertEqual(vocab_keys[1] , '[CLS]') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(_A) , 10_12) def _lowercase (self : Dict) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 10_12) def _lowercase (self : str) -> Dict: __snake_case : int = XLMProphetNetTokenizer(_A , keep_accents=_A) __snake_case : Tuple = tokenizer.tokenize('This is a test') self.assertListEqual(_A , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __snake_case : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __snake_case : Tuple = tokenizer.convert_tokens_to_ids(_A) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(_A) self.assertListEqual( _A , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def _lowercase (self : List[Any]) -> Tuple: return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased') @slow def _lowercase (self : Tuple) -> Any: __snake_case : Dict = 'Hello World!' __snake_case : List[str] = [3_53_89, 66_72, 49, 2] self.assertListEqual(_A , self.big_tokenizer.encode(_A)) @slow def _lowercase (self : Union[str, Any]) -> List[Any]: # fmt: off __snake_case : Any = {'input_ids': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
192
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase__ ( __lowerCamelCase : int ): __UpperCAmelCase : Optional[Any] = prime_factors(__lowerCamelCase ) if is_square_free(__lowerCamelCase ): return -1 if len(__lowerCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
63
def a__ ( snake_case__ : int , snake_case__ : int ): return 1 if input_a == input_a else 0 def a__ ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
643
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
704
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = 42 # setable values SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = None @classmethod def __magic_name__ ( cls , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' return cls(common=__snake_case , init_noise_sigma=__snake_case , timesteps=__snake_case ) @dataclass class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 42 class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = [e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE = 42 @property def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return True @register_to_config def __init__( self , __snake_case = 1000 , __snake_case = 0.0001 , __snake_case = 0.02 , __snake_case = "linear" , __snake_case = None , __snake_case = "fixed_small" , __snake_case = True , __snake_case = "epsilon" , __snake_case = jnp.floataa , ) -> Union[str, Any]: '''simple docstring''' __a =dtype def __magic_name__ ( self , __snake_case = None ) -> DDPMSchedulerState: '''simple docstring''' if common is None: __a =CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __a =jnp.array(1.0 , dtype=self.dtype ) __a =jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__snake_case , init_noise_sigma=__snake_case , timesteps=__snake_case , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None ) -> jnp.ndarray: '''simple docstring''' return sample def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = () ) -> DDPMSchedulerState: '''simple docstring''' __a =self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __a =(jnp.arange(0 , __snake_case ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__snake_case , timesteps=__snake_case , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=None , __snake_case=None ) -> Dict: '''simple docstring''' __a =state.common.alphas_cumprod[t] __a =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __a =(1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __a =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __a =jnp.clip(__snake_case , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __a =jnp.log(jnp.clip(__snake_case , a_min=1e-20 ) ) elif variance_type == "fixed_large": __a =state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __a =jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __a =variance __a =state.common.betas[t] __a =(predicted_variance + 1) / 2 __a =frac * max_log + (1 - frac) * min_log return variance def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = None , __snake_case = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: '''simple docstring''' __a =timestep if key is None: __a =jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __a , __a =jnp.split(__snake_case , sample.shape[1] , axis=1 ) else: __a =None # 1. compute alphas, betas __a =state.common.alphas_cumprod[t] __a =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __a =1 - alpha_prod_t __a =1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __a =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __a =model_output elif self.config.prediction_type == "v_prediction": __a =(alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __a =jnp.clip(__snake_case , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a =(alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __a =state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __a =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __a =jax.random.split(__snake_case , num=1 ) __a =jax.random.normal(__snake_case , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__snake_case , __snake_case , predicted_variance=__snake_case ) ** 0.5) * noise __a =jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __a =pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__snake_case , state=__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , ) -> jnp.ndarray: '''simple docstring''' return add_noise_common(state.common , __snake_case , __snake_case , __snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , ) -> jnp.ndarray: '''simple docstring''' return get_velocity_common(state.common , __snake_case , __snake_case , __snake_case ) def __len__( self ) -> Dict: '''simple docstring''' return self.config.num_train_timesteps
242
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self , *, __snake_case = 4 , __snake_case = 768 , __snake_case , __snake_case , ) -> str: '''simple docstring''' super().__init__() __a =nn.Parameter(torch.zeros(__snake_case ) ) # parameters for additional clip time embeddings __a =nn.Linear(__snake_case , __snake_case ) __a =nn.Linear(__snake_case , __snake_case ) # parameters for encoder hidden states __a =clip_extra_context_tokens __a =nn.Linear( __snake_case , self.clip_extra_context_tokens * cross_attention_dim ) __a =nn.Linear(__snake_case , __snake_case ) __a =nn.LayerNorm(__snake_case ) def __magic_name__ ( self , *, __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __a =image_embeddings.shape[0] __a =self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __a =classifier_free_guidance_embeddings.expand( __snake_case , -1 ) __a =torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __a =prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __a =self.embedding_proj(__snake_case ) __a =self.clip_image_embeddings_project_to_time_embeddings(__snake_case ) __a =time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __a =self.clip_extra_context_tokens_proj(__snake_case ) __a =clip_extra_context_tokens.reshape(__snake_case , -1 , self.clip_extra_context_tokens ) __a =clip_extra_context_tokens.permute(0 , 2 , 1 ) __a =self.encoder_hidden_states_proj(__snake_case ) __a =self.text_encoder_hidden_states_norm(__snake_case ) __a =torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
242
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
582
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowercase__: '''simple docstring''' @staticmethod def UpperCAmelCase ( *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" pass def _lowerCamelCase ( A_ : str ) -> Dict: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __UpperCAmelCase = ( """https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png""" ) @is_pipeline_test @require_torch @require_vision class lowercase__( unittest.TestCase ): '''simple docstring''' snake_case__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[Any] =pipeline( "document-question-answering" , model=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : int =INVOICE_URL UpperCamelCase__ : Tuple =list(zip(*apply_tesseract(load_image(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE , ""))) UpperCamelCase__ : int ="What is the placebo?" UpperCamelCase__ : Optional[Any] =[ { "image": load_image(__SCREAMING_SNAKE_CASE), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> int: """simple docstring""" UpperCamelCase__ : Optional[Any] =dqa_pipeline(__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual( __SCREAMING_SNAKE_CASE , [ [ {"score": ANY(__SCREAMING_SNAKE_CASE), "answer": ANY(__SCREAMING_SNAKE_CASE), "start": ANY(__SCREAMING_SNAKE_CASE), "end": ANY(__SCREAMING_SNAKE_CASE)}, {"score": ANY(__SCREAMING_SNAKE_CASE), "answer": ANY(__SCREAMING_SNAKE_CASE), "start": ANY(__SCREAMING_SNAKE_CASE), "end": ANY(__SCREAMING_SNAKE_CASE)}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase ( self) -> Any: """simple docstring""" UpperCamelCase__ : Union[str, Any] =pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2") UpperCamelCase__ : Tuple =INVOICE_URL UpperCamelCase__ : Dict ="How many cats are there?" UpperCamelCase__ : List[Any] =[ {"score": 0.00_01, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.00_01, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] UpperCamelCase__ : str =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : Union[str, Any] =dqa_pipeline({"image": image, "question": question} , top_k=2) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , __SCREAMING_SNAKE_CASE) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably UpperCamelCase__ : Optional[int] ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCamelCase__ : List[str] =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual(__SCREAMING_SNAKE_CASE , []) # We can optionnally pass directly the words and bounding boxes UpperCamelCase__ : Any ="./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCamelCase__ : Tuple =[] UpperCamelCase__ : Union[str, Any] =[] UpperCamelCase__ : Optional[int] =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , words=__SCREAMING_SNAKE_CASE , boxes=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual(__SCREAMING_SNAKE_CASE , []) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase ( self) -> Tuple: """simple docstring""" UpperCamelCase__ : List[str] =pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) UpperCamelCase__ : Dict =INVOICE_URL UpperCamelCase__ : List[Any] ="What is the invoice number?" UpperCamelCase__ : Any =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.99_44, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.00_09, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ : Dict =dqa_pipeline({"image": image, "question": question} , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.99_44, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.00_09, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ : List[Any] =dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ [ {"score": 0.99_44, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.00_09, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase ( self) -> int: """simple docstring""" UpperCamelCase__ : List[Any] =pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) UpperCamelCase__ : Tuple =INVOICE_URL UpperCamelCase__ : Dict ="What is the invoice number?" UpperCamelCase__ : List[Any] =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.99_74, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.99_48, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ : Optional[int] =dqa_pipeline({"image": image, "question": question} , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.99_74, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.99_48, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ : List[str] =dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ [ {"score": 0.99_74, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.99_48, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase ( self) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[Any] =AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Tuple =pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__SCREAMING_SNAKE_CASE , revision="3dc6de3" , ) UpperCamelCase__ : List[str] =INVOICE_URL UpperCamelCase__ : Tuple ="What is the invoice number?" UpperCamelCase__ : Union[str, Any] =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCamelCase__ : Optional[int] =dqa_pipeline({"image": image, "question": question} , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCamelCase__ : Optional[int] =dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ [ {"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) UpperCamelCase__ : Optional[Any] =list(zip(*apply_tesseract(load_image(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE , ""))) # This model should also work if `image` is set to None UpperCamelCase__ : List[Any] =dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.42_51, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.08_19, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase ( self) -> str: """simple docstring""" UpperCamelCase__ : List[Any] =AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[Any] =pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__SCREAMING_SNAKE_CASE , revision="3dc6de3" , max_seq_len=50 , ) UpperCamelCase__ : str =INVOICE_URL UpperCamelCase__ : List[str] ="What is the invoice number?" UpperCamelCase__ : Union[str, Any] =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.99_99, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.99_98, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCamelCase__ : int =dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ [ {"score": 0.99_99, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.99_98, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) UpperCamelCase__ : List[Any] =list(zip(*apply_tesseract(load_image(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE , ""))) # This model should also work if `image` is set to None UpperCamelCase__ : Optional[Any] =dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [ {"score": 0.99_99, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.99_98, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[Any] =pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) UpperCamelCase__ : Optional[Any] =INVOICE_URL UpperCamelCase__ : Dict ="What is the invoice number?" UpperCamelCase__ : Any =dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2) self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4) , [{"answer": "us-001"}]) @require_tf @unittest.skip("Document question answering not implemented in TF") def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" pass
582
1
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _SCREAMING_SNAKE_CASE ( __a ,__a ,__a ): __SCREAMING_SNAKE_CASE :Tuple = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self : List[str] , a__ : int , a__ : int , a__ : Optional[int] = None , a__ : int = 5_0257 , a__ : int = 1024 , a__ : int = 768 , a__ : int = 12 , a__ : int = 12 , a__ : Optional[int] = None , a__ : str = "gelu_new" , a__ : float = 0.1 , a__ : float = 0.1 , a__ : float = 0.1 , a__ : float = 1E-5 , a__ : float = 0.02 , a__ : bool = True , a__ : bool = True , a__ : bool = False , a__ : bool = False , ): super().__init__() __magic_name__ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''' ) __magic_name__ = prefix_inner_dim __magic_name__ = prefix_hidden_dim __magic_name__ = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __magic_name__ = ( nn.Linear(self.prefix_hidden_dim , a__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) __magic_name__ = GPTaConfig( vocab_size=a__ , n_positions=a__ , n_embd=a__ , n_layer=a__ , n_head=a__ , n_inner=a__ , activation_function=a__ , resid_pdrop=a__ , embd_pdrop=a__ , attn_pdrop=a__ , layer_norm_epsilon=a__ , initializer_range=a__ , scale_attn_weights=a__ , use_cache=a__ , scale_attn_by_inverse_layer_idx=a__ , reorder_and_upcast_attn=a__ , ) __magic_name__ = GPTaLMHeadModel(a__ ) def snake_case__ ( self : int , a__ : torch.Tensor , a__ : torch.Tensor , a__ : Optional[torch.Tensor] = None , a__ : Optional[torch.Tensor] = None , ): __magic_name__ = self.transformer.transformer.wte(a__ ) __magic_name__ = self.encode_prefix(a__ ) __magic_name__ = self.decode_prefix(a__ ) __magic_name__ = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: __magic_name__ = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) __magic_name__ = torch.cat((dummy_token, input_ids) , dim=1 ) __magic_name__ = self.transformer(inputs_embeds=a__ , labels=a__ , attention_mask=a__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case__ ( self : Union[str, Any] , a__ : int , a__ : torch.device ): return torch.zeros(a__ , self.prefix_length , dtype=torch.intaa , device=a__ ) def snake_case__ ( self : Optional[int] , a__ : Optional[int] ): return self.encode_prefix(a__ ) @torch.no_grad() def snake_case__ ( self : Union[str, Any] , a__ : List[str] , a__ : Dict , a__ : List[str] ): __magic_name__ = torch.split(a__ , 1 , dim=0 ) __magic_name__ = [] __magic_name__ = [] for feature in features: __magic_name__ = self.decode_prefix(feature.to(a__ ) ) # back to the clip feature # Only support beam search for now __magic_name__ , __magic_name__ = self.generate_beam( input_embeds=a__ , device=a__ , eos_token_id=a__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __magic_name__ = torch.stack(a__ ) __magic_name__ = torch.stack(a__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case__ ( self : List[str] , a__ : List[Any]=None , a__ : List[str]=None , a__ : Dict=None , a__ : int = 5 , a__ : int = 67 , a__ : float = 1.0 , a__ : Optional[int] = None , ): __magic_name__ = eos_token_id __magic_name__ = None __magic_name__ = None __magic_name__ = torch.ones(a__ , device=a__ , dtype=torch.int ) __magic_name__ = torch.zeros(a__ , device=a__ , dtype=torch.bool ) if input_embeds is not None: __magic_name__ = input_embeds else: __magic_name__ = self.transformer.transformer.wte(a__ ) for i in range(a__ ): __magic_name__ = self.transformer(inputs_embeds=a__ ) __magic_name__ = outputs.logits __magic_name__ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __magic_name__ = logits.softmax(-1 ).log() if scores is None: __magic_name__ , __magic_name__ = logits.topk(a__ , -1 ) __magic_name__ = generated.expand(a__ , *generated.shape[1:] ) __magic_name__ , __magic_name__ = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: __magic_name__ = next_tokens else: __magic_name__ = tokens.expand(a__ , *tokens.shape[1:] ) __magic_name__ = torch.cat((tokens, next_tokens) , dim=1 ) else: __magic_name__ = -float(np.inf ) __magic_name__ = 0 __magic_name__ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 __magic_name__ = scores_sum / seq_lengths[:, None] __magic_name__ , __magic_name__ = scores_sum_average.view(-1 ).topk(a__ , -1 ) __magic_name__ = next_tokens // scores_sum.shape[1] __magic_name__ = seq_lengths[next_tokens_source] __magic_name__ = next_tokens % scores_sum.shape[1] __magic_name__ = next_tokens.unsqueeze(1 ) __magic_name__ = tokens[next_tokens_source] __magic_name__ = torch.cat((tokens, next_tokens) , dim=1 ) __magic_name__ = generated[next_tokens_source] __magic_name__ = scores_sum_average * seq_lengths __magic_name__ = is_stopped[next_tokens_source] __magic_name__ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) __magic_name__ = torch.cat((generated, next_token_embed) , dim=1 ) __magic_name__ = is_stopped + next_tokens.eq(a__ ).squeeze() if is_stopped.all(): break __magic_name__ = scores / seq_lengths __magic_name__ = scores.argsort(descending=a__ ) # tokens tensors are already padded to max_seq_length __magic_name__ = [tokens[i] for i in order] __magic_name__ = torch.stack(a__ , dim=0 ) __magic_name__ = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
432
'''simple docstring''' _lowerCAmelCase = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _lowerCAmelCase = [{"type": "code", "content": INSTALL_CONTENT}] _lowerCAmelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
432
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase =logging.get_logger(__name__) def __a ( A , A=False , A=False ) -> Optional[int]: '''simple docstring''' A__ = "backbone." if is_semantic else "" A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", "beit.embeddings.cls_token"), (f"""{prefix}patch_embed.proj.weight""", "beit.embeddings.patch_embeddings.projection.weight"), (f"""{prefix}patch_embed.proj.bias""", "beit.embeddings.patch_embeddings.projection.bias"), (f"""{prefix}pos_embed""", "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __a ( A , A , A=False , A=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): A__ = "backbone." if is_semantic else "" # queries, keys and values A__ = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) A__ = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) A__ = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) A__ = in_proj_weight[ : config.hidden_size, : ] A__ = q_bias A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A__ = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) A__ = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) A__ = gamma_a A__ = gamma_a def __a ( A , A , A ) -> Tuple: '''simple docstring''' A__ = dct.pop(A ) A__ = val def __a ( ) -> Dict: '''simple docstring''' A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def __a ( A , A , A=False ) -> Optional[int]: '''simple docstring''' A__ = False if "rvlcdip" in checkpoint_url else True A__ = BeitConfig(use_absolute_position_embeddings=A , use_mask_token=A ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A__ = 1_024 A__ = 4_096 A__ = 24 A__ = 16 # labels if "rvlcdip" in checkpoint_url: A__ = 16 A__ = "huggingface/label-files" A__ = "rvlcdip-id2label.json" A__ = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) A__ = {int(A ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A__ = torch.hub.load_state_dict_from_url(A , map_location="cpu" )["model"] A__ = create_rename_keys(A , has_lm_head=A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , A , has_lm_head=A ) # load HuggingFace model A__ = BeitForMaskedImageModeling(A ) if has_lm_head else BeitForImageClassification(A ) model.eval() model.load_state_dict(A ) # Check outputs on an image A__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=A ) A__ = prepare_img() A__ = image_processor(images=A , return_tensors="pt" ) A__ = encoding["pixel_values"] A__ = model(A ) A__ = outputs.logits # verify logits A__ = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(A ), "Shape of logits not as expected" Path(A ).mkdir(exist_ok=A ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A ) if push_to_hub: if has_lm_head: A__ = "dit-base" if "base" in checkpoint_url else "dit-large" else: A__ = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(A , A ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=A , ) model.push_to_hub( repo_path_or_name=Path(A , A ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=A , ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) __UpperCAmelCase =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
717
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def lowercase_ ( self ): '''simple docstring''' A__ = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base" ) A__ = { "input_ids": tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" "attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } A__ = model(UpperCamelCase__ )["last_hidden_state"] A__ = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice. A__ = tf.convert_to_tensor( [ [ [0.068_1762, 0.1089_4451, 0.0677_2504], [-0.0642_3668, 0.0236_6615, 0.0432_9344], [-0.0605_7295, 0.0997_4135, -0.0007_0584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
261
0
"""simple docstring""" from math import factorial def SCREAMING_SNAKE_CASE__ ( snake_case : int = 100 )-> int: '''simple docstring''' return sum(int(lowerCamelCase_ ) for x in str(factorial(lowerCamelCase_ ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
438
import os import sys import unittest UpperCamelCase__ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCamelCase__ : Tuple = os.path.join(git_repo_path, '''src''', '''transformers''') UpperCamelCase__ : List[Any] = ''' {0} = None ''' UpperCamelCase__ : str = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' UpperCamelCase__ : List[Any] = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(snake_case__ ,'tokenizers' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(snake_case__ ,'tensorflow_text' ) SCREAMING_SNAKE_CASE_ : int = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(snake_case__ ,'sentencepiece_and_tokenizers' ) SCREAMING_SNAKE_CASE_ : str = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(snake_case__ ,'sentencepiece_and_tensorflow_text' ) SCREAMING_SNAKE_CASE_ : Tuple = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(snake_case__ ,'sentencepiece_and_tokenizers_and_vision' ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' ,snake_case__ ) self.assertIn('tensorflow_text' ,snake_case__ ) self.assertIn('sentencepiece_and_tokenizers' ,snake_case__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' ,objects['torch'] ) self.assertIn('TFBertModel' ,objects['tf'] ) self.assertIn('FlaxBertModel' ,objects['flax'] ) self.assertIn('BertModel' ,objects['torch'] ) self.assertIn('TFBertTokenizer' ,objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' ,objects['sentencepiece_and_tokenizers'] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = create_dummy_object('CONSTANT' ,'\'torch\'' ) self.assertEqual(snake_case__ ,'\nCONSTANT = None\n' ) SCREAMING_SNAKE_CASE_ : Dict = create_dummy_object('function' ,'\'torch\'' ) self.assertEqual( snake_case__ ,'\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) SCREAMING_SNAKE_CASE_ : List[str] = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' SCREAMING_SNAKE_CASE_ : Dict = create_dummy_object('FakeClass' ,'\'torch\'' ) self.assertEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' SCREAMING_SNAKE_CASE_ : Dict = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] ,snake_case__ )
105
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = XLMTokenizer SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _lowerCAmelCase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowerCAmelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_lowerCAmelCase ) ) def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = '''lower newer''' _lowerCAmelCase = '''lower newer''' return input_text, output_text def __lowerCAmelCase ( self ): _lowerCAmelCase = XLMTokenizer(self.vocab_file , self.merges_file ) _lowerCAmelCase = '''lower''' _lowerCAmelCase = ['''low''', '''er</w>'''] _lowerCAmelCase = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = tokens + ['''<unk>'''] _lowerCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) _lowerCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) _lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
664
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=30, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=2, ) -> Any: UpperCamelCase : Dict = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : Tuple = image_size UpperCamelCase : List[Any] = patch_size UpperCamelCase : Union[str, Any] = num_channels UpperCamelCase : Union[str, Any] = is_training UpperCamelCase : Any = use_labels UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : str = hidden_act UpperCamelCase : Tuple = hidden_dropout_prob UpperCamelCase : int = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = type_sequence_label_size UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : Optional[Any] = scope UpperCamelCase : List[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCamelCase : Union[str, Any] = (image_size // patch_size) ** 2 UpperCamelCase : str = num_patches + 2 def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : str = None if self.use_labels: UpperCamelCase : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> Optional[int]: return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : int = DeiTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : Optional[int] = DeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase : Union[str, Any] = 1 UpperCamelCase : Tuple = DeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : int = self.type_sequence_label_size UpperCamelCase : Dict = DeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase : str = 1 UpperCamelCase : List[Any] = DeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def snake_case_ ( self ) -> Dict: UpperCamelCase : str = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Optional[Any] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Optional[int] = False def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : str = DeiTModelTester(self ) UpperCamelCase : str = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def snake_case_ ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def snake_case_ ( self ) -> str: pass def snake_case_ ( self ) -> List[Any]: UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_, nn.Linear ) ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : List[str] = [*signature.parameters.keys()] UpperCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Dict: UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> Optional[Any]: UpperCamelCase : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case_ ( self ) -> str: if not self.model_tester.is_training: return UpperCamelCase , UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : int = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(SCREAMING_SNAKE_CASE_ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def snake_case_ ( self ) -> Dict: UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase : Tuple = False UpperCamelCase : int = True for model_class in self.all_model_classes: if model_class in get_values(SCREAMING_SNAKE_CASE_ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def snake_case_ ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[Any] = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(SCREAMING_SNAKE_CASE_ ), *get_values(SCREAMING_SNAKE_CASE_ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): UpperCamelCase : Dict = problem_type['title'] UpperCamelCase : Optional[int] = problem_type['num_labels'] UpperCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) if problem_type["num_labels"] > 1: UpperCamelCase : int = inputs['labels'].unsqueeze(1 ).repeat(1, problem_type['num_labels'] ) UpperCamelCase : Tuple = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE_ ) as warning_list: UpperCamelCase : List[Any] = model(**SCREAMING_SNAKE_CASE_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def snake_case_ ( self ) -> Union[str, Any]: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Tuple = DeiTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> List[str]: UpperCamelCase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> List[str]: return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : List[Any] = prepare_img() UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : int = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def snake_case_ ( self ) -> str: UpperCamelCase : str = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224', torch_dtype=torch.floataa, device_map='auto' ) UpperCamelCase : List[Any] = self.default_image_processor UpperCamelCase : Optional[int] = prepare_img() UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ) UpperCamelCase : Optional[int] = inputs.pixel_values.to(SCREAMING_SNAKE_CASE_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ )
40
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any ,A : Optional[int] ,A : Optional[int]=7 ,A : Optional[Any]=3 ,A : List[str]=18 ,A : Any=30 ,A : Tuple=4_00 ,A : Union[str, Any]=True ,A : Optional[Any]=32 ,A : Union[str, Any]=True ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size_divisor __A = do_rescale def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = GLPNImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : int ): __A = GLPNImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Any ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize" ) ) self.assertTrue(hasattr(A ,"size_divisor" ) ) self.assertTrue(hasattr(A ,"resample" ) ) self.assertTrue(hasattr(A ,"do_rescale" ) ) def UpperCamelCase_ ( self : str ): pass def UpperCamelCase_ ( self : Dict ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : Optional[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def UpperCamelCase_ ( self : int ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer A = logging.get_logger(__name__) A = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } A = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } A = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= VOCAB_FILES_NAMES A__= PRETRAINED_VOCAB_FILES_MAP A__= PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__= PRETRAINED_INIT_CONFIGURATION A__= ['input_ids', 'attention_mask'] A__= DistilBertTokenizer def __init__( self : List[Any] , _lowercase : Optional[Any]=None , _lowercase : Any=None , _lowercase : Optional[Any]=True , _lowercase : Optional[Any]="[UNK]" , _lowercase : Optional[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : Optional[Any]="[CLS]" , _lowercase : Optional[Any]="[MASK]" , _lowercase : Optional[Any]=True , _lowercase : Any=None , **_lowercase : str , ): """simple docstring""" super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) UpperCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowercase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowercase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowercase ) != tokenize_chinese_chars ): UpperCAmelCase__ = getattr(_lowercase , normalizer_state.pop("type" ) ) UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = strip_accents UpperCAmelCase__ = tokenize_chinese_chars UpperCAmelCase__ = normalizer_class(**_lowercase ) UpperCAmelCase__ = do_lower_case def _UpperCAmelCase ( self : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : int=None ): """simple docstring""" UpperCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): """simple docstring""" UpperCAmelCase__ = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
277
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A = logging.get_logger(__name__) def __UpperCAmelCase ( __A , __A , __A ) -> None: '''simple docstring''' UpperCAmelCase__ = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__A ) == len(__A ), F"""{len(__A )} != {len(__A )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) A = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __UpperCAmelCase ( __A , __A ) -> int: '''simple docstring''' try: UpperCAmelCase__ = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(__A ) ) def __UpperCAmelCase ( __A , __A ) -> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(__A ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __UpperCAmelCase ( __A , __A = "student" , __A = None , __A = None , __A=False , __A=None , __A=None , **__A , ) -> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' UpperCAmelCase__ = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(__A , __A ): AutoTokenizer.from_pretrained(__A ).save_pretrained(__A ) # purely for convenience UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(__A ).eval() else: assert isinstance(__A , __A ), F"""teacher must be a model or string got type {type(__A )}""" UpperCAmelCase__ = teacher.config.to_diff_dict() try: UpperCAmelCase__ , UpperCAmelCase__ = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase__ = teacher_e if d is None: UpperCAmelCase__ = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): UpperCAmelCase__ , UpperCAmelCase__ = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase__ , UpperCAmelCase__ = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase__ = teacher_e if d is None: UpperCAmelCase__ = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__A ) # Copy weights UpperCAmelCase__ = teacher.config_class(**__A ) UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_config(__A ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase__ = student.load_state_dict(teacher.state_dict() , strict=__A ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase__ , UpperCAmelCase__ = list(range(__A ) ), list(range(__A ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(__A ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase__ = pick_layers_to_copy(__A , __A ) if d_layers_to_copy is None: UpperCAmelCase__ = pick_layers_to_copy(__A , __A ) try: if hasattr( __A , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __A ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __A ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __A ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __A ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __A ) copy_layers(teacher.decoder.block , student.decoder.block , __A ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) UpperCAmelCase__ = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(__A ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
277
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """spiece.model"""} UpperCAmelCase_ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } UpperCAmelCase_ = { """albert-base-v1""": 5_1_2, """albert-large-v1""": 5_1_2, """albert-xlarge-v1""": 5_1_2, """albert-xxlarge-v1""": 5_1_2, """albert-base-v2""": 5_1_2, """albert-large-v2""": 5_1_2, """albert-xlarge-v2""": 5_1_2, """albert-xxlarge-v2""": 5_1_2, } UpperCAmelCase_ = """▁""" class lowerCamelCase__ ( _A): """simple docstring""" a__ : Tuple = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Optional[Any]="[CLS]" , __lowerCAmelCase : List[Any]="[SEP]" , __lowerCAmelCase : List[str]="<unk>" , __lowerCAmelCase : str="[SEP]" , __lowerCAmelCase : Optional[Any]="<pad>" , __lowerCAmelCase : int="[CLS]" , __lowerCAmelCase : List[str]="[MASK]" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : List[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _A = ( AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase , normalized=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token ) _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = do_lower_case _A = remove_space _A = keep_accents _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) @property def snake_case_ ( self : List[Any] ) -> int: return len(self.sp_model ) def snake_case_ ( self : Optional[int] ) -> List[str]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> str: _A = self.__dict__.copy() _A = None return state def __setstate__( self : Dict , __lowerCAmelCase : Dict ) -> Tuple: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self : str , __lowerCAmelCase : str ) -> Any: if self.remove_space: _A = ''' '''.join(inputs.strip().split() ) else: _A = inputs _A = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: _A = unicodedata.normalize('''NFKD''' , __lowerCAmelCase ) _A = ''''''.join([c for c in outputs if not unicodedata.combining(__lowerCAmelCase )] ) if self.do_lower_case: _A = outputs.lower() return outputs def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : str ) -> List[str]: _A = self.preprocess_text(__lowerCAmelCase ) _A = self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) _A = [] for piece in pieces: if len(__lowerCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): _A = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _A = cur_pieces[1:] else: _A = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCAmelCase ) else: new_pieces.append(__lowerCAmelCase ) return new_pieces def snake_case_ ( self : str , __lowerCAmelCase : Optional[int] ) -> Dict: return self.sp_model.PieceToId(__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Optional[int] ) -> List[Any]: return self.sp_model.IdToPiece(__lowerCAmelCase ) def snake_case_ ( self : Dict , __lowerCAmelCase : Optional[Any] ) -> Optional[Any]: _A = [] _A = '''''' _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token _A = True _A = [] else: current_sub_tokens.append(__lowerCAmelCase ) _A = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def snake_case_ ( self : Dict , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case_ ( self : Dict , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : str , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
2
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Tuple=3 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Dict=4_00 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Dict=[0.5, 0.5, 0.5] , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=1 / 2_55 , __lowerCAmelCase : int=True , ) -> List[str]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _A = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} _A = parent _A = batch_size _A = num_channels _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize _A = image_mean _A = image_std _A = do_rescale _A = rescale_factor _A = do_pad def snake_case_ ( self : Optional[int] ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str=False ) -> Dict: if not batched: _A = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _A , _A = image.size else: _A , _A = image.shape[1], image.shape[2] if w < h: _A = int(self.size['''shortest_edge'''] * h / w ) _A = self.size['''shortest_edge'''] elif w > h: _A = self.size['''shortest_edge'''] _A = int(self.size['''shortest_edge'''] * w / h ) else: _A = self.size['''shortest_edge'''] _A = self.size['''shortest_edge'''] else: _A = [] for image in image_inputs: _A , _A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _A = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Any = DeformableDetrImageProcessor if is_vision_available() else None def snake_case_ ( self : Optional[int] ) -> Any: _A = DeformableDetrImageProcessingTester(self ) @property def snake_case_ ( self : Union[str, Any] ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Optional[int] ) -> List[str]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) def snake_case_ ( self : List[str] ) -> int: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __lowerCAmelCase ) def snake_case_ ( self : Any ) -> Union[str, Any]: pass def snake_case_ ( self : List[str] ) -> Optional[int]: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Tuple ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case_ ( self : Optional[Any] ) -> int: # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ).pixel_values _A , _A = self.image_processor_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case_ ( self : Optional[Any] ) -> Optional[int]: # prepare image and target _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''image_id''': 3_97_69, '''annotations''': target} # encode them _A = DeformableDetrImageProcessor() _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) ) @slow def snake_case_ ( self : List[str] ) -> List[str]: # prepare image, target and masks_path _A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _A = json.loads(f.read() ) _A = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} _A = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _A = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _A = image_processing(images=__lowerCAmelCase , annotations=__lowerCAmelCase , masks_path=__lowerCAmelCase , return_tensors='''pt''' ) # verify pixel values _A = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __lowerCAmelCase , atol=1E-4 ) ) # verify area _A = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __lowerCAmelCase ) ) # verify boxes _A = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __lowerCAmelCase ) _A = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __lowerCAmelCase , atol=1E-3 ) ) # verify image_id _A = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __lowerCAmelCase ) ) # verify is_crowd _A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __lowerCAmelCase ) ) # verify class_labels _A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __lowerCAmelCase ) ) # verify masks _A = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __lowerCAmelCase ) # verify orig_size _A = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __lowerCAmelCase ) ) # verify size _A = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __lowerCAmelCase ) )
2
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : List[Any] = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : str = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
from __future__ import annotations from scipy.special import comb # type: ignore class a__ : def __init__( self : Union[str, Any],_A : list[tuple[float, float]] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. SCREAMING_SNAKE_CASE_ : List[Any] = len(_A ) - 1 def __UpperCamelCase ( self : Any,_A : float ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE_ : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,_A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_A ),5 ) == 1 return output_values def __UpperCamelCase ( self : str,_A : float ): """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE_ : Optional[Any] = self.basis_function(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = 0.0 SCREAMING_SNAKE_CASE_ : List[str] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __UpperCamelCase ( self : Any,_A : float = 0.01 ): """simple docstring""" from matplotlib import pyplot as plt # type: ignore SCREAMING_SNAKE_CASE_ : list[float] = [] # x coordinates of points to plot SCREAMING_SNAKE_CASE_ : list[float] = [] # y coordinates of points to plot SCREAMING_SNAKE_CASE_ : Tuple = 0.0 while t <= 1: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.bezier_curve_function(_A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size SCREAMING_SNAKE_CASE_ : Tuple = [i[0] for i in self.list_of_points] SCREAMING_SNAKE_CASE_ : Tuple = [i[1] for i in self.list_of_points] plt.plot( _A,_A,color="blue",label="Curve of Degree " + str(self.degree ),) plt.scatter(_A,_A,color="red",label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
316
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE_ = (3, 9, -11, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_) -> None: UpperCamelCase = None for i in sorted(_SCREAMING_SNAKE_CASE , reverse=_SCREAMING_SNAKE_CASE): UpperCamelCase = Node(_SCREAMING_SNAKE_CASE , self.head) def __iter__( self) -> Iterator[int]: UpperCamelCase = self.head while node: yield node.data UpperCamelCase = node.next_node def __len__( self) -> int: return sum(1 for _ in self) def __str__( self) -> str: return " -> ".join([str(_SCREAMING_SNAKE_CASE) for node in self]) def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" return SortedLinkedList(list(_lowercase ) + list(_lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
34
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "trocr" snake_case = ["past_key_values"] snake_case = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self , _SCREAMING_SNAKE_CASE=5_0265 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , **_SCREAMING_SNAKE_CASE , )->str: '''simple docstring''' A_ : List[str] = vocab_size A_ : Tuple = d_model A_ : List[Any] = decoder_layers A_ : Optional[int] = decoder_attention_heads A_ : Any = decoder_ffn_dim A_ : Union[str, Any] = activation_function A_ : str = max_position_embeddings A_ : Dict = dropout A_ : int = attention_dropout A_ : Optional[int] = activation_dropout A_ : int = init_std A_ : Any = decoder_layerdrop A_ : int = use_cache A_ : int = scale_embedding A_ : Optional[int] = use_learned_position_embeddings A_ : str = layernorm_embedding super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
590
0
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =VideoToVideoSDPipeline __UpperCamelCase =TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} __UpperCamelCase =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} __UpperCamelCase =PipelineTesterMixin.required_optional_params - {"latents"} __UpperCamelCase =False # No `output_type`. __UpperCamelCase =frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=3_2 , attention_head_dim=4 , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(snake_case__ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : List[str] , snake_case__ : Any=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = VideoToVideoSDPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'np' SCREAMING_SNAKE_CASE = sd_pipe(**snake_case__ ).frames SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) SCREAMING_SNAKE_CASE = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ , expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def UpperCamelCase ( self : Tuple ): """simple docstring""" pass def UpperCamelCase ( self : List[Any] ): """simple docstring""" return super().test_progress_bar() @slow @skip_mps class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames SCREAMING_SNAKE_CASE = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=snake_case__ ) SCREAMING_SNAKE_CASE = video.to('cuda' ) SCREAMING_SNAKE_CASE = 'Spiderman is surfing' SCREAMING_SNAKE_CASE = pipe(snake_case__ , video=snake_case__ , generator=snake_case__ , num_inference_steps=3 , output_type='pt' ).frames SCREAMING_SNAKE_CASE = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
673
import random def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : float , _UpperCamelCase : bool = False ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE = {i: [] for i in range(_UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_UpperCamelCase ): for j in range(i + 1 , _UpperCamelCase ): if random.random() < probability: graph[i].append(_UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_UpperCamelCase ) return graph def __lowerCAmelCase ( _UpperCamelCase : int ) -> dict: '''simple docstring''' return { i: [j for j in range(_UpperCamelCase ) if i != j] for i in range(_UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
673
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
112
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Union[str, Any] = len(snake_case_ ) _A : str = [[0] * n for i in range(snake_case_ )] for i in range(snake_case_ ): _A : Optional[Any] = y_points[i] for i in range(2,snake_case_ ): for j in range(snake_case_,snake_case_ ): _A : List[Any] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
307
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : Dict = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _UpperCAmelCase : str = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
474
0
'''simple docstring''' class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , a__ : Dict ): UpperCAmelCase = val UpperCAmelCase = None UpperCAmelCase = None def __snake_case ( self : Tuple , a__ : List[Any] ): if self.val: if val < self.val: if self.left is None: UpperCAmelCase = Node(a__ ) else: self.left.insert(a__ ) elif val > self.val: if self.right is None: UpperCAmelCase = Node(a__ ) else: self.right.insert(a__ ) else: UpperCAmelCase = val def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[Any]: """simple docstring""" if root: inorder(root.left , SCREAMING_SNAKE_CASE_ ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE_ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: return arr UpperCAmelCase = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): root.insert(arr[i] ) # Traverse BST in order. UpperCAmelCase = [] inorder(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
51
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' def wrapper(*_UpperCAmelCase, **_UpperCAmelCase ): lowerCAmelCase : str = timeit.default_timer() lowerCAmelCase : str = func(*_UpperCAmelCase, **_UpperCAmelCase ) lowerCAmelCase : Optional[int] = timeit.default_timer() - starttime return delta lowerCAmelCase : Union[str, Any] = func.__name__ return wrapper def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase=100, _UpperCAmelCase=None ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = [] lowerCAmelCase : Optional[int] = seq_shapes or {} for i in range(_UpperCAmelCase ): lowerCAmelCase : Any = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_UpperCAmelCase, _ArrayXD ): lowerCAmelCase : Dict = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_UpperCAmelCase, datasets.Value ): if v.dtype == "string": lowerCAmelCase : Any = 'The small grey turtle was surprisingly fast when challenged.' else: lowerCAmelCase : Optional[Any] = np.random.randint(10, size=1 ).astype(v.dtype ).item() elif isinstance(_UpperCAmelCase, datasets.Sequence ): while isinstance(_UpperCAmelCase, datasets.Sequence ): lowerCAmelCase : int = v.feature lowerCAmelCase : Optional[int] = seq_shapes[k] lowerCAmelCase : str = np.random.rand(*_UpperCAmelCase ).astype(v.dtype ) lowerCAmelCase : Any = data dummy_data.append((i, example) ) return dummy_data def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=100, _UpperCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Any = generate_examples(_UpperCAmelCase, num_examples=_UpperCAmelCase, seq_shapes=_UpperCAmelCase ) with ArrowWriter(features=_UpperCAmelCase, path=_UpperCAmelCase ) as writer: for key, record in dummy_data: lowerCAmelCase : Any = features.encode_example(_UpperCAmelCase ) writer.write(_UpperCAmelCase ) lowerCAmelCase , lowerCAmelCase : Optional[int] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCAmelCase : int = datasets.Dataset.from_file(filename=_UpperCAmelCase, info=datasets.DatasetInfo(features=_UpperCAmelCase ) ) return dataset
343
0
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE : Optional[Any] = TypeVar("KEY") SCREAMING_SNAKE_CASE : int = TypeVar("VAL") @dataclass(frozen=_UpperCamelCase, slots=_UpperCamelCase ) class snake_case ( Generic[KEY, VAL] ): """simple docstring""" _a = 42 _a = 42 class snake_case ( _Item ): """simple docstring""" def __init__( self ) -> None: super().__init__(__a, __a ) def __bool__( self ) -> bool: return False SCREAMING_SNAKE_CASE : Optional[int] = _DeletedItem() class snake_case ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self, _lowercase = 8, _lowercase = 0.75 ) -> None: SCREAMING_SNAKE_CASE_ = initial_block_size SCREAMING_SNAKE_CASE_ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 SCREAMING_SNAKE_CASE_ = capacity_factor SCREAMING_SNAKE_CASE_ = 0 def a__ ( self, _lowercase ) -> int: return hash(__a ) % len(self._buckets ) def a__ ( self, _lowercase ) -> int: return (ind + 1) % len(self._buckets ) def a__ ( self, _lowercase, _lowercase, _lowercase ) -> bool: SCREAMING_SNAKE_CASE_ = self._buckets[ind] if not stored: SCREAMING_SNAKE_CASE_ = _Item(__a, __a ) self._len += 1 return True elif stored.key == key: SCREAMING_SNAKE_CASE_ = _Item(__a, __a ) return True else: return False def a__ ( self ) -> bool: SCREAMING_SNAKE_CASE_ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__a ) def a__ ( self ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False SCREAMING_SNAKE_CASE_ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ ( self, _lowercase ) -> None: SCREAMING_SNAKE_CASE_ = self._buckets SCREAMING_SNAKE_CASE_ = [None] * new_size SCREAMING_SNAKE_CASE_ = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ ( self ) -> None: self._resize(len(self._buckets ) * 2 ) def a__ ( self ) -> None: self._resize(len(self._buckets ) // 2 ) def a__ ( self, _lowercase ) -> Iterator[int]: SCREAMING_SNAKE_CASE_ = self._get_bucket_index(__a ) for _ in range(len(self._buckets ) ): yield ind SCREAMING_SNAKE_CASE_ = self._get_next_ind(__a ) def a__ ( self, _lowercase, _lowercase ) -> None: for ind in self._iterate_buckets(__a ): if self._try_set(__a, __a, __a ): break def __setitem__( self, _lowercase, _lowercase ) -> None: if self._is_full(): self._size_up() self._add_item(__a, __a ) def __delitem__( self, _lowercase ) -> None: for ind in self._iterate_buckets(__a ): SCREAMING_SNAKE_CASE_ = self._buckets[ind] if item is None: raise KeyError(__a ) if item is _deleted: continue if item.key == key: SCREAMING_SNAKE_CASE_ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self, _lowercase ) -> VAL: for ind in self._iterate_buckets(__a ): SCREAMING_SNAKE_CASE_ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__a ) def __len__( self ) -> int: return self._len def __iter__( self ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: SCREAMING_SNAKE_CASE_ = " ,".join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
707
'''simple docstring''' def _UpperCamelCase ( lowerCAmelCase__: int ,lowerCAmelCase__: float ,lowerCAmelCase__: float ) -> float: return round(float(moles / volume ) * nfactor ) def _UpperCamelCase ( lowerCAmelCase__: float ,lowerCAmelCase__: float ,lowerCAmelCase__: float ) -> float: return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def _UpperCamelCase ( lowerCAmelCase__: float ,lowerCAmelCase__: float ,lowerCAmelCase__: float ) -> float: return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def _UpperCamelCase ( lowerCAmelCase__: float ,lowerCAmelCase__: float ,lowerCAmelCase__: float ) -> float: return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
238
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : str = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class snake_case__ ( __snake_case ): '''simple docstring''' __A = '''xmod''' def __init__( self : List[str] , lowerCAmelCase_ : Any=3_05_22 , lowerCAmelCase_ : Optional[Any]=7_68 , lowerCAmelCase_ : Union[str, Any]=12 , lowerCAmelCase_ : int=12 , lowerCAmelCase_ : int=30_72 , lowerCAmelCase_ : Optional[Any]="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Optional[Any]=5_12 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : str=1e-12 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Union[str, Any]=0 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]="absolute" , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Optional[int]=("en_XX",) , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : List[Any] , ) -> Optional[int]: super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout UpperCAmelCase_ = pre_norm UpperCAmelCase_ = adapter_reduction_factor UpperCAmelCase_ = adapter_layer_norm UpperCAmelCase_ = adapter_reuse_layer_norm UpperCAmelCase_ = ln_before_adapter UpperCAmelCase_ = list(lowerCAmelCase_ ) UpperCAmelCase_ = default_language class snake_case__ ( __snake_case ): '''simple docstring''' @property def UpperCamelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
121
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class snake_case__ : '''simple docstring''' __A = 42 __A = None __A = None _lowerCamelCase : str = namedtuple('CoinsDistribResult', 'moves excess') def _lowerCAmelCase ( __magic_name__ :TreeNode | None ): if root is None: return 0 # Validation def count_nodes(__magic_name__ :TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__magic_name__ :TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__magic_name__ ) != count_coins(__magic_name__ ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__magic_name__ :TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase_, UpperCAmelCase_ = get_distrib(node.left ) UpperCAmelCase_, UpperCAmelCase_ = get_distrib(node.right ) UpperCAmelCase_ = 1 - left_distrib_excess UpperCAmelCase_ = 1 - right_distrib_excess UpperCAmelCase_ = ( left_distrib_moves + right_distrib_moves + abs(__magic_name__ ) + abs(__magic_name__ ) ) UpperCAmelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__magic_name__ , __magic_name__ ) return get_distrib(__magic_name__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
121
1
"""simple docstring""" from itertools import permutations def A__ ( UpperCamelCase ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False A = [7, 11, 13, 17] for i, test in enumerate(UpperCamelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def A__ ( UpperCamelCase = 10 ): return sum( int("".join(map(UpperCamelCase , UpperCamelCase ) ) ) for num in permutations(range(UpperCamelCase ) ) if is_substring_divisible(UpperCamelCase ) ) if __name__ == "__main__": print(F"""{solution() = }""")
709
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def A__ ( UpperCamelCase ): A, A, A = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def A__ ( UpperCamelCase ): return (gray > 127) & (gray <= 255) def A__ ( UpperCamelCase , UpperCamelCase ): A = np.zeros_like(UpperCamelCase ) A = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image A = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): A = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() A = int(summation > 0 ) return output if __name__ == "__main__": # read original image _snake_case : str = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' _snake_case : Any = np.array(Image.open(lena_path)) # kernel to be applied _snake_case : Tuple = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _snake_case : int = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _snake_case : List[Any] = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
524
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCAmelCase : Optional[Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _A ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : str = torchvision.models.resnetaaa(pretrained=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = list(model.children() )[:-2] SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Sequential(*__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.pool(self.model(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : int = torch.flatten(__lowerCAmelCase , start_dim=2 ) SCREAMING_SNAKE_CASE_ : List[Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _A ( a__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [json.loads(__lowerCAmelCase ) for l in open(__lowerCAmelCase )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.dirname(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = tokenizer SCREAMING_SNAKE_CASE_ : str = labels SCREAMING_SNAKE_CASE_ : Dict = len(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = max_seq_length SCREAMING_SNAKE_CASE_ : Union[str, Any] = transforms def __len__( self ): """simple docstring""" return len(self.data ) def __getitem__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = sentence[0], sentence[1:-1], sentence[-1] SCREAMING_SNAKE_CASE_ : Tuple = sentence[: self.max_seq_length] SCREAMING_SNAKE_CASE_ : Optional[int] = torch.zeros(self.n_classes ) SCREAMING_SNAKE_CASE_ : str = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) SCREAMING_SNAKE_CASE_ : List[str] = self.transforms(__lowerCAmelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [len(row['sentence'] ) for row in batch] SCREAMING_SNAKE_CASE_ : Optional[Any] = len(a ), max(a ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.zeros(a , a , dtype=torch.long ) SCREAMING_SNAKE_CASE_ : Any = torch.zeros(a , a , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(a , a ) ): SCREAMING_SNAKE_CASE_ : int = input_row['''sentence'''] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 SCREAMING_SNAKE_CASE_ : str = torch.stack([row['image'] for row in batch] ) SCREAMING_SNAKE_CASE_ : Dict = torch.stack([row['label'] for row in batch] ) SCREAMING_SNAKE_CASE_ : Dict = torch.stack([row['image_start_token'] for row in batch] ) SCREAMING_SNAKE_CASE_ : int = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def A_ ( ): """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def A_ ( ): """simple docstring""" return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
511
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ): try: lowercase__ : int = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Optional[Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : List[Any] = strtobool(UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __a: Dict = parse_flag_from_env("""RUN_SLOW""", default=False) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skip('''Test was skipped''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase=None , UpperCAmelCase=None ): if test_case is None: return partial(UpperCAmelCase , version=UpperCAmelCase ) return unittest.skipUnless(is_torch_version('''>=''' , UpperCAmelCase ) , F"""test requires torch version >= {version}""" )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(UpperCAmelCase ) __a: Tuple = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __UpperCamelCase ( UpperCAmelCase ): return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(UpperCAmelCase ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = True @classmethod def _lowerCAmelCase( cls ) -> List[Any]: lowercase__ : Tuple = tempfile.mkdtemp() @classmethod def _lowerCAmelCase( cls ) -> Union[str, Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _lowerCAmelCase( self ) -> List[str]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__lowerCAmelCase ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> int: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[int]: lowercase__ : Union[str, Any] = mocks if isinstance(__lowerCAmelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Any = AcceleratorState() lowercase__ : List[str] = tensor[None].clone().to(state.device ) lowercase__ : str = gather(UpperCAmelCase ).cpu() lowercase__ : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , UpperCAmelCase ): return False return True class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: lowercase__ : Union[str, Any] = returncode lowercase__ : Optional[Any] = stdout lowercase__ : str = stderr async def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): while True: lowercase__ : int = await stream.readline() if line: callback(UpperCAmelCase ) else: break async def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False ): if echo: print('''\nRunning: ''' , ''' '''.join(UpperCAmelCase ) ) lowercase__ : List[Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : List[Any] = [] lowercase__ : Dict = [] def tee(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="" ): lowercase__ : int = line.decode('''utf-8''' ).rstrip() sink.append(UpperCAmelCase ) if not quiet: print(UpperCAmelCase , UpperCAmelCase , file=UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda UpperCAmelCase : tee(UpperCAmelCase , UpperCAmelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda UpperCAmelCase : tee(UpperCAmelCase , UpperCAmelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=UpperCAmelCase , ) return _RunOutput(await p.wait() , UpperCAmelCase , UpperCAmelCase ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=180 , UpperCAmelCase=False , UpperCAmelCase=True ): lowercase__ : Dict = asyncio.get_event_loop() lowercase__ : Dict = loop.run_until_complete( _stream_subprocess(UpperCAmelCase , env=UpperCAmelCase , stdin=UpperCAmelCase , timeout=UpperCAmelCase , quiet=UpperCAmelCase , echo=UpperCAmelCase ) ) lowercase__ : Optional[Any] = ''' '''.join(UpperCAmelCase ) if result.returncode > 0: lowercase__ : Tuple = '''\n'''.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class UpperCAmelCase ( a__ ): '''simple docstring''' pass def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ): try: lowercase__ : Optional[Any] = subprocess.check_output(UpperCAmelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(UpperCAmelCase , '''decode''' ): lowercase__ : Tuple = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{' '.join(UpperCAmelCase )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
152
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowercase__: '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=24 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=2 , ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : int =parent UpperCamelCase__ : int =batch_size UpperCamelCase__ : Optional[int] =patch_size UpperCamelCase__ : str =max_length UpperCamelCase__ : Dict =num_mel_bins UpperCamelCase__ : Union[str, Any] =is_training UpperCamelCase__ : Optional[int] =use_labels UpperCamelCase__ : List[str] =hidden_size UpperCamelCase__ : List[str] =num_hidden_layers UpperCamelCase__ : str =num_attention_heads UpperCamelCase__ : Dict =intermediate_size UpperCamelCase__ : str =hidden_act UpperCamelCase__ : int =hidden_dropout_prob UpperCamelCase__ : str =attention_probs_dropout_prob UpperCamelCase__ : str =type_sequence_label_size UpperCamelCase__ : str =initializer_range UpperCamelCase__ : Any =scope UpperCamelCase__ : str =frequency_stride UpperCamelCase__ : str =time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCamelCase__ : Any =(self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCamelCase__ : Optional[Any] =(self.max_length - self.patch_size) // self.time_stride + 1 UpperCamelCase__ : Optional[int] =frequency_out_dimension * time_out_dimension UpperCamelCase__ : Union[str, Any] =num_patches + 2 def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] =floats_tensor([self.batch_size, self.max_length, self.num_mel_bins]) UpperCamelCase__ : Optional[int] =None if self.use_labels: UpperCamelCase__ : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Dict =self.get_config() return config, input_values, labels def UpperCAmelCase ( self) -> Union[str, Any]: """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> int: """simple docstring""" UpperCamelCase__ : Optional[Any] =ASTModel(config=__SCREAMING_SNAKE_CASE) model.to(__SCREAMING_SNAKE_CASE) model.eval() UpperCamelCase__ : str =model(__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[Any] =self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) : Optional[int] =config_and_inputs UpperCamelCase__ : Dict ={"input_values": input_values} return config, inputs_dict @require_torch class lowercase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' snake_case__ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) snake_case__ = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Optional[int] =ASTModelTester(self) UpperCamelCase__ : Dict =ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37) def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds") def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] =model_class(__SCREAMING_SNAKE_CASE) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : int =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear)) def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] =model_class(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Dict =inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : int =[*signature.parameters.keys()] UpperCamelCase__ : int =["input_values"] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Dict: """simple docstring""" UpperCamelCase__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) @slow def UpperCAmelCase ( self) -> Dict: """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Dict =ASTModel.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] =hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) UpperCamelCase__ , UpperCamelCase__ : Any =torchaudio.load(A_ ) return audio, sampling_rate @require_torch @require_torchaudio class lowercase__( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self) -> List[str]: """simple docstring""" return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593") if is_torchaudio_available() else None ) @slow def UpperCAmelCase ( self) -> Tuple: """simple docstring""" UpperCamelCase__ : List[str] =self.default_feature_extractor UpperCamelCase__ : Union[str, Any] =ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593").to(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[Any] =self.default_feature_extractor UpperCamelCase__ , UpperCamelCase__ : Tuple =prepare_audio() UpperCamelCase__ : int =audio.squeeze().numpy() UpperCamelCase__ : Tuple =feature_extractor(__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , return_tensors="pt").to(__SCREAMING_SNAKE_CASE) # forward pass with torch.no_grad(): UpperCamelCase__ : Tuple =model(**__SCREAMING_SNAKE_CASE) # verify the logits UpperCamelCase__ : List[Any] =torch.Size((1, 5_27)) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : Tuple =torch.tensor([-0.87_60, -7.00_42, -8.66_02]).to(__SCREAMING_SNAKE_CASE) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4))
582
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__( snake_case__ , unittest.TestCase ): '''simple docstring''' snake_case__ = OpenAIGPTTokenizer snake_case__ = OpenAIGPTTokenizerFast snake_case__ = True snake_case__ = False def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : Dict =[ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCamelCase__ : List[Any] =dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE)))) UpperCamelCase__ : Tuple =["#version: 0.2", "l o", "lo w", "e r</w>", ""] UpperCamelCase__ : Any =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) UpperCamelCase__ : int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w") as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE)) with open(self.merges_file , "w") as fp: fp.write("\n".join(__SCREAMING_SNAKE_CASE)) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> Any: """simple docstring""" return "lower newer", "lower newer" def UpperCAmelCase ( self) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Any =OpenAIGPTTokenizer(self.vocab_file , self.merges_file) UpperCamelCase__ : Dict ="lower" UpperCamelCase__ : Union[str, Any] =["low", "er</w>"] UpperCamelCase__ : Any =tokenizer.tokenize(__SCREAMING_SNAKE_CASE) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : Tuple =tokens + ["<unk>"] UpperCamelCase__ : Union[str, Any] =[14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE=15) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''): UpperCamelCase__ : str =self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) # Simple input UpperCamelCase__ : List[str] ="This is a simple input" UpperCamelCase__ : Dict =["This is a simple input 1", "This is a simple input 2"] UpperCamelCase__ : Union[str, Any] =("This is a simple input", "This is a pair") UpperCamelCase__ : Optional[Any] =[ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="max_length") # Simple input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="max_length") # Simple input self.assertRaises( __SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="max_length" , ) # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="max_length") # Pair input self.assertRaises(__SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="max_length") # Pair input self.assertRaises( __SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , __SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , padding="max_length" , ) def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class lowercase__( snake_case__ ): '''simple docstring''' pass
582
1
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : dict[int, list[int]] ) -> list[tuple[int, int]]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) # No of vertices in graph SCREAMING_SNAKE_CASE_ : List[Any] = [0] * n SCREAMING_SNAKE_CASE_ : Union[str, Any] = [False] * n def dfs(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Tuple = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , id_ ) SCREAMING_SNAKE_CASE_ : Any = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge SCREAMING_SNAKE_CASE_ : Optional[Any] = min(low[at] , low[to] ) SCREAMING_SNAKE_CASE_ : list[tuple[int, int]] = [] for i in range(SCREAMING_SNAKE_CASE_ ): if not visited[i]: dfs(SCREAMING_SNAKE_CASE_ , -1 , SCREAMING_SNAKE_CASE_ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
421
'''simple docstring''' import re def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : str ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R"^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$" ) if match := re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
421
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class _snake_case (__SCREAMING_SNAKE_CASE): __A : Any ="SpeechT5FeatureExtractor" __A : List[str] ="SpeechT5Tokenizer" def __init__( self ,_snake_case ,_snake_case ): super().__init__(_snake_case ,_snake_case ) def __call__( self ,*_snake_case ,**_snake_case ): UpperCAmelCase_ : Any = kwargs.pop("audio" ,_snake_case ) UpperCAmelCase_ : Any = kwargs.pop("text" ,_snake_case ) UpperCAmelCase_ : int = kwargs.pop("text_target" ,_snake_case ) UpperCAmelCase_ : Tuple = kwargs.pop("audio_target" ,_snake_case ) UpperCAmelCase_ : int = kwargs.pop("sampling_rate" ,_snake_case ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: UpperCAmelCase_ : int = self.feature_extractor(_snake_case ,*_snake_case ,sampling_rate=_snake_case ,**_snake_case ) elif text is not None: UpperCAmelCase_ : Optional[int] = self.tokenizer(_snake_case ,**_snake_case ) else: UpperCAmelCase_ : int = None if audio_target is not None: UpperCAmelCase_ : Tuple = self.feature_extractor(audio_target=_snake_case ,*_snake_case ,sampling_rate=_snake_case ,**_snake_case ) UpperCAmelCase_ : int = targets["input_values"] elif text_target is not None: UpperCAmelCase_ : Union[str, Any] = self.tokenizer(_snake_case ,**_snake_case ) UpperCAmelCase_ : Tuple = targets["input_ids"] else: UpperCAmelCase_ : Tuple = None if inputs is None: return targets if targets is not None: UpperCAmelCase_ : Optional[int] = labels UpperCAmelCase_ : List[Any] = targets.get("attention_mask" ) if decoder_attention_mask is not None: UpperCAmelCase_ : List[Any] = decoder_attention_mask return inputs def UpperCamelCase__ ( self ,*_snake_case ,**_snake_case ): UpperCAmelCase_ : List[Any] = kwargs.pop("input_values" ,_snake_case ) UpperCAmelCase_ : List[str] = kwargs.pop("input_ids" ,_snake_case ) UpperCAmelCase_ : List[Any] = kwargs.pop("labels" ,_snake_case ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: UpperCAmelCase_ : str = self.feature_extractor.pad(_snake_case ,*_snake_case ,**_snake_case ) elif input_ids is not None: UpperCAmelCase_ : Tuple = self.tokenizer.pad(_snake_case ,**_snake_case ) else: UpperCAmelCase_ : List[str] = None if labels is not None: if "input_ids" in labels or (isinstance(_snake_case ,_snake_case ) and "input_ids" in labels[0]): UpperCAmelCase_ : int = self.tokenizer.pad(_snake_case ,**_snake_case ) UpperCAmelCase_ : Optional[int] = targets["input_ids"] else: UpperCAmelCase_ : Dict = self.feature_extractor.feature_size UpperCAmelCase_ : List[Any] = self.feature_extractor.num_mel_bins UpperCAmelCase_ : int = self.feature_extractor.pad(_snake_case ,*_snake_case ,**_snake_case ) UpperCAmelCase_ : Union[str, Any] = feature_size_hack UpperCAmelCase_ : Union[str, Any] = targets["input_values"] else: UpperCAmelCase_ : Tuple = None if inputs is None: return targets if targets is not None: UpperCAmelCase_ : Dict = labels UpperCAmelCase_ : List[str] = targets.get("attention_mask" ) if decoder_attention_mask is not None: UpperCAmelCase_ : Union[str, Any] = decoder_attention_mask return inputs def UpperCamelCase__ ( self ,*_snake_case ,**_snake_case ): return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCamelCase__ ( self ,*_snake_case ,**_snake_case ): return self.tokenizer.decode(*_snake_case ,**_snake_case )
323
'''simple docstring''' import csv import tweepy # Twitter API credentials _lowerCamelCase = """""" _lowerCamelCase = """""" _lowerCamelCase = """""" _lowerCamelCase = """""" def a__ ( _SCREAMING_SNAKE_CASE : str ) -> None: """simple docstring""" UpperCAmelCase_ : List[Any] = tweepy.OAuthHandler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) auth.set_access_token(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = tweepy.API(_SCREAMING_SNAKE_CASE ) # initialize a list to hold all the tweepy Tweets UpperCAmelCase_ : str = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCAmelCase_ : Dict = api.user_timeline(screen_name=_SCREAMING_SNAKE_CASE , count=2_00 ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # save the id of the oldest tweet less one UpperCAmelCase_ : Any = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_SCREAMING_SNAKE_CASE ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates UpperCAmelCase_ : Tuple = api.user_timeline( screen_name=_SCREAMING_SNAKE_CASE , count=2_00 , max_id=_SCREAMING_SNAKE_CASE ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # update the id of the oldest tweet less one UpperCAmelCase_ : Optional[int] = alltweets[-1].id - 1 print(F'''...{len(_SCREAMING_SNAKE_CASE )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCAmelCase_ : str = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''' , "w" ) as f: UpperCAmelCase_ : str = csv.writer(_SCREAMING_SNAKE_CASE ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
323
1
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType a :List[Any] = False, False, False @dataclass class __a : '''simple docstring''' _SCREAMING_SNAKE_CASE :int = None _SCREAMING_SNAKE_CASE :List[Any] = True _SCREAMING_SNAKE_CASE :int = True _SCREAMING_SNAKE_CASE :int = None # Automatically constructed _SCREAMING_SNAKE_CASE :Optional[Any] = """dict""" _SCREAMING_SNAKE_CASE :Optional[int] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()}) _SCREAMING_SNAKE_CASE :Optional[int] = field(default="""Audio""" , init=snake_case_ , repr=snake_case_) def __call__( self ) -> List[str]: """simple docstring""" return self.pa_type def _a ( self , _a ) -> Tuple: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install \'soundfile\'.""" ) from err if isinstance(lowerCamelCase__ , lowerCamelCase__ ): return {"bytes": None, "path": value} elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes SCREAMING_SNAKE_CASE__ : Dict = BytesIO() sf.write(lowerCamelCase__ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a \'sampling_rate\' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) SCREAMING_SNAKE_CASE__ : Any = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: SCREAMING_SNAKE_CASE__ : str = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32_767 SCREAMING_SNAKE_CASE__ : Optional[int] = BytesIO(bytes() ) sf.write(lowerCamelCase__ , lowerCamelCase__ , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def _a ( self , _a , _a = None ) -> Union[str, Any]: """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install \'librosa\' and \'soundfile\'.""" ) from err SCREAMING_SNAKE_CASE__ : int = xsplitext(lowerCamelCase__ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: SCREAMING_SNAKE_CASE__ : Dict = token_per_repo_id or {} SCREAMING_SNAKE_CASE__ : List[str] = path.split("""::""" )[-1] try: SCREAMING_SNAKE_CASE__ : List[str] = string_to_dict(lowerCamelCase__ , config.HUB_DATASETS_URL )["""repo_id"""] SCREAMING_SNAKE_CASE__ : int = token_per_repo_id[repo_id] except (ValueError, KeyError): SCREAMING_SNAKE_CASE__ : Optional[int] = None with xopen(lowerCamelCase__ , """rb""" , use_auth_token=lowerCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = sf.read(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = sf.read(lowerCamelCase__ ) SCREAMING_SNAKE_CASE__ : int = array.T if self.mono: SCREAMING_SNAKE_CASE__ : Any = librosa.to_mono(lowerCamelCase__ ) if self.sampling_rate and self.sampling_rate != sampling_rate: SCREAMING_SNAKE_CASE__ : Dict = librosa.resample(lowerCamelCase__ , orig_sr=lowerCamelCase__ , target_sr=self.sampling_rate ) SCREAMING_SNAKE_CASE__ : str = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _a ( self ) -> List[str]: """simple docstring""" from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def _a ( self , _a ) -> Optional[int]: """simple docstring""" if pa.types.is_string(storage.type ): SCREAMING_SNAKE_CASE__ : Any = pa.array([None] * len(lowerCamelCase__ ) , type=pa.binary() ) SCREAMING_SNAKE_CASE__ : Tuple = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): SCREAMING_SNAKE_CASE__ : Any = pa.array([None] * len(lowerCamelCase__ ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : str = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): SCREAMING_SNAKE_CASE__ : int = pa.array([Audio().encode_example(lowerCamelCase__ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: SCREAMING_SNAKE_CASE__ : Optional[int] = storage.field("""bytes""" ) else: SCREAMING_SNAKE_CASE__ : List[Any] = pa.array([None] * len(lowerCamelCase__ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = storage.field("""path""" ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.array([None] * len(lowerCamelCase__ ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(lowerCamelCase__ , self.pa_type ) def _a ( self , _a ) -> int: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_a ): with xopen(lowerCamelCase__ , """rb""" ) as f: SCREAMING_SNAKE_CASE__ : List[str] = f.read() return bytes_ SCREAMING_SNAKE_CASE__ : Optional[int] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE__ : str = pa.array( [os.path.basename(lowerCamelCase__ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowerCamelCase__ , self.pa_type )
680
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : Any = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = '''donut-swin''' _snake_case = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCamelCase__=2_2_4 , lowerCamelCase__=4 , lowerCamelCase__=3 , lowerCamelCase__=9_6 , lowerCamelCase__=[2, 2, 6, 2] , lowerCamelCase__=[3, 6, 1_2, 2_4] , lowerCamelCase__=7 , lowerCamelCase__=4.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=False , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , **lowerCamelCase__ , ): '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase__ ) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase__ ) - 1) )
212
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A_ : List[Any] =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any] )-> Optional[Any]: _lowerCamelCase = 'huggingface/label-files' _lowerCamelCase = 'imagenet-1k-id2label.json' _lowerCamelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase = {int(snake_case ): v for k, v in idalabel.items()} _lowerCamelCase = {v: k for k, v in idalabel.items()} _lowerCamelCase = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" _lowerCamelCase = BitConfig( conv_layer=snake_case , num_labels=1_000 , idalabel=snake_case , labelaid=snake_case , ) return config def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any] )-> str: if "stem.conv" in name: _lowerCamelCase = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: _lowerCamelCase = name.replace('blocks' , 'layers' ) if "head.fc" in name: _lowerCamelCase = name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): _lowerCamelCase = 'bit.' + name if "bit" not in name and "classifier" not in name: _lowerCamelCase = 'bit.encoder.' + name return name def SCREAMING_SNAKE_CASE_ ( )-> Optional[Any]: _lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( snake_case : List[str] , snake_case : Optional[int] , snake_case : List[Any]=False )-> int: _lowerCamelCase = get_config(snake_case ) # load original model from timm _lowerCamelCase = create_model(snake_case , pretrained=snake_case ) timm_model.eval() # load state_dict of original model _lowerCamelCase = timm_model.state_dict() for key in state_dict.copy().keys(): _lowerCamelCase = state_dict.pop(snake_case ) _lowerCamelCase = val.squeeze() if 'head' in key else val # load HuggingFace model _lowerCamelCase = BitForImageClassification(snake_case ) model.eval() model.load_state_dict(snake_case ) # create image processor _lowerCamelCase = create_transform(**resolve_data_config({} , model=snake_case ) ) _lowerCamelCase = transform.transforms _lowerCamelCase = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } _lowerCamelCase = BitImageProcessor( do_resize=snake_case , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=snake_case , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=snake_case , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _lowerCamelCase = prepare_img() _lowerCamelCase = transform(snake_case ).unsqueeze(0 ) _lowerCamelCase = processor(snake_case , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(snake_case , snake_case ) # verify logits with torch.no_grad(): _lowerCamelCase = model(snake_case ) _lowerCamelCase = outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) _lowerCamelCase = timm_model(snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(snake_case ).mkdir(exist_ok=snake_case ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": A_ : Any =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) A_ : Union[str, Any] =parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
720
"""simple docstring""" A_ : List[Any] =9.8_0665 def SCREAMING_SNAKE_CASE_ ( snake_case : float , snake_case : float , snake_case : float = g )-> float: if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
222
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class A__ ( A__ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : Any ): a__ : str = params a__ : Any = np.array(lowerCamelCase__ ) a__ : Dict = np.array([len(lowerCamelCase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Optional[int] , lowerCamelCase__ : Union[str, Any] ): return (self.token_ids[index], self.lengths[index]) def __len__( self : Any ): return len(self.lengths ) def _UpperCamelCase( self : Dict ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _UpperCamelCase( self : int ): a__ : List[Any] = self.params.max_model_input_size a__ : str = self.lengths > max_len logger.info(f'''Splitting {sum(lowerCamelCase__ )} too long sequences.''' ) def divide_chunks(lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ): return [l[i : i + n] for i in range(0 , len(lowerCamelCase__ ) , lowerCamelCase__ )] a__ : Union[str, Any] = [] a__ : str = [] if self.params.mlm: a__, a__ : List[str] = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: a__, a__ : Dict = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: a__ : Tuple = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: a__ : Optional[Any] = np.insert(lowerCamelCase__ , 0 , lowerCamelCase__ ) if sub_s[-1] != sep_id: a__ : int = np.insert(lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) assert len(lowerCamelCase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowerCamelCase__ ) new_tok_ids.extend(lowerCamelCase__ ) new_lengths.extend([len(lowerCamelCase__ ) for l in sub_seqs] ) a__ : Dict = np.array(lowerCamelCase__ ) a__ : Union[str, Any] = np.array(lowerCamelCase__ ) def _UpperCamelCase( self : str ): a__ : Tuple = len(self ) a__ : str = self.lengths > 11 a__ : Union[str, Any] = self.token_ids[indices] a__ : List[Any] = self.lengths[indices] a__ : Tuple = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def _UpperCamelCase( self : str ): if "unk_token" not in self.params.special_tok_ids: return else: a__ : Tuple = self.params.special_tok_ids["unk_token"] a__ : Optional[int] = len(self ) a__ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) a__ : Any = (unk_occs / self.lengths) < 0.5 a__ : str = self.token_ids[indices] a__ : Optional[int] = self.lengths[indices] a__ : List[Any] = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def _UpperCamelCase( self : Dict ): if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _UpperCamelCase( self : Dict , lowerCamelCase__ : Tuple ): a__ : str = [t[0] for t in batch] a__ : Any = [t[1] for t in batch] assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) # Max for paddings a__ : Dict = max(lowerCamelCase__ ) # Pad token ids if self.params.mlm: a__ : Optional[int] = self.params.special_tok_ids["pad_token"] else: a__ : int = self.params.special_tok_ids["unk_token"] a__ : str = [list(t.astype(lowerCamelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowerCamelCase__ )) for t in token_ids] assert len(tk_ ) == len(lowerCamelCase__ ) assert all(len(lowerCamelCase__ ) == max_seq_len_ for t in tk_ ) a__ : Optional[int] = torch.tensor(tk_ ) # (bs, max_seq_len_) a__ : Optional[int] = torch.tensor(lowerCamelCase__ ) # (bs) return tk_t, lg_t
37
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _UpperCAmelCase ( A , A , A , A=1024 ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ =[], [] UpperCAmelCase__ =list(zip(A , A ) ) UpperCAmelCase__ , UpperCAmelCase__ =sorted_examples[0] def is_too_big(A ): return tok(A , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCAmelCase__ =new_src + " " + src UpperCAmelCase__ =new_tgt + " " + tgt if is_too_big(A ) or is_too_big(A ): # cant fit, finalize example finished_src.append(A ) finished_tgt.append(A ) UpperCAmelCase__ , UpperCAmelCase__ =src, tgt else: # can fit, keep adding UpperCAmelCase__ , UpperCAmelCase__ =cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(A ) finished_tgt.append(A ) return finished_src, finished_tgt def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' UpperCAmelCase__ =Path(A ) save_path.mkdir(exist_ok=A ) for split in ["train"]: UpperCAmelCase__ , UpperCAmelCase__ =data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" UpperCAmelCase__ =[x.rstrip() for x in Path(A ).open().readlines()] UpperCAmelCase__ =[x.rstrip() for x in Path(A ).open().readlines()] UpperCAmelCase__ , UpperCAmelCase__ =pack_examples(A , A , A , A ) print(F"""packed {split} split from {len(A )} examples -> {len(A )}.""" ) Path(save_path / F"""{split}.source""" ).open("w" ).write("\n".join(A ) ) Path(save_path / F"""{split}.target""" ).open("w" ).write("\n".join(A ) ) for split in ["val", "test"]: UpperCAmelCase__ , UpperCAmelCase__ =data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(A , save_path / F"""{split}.source""" ) shutil.copyfile(A , save_path / F"""{split}.target""" ) def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =argparse.ArgumentParser() parser.add_argument("--tok_name" , type=A , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=A , default=128 ) parser.add_argument("--data_dir" , type=A ) parser.add_argument("--save_path" , type=A ) UpperCAmelCase__ =parser.parse_args() UpperCAmelCase__ =AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(A , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
625
0
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase__ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def __magic_name__ ( _lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : int ): if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(_lowerCamelCase ) , version.parse(_lowerCamelCase ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): __a : Optional[int] = F'''\n{hint}''' if hint is not None else """""" # non-versioned check if re.match(r"""^[\w_\-\d]+$""" , _lowerCamelCase ): __a : str = requirement, None, None else: __a : Dict = re.findall(r"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , _lowerCamelCase ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" F''' got {requirement}''' ) __a : Union[str, Any] = match[0] __a : Dict = want_full.split(""",""" ) # there could be multiple requirements __a : List[str] = {} for w in want_range: __a : Dict = re.findall(r"""^([\s!=<>]{1,2})(.+)""" , _lowerCamelCase ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" F''' but got {requirement}''' ) __a : Union[str, Any] = match[0] __a : Any = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a : Optional[Any] = """.""".join([str(_lowerCamelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return # check if any version is installed try: __a : Any = importlib.metadata.version(_lowerCamelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : int ): __a : Optional[int] = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(_lowerCamelCase , _lowerCamelCase )
706
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "linear" _lowerCAmelCase = "cosine" _lowerCAmelCase = "cosine_with_restarts" _lowerCAmelCase = "polynomial" _lowerCAmelCase = "constant" _lowerCAmelCase = "constant_with_warmup" _lowerCAmelCase = "piecewise_constant" def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int = -1 ): return LambdaLR(_lowerCamelCase , lambda _lowerCamelCase : 1 , last_epoch=_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int = -1 ): def lr_lambda(_lowerCamelCase : int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1.0 , _lowerCamelCase ) ) return 1.0 return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : str , _lowerCamelCase : int = -1 ): __a : Optional[int] = {} __a : Any = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __a , __a : int = rule_str.split(""":""" ) __a : Optional[int] = int(_lowerCamelCase ) __a : str = float(_lowerCamelCase ) __a : int = value __a : Dict = float(rule_list[-1] ) def create_rules_function(_lowerCamelCase : str , _lowerCamelCase : Tuple ): def rule_func(_lowerCamelCase : int ) -> float: __a : Optional[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowerCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __a : Optional[int] = create_rules_function(_lowerCamelCase , _lowerCamelCase ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : str=-1 ): def lr_lambda(_lowerCamelCase : int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : float = 0.5 , _lowerCamelCase : int = -1 ): def lr_lambda(_lowerCamelCase : Any ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) __a : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCamelCase ) * 2.0 * progress )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 1 , _lowerCamelCase : int = -1 ): def lr_lambda(_lowerCamelCase : Optional[int] ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) __a : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]=1E-7 , _lowerCamelCase : Optional[int]=1.0 , _lowerCamelCase : Optional[int]=-1 ): __a : Union[str, Any] = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(_lowerCamelCase : int ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __a : Tuple = lr_init - lr_end __a : int = num_training_steps - num_warmup_steps __a : Optional[int] = 1 - (current_step - num_warmup_steps) / decay_steps __a : List[str] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( _lowerCamelCase : Union[str, SchedulerType] , _lowerCamelCase : Optimizer , _lowerCamelCase : Optional[str] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : int = 1 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : int = -1 , ): __a : int = SchedulerType(_lowerCamelCase ) __a : Optional[int] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowerCamelCase , last_epoch=_lowerCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowerCamelCase , step_rules=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowerCamelCase , num_warmup_steps=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , num_cycles=_lowerCamelCase , last_epoch=_lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , power=_lowerCamelCase , last_epoch=_lowerCamelCase , ) return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , last_epoch=_lowerCamelCase )
63
0
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCamelCase__ : '''simple docstring''' def __init__( self ,_lowerCAmelCase ,_lowerCAmelCase=13 ,_lowerCAmelCase=32 ,_lowerCAmelCase=2 ,_lowerCAmelCase=3 ,_lowerCAmelCase=16 ,_lowerCAmelCase=[1, 2, 1] ,_lowerCAmelCase=[2, 2, 4] ,_lowerCAmelCase=2 ,_lowerCAmelCase=2.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=False ,_lowerCAmelCase=True ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-5 ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=10 ,_lowerCAmelCase=8 ,_lowerCAmelCase=["stage1", "stage2", "stage3"] ,_lowerCAmelCase=[1, 2, 3] ,): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = depths lowerCamelCase__ = num_heads lowerCamelCase__ = window_size lowerCamelCase__ = mlp_ratio lowerCamelCase__ = qkv_bias lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = drop_path_rate lowerCamelCase__ = hidden_act lowerCamelCase__ = use_absolute_embeddings lowerCamelCase__ = patch_norm lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range lowerCamelCase__ = is_training lowerCamelCase__ = scope lowerCamelCase__ = use_labels lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = encoder_stride lowerCamelCase__ = out_features lowerCamelCase__ = out_indices def UpperCamelCase_ ( self ): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return MaskFormerSwinConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MaskFormerSwinModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ) lowerCamelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = MaskFormerSwinBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,[16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowerCAmelCase ): lowerCamelCase__ = ["""stem"""] lowerCamelCase__ = MaskFormerSwinBackbone(config=_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ (a ,a ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _UpperCamelCase = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase_ ( self ): lowerCamelCase__ = MaskFormerSwinModelTester(self ) lowerCamelCase__ = ConfigTester(self ,config_class=_lowerCAmelCase ,embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ): return def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCAmelCase ) @unittest.skip("""Swin does not use inputs_embeds""" ) def UpperCamelCase_ ( self ): pass @unittest.skip("""Swin does not support feedforward chunking""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) lowerCamelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase ,nn.Linear ) ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) lowerCamelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ) lowerCamelCase__ = outputs.hidden_states lowerCamelCase__ = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase ) # Swin has a different seq_length lowerCamelCase__ = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCamelCase__ = True self.check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True self.check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = 3 lowerCamelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase__ = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCamelCase__ = True self.check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True self.check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,(padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowerCAmelCase ): lowerCamelCase__ = 0 return t def check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase={} ): with torch.no_grad(): lowerCamelCase__ = model(**_lowerCAmelCase ,return_dict=_lowerCAmelCase ,**_lowerCAmelCase ) lowerCamelCase__ = model(**_lowerCAmelCase ,return_dict=_lowerCAmelCase ,**_lowerCAmelCase ).to_tuple() def recursive_check(_lowerCAmelCase ,_lowerCAmelCase ): if isinstance(_lowerCAmelCase ,(List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCAmelCase ,_lowerCAmelCase ): recursive_check(_lowerCAmelCase ,_lowerCAmelCase ) elif isinstance(_lowerCAmelCase ,_lowerCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() ,dict_object.values() ): recursive_check(_lowerCAmelCase ,_lowerCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCAmelCase ) ,set_nan_tensor_to_zero(_lowerCAmelCase ) ,atol=1E-5 ) ,msg=( """Tuple and dict output are not equal. Difference:""" F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_lowerCAmelCase ).any()} and `inf`: {torch.isinf(_lowerCAmelCase )}. Dict has''' F''' `nan`: {torch.isnan(_lowerCAmelCase ).any()} and `inf`: {torch.isinf(_lowerCAmelCase )}.''' ) ,) recursive_check(_lowerCAmelCase ,_lowerCAmelCase ) for model_class in self.all_model_classes: lowerCamelCase__ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,{"""output_hidden_states""": True} ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase ) lowerCamelCase__ = self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,{"""output_hidden_states""": True} ) @require_torch class UpperCamelCase__ (unittest.TestCase ,a ): '''simple docstring''' _UpperCamelCase = (MaskFormerSwinBackbone,) if is_torch_available() else () _UpperCamelCase = MaskFormerSwinConfig def UpperCamelCase_ ( self ): lowerCamelCase__ = MaskFormerSwinModelTester(self ) def UpperCamelCase_ ( self ): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: lowerCamelCase__ = backbone_class(_lowerCAmelCase ) backbone.to(_lowerCAmelCase ) backbone.eval() lowerCamelCase__ = backbone(**_lowerCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps ,_lowerCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps ,backbone.channels ): self.assertTrue(feature_map.shape[:2] ,(batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowerCamelCase__ = backbone(**_lowerCAmelCase ,output_hidden_states=_lowerCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) ,len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] ,backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) ,(batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowerCamelCase__ = backbone(**_lowerCAmelCase ,output_attentions=_lowerCAmelCase ) self.assertIsNotNone(outputs.attentions )
50
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _SCREAMING_SNAKE_CASE : Optional[int] = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
550
0
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Optional[int] , *lowerCamelCase_ :Union[str, Any] , **lowerCamelCase_ :str ) -> Optional[int]: '''simple docstring''' super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = {} def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :List[Any] , *lowerCamelCase_ :int , **lowerCamelCase_ :Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = super().add_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) if num_added_tokens == 0: raise ValueError( f"The tokenizer already contains the token {placeholder_token}. Please pass a different" ''' `placeholder_token` that is not already in the tokenizer.''' ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :List[Any] , *lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :str=1 , **lowerCamelCase_ :Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [] if num_vec_per_token == 1: self.try_adding_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) output.append(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = [] for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = placeholder_token + f"_{i}" self.try_adding_tokens(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) output.append(lowerCamelCase_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"The tokenizer already has placeholder token {token} that can get confused with" f" {placeholder_token}keep placeholder tokens independent" ) SCREAMING_SNAKE_CASE : str = output def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple=False , lowerCamelCase_ :Optional[int]=1.0 ) -> Any: '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = [] for i in range(len(lowerCamelCase_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowerCamelCase_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: SCREAMING_SNAKE_CASE : List[Any] = self.token_map[placeholder_token] SCREAMING_SNAKE_CASE : List[str] = tokens[: 1 + int(len(lowerCamelCase_ ) * prop_tokens_to_load )] if vector_shuffle: SCREAMING_SNAKE_CASE : Any = copy.copy(lowerCamelCase_ ) random.shuffle(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = text.replace(lowerCamelCase_ , ''' '''.join(lowerCamelCase_ ) ) return text def __call__( self :Any , lowerCamelCase_ :Union[str, Any] , *lowerCamelCase_ :str , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Tuple=1.0 , **lowerCamelCase_ :Tuple ) -> Any: '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( lowerCamelCase_ , vector_shuffle=lowerCamelCase_ , prop_tokens_to_load=lowerCamelCase_ ) , *lowerCamelCase_ , **lowerCamelCase_ , ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :str , *lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :List[str]=1.0 , **lowerCamelCase_ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( lowerCamelCase_ , vector_shuffle=lowerCamelCase_ , prop_tokens_to_load=lowerCamelCase_ ) , *lowerCamelCase_ , **lowerCamelCase_ , )
18
"""simple docstring""" import math def __A ( a_ : list , a_ : int )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = len(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = int(math.floor(math.sqrt(a_ ) ) ) SCREAMING_SNAKE_CASE : List[str] = 0 while arr[min(a_ , a_ ) - 1] < x: SCREAMING_SNAKE_CASE : Optional[Any] = step step += int(math.floor(math.sqrt(a_ ) ) ) if prev >= n: return -1 while arr[prev] < x: SCREAMING_SNAKE_CASE : Any = prev + 1 if prev == min(a_ , a_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase__ : List[str] = [int(item) for item in user_input.split(",")] lowerCamelCase__ : Dict = int(input("Enter the number to be searched:\n")) lowerCamelCase__ : Tuple = jump_search(arr, x) if res == -1: print("Number not found!") else: print(f'''Number {x} is at index {res}''')
18
1
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) snake_case_ : List[str] = logging.getLogger(__name__) def __snake_case ( ): UpperCamelCase = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''') parser.add_argument('''--file_path''', type=_UpperCAmelCase, default='''data/dump.txt''', help='''The path to the data.''') parser.add_argument('''--tokenizer_type''', type=_UpperCAmelCase, default='''bert''', choices=['''bert''', '''roberta''', '''gpt2''']) parser.add_argument('''--tokenizer_name''', type=_UpperCAmelCase, default='''bert-base-uncased''', help='''The tokenizer to use.''') parser.add_argument('''--dump_file''', type=_UpperCAmelCase, default='''data/dump''', help='''The dump file prefix.''') UpperCamelCase = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})') if args.tokenizer_type == "bert": UpperCamelCase = BertTokenizer.from_pretrained(args.tokenizer_name) UpperCamelCase = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` UpperCamelCase = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCamelCase = RobertaTokenizer.from_pretrained(args.tokenizer_name) UpperCamelCase = tokenizer.special_tokens_map['''cls_token'''] # `<s>` UpperCamelCase = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": UpperCamelCase = GPTaTokenizer.from_pretrained(args.tokenizer_name) UpperCamelCase = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` UpperCamelCase = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}') with open(args.file_path, '''r''', encoding='''utf8''') as fp: UpperCamelCase = fp.readlines() logger.info('''Start encoding''') logger.info(f'{len(_UpperCAmelCase)} examples to process.') UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 1_0000 UpperCamelCase = time.time() for text in data: UpperCamelCase = f'{bos} {text.strip()} {sep}' UpperCamelCase = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase) rslt.append(_UpperCAmelCase) iter += 1 if iter % interval == 0: UpperCamelCase = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl') UpperCamelCase = time.time() logger.info('''Finished binarization''') logger.info(f'{len(_UpperCAmelCase)} examples processed.') UpperCamelCase = f'{args.dump_file}.{args.tokenizer_name}.pickle' UpperCamelCase = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCamelCase = [np.uintaa(_UpperCAmelCase) for d in rslt] else: UpperCamelCase = [np.intaa(_UpperCAmelCase) for d in rslt] random.shuffle(rslt_) logger.info(f'Dump to {dp_file}') with open(_UpperCAmelCase, '''wb''') as handle: pickle.dump(rslt_, _UpperCAmelCase, protocol=pickle.HIGHEST_PROTOCOL) if __name__ == "__main__": main()
212
'''simple docstring''' def __snake_case ( _UpperCAmelCase : int, _UpperCAmelCase : str): UpperCamelCase = '''''' for i in table: res += inp[i - 1] return res def __snake_case ( _UpperCAmelCase : Dict): return data[1:] + data[0] def __snake_case ( _UpperCAmelCase : Dict, _UpperCAmelCase : str): UpperCamelCase = '''''' for i in range(len(_UpperCAmelCase)): if a[i] == b[i]: res += "0" else: res += "1" return res def __snake_case ( _UpperCAmelCase : List[str], _UpperCAmelCase : Dict): UpperCamelCase = int('''0b''' + data[0] + data[-1], 2) UpperCamelCase = int('''0b''' + data[1:3], 2) return bin(s[row][col])[2:] def __snake_case ( _UpperCAmelCase : Dict, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : List[str], _UpperCAmelCase : Optional[int]): UpperCamelCase = message[:4] UpperCamelCase = message[4:] UpperCamelCase = apply_table(_UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = xor(_UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = apply_sbox(_UpperCAmelCase, temp[:4]) # noqa: E741 UpperCamelCase = apply_sbox(_UpperCAmelCase, temp[4:]) UpperCamelCase = '''0''' * (2 - len(_UpperCAmelCase)) + l # noqa: E741 UpperCamelCase = '''0''' * (2 - len(_UpperCAmelCase)) + r UpperCamelCase = apply_table(l + r, _UpperCAmelCase) UpperCamelCase = xor(_UpperCAmelCase, _UpperCAmelCase) return temp + right if __name__ == "__main__": snake_case_ : List[Any] = input('Enter 10 bit key: ') snake_case_ : Union[str, Any] = input('Enter 8 bit message: ') snake_case_ : List[Any] = [6, 3, 7, 4, 8, 5, 10, 9] snake_case_ : Dict = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] snake_case_ : Tuple = [2, 4, 3, 1] snake_case_ : List[str] = [2, 6, 3, 1, 4, 8, 5, 7] snake_case_ : Optional[int] = [4, 1, 3, 5, 7, 2, 8, 6] snake_case_ : str = [4, 1, 2, 3, 2, 3, 4, 1] snake_case_ : Optional[int] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] snake_case_ : int = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation snake_case_ : Union[str, Any] = apply_table(key, paa_table) snake_case_ : Optional[int] = temp[:5] snake_case_ : str = temp[5:] snake_case_ : str = left_shift(left) snake_case_ : Dict = left_shift(right) snake_case_ : List[Any] = apply_table(left + right, pa_table) snake_case_ : Union[str, Any] = left_shift(left) snake_case_ : Union[str, Any] = left_shift(right) snake_case_ : str = left_shift(left) snake_case_ : Tuple = left_shift(right) snake_case_ : List[str] = apply_table(left + right, pa_table) # encryption snake_case_ : Any = apply_table(message, IP) snake_case_ : Union[str, Any] = function(expansion, sa, sa, keya, temp) snake_case_ : int = temp[4:] + temp[:4] snake_case_ : List[str] = function(expansion, sa, sa, keya, temp) snake_case_ : Dict = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption snake_case_ : List[Any] = apply_table(CT, IP) snake_case_ : int = function(expansion, sa, sa, keya, temp) snake_case_ : List[Any] = temp[4:] + temp[:4] snake_case_ : int = function(expansion, sa, sa, keya, temp) snake_case_ : Tuple = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
212
1
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : str = DownBlockaD # noqa F405 lowerCamelCase__ : Any = 'down' def lowerCAmelCase__ ( self ): a_ = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Optional[Any] = ResnetDownsampleBlockaD # noqa F405 lowerCamelCase__ : List[Any] = 'down' def lowerCAmelCase__ ( self ): a_ = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Optional[Any] = AttnDownBlockaD # noqa F405 lowerCamelCase__ : Any = 'down' def lowerCAmelCase__ ( self ): a_ = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Tuple = CrossAttnDownBlockaD # noqa F405 lowerCamelCase__ : Any = 'down' def lowerCAmelCase__ ( self ): a_ , a_ = super().prepare_init_args_and_inputs_for_common() a_ = 32 return init_dict, inputs_dict def lowerCAmelCase__ ( self ): a_ = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Optional[int] = SimpleCrossAttnDownBlockaD # noqa F405 lowerCamelCase__ : Dict = 'down' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_encoder_hidden_states=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ , a_ = super().prepare_init_args_and_inputs_for_common() a_ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def lowerCAmelCase__ ( self ): a_ = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Optional[Any] = SkipDownBlockaD # noqa F405 lowerCamelCase__ : int = 'down' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_skip_sample=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Union[str, Any] = AttnSkipDownBlockaD # noqa F405 lowerCamelCase__ : Union[str, Any] = 'down' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_skip_sample=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : List[str] = DownEncoderBlockaD # noqa F405 lowerCamelCase__ : List[Any] = 'down' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_temb=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = { """in_channels""": 32, """out_channels""": 32, } a_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self ): a_ = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 lowerCamelCase__ : Union[str, Any] = 'down' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_temb=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = { """in_channels""": 32, """out_channels""": 32, } a_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self ): a_ = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Tuple = UNetMidBlockaD # noqa F405 lowerCamelCase__ : Optional[Any] = 'mid' def lowerCAmelCase__ ( self ): a_ = { """in_channels""": 32, """temb_channels""": 1_28, } a_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self ): a_ = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 lowerCamelCase__ : Tuple = 'mid' def lowerCAmelCase__ ( self ): a_ , a_ = super().prepare_init_args_and_inputs_for_common() a_ = 32 return init_dict, inputs_dict def lowerCAmelCase__ ( self ): a_ = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : str = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCamelCase__ : Dict = 'mid' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_encoder_hidden_states=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ , a_ = super().prepare_init_args_and_inputs_for_common() a_ = 32 return init_dict, inputs_dict def lowerCAmelCase__ ( self ): a_ = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : List[str] = UpBlockaD # noqa F405 lowerCamelCase__ : List[str] = 'up' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Tuple = ResnetUpsampleBlockaD # noqa F405 lowerCamelCase__ : Any = 'up' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Optional[int] = CrossAttnUpBlockaD # noqa F405 lowerCamelCase__ : List[str] = 'up' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ , a_ = super().prepare_init_args_and_inputs_for_common() a_ = 32 return init_dict, inputs_dict def lowerCAmelCase__ ( self ): a_ = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Optional[Any] = SimpleCrossAttnUpBlockaD # noqa F405 lowerCamelCase__ : Any = 'up' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase , include_encoder_hidden_states=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ , a_ = super().prepare_init_args_and_inputs_for_common() a_ = 32 return init_dict, inputs_dict def lowerCAmelCase__ ( self ): a_ = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : int = AttnUpBlockaD # noqa F405 lowerCamelCase__ : Union[str, Any] = 'up' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def lowerCAmelCase__ ( self ): a_ = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : Tuple = SkipUpBlockaD # noqa F405 lowerCamelCase__ : List[Any] = 'up' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : str = AttnSkipUpBlockaD # noqa F405 lowerCamelCase__ : Any = 'up' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : str = UpDecoderBlockaD # noqa F405 lowerCamelCase__ : str = 'up' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_temb=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = {"""in_channels""": 32, """out_channels""": 32} a_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self ): a_ = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(UpperCAmelCase ) class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : int = AttnUpDecoderBlockaD # noqa F405 lowerCamelCase__ : Optional[Any] = 'up' @property def lowerCAmelCase__ ( self ): return super().get_dummy_input(include_temb=UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = {"""in_channels""": 32, """out_channels""": 32} a_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self ): a_ = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(UpperCAmelCase )
511
'''simple docstring''' def UpperCamelCase_ ( A__ , A__ ): while b: a_ , a_ = b, a % b return a def UpperCamelCase_ ( A__ , A__ ): return a if b == 0 else euclidean_gcd_recursive(A__ , a % b ) def UpperCamelCase_ ( ): print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
511
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case : Dict = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[Any] = ['ConvNextFeatureExtractor'] snake_case : Any = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : int = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
605
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case : Tuple = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main _SCREAMING_SNAKE_CASE = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase__ ,id=UpperCAmelCase__ )
605
1
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __A = logging.getLogger(__name__) def lowercase_ ( _lowerCamelCase: torch.nn.Module , _lowerCamelCase: BnbQuantizationConfig , _lowerCamelCase: Union[str, os.PathLike] = None , _lowerCamelCase: Optional[Dict[str, Union[int, str, torch.device]]] = None , _lowerCamelCase: Optional[List[str]] = None , _lowerCamelCase: Optional[Dict[Union[int, str], Union[int, str]]] = None , _lowerCamelCase: Optional[Union[str, os.PathLike]] = None , _lowerCamelCase: bool = False , ) -> List[str]: '''simple docstring''' __lowerCamelCase : int = bnb_quantization_config.load_in_abit __lowerCamelCase : Any = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) __lowerCamelCase : int = [] # custom device map if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(device_map.keys() ) > 1: __lowerCamelCase : Optional[Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: __lowerCamelCase : Optional[Any] = get_keys_to_not_convert(_lowerCamelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_lowerCamelCase ) __lowerCamelCase : Optional[int] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: __lowerCamelCase : List[str] = [] __lowerCamelCase : Union[str, Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_lowerCamelCase ) # compatibility with peft __lowerCamelCase : Tuple = load_in_abit __lowerCamelCase : str = load_in_abit __lowerCamelCase : Optional[Any] = get_parameter_device(_lowerCamelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) __lowerCamelCase : Optional[int] = replace_with_bnb_layers(_lowerCamelCase , _lowerCamelCase , modules_to_not_convert=_lowerCamelCase ) # convert param to the right dtype __lowerCamelCase : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: __lowerCamelCase : int = name.replace(".weight" , "" ).replace(".bias" , "" ) __lowerCamelCase : Tuple = getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_lowerCamelCase ): param.to(_lowerCamelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( F"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( F"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): __lowerCamelCase : Union[str, Any] = replace_with_bnb_layers( _lowerCamelCase , _lowerCamelCase , modules_to_not_convert=_lowerCamelCase ) __lowerCamelCase : Optional[Any] = get_quantized_model_device_map( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , max_memory=_lowerCamelCase , no_split_module_classes=_lowerCamelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): __lowerCamelCase : Any = True __lowerCamelCase : List[Any] = any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=_lowerCamelCase , offload_state_dict=_lowerCamelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_lowerCamelCase , device_map=_lowerCamelCase , offload_dir=_lowerCamelCase ) def lowercase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: int=None , _lowerCamelCase: int=None , _lowerCamelCase: Any=None ) -> Any: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): __lowerCamelCase : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(_lowerCamelCase , _lowerCamelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) __lowerCamelCase : int = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) __lowerCamelCase : List[Any] = {} __lowerCamelCase : Any = special_dtypes __lowerCamelCase : Optional[Any] = no_split_module_classes __lowerCamelCase : int = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": __lowerCamelCase : List[str] = get_balanced_memory( _lowerCamelCase , low_zero=(device_map == "balanced_low_0") , max_memory=_lowerCamelCase , **_lowerCamelCase , ) __lowerCamelCase : Dict = max_memory __lowerCamelCase : str = infer_auto_device_map(_lowerCamelCase , **_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ): # check if don't have any quantized module on the cpu __lowerCamelCase : Any = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules __lowerCamelCase : Optional[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def lowercase_ ( _lowerCamelCase: Dict , _lowerCamelCase: Tuple , _lowerCamelCase: List[str]=None , _lowerCamelCase: Optional[Any]=None ) -> List[Any]: '''simple docstring''' if modules_to_not_convert is None: __lowerCamelCase : Dict = [] __lowerCamelCase , __lowerCamelCase : Dict = _replace_with_bnb_layers( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def lowercase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: int , _lowerCamelCase: str=None , _lowerCamelCase: List[Any]=None , ) -> Tuple: '''simple docstring''' __lowerCamelCase : Optional[Any] = False for name, module in model.named_children(): if current_key_name is None: __lowerCamelCase : Union[str, Any] = [] current_key_name.append(_lowerCamelCase ) if isinstance(_lowerCamelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` __lowerCamelCase : Union[str, Any] = ".".join(_lowerCamelCase ) __lowerCamelCase : Dict = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: __lowerCamelCase : Optional[int] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: __lowerCamelCase : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_lowerCamelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: __lowerCamelCase : Optional[Any] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) __lowerCamelCase : Dict = module.weight.data if module.bias is not None: __lowerCamelCase : Dict = module.bias.data bnb_module.requires_grad_(_lowerCamelCase ) setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Optional[Any] = True if len(list(module.children() ) ) > 0: __lowerCamelCase , __lowerCamelCase : Any = _replace_with_bnb_layers( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Any = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowercase_ ( _lowerCamelCase: List[Any] ) -> Any: '''simple docstring''' with init_empty_weights(): __lowerCamelCase : Dict = deepcopy(_lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` __lowerCamelCase : Optional[Any] = find_tied_parameters(_lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowerCamelCase , _lowerCamelCase ): __lowerCamelCase : int = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __lowerCamelCase : List[str] = sum(_lowerCamelCase , [] ) __lowerCamelCase : List[Any] = len(_lowerCamelCase ) > 0 # Check if it is a base model __lowerCamelCase : List[str] = False if hasattr(_lowerCamelCase , "base_model_prefix" ): __lowerCamelCase : str = not hasattr(_lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __lowerCamelCase : List[Any] = list(model.named_children() ) __lowerCamelCase : Tuple = [list_modules[-1][0]] # add last module together with tied weights __lowerCamelCase : Union[str, Any] = set(_lowerCamelCase ) - set(_lowerCamelCase ) __lowerCamelCase : Optional[int] = list(set(_lowerCamelCase ) ) + list(_lowerCamelCase ) # remove ".weight" from the keys __lowerCamelCase : Dict = [".weight", ".bias"] __lowerCamelCase : Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __lowerCamelCase : Optional[Any] = name.replace(_lowerCamelCase , "" ) filtered_module_names.append(_lowerCamelCase ) return filtered_module_names def lowercase_ ( _lowerCamelCase: Tuple ) -> int: '''simple docstring''' for m in model.modules(): if isinstance(_lowerCamelCase , bnb.nn.Linearabit ): return True return False def lowercase_ ( _lowerCamelCase: nn.Module ) -> List[str]: '''simple docstring''' return next(parameter.parameters() ).device def lowercase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: List[str] , _lowerCamelCase: str , _lowerCamelCase: Optional[int] , _lowerCamelCase: List[Any] , _lowerCamelCase: Dict , _lowerCamelCase: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(_lowerCamelCase , _lowerCamelCase , 0 , dtype=_lowerCamelCase , value=_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = param_name __lowerCamelCase : Union[str, Any] = model if "." in tensor_name: __lowerCamelCase : Dict = tensor_name.split("." ) for split in splits[:-1]: __lowerCamelCase : Union[str, Any] = getattr(_lowerCamelCase , _lowerCamelCase ) if new_module is None: raise ValueError(F"""{module} has no attribute {split}.""" ) __lowerCamelCase : List[Any] = new_module __lowerCamelCase : Optional[Any] = splits[-1] # offload weights __lowerCamelCase : str = False offload_weight(module._parameters[tensor_name] , _lowerCamelCase , _lowerCamelCase , index=_lowerCamelCase ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , _lowerCamelCase , index=_lowerCamelCase , ) else: offload_weight(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , index=_lowerCamelCase ) offload_weight(_lowerCamelCase , param_name.replace("weight" , "SCB" ) , _lowerCamelCase , index=_lowerCamelCase ) set_module_tensor_to_device(_lowerCamelCase , _lowerCamelCase , "meta" , dtype=_lowerCamelCase , value=torch.empty(*param.size() ) )
366
"""simple docstring""" import os def lowercase_ ( ) -> List[str]: '''simple docstring''' __lowerCamelCase : Union[str, Any] = os.path.dirname(os.path.realpath(_lowerCamelCase ) ) __lowerCamelCase : int = os.path.join(_lowerCamelCase , "triangle.txt" ) with open(_lowerCamelCase ) as f: __lowerCamelCase : List[str] = f.readlines() __lowerCamelCase : List[str] = [] for line in triangle: __lowerCamelCase : Optional[int] = [] for number in line.strip().split(" " ): numbers_from_line.append(int(_lowerCamelCase ) ) a.append(_lowerCamelCase ) for i in range(1 , len(_lowerCamelCase ) ): for j in range(len(a[i] ) ): __lowerCamelCase : int = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowerCamelCase : Union[str, Any] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_lowerCamelCase , _lowerCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
366
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE=0.01 , _SCREAMING_SNAKE_CASE=1000 ) -> Tuple: snake_case_ : int = p_stop snake_case_ : List[Any] = max_length def __iter__( self ) -> str: snake_case_ : Union[str, Any] = 0 snake_case_ : Any = False while not stop and count < self.max_length: yield count count += 1 snake_case_ : List[str] = random.random() < self.p_stop class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True ) -> str: snake_case_ : Optional[int] = [ BatchSamplerShard(_SCREAMING_SNAKE_CASE , 2 , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) for i in range(2 ) ] snake_case_ : Optional[int] = [list(_SCREAMING_SNAKE_CASE ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_SCREAMING_SNAKE_CASE ) for shard in batch_sampler_shards] , [len(_SCREAMING_SNAKE_CASE ) for e in expected] ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. snake_case_ : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) # Expected shouldn't change self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. snake_case_ : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. snake_case_ : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. snake_case_ : List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is very small. snake_case_ : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Any = [[], []] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[int]: # Check the shards when the dataset is a round multiple of batch size. snake_case_ : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) snake_case_ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) # Expected shouldn't change self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size. snake_case_ : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. snake_case_ : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) snake_case_ : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is very small. snake_case_ : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = [[], []] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[int]: # Check the shards when the dataset is a round multiple of total batch size. snake_case_ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) # Expected shouldn't change self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. snake_case_ : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. snake_case_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) snake_case_ : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. snake_case_ : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is very small. snake_case_ : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : int = [[[0, 1]], []] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = [[], []] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Dict: # Check the shards when the dataset is a round multiple of batch size. snake_case_ : Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) # Expected shouldn't change self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size. snake_case_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. snake_case_ : Tuple = BatchSampler(range(21 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) # Check the shards when the dataset is very small. snake_case_ : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : Any = [[[0, 1]], []] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : int = [[], []] self.check_batch_sampler_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : List[Any] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] snake_case_ : Dict = [BatchSamplerShard(_SCREAMING_SNAKE_CASE , 2 , _SCREAMING_SNAKE_CASE , even_batches=_SCREAMING_SNAKE_CASE ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: random.seed(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = list(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = [ IterableDatasetShard( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , drop_last=_SCREAMING_SNAKE_CASE , num_processes=_SCREAMING_SNAKE_CASE , process_index=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE , ) for i in range(_SCREAMING_SNAKE_CASE ) ] snake_case_ : Tuple = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_SCREAMING_SNAKE_CASE ) iterable_dataset_lists.append(list(_SCREAMING_SNAKE_CASE ) ) snake_case_ : Optional[int] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size snake_case_ : Tuple = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) self.assertTrue(len(_SCREAMING_SNAKE_CASE ) % shard_batch_size == 0 ) snake_case_ : Optional[int] = [] for idx in range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_SCREAMING_SNAKE_CASE ) < len(_SCREAMING_SNAKE_CASE ): reference += reference self.assertListEqual(_SCREAMING_SNAKE_CASE , reference[: len(_SCREAMING_SNAKE_CASE )] ) def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : List[str] = 42 snake_case_ : Dict = RandomIterableDataset() self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) # Edge case with a very small dataset snake_case_ : Tuple = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) self.check_iterable_dataset_shards(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE , split_batches=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Union[str, Any] = BatchSampler(range(16 ) , batch_size=4 , drop_last=_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = SkipBatchSampler(_SCREAMING_SNAKE_CASE , 2 ) self.assertListEqual(list(_SCREAMING_SNAKE_CASE ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : List[str] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Any = DataLoader(list(range(16 ) ) , batch_size=4 ) snake_case_ : Optional[int] = skip_first_batches(_SCREAMING_SNAKE_CASE , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Optional[Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_SCREAMING_SNAKE_CASE ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_SCREAMING_SNAKE_CASE ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowerCAmelCase ( self ) -> Optional[int]: Accelerator() snake_case_ : Optional[Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_SCREAMING_SNAKE_CASE ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_SCREAMING_SNAKE_CASE ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
568
import comet # From: unbabel-comet import torch import datasets lowercase : List[Any] = datasets.logging.get_logger(__name__) lowercase : List[str] = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' lowercase : Dict = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' lowercase : Tuple = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence" ), "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Any: if self.config_name == "default": snake_case_ : Union[str, Any] = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) ) else: snake_case_ : int = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) -> Dict: if gpus is None: snake_case_ : Union[str, Any] = 1 if torch.cuda.is_available() else 0 snake_case_ : str = {"src": sources, "mt": predictions, "ref": references} snake_case_ : Dict = [dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for t in zip(*data.values() )] snake_case_ , snake_case_ : Union[str, Any] = self.scorer.predict(_SCREAMING_SNAKE_CASE , gpus=_SCREAMING_SNAKE_CASE , progress_bar=_SCREAMING_SNAKE_CASE ) return {"mean_score": mean_score, "scores": scores}
568
1
import os import sys lowerCAmelCase = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> str: '''simple docstring''' return AutoConfig.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> Union[str, Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModel.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> Tuple: '''simple docstring''' return AutoModel.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> Dict: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> List[Any]: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> Dict: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __SCREAMING_SNAKE_CASE ( *lowercase_ , **lowercase_ ) -> List[Any]: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*__A , **__A )
715
lowerCAmelCase = 256 # Modulus to hash a string lowerCAmelCase = 1_000_003 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : List[str] = len(lowercase_ ) __UpperCAmelCase : Tuple = len(lowercase_ ) if p_len > t_len: return False __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase_ ): __UpperCAmelCase : List[str] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCAmelCase : List[Any] = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCAmelCase : Any = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCAmelCase : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''abc1abc12''' __UpperCAmelCase : List[str] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __UpperCAmelCase : Any = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(lowercase_ , lowercase_ ) and not rabin_karp(lowercase_ , lowercase_ ) # Test 2) __UpperCAmelCase : Union[str, Any] = '''ABABX''' __UpperCAmelCase : List[Any] = '''ABABZABABYABABX''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 3) __UpperCAmelCase : str = '''AAAB''' __UpperCAmelCase : List[Any] = '''ABAAAAAB''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 4) __UpperCAmelCase : Optional[Any] = '''abcdabcy''' __UpperCAmelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(lowercase_ , lowercase_ ) # Test 5) __UpperCAmelCase : Any = '''Lü''' __UpperCAmelCase : Optional[int] = '''Lüsai''' assert rabin_karp(lowercase_ , lowercase_ ) __UpperCAmelCase : List[Any] = '''Lue''' assert not rabin_karp(lowercase_ , lowercase_ ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
675
0
"""simple docstring""" def _snake_case ( UpperCamelCase : int ): if len(lowercase__ ) < 2: return collection def circle_sort_util(UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] ) -> bool: UpperCAmelCase : Any = False if low == high: return swapped UpperCAmelCase : int = low UpperCAmelCase : Optional[Any] = high while left < right: if collection[left] > collection[right]: UpperCAmelCase : List[Any] = ( collection[right], collection[left], ) UpperCAmelCase : str = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: UpperCAmelCase : List[str] = ( collection[right + 1], collection[left], ) UpperCAmelCase : Optional[int] = True UpperCAmelCase : Dict = low + int((high - low) / 2 ) UpperCAmelCase : Union[str, Any] = circle_sort_util(lowercase__ , lowercase__ , lowercase__ ) UpperCAmelCase : Optional[int] = circle_sort_util(lowercase__ , mid + 1 , lowercase__ ) return swapped or left_swap or right_swap UpperCAmelCase : Union[str, Any] = True while is_not_sorted is True: UpperCAmelCase : int = circle_sort_util(lowercase__ , 0 , len(lowercase__ ) - 1 ) return collection if __name__ == "__main__": A: List[str] = input("Enter numbers separated by a comma:\n").strip() A: List[str] = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
160
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , snake_case__ : List[str] , snake_case__ : Union[str, Any]=2 , snake_case__ : int=56 , snake_case__ : Any=True , snake_case__ : Union[str, Any]=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Tuple=99 , snake_case__ : Any=32 , snake_case__ : List[Any]=2 , snake_case__ : Optional[Any]=2 , snake_case__ : Any=7 , snake_case__ : Union[str, Any]="gelu_new" , snake_case__ : List[Any]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Optional[int]=5_12 , snake_case__ : Optional[int]=16 , snake_case__ : int=2 , snake_case__ : List[Any]=0.02 , snake_case__ : int=4 , snake_case__ : Optional[Any]="block_sparse" , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=False , snake_case__ : Optional[Any]=2 , snake_case__ : Optional[Any]=3 , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : Dict = batch_size UpperCAmelCase__ : Tuple = seq_length UpperCAmelCase__ : Optional[int] = is_training UpperCAmelCase__ : Optional[int] = use_attention_mask UpperCAmelCase__ : List[Any] = use_token_type_ids UpperCAmelCase__ : Dict = use_labels UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : Optional[int] = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Dict = type_sequence_label_size UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Any = num_choices UpperCAmelCase__ : List[str] = rescale_embeddings UpperCAmelCase__ : Union[str, Any] = attention_type UpperCAmelCase__ : Union[str, Any] = use_bias UpperCAmelCase__ : Union[str, Any] = block_size UpperCAmelCase__ : Any = num_random_blocks def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[Any] = None if self.use_attention_mask: UpperCAmelCase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Union[str, Any] = None if self.use_token_type_ids: UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Union[str, Any] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = config_and_inputs UpperCAmelCase__ : str = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class UpperCAmelCase_ ( A , unittest.TestCase ): '''simple docstring''' lowercase_ : Any = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowercase_ : Optional[Any] = False lowercase_ : str = False def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase ( self : List[Any] ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase ( self : Tuple ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase ( self : Tuple ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase ( self : Dict ): '''simple docstring''' super().test_hidden_states_output() @slow def UpperCamelCase ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) @jax.jit def model_jitted(snake_case__ : int , snake_case__ : Optional[int]=None , **snake_case__ : Optional[Any] ): return model(input_ids=snake_case__ , attention_mask=snake_case__ , **snake_case__ ) with self.subTest("JIT Enabled" ): UpperCAmelCase__ : List[Any] = model_jitted(**snake_case__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase__ : Tuple = model_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Dict , snake_case__ : Any , snake_case__ : Union[str, Any]=1e-5 , snake_case__ : Any="outputs" , snake_case__ : Optional[Any]=None ): '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
199
0
'''simple docstring''' import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : int ): debug_launcher(test_script.main ) def __snake_case ( self : List[Any] ): debug_launcher(test_ops.main )
570
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a__ : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Dict , *a__ : Optional[int] , **a__ : List[Any] ): warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , a__ , ) super().__init__(*a__ , **a__ )
570
1
import functools def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> int: # Validation if not isinstance(__snake_case , __snake_case ) or not all(isinstance(__snake_case , __snake_case ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(__snake_case ) != 3 or not all(isinstance(__snake_case , __snake_case ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(__snake_case ) == 0: return 0 if min(__snake_case ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(__snake_case ) >= 3_6_6: raise ValueError("""All days elements should be less than 366""" ) _UpperCAmelCase = set(__snake_case ) @functools.cache def dynamic_programming(__snake_case ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
108
def UpperCAmelCase__ (UpperCamelCase_ = 10_00 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 ,n + 1 ) ) if __name__ == "__main__": print(solution())
550
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase ( lowercase , unittest.TestCase ): UpperCAmelCase : Any = KandinskyImgaImgPipeline UpperCAmelCase : Optional[Any] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] UpperCAmelCase : str = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] UpperCAmelCase : Union[str, Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase : Union[str, Any] = False @property def _lowercase (self : Optional[int]) -> List[Any]: return 32 @property def _lowercase (self : List[Any]) -> Optional[int]: return 32 @property def _lowercase (self : Any) -> Optional[Any]: return self.time_input_dim @property def _lowercase (self : Dict) -> int: return self.time_input_dim * 4 @property def _lowercase (self : int) -> int: return 1_00 @property def _lowercase (self : Optional[Any]) -> int: __snake_case : Optional[int] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base') return tokenizer @property def _lowercase (self : Any) -> str: torch.manual_seed(0) __snake_case : Union[str, Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Dict = MultilingualCLIP(__UpperCamelCase) __snake_case : int = text_encoder.eval() return text_encoder @property def _lowercase (self : int) -> int: torch.manual_seed(0) __snake_case : int = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __snake_case : str = UNetaDConditionModel(**__UpperCamelCase) return model @property def _lowercase (self : Any) -> str: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowercase (self : Optional[int]) -> Optional[Any]: torch.manual_seed(0) __snake_case : Tuple = VQModel(**self.dummy_movq_kwargs) return model def _lowercase (self : str) -> int: __snake_case : str = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : int = self.dummy_unet __snake_case : Tuple = self.dummy_movq __snake_case : str = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __snake_case : List[str] = DDIMScheduler(**__UpperCamelCase) __snake_case : Tuple = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _lowercase (self : Dict , _A : Dict , _A : str=0) -> Union[str, Any]: __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCamelCase)).to(__UpperCamelCase) __snake_case : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(__UpperCamelCase) # create init_image __snake_case : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase)).to(__UpperCamelCase) __snake_case : Tuple = image.cpu().permute(0 , 2 , 3 , 1)[0] __snake_case : Union[str, Any] = Image.fromarray(np.uinta(__UpperCamelCase)).convert('RGB').resize((2_56, 2_56)) if str(__UpperCamelCase).startswith('mps'): __snake_case : List[Any] = torch.manual_seed(__UpperCamelCase) else: __snake_case : Dict = torch.Generator(device=__UpperCamelCase).manual_seed(__UpperCamelCase) __snake_case : str = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _lowercase (self : int) -> Union[str, Any]: __snake_case : Any = 'cpu' __snake_case : Optional[int] = self.get_dummy_components() __snake_case : Optional[Any] = self.pipeline_class(**__UpperCamelCase) __snake_case : Any = pipe.to(__UpperCamelCase) pipe.set_progress_bar_config(disable=__UpperCamelCase) __snake_case : Optional[int] = pipe(**self.get_dummy_inputs(__UpperCamelCase)) __snake_case : int = output.images __snake_case : Union[str, Any] = pipe( **self.get_dummy_inputs(__UpperCamelCase) , return_dict=__UpperCamelCase , )[0] __snake_case : Union[str, Any] = image[0, -3:, -3:, -1] __snake_case : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : Union[str, Any] = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Union[str, Any]) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : Tuple) -> Tuple: __snake_case : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy') __snake_case : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png') __snake_case : Union[str, Any] = 'A red cartoon frog, 4k' __snake_case : str = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa) pipe_prior.to(__UpperCamelCase) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa) __snake_case : Tuple = pipeline.to(__UpperCamelCase) pipeline.set_progress_bar_config(disable=__UpperCamelCase) __snake_case : int = torch.Generator(device='cpu').manual_seed(0) __snake_case , __snake_case : Optional[int] = pipe_prior( __UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __snake_case : Optional[Any] = pipeline( __UpperCamelCase , image=__UpperCamelCase , image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='np' , ) __snake_case : Tuple = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase)
707
"""simple docstring""" from typing import Any class UpperCamelCase : def __init__(self : List[str] , _A : Any) -> int: __snake_case : Any = data __snake_case : Dict = None def __repr__(self : Tuple) -> str: return f"Node({self.data})" class UpperCamelCase : def __init__(self : Union[str, Any]) -> Union[str, Any]: __snake_case : Any = None def __iter__(self : Tuple) -> Any: __snake_case : List[str] = self.head while node: yield node.data __snake_case : Any = node.next def __len__(self : str) -> int: return sum(1 for _ in self) def __repr__(self : int) -> str: return "->".join([str(_A) for item in self]) def __getitem__(self : List[Any] , _A : int) -> Any: if not 0 <= index < len(self): raise ValueError('list index out of range.') for i, node in enumerate(self): if i == index: return node return None def __setitem__(self : int , _A : int , _A : Any) -> None: if not 0 <= index < len(self): raise ValueError('list index out of range.') __snake_case : Optional[int] = self.head for _ in range(_A): __snake_case : Any = current.next __snake_case : Dict = data def _lowercase (self : List[Any] , _A : Any) -> None: self.insert_nth(len(self) , _A) def _lowercase (self : List[str] , _A : Any) -> None: self.insert_nth(0 , _A) def _lowercase (self : Optional[Any] , _A : int , _A : Any) -> None: if not 0 <= index <= len(self): raise IndexError('list index out of range') __snake_case : str = Node(_A) if self.head is None: __snake_case : str = new_node elif index == 0: __snake_case : Union[str, Any] = self.head # link new_node to head __snake_case : int = new_node else: __snake_case : Any = self.head for _ in range(index - 1): __snake_case : Any = temp.next __snake_case : Dict = temp.next __snake_case : str = new_node def _lowercase (self : Optional[int]) -> None: # print every node data print(self) def _lowercase (self : Optional[Any]) -> Any: return self.delete_nth(0) def _lowercase (self : List[str]) -> Any: # delete from tail return self.delete_nth(len(self) - 1) def _lowercase (self : int , _A : int = 0) -> Any: if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError('List index out of range.') __snake_case : int = self.head # default first node if index == 0: __snake_case : Any = self.head.next else: __snake_case : List[Any] = self.head for _ in range(index - 1): __snake_case : List[str] = temp.next __snake_case : Union[str, Any] = temp.next __snake_case : str = temp.next.next return delete_node.data def _lowercase (self : str) -> bool: return self.head is None def _lowercase (self : Tuple) -> None: __snake_case : List[Any] = None __snake_case : Optional[Any] = self.head while current: # Store the current node's next node. __snake_case : List[str] = current.next # Make the current node's next point backwards __snake_case : Optional[Any] = prev # Make the previous node be the current node __snake_case : Optional[Any] = current # Make the current node the next node (to progress iteration) __snake_case : Any = next_node # Return prev in order to put the head at the end __snake_case : Optional[Any] = prev def __UpperCAmelCase ( ) -> None: '''simple docstring''' __snake_case : Union[str, Any] = LinkedList() assert linked_list.is_empty() is True assert str(UpperCAmelCase_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(UpperCAmelCase_ ) == i linked_list.insert_nth(UpperCAmelCase_ , i + 1 ) assert str(UpperCAmelCase_ ) == "->".join(str(UpperCAmelCase_ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(UpperCAmelCase_ ) == "->".join(str(UpperCAmelCase_ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(UpperCAmelCase_ ) == 9 assert str(UpperCAmelCase_ ) == "->".join(str(UpperCAmelCase_ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __snake_case : Tuple = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(UpperCAmelCase_ ) == "->".join(str(UpperCAmelCase_ ) for i in range(-8 , 1 ) ) def __UpperCAmelCase ( ) -> None: '''simple docstring''' __snake_case : str = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -192.55_555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] __snake_case : Optional[Any] = LinkedList() for i in test_input: linked_list.insert_tail(UpperCAmelCase_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(UpperCAmelCase_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __snake_case : int = linked_list.delete_head() assert result == -9 assert ( str(UpperCAmelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __snake_case : Any = linked_list.delete_tail() assert result == 12.2 assert ( str(UpperCAmelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __snake_case : Tuple = linked_list.delete_nth(10 ) assert result is None assert ( str(UpperCAmelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(UpperCAmelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(UpperCAmelCase_ ) assert ( str(UpperCAmelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(UpperCAmelCase_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCAmelCase ( ) -> List[Any]: '''simple docstring''' from doctest import testmod testmod() __snake_case : int = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(UpperCAmelCase_ ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) __snake_case : Optional[Any] = input('Enter New Value: ' ).strip() print('New list:' ) print(UpperCAmelCase_ ) print(F"length of linked_list is : {len(UpperCAmelCase_ )}" ) if __name__ == "__main__": main()
192
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def snake_case ( a_ : str , a_ : str ) -> Union[str, Any]: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCamelCase_ : Tuple = flax_key_tuple[:-1] + ("""weight""",) UpperCamelCase_ : Tuple = torch.permute(__UpperCamelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__UpperCamelCase ): # linear layer UpperCamelCase_ : Union[str, Any] = flax_key_tuple[:-1] + ("""weight""",) UpperCamelCase_ : Any = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCamelCase_ : List[Any] = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def snake_case ( a_ : Dict , a_ : List[str] , a_ : Optional[int] ) -> List[Any]: """simple docstring""" if "metadata" in layer: UpperCamelCase_ : List[str] = layer.split("""metadata""" ) UpperCamelCase_ : Union[str, Any] = """""".join(split_layer[0] )[:-1] UpperCamelCase_ : int = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: UpperCamelCase_ : str = layer.split("""kvstore""" ) UpperCamelCase_ : List[str] = """""".join(split_layer[0] )[:-1] UpperCamelCase_ : Union[str, Any] = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: UpperCamelCase_ : str = layer.split("""/""" ) UpperCamelCase_ : Optional[Any] = """/""".join(split_layer[:-1] ) UpperCamelCase_ : Dict = (split_layer[-1],) if "kvstore/path" in layer: UpperCamelCase_ : Union[str, Any] = f"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: UpperCamelCase_ : List[Any] = """file""" else: UpperCamelCase_ : Tuple = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def snake_case ( a_ : Tuple , a_ : int ) -> Dict: """simple docstring""" UpperCamelCase_ : Dict = rename_keys(__UpperCamelCase ) UpperCamelCase_ : Tuple = {} for k, v in current_block.items(): UpperCamelCase_ : Optional[Any] = v UpperCamelCase_ : Any = new_current_block torch.save(__UpperCamelCase , __UpperCamelCase ) def snake_case ( a_ : Optional[int] , a_ : Union[str, Any] , a_ : List[str] , a_ : str , a_ : Union[str, Any] = WEIGHTS_NAME ) -> List[str]: """simple docstring""" UpperCamelCase_ : str = convert_file_size_to_int(__UpperCamelCase ) UpperCamelCase_ : str = [] UpperCamelCase_ : Any = {} UpperCamelCase_ : Dict = 0 UpperCamelCase_ : Any = 0 os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: UpperCamelCase_ : List[Any] = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] UpperCamelCase_ : Union[str, Any] = flatten_dict(__UpperCamelCase , sep="""/""" ) UpperCamelCase_ : Dict = {} for layer in checkpoint_info.keys(): UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Tuple = get_key_and_tensorstore_dict( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if curr_real_layer_name in all_layers: UpperCamelCase_ : int = content else: UpperCamelCase_ : Dict = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCamelCase_ : str = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCamelCase_ : List[str] = torch.tensor(__UpperCamelCase ) UpperCamelCase_ : Union[str, Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCamelCase_ , UpperCamelCase_ : Union[str, Any] = rename_base_flax_keys(tuple(key.split("""/""" ) ) , __UpperCamelCase ) UpperCamelCase_ : Optional[int] = """/""".join(__UpperCamelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCamelCase_ : Dict = os.path.join( __UpperCamelCase , weights_name.replace(""".bin""" , f"-{len(__UpperCamelCase )+1:05d}-of-???.bin" ) ) rename_and_save_block(__UpperCamelCase , __UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCamelCase_ : Dict = {} UpperCamelCase_ : Any = 0 UpperCamelCase_ : Optional[Any] = raw_weights.to(getattr(__UpperCamelCase , __UpperCamelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCamelCase_ : Tuple = os.path.join(__UpperCamelCase , weights_name.replace(""".bin""" , f"-{len(__UpperCamelCase )+1:05d}-of-???.bin" ) ) rename_and_save_block(__UpperCamelCase , __UpperCamelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__UpperCamelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCamelCase_ : Any = {} UpperCamelCase_ : Union[str, Any] = {} for idx, shard in enumerate(__UpperCamelCase ): UpperCamelCase_ : List[str] = weights_name.replace( """.bin""" , f"-{idx+1:05d}-of-{len(__UpperCamelCase ):05d}.bin" ) # len(sharded_state_dicts):05d} UpperCamelCase_ : Union[str, Any] = os.path.join(__UpperCamelCase , weights_name.replace(""".bin""" , f"-{idx+1:05d}-of-???.bin" ) ) os.rename(__UpperCamelCase , os.path.join(__UpperCamelCase , __UpperCamelCase ) ) UpperCamelCase_ : int = shard for key in shard: UpperCamelCase_ : Optional[Any] = shard_file # Add the metadata UpperCamelCase_ : List[Any] = {"""total_size""": total_size} UpperCamelCase_ : Optional[int] = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(__UpperCamelCase , __UpperCamelCase ) , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase_ : Any = json.dumps(__UpperCamelCase , indent=2 , sort_keys=__UpperCamelCase ) + """\n""" f.write(__UpperCamelCase ) return metadata, index if __name__ == "__main__": UpperCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) UpperCamelCase =parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def snake_case ( ) -> Optional[Any]: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCamelCase_ : List[Any] = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) UpperCamelCase_ : Optional[Any] = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) UpperCamelCase_ : Optional[Any] = TaTokenizer.from_pretrained("""t5-small""" ) UpperCamelCase_ : int = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" UpperCamelCase_ : str = tokenizer(__UpperCamelCase , return_tensors="""pt""" ).input_ids UpperCamelCase_ : Dict = model.generate(__UpperCamelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
208
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def _a ( *_snake_case : Any , **_snake_case : Optional[int] ): """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : Union[str, Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _a ( self : List[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Union[str, Any] ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = [ { 'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'question': 'How many cats are there?', }, { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'question': 'How many cats are there?', }, ] return vqa_pipeline, examples def _a ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = vqa_pipeline(_snake_case , top_k=1 ) self.assertEqual( _snake_case , [ [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}], ] , ) @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question='How many cats are there?' , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( _snake_case , [{'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}, {'score': ANY(_snake_case ), 'answer': ANY(_snake_case )}] ) @slow @require_torch def _a ( self : Any ): """simple docstring""" A__ = pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' ) A__ = './tests/fixtures/tests_samples/COCO/000000039769.png' A__ = 'How many cats are there?' A__ = vqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}] ) A__ = vqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [[{'score': 0.8799, 'answer': '2'}, {'score': 0.296, 'answer': '1'}]] * 2 , ) @require_tf @unittest.skip('Visual question answering not implemented in TF' ) def _a ( self : Dict ): """simple docstring""" pass
9
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Tuple ="ChineseCLIPImageProcessor" SCREAMING_SNAKE_CASE_ : Union[str, Any] =("BertTokenizer", "BertTokenizerFast") def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : str=None , **SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , SCREAMING_SNAKE_CASE__ , ) UpperCamelCase = kwargs.pop('feature_extractor' ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.image_processor def __call__( self : int , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if images is not None: UpperCamelCase = self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if text is not None and images is not None: UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[str] , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : str ): """simple docstring""" UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self : Tuple ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor_class
170
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] ="roc_bert" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict=3_05_22 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7_68 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=30_72 , SCREAMING_SNAKE_CASE__ : int="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : Dict=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : int="absolute" , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=7_68 , SCREAMING_SNAKE_CASE__ : int=9_10 , SCREAMING_SNAKE_CASE__ : Optional[int]=5_12 , SCREAMING_SNAKE_CASE__ : int=2_48_58 , SCREAMING_SNAKE_CASE__ : Tuple=True , **SCREAMING_SNAKE_CASE__ : List[Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = type_vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = use_cache UpperCamelCase = enable_pronunciation UpperCamelCase = enable_shape UpperCamelCase = pronunciation_embed_dim UpperCamelCase = pronunciation_vocab_size UpperCamelCase = shape_embed_dim UpperCamelCase = shape_vocab_size UpperCamelCase = concat_input UpperCamelCase = position_embedding_type UpperCamelCase = classifier_dropout super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
170
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
269
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCamelCase = logging.get_logger(__name__) class _A ( UpperCAmelCase_ ): def __init__( self : str , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Any ): """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
269
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
705
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Tuple = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
270
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case : str = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = ['LayoutLMv3FeatureExtractor'] _snake_case : Tuple = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
22
from pathlib import Path import fire def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Optional[int]: """simple docstring""" UpperCamelCase = Path(_UpperCamelCase) UpperCamelCase = Path(_UpperCamelCase) dest_dir.mkdir(exist_ok=_UpperCamelCase) for path in src_dir.iterdir(): UpperCamelCase = [x.rstrip() for x in list(path.open().readlines())][:n] UpperCamelCase = dest_dir.joinpath(path.name) print(_UpperCamelCase) dest_path.open('w').write('\n'.join(_UpperCamelCase)) if __name__ == "__main__": fire.Fire(minify)
280
0
from __future__ import annotations def lowerCamelCase__ ( a : list[int] , a : int ) -> int: """simple docstring""" if len(a ) < k or k < 0: raise ValueError("Invalid Input" ) a__ :Optional[int] = sum(array[:k] ) for i in range(len(a ) - k ): a__ :int = current_sum - array[i] + array[i + k] a__ :List[str] = max(a , a ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() snake_case__ = [randint(-1000, 1000) for i in range(100)] snake_case__ = randint(0, 110) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
373
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig snake_case__ = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class lowerCAmelCase_ ( _a): lowerCamelCase_ = 'albert' def __init__( self : Any , __A : Optional[int]=30000 , __A : List[str]=128 , __A : int=4096 , __A : Any=12 , __A : Union[str, Any]=1 , __A : Optional[int]=64 , __A : Dict=16384 , __A : List[str]=1 , __A : Any="gelu_new" , __A : List[Any]=0 , __A : str=0 , __A : List[str]=512 , __A : Optional[Any]=2 , __A : Tuple=0.02 , __A : int=1E-12 , __A : str=0.1 , __A : Optional[Any]="absolute" , __A : Tuple=0 , __A : str=2 , __A : Union[str, Any]=3 , **__A : Union[str, Any] , ) ->str: """simple docstring""" super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) a__ :Tuple = vocab_size a__ :Dict = embedding_size a__ :Union[str, Any] = hidden_size a__ :int = num_hidden_layers a__ :List[Any] = num_hidden_groups a__ :str = num_attention_heads a__ :Optional[Any] = inner_group_num a__ :Any = hidden_act a__ :Optional[int] = intermediate_size a__ :Optional[Any] = hidden_dropout_prob a__ :Optional[int] = attention_probs_dropout_prob a__ :int = max_position_embeddings a__ :List[Any] = type_vocab_size a__ :Dict = initializer_range a__ :Optional[int] = layer_norm_eps a__ :Optional[Any] = classifier_dropout_prob a__ :Optional[Any] = position_embedding_type class lowerCAmelCase_ ( _a): @property def _snake_case ( self : Optional[int] ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": a__ :List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: a__ :Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
373
1
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def snake_case_ ( lowercase__ ): UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = [] for rt in rc.restypes: UpperCAmelCase__ : Dict = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase__ : str = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) UpperCAmelCase__ : Dict = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein["aatype"].device , ) UpperCAmelCase__ : List[str] = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein["aatype"].device , ) UpperCAmelCase__ : Optional[Any] = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein["aatype"].device , ) UpperCAmelCase__ : Optional[int] = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase__ : Dict = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase__ : List[str] = restype_atomaa_mask[protein_aatype] UpperCAmelCase__ : Any = residx_atomaa_mask UpperCAmelCase__ : str = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase__ : Union[str, Any] = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase__ : List[Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase__ : List[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["aatype"].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase__ : Tuple = rc.restype_atoa[restype_letter] UpperCAmelCase__ : Tuple = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase__ : Any = rc.atom_order[atom_name] UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Optional[Any] = restype_atomaa_mask[protein_aatype] UpperCAmelCase__ : Optional[Any] = residx_atomaa_mask return protein def snake_case_ ( lowercase__ ): UpperCAmelCase__ : Optional[int] = tree_map(lambda lowercase__ : torch.tensor(__UpperCAmelCase , device=batch["aatype"].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase__ : Optional[Any] = tensor_tree_map(lambda lowercase__ : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
199
'''simple docstring''' import datasets __lowerCamelCase : int = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ __lowerCamelCase : List[Any] = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ __lowerCamelCase : List[Any] = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return {"accuracy": simple_accuracy(UpperCamelCase_ , UpperCamelCase_ )}
501
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self, _a, _a=7, _a=3, _a=18, _a=30, _a=4_00, _a=True, _a=None, _a=True, _a=None, ) -> int: __SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 20} __SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"height": 18, "width": 18} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_center_crop __SCREAMING_SNAKE_CASE = crop_size def __lowerCAmelCase ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ =MobileNetVaImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> List[str]: __SCREAMING_SNAKE_CASE = MobileNetVaImageProcessingTester(self ) @property def __lowerCAmelCase ( self ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a, "do_resize" ) ) self.assertTrue(hasattr(_a, "size" ) ) self.assertTrue(hasattr(_a, "do_center_crop" ) ) self.assertTrue(hasattr(_a, "crop_size" ) ) def __lowerCAmelCase ( self ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18} ) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 ) self.assertEqual(image_processor.size, {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84} ) def __lowerCAmelCase ( self ) -> Tuple: pass def __lowerCAmelCase ( self ) -> int: # Initialize image_processing __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester, equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a, Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(_a, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def __lowerCAmelCase ( self ) -> Optional[Any]: # Initialize image_processing __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester, equal_resolution=_a, numpify=_a ) for image in image_inputs: self.assertIsInstance(_a, np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(_a, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) def __lowerCAmelCase ( self ) -> Dict: # Initialize image_processing __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester, equal_resolution=_a, torchify=_a ) for image in image_inputs: self.assertIsInstance(_a, torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(_a, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ), )
703
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _A ( __snake_case :int ) -> Optional[int]: """simple docstring""" if ( (cp >= 0x4E_00 and cp <= 0x9F_FF) or (cp >= 0x34_00 and cp <= 0x4D_BF) # or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) # or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) # or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) # or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) # or (cp >= 0xF9_00 and cp <= 0xFA_FF) or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) # ): # return True return False def _A ( __snake_case :str ) -> int: """simple docstring""" for char in word: __SCREAMING_SNAKE_CASE = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def _A ( __snake_case :List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = set() for token in tokens: __SCREAMING_SNAKE_CASE = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) __SCREAMING_SNAKE_CASE = list(__snake_case ) return word_list def _A ( __snake_case :List[str] , __snake_case :set() ) -> Any: """simple docstring""" if not chinese_word_set: return bert_tokens __SCREAMING_SNAKE_CASE = max([len(__snake_case ) for w in chinese_word_set] ) __SCREAMING_SNAKE_CASE = bert_tokens __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0, len(__snake_case ) while start < end: __SCREAMING_SNAKE_CASE = True if is_chinese(bert_word[start] ): __SCREAMING_SNAKE_CASE = min(end - start , __snake_case ) for i in range(__snake_case , 1 , -1 ): __SCREAMING_SNAKE_CASE = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __SCREAMING_SNAKE_CASE = "##" + bert_word[j] __SCREAMING_SNAKE_CASE = start + i __SCREAMING_SNAKE_CASE = False break if single_word: start += 1 return bert_word def _A ( __snake_case :List[str] , __snake_case :LTP , __snake_case :BertTokenizer ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for i in range(0 , len(__snake_case ) , 100 ): __SCREAMING_SNAKE_CASE = ltp_tokenizer.seg(lines[i : i + 100] )[0] __SCREAMING_SNAKE_CASE = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) __SCREAMING_SNAKE_CASE = [] for i in range(0 , len(__snake_case ) , 100 ): __SCREAMING_SNAKE_CASE = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__snake_case , truncation=__snake_case , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__snake_case ) == len(__snake_case ) __SCREAMING_SNAKE_CASE = [] for input_ids, chinese_word in zip(__snake_case , __snake_case ): __SCREAMING_SNAKE_CASE = [] for id in input_ids: __SCREAMING_SNAKE_CASE = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) __SCREAMING_SNAKE_CASE = add_sub_symbol(__snake_case , __snake_case ) __SCREAMING_SNAKE_CASE = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": __SCREAMING_SNAKE_CASE = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def _A ( __snake_case :Tuple ) -> Any: """simple docstring""" with open(args.file_name , "r" , encoding="utf-8" ) as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __SCREAMING_SNAKE_CASE = LTP(args.ltp ) # faster in GPU device __SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained(args.bert ) __SCREAMING_SNAKE_CASE = prepare_ref(__snake_case , __snake_case , __snake_case ) with open(args.save_path , "w" , encoding="utf-8" ) as f: __SCREAMING_SNAKE_CASE = [json.dumps(__snake_case ) + "\n" for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": _snake_case : List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') _snake_case : Union[str, Any] = parser.parse_args() main(args)
214
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCamelCase__ : Optional[Any] = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCamelCase__ : Union[str, Any] = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCamelCase__ : List[str] = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCamelCase__ : Any = { """num_train_timesteps""": 4_0, """sigma_min""": 0.002, """sigma_max""": 80.0, } lowerCamelCase__ : int = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.002, """sigma_max""": 80.0, } lowerCamelCase__ : List[Any] = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.002, """sigma_max""": 80.0, } def UpperCamelCase ( lowercase_ ) -> Tuple: '''simple docstring''' if isinstance(lowercase_ , lowercase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Any: '''simple docstring''' lowercase__ : List[str] = checkpoint[F'{old_prefix}.in_layers.0.weight'] lowercase__ : Tuple = checkpoint[F'{old_prefix}.in_layers.0.bias'] lowercase__ : Any = checkpoint[F'{old_prefix}.in_layers.2.weight'] lowercase__ : Union[str, Any] = checkpoint[F'{old_prefix}.in_layers.2.bias'] lowercase__ : Optional[int] = checkpoint[F'{old_prefix}.emb_layers.1.weight'] lowercase__ : List[Any] = checkpoint[F'{old_prefix}.emb_layers.1.bias'] lowercase__ : List[Any] = checkpoint[F'{old_prefix}.out_layers.0.weight'] lowercase__ : Optional[int] = checkpoint[F'{old_prefix}.out_layers.0.bias'] lowercase__ : Union[str, Any] = checkpoint[F'{old_prefix}.out_layers.3.weight'] lowercase__ : Tuple = checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: lowercase__ : Any = checkpoint[F'{old_prefix}.skip_connection.weight'] lowercase__ : Any = checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> List[str]: '''simple docstring''' lowercase__ , lowercase__ , lowercase__ : str = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) lowercase__ , lowercase__ , lowercase__ : Any = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) lowercase__ : Optional[Any] = checkpoint[F'{old_prefix}.norm.weight'] lowercase__ : Tuple = checkpoint[F'{old_prefix}.norm.bias'] lowercase__ : int = weight_q.squeeze(-1 ).squeeze(-1 ) lowercase__ : int = bias_q.squeeze(-1 ).squeeze(-1 ) lowercase__ : str = weight_k.squeeze(-1 ).squeeze(-1 ) lowercase__ : Dict = bias_k.squeeze(-1 ).squeeze(-1 ) lowercase__ : List[Any] = weight_v.squeeze(-1 ).squeeze(-1 ) lowercase__ : Dict = bias_v.squeeze(-1 ).squeeze(-1 ) lowercase__ : List[Any] = ( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) lowercase__ : List[str] = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : List[Any] = torch.load(lowercase_ , map_location="""cpu""" ) lowercase__ : Optional[Any] = {} lowercase__ : Tuple = checkpoint["""time_embed.0.weight"""] lowercase__ : Any = checkpoint["""time_embed.0.bias"""] lowercase__ : Dict = checkpoint["""time_embed.2.weight"""] lowercase__ : str = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: lowercase__ : int = checkpoint["""label_emb.weight"""] lowercase__ : Optional[int] = checkpoint["""input_blocks.0.0.weight"""] lowercase__ : Union[str, Any] = checkpoint["""input_blocks.0.0.bias"""] lowercase__ : Union[str, Any] = unet_config["""down_block_types"""] lowercase__ : str = unet_config["""layers_per_block"""] lowercase__ : Optional[int] = unet_config["""attention_head_dim"""] lowercase__ : Optional[Any] = unet_config["""block_out_channels"""] lowercase__ : Tuple = 1 lowercase__ : Optional[int] = channels_list[0] for i, layer_type in enumerate(lowercase_ ): lowercase__ : Any = channels_list[i] lowercase__ : List[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowercase_ ): lowercase__ : Any = F'down_blocks.{i}.resnets.{j}' lowercase__ : int = F'input_blocks.{current_layer}.0' lowercase__ : Tuple = True if j == 0 and downsample_block_has_skip else False lowercase__ : Tuple = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowercase_ ): lowercase__ : Optional[Any] = F'down_blocks.{i}.resnets.{j}' lowercase__ : Union[str, Any] = F'input_blocks.{current_layer}.0' lowercase__ : Any = True if j == 0 and downsample_block_has_skip else False lowercase__ : Optional[int] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_ ) lowercase__ : Optional[int] = F'down_blocks.{i}.attentions.{j}' lowercase__ : int = F'input_blocks.{current_layer}.1' lowercase__ : str = convert_attention( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) current_layer += 1 if i != len(lowercase_ ) - 1: lowercase__ : Dict = F'down_blocks.{i}.downsamplers.0' lowercase__ : Union[str, Any] = F'input_blocks.{current_layer}.0' lowercase__ : List[str] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) current_layer += 1 lowercase__ : Optional[Any] = current_channels # hardcoded the mid-block for now lowercase__ : Any = """mid_block.resnets.0""" lowercase__ : List[Any] = """middle_block.0""" lowercase__ : Tuple = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : str = """mid_block.attentions.0""" lowercase__ : Union[str, Any] = """middle_block.1""" lowercase__ : Tuple = convert_attention(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Dict = """mid_block.resnets.1""" lowercase__ : List[Any] = """middle_block.2""" lowercase__ : int = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : str = 0 lowercase__ : Union[str, Any] = unet_config["""up_block_types"""] for i, layer_type in enumerate(lowercase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowercase__ : List[str] = F'up_blocks.{i}.resnets.{j}' lowercase__ : Dict = F'output_blocks.{current_layer}.0' lowercase__ : str = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_ ) current_layer += 1 if i != len(lowercase_ ) - 1: lowercase__ : List[Any] = F'up_blocks.{i}.upsamplers.0' lowercase__ : Any = F'output_blocks.{current_layer-1}.1' lowercase__ : List[str] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowercase__ : Dict = F'up_blocks.{i}.resnets.{j}' lowercase__ : Any = F'output_blocks.{current_layer}.0' lowercase__ : List[str] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_ ) lowercase__ : Tuple = F'up_blocks.{i}.attentions.{j}' lowercase__ : Optional[Any] = F'output_blocks.{current_layer}.1' lowercase__ : Any = convert_attention( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) current_layer += 1 if i != len(lowercase_ ) - 1: lowercase__ : Any = F'up_blocks.{i}.upsamplers.0' lowercase__ : Optional[int] = F'output_blocks.{current_layer-1}.2' lowercase__ : int = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : str = checkpoint["""out.0.weight"""] lowercase__ : Any = checkpoint["""out.0.bias"""] lowercase__ : Any = checkpoint["""out.2.weight"""] lowercase__ : Any = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": lowerCamelCase__ : Dict = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCamelCase__ : Tuple = parser.parse_args() lowerCamelCase__ : Dict = strabool(args.class_cond) lowerCamelCase__ : List[Any] = os.path.basename(args.unet_path) print(f'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: lowerCamelCase__ : Optional[Any] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCamelCase__ : Optional[Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCamelCase__ : Dict = TEST_UNET_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : Optional[Any] = con_pt_to_diffuser(args.unet_path, unet_config) lowerCamelCase__ : List[Any] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCamelCase__ : Union[str, Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCamelCase__ : List[str] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCamelCase__ : List[Any] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') lowerCamelCase__ : str = CMStochasticIterativeScheduler(**scheduler_config) lowerCamelCase__ : Optional[int] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
12
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( UpperCAmelCase_ ): def __init__( self): '''simple docstring''' lowercase__ : List[Any] = [] def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_init_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_train_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_epoch_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_begin""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_step_end""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_evaluate""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_predict""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_save""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_log""") def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' self.events.append("""on_prediction_step""") @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = tempfile.mkdtemp() def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.output_dir) def lowercase__ ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = RegressionModelConfig(a=SCREAMING_SNAKE_CASE_ , b=SCREAMING_SNAKE_CASE_) lowercase__ : Any = RegressionPreTrainedModel(SCREAMING_SNAKE_CASE_) lowercase__ : Any = TrainingArguments(self.output_dir , disable_tqdm=SCREAMING_SNAKE_CASE_ , report_to=[] , **SCREAMING_SNAKE_CASE_) return Trainer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , callbacks=SCREAMING_SNAKE_CASE_ , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE_) , len(SCREAMING_SNAKE_CASE_)) # Order doesn't matter lowercase__ : str = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) lowercase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_: cb.__name__ if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else cb.__class__.__name__) for cba, cba in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(SCREAMING_SNAKE_CASE_ , cba.__class__) elif not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): self.assertEqual(cba.__class__ , SCREAMING_SNAKE_CASE_) else: self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = ["""on_init_end""", """on_train_begin"""] lowercase__ : Union[str, Any] = 0 lowercase__ : Union[str, Any] = len(trainer.get_eval_dataloader()) lowercase__ : Dict = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader()) + ["""on_log""", """on_evaluate"""] for _ in range(trainer.state.num_train_epochs): expected_events.append("""on_epoch_begin""") for _ in range(SCREAMING_SNAKE_CASE_): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("""on_log""") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("""on_save""") expected_events.append("""on_epoch_end""") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowercase__ ( self): '''simple docstring''' lowercase__ : int = self.get_trainer() lowercase__ : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # Callbacks passed at init are added to the default callbacks lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : Any = self.get_trainer(disable_tqdm=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : Tuple = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(cb.__class__ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) # We can also add, pop, or remove by instance lowercase__ : Union[str, Any] = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.remove(SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) lowercase__ : str = self.get_trainer() lowercase__ : Optional[Any] = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) trainer.add_callback(SCREAMING_SNAKE_CASE_) expected_callbacks.insert(0 , SCREAMING_SNAKE_CASE_) self.check_callbacks_equality(trainer.callback_handler.callbacks , SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="""ignore""" , category=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # Independent log/save/eval lowercase__ : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() lowercase__ : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() lowercase__ : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""") trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) lowercase__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""") trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="""steps""" , ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(SCREAMING_SNAKE_CASE_ , self.get_expected_events(SCREAMING_SNAKE_CASE_)) # warning should be emitted for duplicated callbacks with patch("""transformers.trainer_callback.logger.warning""") as warn_mock: lowercase__ : Dict = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(SCREAMING_SNAKE_CASE_) in warn_mock.call_args[0][0]
12
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase_ ( A , unittest.TestCase ): __lowerCamelCase = UnCLIPImageVariationPipeline __lowerCamelCase = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} __lowerCamelCase = IMAGE_VARIATION_BATCH_PARAMS __lowerCamelCase = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] __lowerCamelCase = False @property def _snake_case ( self ) -> Dict: return 32 @property def _snake_case ( self ) -> Optional[int]: return 32 @property def _snake_case ( self ) -> Any: return self.time_input_dim @property def _snake_case ( self ) -> Tuple: return self.time_input_dim * 4 @property def _snake_case ( self ) -> Any: return 100 @property def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Optional[Any] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _snake_case ( self ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Tuple =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(__A ) @property def _snake_case ( self ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(__A ) @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str ={ '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } SCREAMING_SNAKE_CASE_ : Any =UnCLIPTextProjModel(**__A ) return model @property def _snake_case ( self ) -> int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Dict ={ '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } SCREAMING_SNAKE_CASE_ : str =UNetaDConditionModel(**__A ) return model @property def _snake_case ( self ) -> List[Any]: return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _snake_case ( self ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any =UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _snake_case ( self ) -> List[str]: # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) SCREAMING_SNAKE_CASE_ : int =UNetaDModel(**self.dummy_super_res_kwargs ) return model def _snake_case ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : Optional[Any] =self.dummy_decoder SCREAMING_SNAKE_CASE_ : List[str] =self.dummy_text_proj SCREAMING_SNAKE_CASE_ : Any =self.dummy_text_encoder SCREAMING_SNAKE_CASE_ : List[str] =self.dummy_tokenizer SCREAMING_SNAKE_CASE_ : List[Any] =self.dummy_super_res_first SCREAMING_SNAKE_CASE_ : Optional[Any] =self.dummy_super_res_last SCREAMING_SNAKE_CASE_ : List[str] =UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1_000 , ) SCREAMING_SNAKE_CASE_ : Optional[int] =UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1_000 , ) SCREAMING_SNAKE_CASE_ : str =CLIPImageProcessor(crop_size=32 , size=32 ) SCREAMING_SNAKE_CASE_ : Tuple =self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _snake_case ( self , __A , __A=0 , __A=True ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Optional[Any] =floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) if str(__A ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ : List[Any] =torch.manual_seed(__A ) else: SCREAMING_SNAKE_CASE_ : str =torch.Generator(device=__A ).manual_seed(__A ) if pil_image: SCREAMING_SNAKE_CASE_ : Optional[Any] =input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE_ : str =input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ : List[str] =input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE_ : int =DiffusionPipeline.numpy_to_pil(__A )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _snake_case ( self ) -> Any: SCREAMING_SNAKE_CASE_ : Tuple ='''cpu''' SCREAMING_SNAKE_CASE_ : Tuple =self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Dict =self.pipeline_class(**__A ) SCREAMING_SNAKE_CASE_ : List[Any] =pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE_ : str =self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE_ : Optional[int] =pipe(**__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =output.images SCREAMING_SNAKE_CASE_ : Optional[Any] =self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE_ : Any =pipe( **__A , return_dict=__A , )[0] SCREAMING_SNAKE_CASE_ : Optional[Any] =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Optional[Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ : Dict =np.array( [ 0.9_997, 0.0_002, 0.9_997, 0.9_997, 0.9_969, 0.0_023, 0.9_997, 0.9_969, 0.9_970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : Optional[int] ='''cpu''' SCREAMING_SNAKE_CASE_ : List[str] =self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Optional[Any] =self.pipeline_class(**__A ) SCREAMING_SNAKE_CASE_ : List[Any] =pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE_ : int =self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =pipe(**__A ) SCREAMING_SNAKE_CASE_ : str =output.images SCREAMING_SNAKE_CASE_ : List[str] =self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE_ : int =pipe( **__A , return_dict=__A , )[0] SCREAMING_SNAKE_CASE_ : List[str] =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Dict =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ : List[str] =np.array([0.9_997, 0.0_003, 0.9_997, 0.9_997, 0.9_970, 0.0_024, 0.9_997, 0.9_971, 0.9_971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ) -> Any: SCREAMING_SNAKE_CASE_ : Optional[int] ='''cpu''' SCREAMING_SNAKE_CASE_ : List[str] =self.get_dummy_components() SCREAMING_SNAKE_CASE_ : str =self.pipeline_class(**__A ) SCREAMING_SNAKE_CASE_ : List[str] =pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE_ : List[str] =self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE_ : List[str] =[ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] SCREAMING_SNAKE_CASE_ : int =pipe(**__A ) SCREAMING_SNAKE_CASE_ : str =output.images SCREAMING_SNAKE_CASE_ : Tuple =self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE_ : Dict =[ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] SCREAMING_SNAKE_CASE_ : Any =pipe( **__A , return_dict=__A , )[0] SCREAMING_SNAKE_CASE_ : Any =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : Any =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) SCREAMING_SNAKE_CASE_ : int =np.array( [ 0.9_997, 0.9_989, 0.0_008, 0.0_021, 0.9_960, 0.0_018, 0.0_014, 0.0_002, 0.9_933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : List[str] =torch.device('''cpu''' ) class lowercase_ : __lowerCamelCase = 1 SCREAMING_SNAKE_CASE_ : List[Any] =self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any =self.pipeline_class(**__A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =torch.Generator(device=__A ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : int =pipe.decoder.dtype SCREAMING_SNAKE_CASE_ : Union[str, Any] =1 SCREAMING_SNAKE_CASE_ : Any =( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) SCREAMING_SNAKE_CASE_ : Dict =pipe.prepare_latents( __A , dtype=__A , device=__A , generator=__A , latents=__A , scheduler=DummyScheduler() ) SCREAMING_SNAKE_CASE_ : Dict =( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =pipe.prepare_latents( __A , dtype=__A , device=__A , generator=__A , latents=__A , scheduler=DummyScheduler() ) SCREAMING_SNAKE_CASE_ : Dict =self.get_dummy_inputs(__A , pil_image=__A ) SCREAMING_SNAKE_CASE_ : Optional[int] =pipe( **__A , decoder_latents=__A , super_res_latents=__A ).images SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.get_dummy_inputs(__A , pil_image=__A ) # Don't pass image, instead pass embedding SCREAMING_SNAKE_CASE_ : Optional[int] =pipeline_inputs.pop('''image''' ) SCREAMING_SNAKE_CASE_ : Optional[int] =pipe.image_encoder(__A ).image_embeds SCREAMING_SNAKE_CASE_ : Union[str, Any] =pipe( **__A , decoder_latents=__A , super_res_latents=__A , image_embeddings=__A , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def _snake_case ( self ) -> Dict: SCREAMING_SNAKE_CASE_ : Dict =torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor SCREAMING_SNAKE_CASE_ : str =1e-2 self._test_attention_slicing_forward_pass( test_max_difference=__A , expected_max_diff=__A ) @skip_mps def _snake_case ( self ) -> int: SCREAMING_SNAKE_CASE_ : Optional[Any] =torch_device == '''cpu''' SCREAMING_SNAKE_CASE_ : Union[str, Any] =True SCREAMING_SNAKE_CASE_ : Any =[ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=__A , relax_max_difference=__A , additional_params_copy_to_batched_inputs=__A , ) def _snake_case ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : int =[ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes SCREAMING_SNAKE_CASE_ : Optional[int] =[2, 3] self._test_inference_batch_consistent( batch_sizes=__A , additional_params_copy_to_batched_inputs=__A , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__A ) @skip_mps def _snake_case ( self ) -> Tuple: return super().test_dict_tuple_outputs_equivalent() @skip_mps def _snake_case ( self ) -> Optional[Any]: return super().test_save_load_local() @skip_mps def _snake_case ( self ) -> str: return super().test_save_load_optional_components() @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Any: SCREAMING_SNAKE_CASE_ : Optional[int] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) SCREAMING_SNAKE_CASE_ : Optional[int] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] =UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ : List[str] =pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) SCREAMING_SNAKE_CASE_ : str =torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] =pipeline( __A , generator=__A , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : str =output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(__A , __A , 15 )
431
import copy import re class lowercase_ : __lowerCamelCase = "hp" __lowerCamelCase = {} __lowerCamelCase = None @classmethod def _snake_case ( cls , __A , __A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Dict =prefix SCREAMING_SNAKE_CASE_ : Optional[Any] =defaults cls.build_naming_info() @staticmethod def _snake_case ( __A , __A ) -> str: if len(__A ) == 0: return "" SCREAMING_SNAKE_CASE_ : Any =None if any(char.isdigit() for char in word ): raise Exception(F'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__A ) + 1 ): SCREAMING_SNAKE_CASE_ : List[str] =word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE_ : int =prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__A ): SCREAMING_SNAKE_CASE_ : Optional[Any] ='''''' while integer != 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] =chr(ord('''A''' ) + integer % 10 ) + s integer //= 10 return s SCREAMING_SNAKE_CASE_ : Dict =0 while True: SCREAMING_SNAKE_CASE_ : Optional[int] =word + '''#''' + int_to_alphabetic(__A ) if sword in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE_ : Tuple =sword break SCREAMING_SNAKE_CASE_ : List[str] =short_word SCREAMING_SNAKE_CASE_ : str =word return short_word @staticmethod def _snake_case ( __A , __A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ : str =param_name.split('''_''' ) SCREAMING_SNAKE_CASE_ : str =[TrialShortNamer.shortname_for_word(__A , __A ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name SCREAMING_SNAKE_CASE_ : Tuple =['''''', '''_'''] for separator in separators: SCREAMING_SNAKE_CASE_ : Dict =separator.join(__A ) if shortname not in info["reverse_short_param"]: SCREAMING_SNAKE_CASE_ : List[str] =shortname SCREAMING_SNAKE_CASE_ : Any =param_name return shortname return param_name @staticmethod def _snake_case ( __A , __A ) -> int: SCREAMING_SNAKE_CASE_ : Union[str, Any] =TrialShortNamer.shortname_for_key(__A , __A ) SCREAMING_SNAKE_CASE_ : Any =short_name SCREAMING_SNAKE_CASE_ : Dict =param_name @classmethod def _snake_case ( cls ) -> Optional[int]: if cls.NAMING_INFO is not None: return SCREAMING_SNAKE_CASE_ : Optional[Any] ={ '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } SCREAMING_SNAKE_CASE_ : Tuple =list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__A , __A ) SCREAMING_SNAKE_CASE_ : str =info @classmethod def _snake_case ( cls , __A ) -> List[str]: cls.build_naming_info() assert cls.PREFIX is not None SCREAMING_SNAKE_CASE_ : int =[copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue SCREAMING_SNAKE_CASE_ : Optional[int] =cls.NAMING_INFO['''short_param'''][k] if isinstance(__A , __A ): SCREAMING_SNAKE_CASE_ : List[Any] =1 if v else 0 SCREAMING_SNAKE_CASE_ : List[Any] ='''''' if isinstance(__A , (int, float) ) else '''-''' SCREAMING_SNAKE_CASE_ : Optional[Any] =F'{key}{sep}{v}' name.append(__A ) return "_".join(__A ) @classmethod def _snake_case ( cls , __A ) -> Dict: SCREAMING_SNAKE_CASE_ : Optional[int] =repr[len(cls.PREFIX ) + 1 :] if repr == "": SCREAMING_SNAKE_CASE_ : Union[str, Any] =[] else: SCREAMING_SNAKE_CASE_ : Tuple =repr.split('''_''' ) SCREAMING_SNAKE_CASE_ : List[Any] ={} for value in values: if "-" in value: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] =value.split('''-''' ) else: SCREAMING_SNAKE_CASE_ : Any =re.sub('''[0-9.]''' , '''''' , __A ) SCREAMING_SNAKE_CASE_ : Optional[Any] =float(re.sub('''[^0-9.]''' , '''''' , __A ) ) SCREAMING_SNAKE_CASE_ : List[Any] =cls.NAMING_INFO['''reverse_short_param'''][p_k] SCREAMING_SNAKE_CASE_ : Optional[Any] =p_v for k in cls.DEFAULTS: if k not in parameters: SCREAMING_SNAKE_CASE_ : Tuple =cls.DEFAULTS[k] return parameters
431
1
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : List[str] = "data2vec-audio" def __init__( self , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1e-5 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=(512, 512, 512, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE__=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE__=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=19 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=0.0_5 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__="sum" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=(512, 512, 512, 512, 1500) , SCREAMING_SNAKE_CASE__=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE__=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) A__ = hidden_size A__ = feat_extract_activation A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = conv_bias A__ = num_conv_pos_embeddings A__ = num_conv_pos_embedding_groups A__ = conv_pos_kernel_size A__ = len(self.conv_dim ) A__ = num_hidden_layers A__ = intermediate_size A__ = hidden_act A__ = num_attention_heads A__ = hidden_dropout A__ = attention_dropout A__ = activation_dropout A__ = feat_proj_dropout A__ = final_dropout A__ = layerdrop A__ = layer_norm_eps A__ = initializer_range A__ = vocab_size A__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ = mask_time_prob A__ = mask_time_length A__ = mask_time_min_masks A__ = mask_feature_prob A__ = mask_feature_length A__ = mask_feature_min_masks # ctc loss A__ = ctc_loss_reduction A__ = ctc_zero_infinity # adapter A__ = add_adapter A__ = adapter_kernel_size A__ = adapter_stride A__ = num_adapter_layers A__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. A__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = list(SCREAMING_SNAKE_CASE__ ) A__ = xvector_output_dim @property def snake_case__ ( self ) -> List[str]: return math.prod(self.conv_stride )
104
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> Any: A__ = tempfile.mkdtemp() A__ = BlipImageProcessor() A__ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) A__ = BlipaProcessor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).tokenizer def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def snake_case__ ( self ) -> str: shutil.rmtree(self.tmpdirname ) def snake_case__ ( self ) -> List[str]: A__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case__ ( self ) -> str: A__ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A__ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) A__ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> int: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = self.prepare_image_inputs() A__ = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors="np" ) A__ = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case__ ( self ) -> Optional[int]: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = "lower newer" A__ = processor(text=SCREAMING_SNAKE_CASE__ ) A__ = tokenizer(SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self ) -> Tuple: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = "lower newer" A__ = self.prepare_image_inputs() A__ = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def snake_case__ ( self ) -> List[Any]: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(SCREAMING_SNAKE_CASE__ ) A__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Tuple: A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE__ , image_processor=SCREAMING_SNAKE_CASE__ ) A__ = "lower newer" A__ = self.prepare_image_inputs() A__ = processor(text=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
104
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _SCREAMING_SNAKE_CASE = datasets.utils.logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = ['names', 'prefix'] _SCREAMING_SNAKE_CASE = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _SCREAMING_SNAKE_CASE = ['encoding_errors', 'on_bad_lines'] _SCREAMING_SNAKE_CASE = ['date_format'] @dataclass class a ( datasets.BuilderConfig ): """simple docstring""" lowerCamelCase :str = "," lowerCamelCase :Optional[str] = None lowerCamelCase :Optional[Union[int, List[int], str]] = "infer" lowerCamelCase :Optional[List[str]] = None lowerCamelCase :Optional[List[str]] = None lowerCamelCase :Optional[Union[int, str, List[int], List[str]]] = None lowerCamelCase :Optional[Union[List[int], List[str]]] = None lowerCamelCase :Optional[str] = None lowerCamelCase :bool = True lowerCamelCase :Optional[Literal["c", "python", "pyarrow"]] = None lowerCamelCase :Dict[Union[int, str], Callable[[Any], Any]] = None lowerCamelCase :Optional[list] = None lowerCamelCase :Optional[list] = None lowerCamelCase :bool = False lowerCamelCase :Optional[Union[int, List[int]]] = None lowerCamelCase :Optional[int] = None lowerCamelCase :Optional[Union[str, List[str]]] = None lowerCamelCase :bool = True lowerCamelCase :bool = True lowerCamelCase :bool = False lowerCamelCase :bool = True lowerCamelCase :Optional[str] = None lowerCamelCase :str = "." lowerCamelCase :Optional[str] = None lowerCamelCase :str = '"' lowerCamelCase :int = 0 lowerCamelCase :Optional[str] = None lowerCamelCase :Optional[str] = None lowerCamelCase :Optional[str] = None lowerCamelCase :Optional[str] = None lowerCamelCase :bool = True lowerCamelCase :bool = True lowerCamelCase :int = 0 lowerCamelCase :bool = True lowerCamelCase :bool = False lowerCamelCase :Optional[str] = None lowerCamelCase :int = 10000 lowerCamelCase :Optional[datasets.Features] = None lowerCamelCase :Optional[str] = "strict" lowerCamelCase :Literal["error", "warn", "skip"] = "error" lowerCamelCase :Optional[str] = None def UpperCAmelCase ( self ) -> List[str]: if self.delimiter is not None: _A = self.delimiter if self.column_names is not None: _A = self.column_names @property def UpperCAmelCase ( self ) -> Any: _A = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __a ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class a ( datasets.ArrowBasedBuilder ): """simple docstring""" lowerCamelCase :Optional[Any] = CsvConfig def UpperCAmelCase ( self ) -> Any: return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _A = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__a , (str, list, tuple) ): _A = data_files if isinstance(__a , __a ): _A = [files] _A = [dl_manager.iter_files(__a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _A = [] for split_name, files in data_files.items(): if isinstance(__a , __a ): _A = [files] _A = [dl_manager.iter_files(__a ) for file in files] splits.append(datasets.SplitGenerator(name=__a , gen_kwargs={"""files""": files} ) ) return splits def UpperCAmelCase ( self , lowerCAmelCase_ ) -> pa.Table: if self.config.features is not None: _A = self.config.features.arrow_schema if all(not require_storage_cast(__a ) for feature in self.config.features.values() ): # cheaper cast _A = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__a ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _A = table_cast(__a , __a ) return pa_table def UpperCAmelCase ( self , lowerCAmelCase_ ) -> str: _A = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _A = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__a ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__a ) ): _A = pd.read_csv(__a , iterator=__a , dtype=__a , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__a ): _A = pa.Table.from_pandas(__a ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__a ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(__a )}: {e}''' ) raise
707
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=sys.maxsize ) -> str: _A = """bilinear""" _A = max_size _A = short_edge_length def __call__( self , lowerCAmelCase_ ) -> Optional[Any]: _A = [] for img in imgs: _A , _A = img.shape[:2] # later: provide list and randomly choose index for resize _A = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img _A = size * 1.0 / min(lowerCAmelCase_ , lowerCAmelCase_ ) if h < w: _A , _A = size, scale * w else: _A , _A = scale * h, size if max(lowerCAmelCase_ , lowerCAmelCase_ ) > self.max_size: _A = self.max_size * 1.0 / max(lowerCAmelCase_ , lowerCAmelCase_ ) _A = newh * scale _A = neww * scale _A = int(neww + 0.5 ) _A = int(newh + 0.5 ) if img.dtype == np.uinta: _A = Image.fromarray(lowerCAmelCase_ ) _A = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) _A = np.asarray(lowerCAmelCase_ ) else: _A = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw _A = nn.functional.interpolate( lowerCAmelCase_ , (newh, neww) , mode=self.interp_method , align_corners=lowerCAmelCase_ ).squeeze(0 ) img_augs.append(lowerCAmelCase_ ) return img_augs class a : """simple docstring""" def __init__( self , lowerCAmelCase_ ) -> List[Any]: _A = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) _A = cfg.INPUT.FORMAT _A = cfg.SIZE_DIVISIBILITY _A = cfg.PAD_VALUE _A = cfg.INPUT.MAX_SIZE_TEST _A = cfg.MODEL.DEVICE _A = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _A = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _A = lambda lowerCAmelCase_ : (x - self.pixel_mean) / self.pixel_std def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: _A = tuple(max(lowerCAmelCase_ ) for s in zip(*[img.shape for img in images] ) ) _A = [im.shape[-2:] for im in images] _A = [ nn.functional.pad( lowerCAmelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] return torch.stack(lowerCAmelCase_ ), torch.tensor(lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_=False ) -> int: with torch.no_grad(): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A = [images] if single_image: assert len(lowerCAmelCase_ ) == 1 for i in range(len(lowerCAmelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(lowerCAmelCase_ , images.pop(lowerCAmelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( lowerCAmelCase_ , torch.as_tensor(img_tensorize(images.pop(lowerCAmelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge _A = torch.tensor([im.shape[:2] for im in images] ) _A = self.aug(lowerCAmelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic _A = [self.normalizer(lowerCAmelCase_ ) for x in images] # now pad them to do the following operations _A , _A = self.pad(lowerCAmelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad _A = torch.true_divide(lowerCAmelCase_ , lowerCAmelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def snake_case ( snake_case__ :Optional[int] , snake_case__ :Optional[Any]) -> Tuple: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def snake_case ( snake_case__ :Optional[int] , snake_case__ :Tuple[int, int]) -> Optional[Any]: assert torch.isfinite(snake_case__).all(), "Box tensor contains infinite or NaN!" _A , _A = box_size tensor[:, 0].clamp_(min=0 , max=snake_case__) tensor[:, 1].clamp_(min=0 , max=snake_case__) tensor[:, 2].clamp_(min=0 , max=snake_case__) tensor[:, 3].clamp_(min=0 , max=snake_case__)
83
0
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: # Return True if there is node that has not iterated. _lowercase : List[str] = [False] * len(SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = [] queue.append(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = True while queue: _lowercase : Tuple = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = True _lowercase : Tuple = u return visited[t] def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: # This array is filled by BFS and to store path _lowercase : int = [-1] * (len(SCREAMING_SNAKE_CASE )) _lowercase : Any = 0 while bfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _lowercase : str = float('Inf' ) _lowercase : str = sink while s != source: # Find the minimum value in select path _lowercase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , graph[parent[s]][s] ) _lowercase : List[Any] = parent[s] max_flow += path_flow _lowercase : List[str] = sink while v != source: _lowercase : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowercase : Tuple = parent[v] return max_flow UpperCamelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] UpperCamelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
66
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __magic_name__ : str = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_A , speech_processor=_A , vae=_A , text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , feature_extractor=_A , ) def _a ( self , _A = "auto" ): '''simple docstring''' if slice_size == "auto": UpperCamelCase : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_A ) def _a ( self ): '''simple docstring''' self.enable_attention_slicing(_A ) @torch.no_grad() def __call__( self , _A , _A=1_6_0_0_0 , _A = 5_1_2 , _A = 5_1_2 , _A = 5_0 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ): '''simple docstring''' UpperCamelCase : str = self.speech_processor.feature_extractor( _A , return_tensors="""pt""" , sampling_rate=_A ).input_features.to(self.device ) UpperCamelCase : List[Any] = self.speech_model.generate(_A , max_length=4_8_0_0_0_0 ) UpperCamelCase : Optional[int] = self.speech_processor.tokenizer.batch_decode(_A , skip_special_tokens=_A , normalize=_A )[ 0 ] if isinstance(_A , _A ): UpperCamelCase : Tuple = 1 elif isinstance(_A , _A ): UpperCamelCase : List[Any] = len(_A ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_A )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_A )}.""" ) # get prompt text embeddings UpperCamelCase : Dict = self.tokenizer( _A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCamelCase : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCamelCase : int = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase : List[str] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = text_embeddings.shape UpperCamelCase : Optional[int] = text_embeddings.repeat(1 , _A , 1 ) UpperCamelCase : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , _A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase : List[str] if negative_prompt is None: UpperCamelCase : str = [""""""] * batch_size elif type(_A ) is not type(_A ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=""" f""" {type(_A )}.""" ) elif isinstance(_A , _A ): UpperCamelCase : Tuple = [negative_prompt] elif batch_size != len(_A ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: UpperCamelCase : Any = negative_prompt UpperCamelCase : Optional[int] = text_input_ids.shape[-1] UpperCamelCase : List[str] = self.tokenizer( _A , padding="""max_length""" , max_length=_A , truncation=_A , return_tensors="""pt""" , ) UpperCamelCase : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase : List[Any] = uncond_embeddings.shape[1] UpperCamelCase : Dict = uncond_embeddings.repeat(1 , _A , 1 ) UpperCamelCase : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase : str = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase : Tuple = torch.randn(_A , generator=_A , device="""cpu""" , dtype=_A ).to( self.device ) else: UpperCamelCase : Any = torch.randn(_A , generator=_A , device=self.device , dtype=_A ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCamelCase : Optional[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase : Tuple = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase : str = {} if accepts_eta: UpperCamelCase : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : str = self.scheduler.scale_model_input(_A , _A ) # predict the noise residual UpperCamelCase : Optional[Any] = self.unet(_A , _A , encoder_hidden_states=_A ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase : str = noise_pred.chunk(2 ) UpperCamelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : Any = self.scheduler.step(_A , _A , _A , **_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) UpperCamelCase : Optional[Any] = 1 / 0.1_82_15 * latents UpperCamelCase : Union[str, Any] = self.vae.decode(_A ).sample UpperCamelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase : Optional[Any] = self.numpy_to_pil(_A ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_A , nsfw_content_detected=_A )
102
0
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCamelCase : a__ :Any = 42 a__ :List[Any] = None a__ :List[Any] = None def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' def is_valid_tree(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> bool: if node is None: return True if not isinstance(_UpperCamelCase , _UpperCamelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_UpperCamelCase ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( _SCREAMING_SNAKE_CASE : TreeNode | None , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _UpperCamelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _UpperCamelCase ) ) return is_binary_search_tree_recursive_check(_UpperCamelCase , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
721
SCREAMING_SNAKE_CASE : List[Any] = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
138
0
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class a_ ( a_ ): '''simple docstring''' __a: Dict = ComputeEnvironment.AMAZON_SAGEMAKER __a: str = True __a: Union[str, Any] = '''ml.p3.2xlarge''' __a: Any = '''accelerate_sagemaker_execution_role''' __a: Any = '''hf-sm''' __a: int = '''us-east-1''' __a: Tuple = 1 __a: Tuple = '''accelerate-sagemaker-1''' __a: Optional[Any] = '''1.6''' __a: Optional[int] = '''4.4''' __a: Optional[Any] = '''train.py''' __a: List[str] = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] __a: Union[str, Any] = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['model_name_or_path'] , lowercase_ ) assert isinstance(converted_args['do_train'] , lowercase_ ) assert isinstance(converted_args['epochs'] , lowercase_ ) assert isinstance(converted_args['learning_rate'] , lowercase_ ) assert isinstance(converted_args['max_steps'] , lowercase_ ) with pytest.raises(lowercase_ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
318
def lowerCamelCase ( a_ ) -> list: lowerCAmelCase_ = len(a_ ) for _ in range(a_ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: lowerCAmelCase_ , lowerCAmelCase_ = arr[i + 1], arr[i] return arr if __name__ == "__main__": lowerCamelCase_ = list(range(1_0, 0, -1)) print(f'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
318
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self ): UpperCAmelCase__ = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) UpperCAmelCase__ = AutoTokenizer.from_pretrained("""xlm-roberta-base""" ) UpperCAmelCase__ = """The dog is cute and lives in the garden house""" UpperCAmelCase__ = jnp.array([tokenizer.encode(__lowercase )] ) UpperCAmelCase__ = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) UpperCAmelCase__ = model(__lowercase )["""last_hidden_state"""] self.assertEqual(output.shape , __lowercase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __lowercase , atol=1e-3 ) )
422
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->str: UpperCAmelCase__ = OmegaConf.load(_SCREAMING_SNAKE_CASE ) if display: print(yaml.dump(OmegaConf.to_container(_SCREAMING_SNAKE_CASE ) ) ) return config def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->List[Any]: if conf_path is None: UpperCAmelCase__ = """./model_checkpoints/vqgan_only.yaml""" UpperCAmelCase__ = load_config(_SCREAMING_SNAKE_CASE , display=_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = VQModel(**config.model.params ) if ckpt_path is None: UpperCAmelCase__ = """./model_checkpoints/vqgan_only.pt""" UpperCAmelCase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) if ".ckpt" in ckpt_path: UpperCAmelCase__ = sd["""state_dict"""] model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) del sd return model def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = model.encode(_SCREAMING_SNAKE_CASE ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) UpperCAmelCase__ = model.decode(_SCREAMING_SNAKE_CASE ) return xrec def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->int: UpperCAmelCase__ , UpperCAmelCase__ = string.rsplit(""".""" , 1 ) if reload: UpperCAmelCase__ = importlib.import_module(_SCREAMING_SNAKE_CASE ) importlib.reload(_SCREAMING_SNAKE_CASE ) return getattr(importlib.import_module(_SCREAMING_SNAKE_CASE , package=_SCREAMING_SNAKE_CASE ) , cls ) def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->str: if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) ) def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True ) ->str: UpperCAmelCase__ = instantiate_from_config(_SCREAMING_SNAKE_CASE ) if sd is not None: model.load_state_dict(_SCREAMING_SNAKE_CASE ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: # load the specified checkpoint if ckpt: UpperCAmelCase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" ) UpperCAmelCase__ = pl_sd["""global_step"""] print(F'''loaded model from global step {global_step}.''' ) else: UpperCAmelCase__ = {"""state_dict""": None} UpperCAmelCase__ = None UpperCAmelCase__ = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=_SCREAMING_SNAKE_CASE , eval_mode=_SCREAMING_SNAKE_CASE )["""model"""] return model, global_step
422
1
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def a__ ( _SCREAMING_SNAKE_CASE : int ) -> Dict: """simple docstring""" def is_in_circle(_SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> bool: UpperCAmelCase_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase_ : List[Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase_ : Optional[int] = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Callable[[float], float] , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 ) -> None: """simple docstring""" def identity_function(_SCREAMING_SNAKE_CASE : float ) -> float: return x UpperCAmelCase_ : Optional[Any] = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print("******************" ) def a__ ( _SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" def function_to_integrate(_SCREAMING_SNAKE_CASE : float ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase_ : List[Any] = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
71
import pytest _lowerCamelCase ="""__dummy_dataset1__""" _lowerCamelCase =""" import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def _a ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _a ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowerCamelCase : Union[str, Any] = dataset_loading_script_name lowerCamelCase : Dict = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCamelCase ) lowerCamelCase : str = script_dir / F'''{script_name}.py''' with open(lowerCamelCase, """w""" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase )
681
0
def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): def get_matched_characters(UpperCamelCase__ , UpperCamelCase__ ) -> str: UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : Optional[int] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): UpperCamelCase__ : Tuple = int(max(0 , i - limit ) ) UpperCamelCase__ : Dict = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(UpperCamelCase__ ) UpperCamelCase__ : int = f'''{_stra[0:_stra.index(UpperCamelCase__ )]} {_stra[_stra.index(UpperCamelCase__ ) + 1:]}''' return "".join(UpperCamelCase__ ) # matching characters UpperCamelCase__ : int = get_matched_characters(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ : Union[str, Any] = get_matched_characters(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ : List[str] = len(UpperCamelCase__ ) # transposition UpperCamelCase__ : Tuple = ( len([(ca, ca) for ca, ca in zip(UpperCamelCase__ , UpperCamelCase__ ) if ca != ca] ) // 2 ) if not match_count: UpperCamelCase__ : int = 0.0 else: UpperCamelCase__ : int = ( 1 / 3 * ( match_count / len(UpperCamelCase__ ) + match_count / len(UpperCamelCase__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters UpperCamelCase__ : Optional[int] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
462
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase ={ "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
462
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class a__: a_ : Dict = LEDConfig a_ : Optional[int] = {} a_ : int = "gelu" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=4 , ) -> int: snake_case__ =parent snake_case__ =batch_size snake_case__ =seq_length snake_case__ =is_training snake_case__ =use_labels snake_case__ =vocab_size snake_case__ =hidden_size snake_case__ =num_hidden_layers snake_case__ =num_attention_heads snake_case__ =intermediate_size snake_case__ =hidden_dropout_prob snake_case__ =attention_probs_dropout_prob snake_case__ =max_position_embeddings snake_case__ =eos_token_id snake_case__ =pad_token_id snake_case__ =bos_token_id snake_case__ =attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after snake_case__ =self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests snake_case__ =( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _lowercase ( self ) -> Tuple: snake_case__ =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case__ =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case__ =tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case__ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) snake_case__ =prepare_led_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case__ =tf.concat( [tf.zeros_like(_UpperCAmelCase )[:, :-1], tf.ones_like(_UpperCAmelCase )[:, -1:]] , axis=-1 , ) snake_case__ =global_attention_mask return config, inputs_dict def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: snake_case__ =TFLEDModel(config=_UpperCAmelCase ).get_decoder() snake_case__ =inputs_dict['''input_ids'''] snake_case__ =input_ids[:1, :] snake_case__ =inputs_dict['''attention_mask'''][:1, :] snake_case__ =1 # first forward pass snake_case__ =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) snake_case__ =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ =ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case__ =tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case__ =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case__ =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] snake_case__ =model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case__ =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case__ =output_from_no_past[:, -3:, random_slice_idx] snake_case__ =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-3 ) def a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> str: if attention_mask is None: snake_case__ =tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class a__( _lowercase , _lowercase , unittest.TestCase ): a_ : str = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () a_ : str = (TFLEDForConditionalGeneration,) if is_tf_available() else () a_ : Union[str, Any] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) a_ : List[Any] = True a_ : Optional[Any] = False a_ : List[str] = False a_ : Dict = False def _lowercase ( self ) -> List[str]: snake_case__ =TFLEDModelTester(self ) snake_case__ =ConfigTester(self , config_class=_UpperCAmelCase ) def _lowercase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase ( self ) -> Tuple: snake_case__ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def _lowercase ( self ) -> str: snake_case__ =self.model_tester.prepare_config_and_inputs_for_common() snake_case__ =tf.zeros_like(inputs_dict['attention_mask'] ) snake_case__ =2 snake_case__ =tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) snake_case__ =True snake_case__ =self.model_tester.seq_length snake_case__ =self.model_tester.encoder_seq_length def check_decoder_attentions_output(_UpperCAmelCase ): snake_case__ =outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_UpperCAmelCase ): snake_case__ =[t.numpy() for t in outputs.encoder_attentions] snake_case__ =[t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: snake_case__ =True snake_case__ =False snake_case__ =False snake_case__ =model_class(_UpperCAmelCase ) snake_case__ =model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case__ =len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: snake_case__ =model_class(_UpperCAmelCase ) snake_case__ =model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case__ =True snake_case__ =model_class(_UpperCAmelCase ) snake_case__ =model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine snake_case__ =True snake_case__ =True snake_case__ =model_class(_UpperCAmelCase ) snake_case__ =model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def _lowercase ( self ) -> int: pass def _lowercase ( self ) -> str: # TODO: Head-masking not yet implement pass def a ( UpperCamelCase_ : Optional[int] ) -> str: return tf.constant(_lowercase , dtype=tf.intaa ) SCREAMING_SNAKE_CASE__ : Dict = 1e-4 @slow @require_tf class a__( unittest.TestCase ): def _lowercase ( self ) -> Any: snake_case__ =TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here snake_case__ =_long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) snake_case__ =_long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) snake_case__ =prepare_led_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) snake_case__ =model(**_UpperCAmelCase )[0] snake_case__ =(1, 1024, 768) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here snake_case__ =tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1E-3 ) def _lowercase ( self ) -> Optional[int]: snake_case__ =TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here snake_case__ =_long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) snake_case__ =_long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) snake_case__ =prepare_led_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) snake_case__ =model(**_UpperCAmelCase )[0] snake_case__ =(1, 1024, model.config.vocab_size) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here snake_case__ =tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1E-3 , rtol=1E-3 )
538
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowercase_ ( _lowercase , _lowercase=False ) -> Dict: '''simple docstring''' lowerCamelCase_ : Tuple = OmegaConf.load(_lowercase ) if display: print(yaml.dump(OmegaConf.to_container(_lowercase ) ) ) return config def lowercase_ ( _lowercase , _lowercase=None , _lowercase=None ) -> Optional[int]: '''simple docstring''' if conf_path is None: lowerCamelCase_ : int = '''./model_checkpoints/vqgan_only.yaml''' lowerCamelCase_ : Dict = load_config(_lowercase , display=_lowercase ) lowerCamelCase_ : List[str] = VQModel(**config.model.params ) if ckpt_path is None: lowerCamelCase_ : int = '''./model_checkpoints/vqgan_only.pt''' lowerCamelCase_ : Union[str, Any] = torch.load(_lowercase , map_location=_lowercase ) if ".ckpt" in ckpt_path: lowerCamelCase_ : str = sd['''state_dict'''] model.load_state_dict(_lowercase , strict=_lowercase ) model.to(_lowercase ) del sd return model def lowercase_ ( _lowercase , _lowercase ) -> List[str]: '''simple docstring''' lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : Any = model.encode(_lowercase ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) lowerCamelCase_ : Any = model.decode(_lowercase ) return xrec def lowercase_ ( _lowercase , _lowercase=False ) -> Any: '''simple docstring''' lowerCamelCase_, lowerCamelCase_ : Any = string.rsplit('''.''' , 1 ) if reload: lowerCamelCase_ : int = importlib.import_module(_lowercase ) importlib.reload(_lowercase ) return getattr(importlib.import_module(_lowercase , package=_lowercase ) , cls ) def lowercase_ ( _lowercase ) -> List[str]: '''simple docstring''' if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def lowercase_ ( _lowercase , _lowercase , _lowercase=True , _lowercase=True ) -> Any: '''simple docstring''' lowerCamelCase_ : int = instantiate_from_config(_lowercase ) if sd is not None: model.load_state_dict(_lowercase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' if ckpt: lowerCamelCase_ : List[Any] = torch.load(_lowercase , map_location='''cpu''' ) lowerCamelCase_ : int = pl_sd['''global_step'''] print(F"""loaded model from global step {global_step}.""" ) else: lowerCamelCase_ : Optional[int] = {'''state_dict''': None} lowerCamelCase_ : str = None lowerCamelCase_ : Any = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=_lowercase , eval_mode=_lowercase )['''model'''] return model, global_step
422
0
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE:Union[str, Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowercase__ ( self , _a , _a , _a ): """simple docstring""" a__ = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) a__ = VideoClassificationPipeline(model=_a , image_processor=_a , top_k=2 ) a__ = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def lowercase__ ( self , _a , _a ): """simple docstring""" for example in examples: a__ = video_classifier(_a ) self.assertEqual( _a , [ {'score': ANY(_a ), 'label': ANY(_a )}, {'score': ANY(_a ), 'label': ANY(_a )}, ] , ) @require_torch def lowercase__ ( self ): """simple docstring""" a__ = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' a__ = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) a__ = pipeline( 'video-classification' , model=_a , feature_extractor=_a , frame_sampling_rate=4 ) a__ = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) a__ = video_classifier(_a , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}] , ) a__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], ] , ) @require_tf def lowercase__ ( self ): """simple docstring""" pass
721
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:List[Any] = (KDPMaDiscreteScheduler,) SCREAMING_SNAKE_CASE:List[Any] = 10 def lowercase__ ( self , **_a ): """simple docstring""" a__ = { 'num_train_timesteps': 1100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_a ) return config def lowercase__ ( self ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def lowercase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def lowercase__ ( self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def lowercase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def lowercase__ ( self ): """simple docstring""" a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config(prediction_type='v_prediction' ) a__ = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) a__ = self.dummy_model() a__ = self.dummy_sample_deter * scheduler.init_noise_sigma a__ = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): a__ = scheduler.scale_model_input(_a , _a ) a__ = model(_a , _a ) a__ = scheduler.step(_a , _a , _a ) a__ = output.prev_sample a__ = torch.sum(torch.abs(_a ) ) a__ = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" if torch_device == "mps": return a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config() a__ = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) a__ = self.dummy_model() a__ = self.dummy_sample_deter * scheduler.init_noise_sigma a__ = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): a__ = scheduler.scale_model_input(_a , _a ) a__ = model(_a , _a ) a__ = scheduler.step(_a , _a , _a ) a__ = output.prev_sample a__ = torch.sum(torch.abs(_a ) ) a__ = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" if torch_device == "mps": return a__ = self.scheduler_classes[0] a__ = self.get_scheduler_config() a__ = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) a__ = self.dummy_model() a__ = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: a__ = scheduler.scale_model_input(_a , _a ) a__ = model(_a , _a ) a__ = scheduler.step(_a , _a , _a ) a__ = output.prev_sample a__ = torch.sum(torch.abs(_a ) ) a__ = torch.mean(torch.abs(_a ) ) if str(_a ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
126
0
"""simple docstring""" lowercase__ = 8.3144598 def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowercase__ = 300 lowercase__ = 28 lowercase__ = rms_speed_of_molecule(temperature, molar_mass) print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
610
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
610
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase__: Union[str, Any] = logging.get_logger(__name__) class snake_case_ ( _UpperCamelCase ): __lowerCamelCase : Dict = ['input_features'] def __init__( self , __lowerCAmelCase=80 , __lowerCAmelCase=16_000 , __lowerCAmelCase=160 , __lowerCAmelCase=30 , __lowerCAmelCase=400 , __lowerCAmelCase=0.0 , __lowerCAmelCase=False , **__lowerCAmelCase , ): super().__init__( feature_size=__lowerCAmelCase , sampling_rate=__lowerCAmelCase , padding_value=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , **__lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ : List[str] = n_fft SCREAMING_SNAKE_CASE_ : Any = hop_length SCREAMING_SNAKE_CASE_ : Dict = chunk_length SCREAMING_SNAKE_CASE_ : Union[str, Any] = chunk_length * sampling_rate SCREAMING_SNAKE_CASE_ : Any = self.n_samples // hop_length SCREAMING_SNAKE_CASE_ : List[Any] = sampling_rate SCREAMING_SNAKE_CASE_ : List[str] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCAmelCase , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Tuple = spectrogram( __lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) SCREAMING_SNAKE_CASE_ : Tuple = log_spec[:, :-1] SCREAMING_SNAKE_CASE_ : Any = np.maximum(__lowerCAmelCase , log_spec.max() - 8.0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 ): if attention_mask is not None: SCREAMING_SNAKE_CASE_ : List[str] = np.array(__lowerCAmelCase , np.intaa ) SCREAMING_SNAKE_CASE_ : List[str] = [] for vector, length in zip(__lowerCAmelCase , attention_mask.sum(-1 ) ): SCREAMING_SNAKE_CASE_ : List[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: SCREAMING_SNAKE_CASE_ : List[Any] = padding_value normed_input_values.append(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Any = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = "max_length" , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) SCREAMING_SNAKE_CASE_ : str = isinstance(__lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) SCREAMING_SNAKE_CASE_ : Any = is_batched_numpy or ( isinstance(__lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCAmelCase , np.ndarray ): SCREAMING_SNAKE_CASE_ : Tuple = np.asarray(__lowerCAmelCase , dtype=np.floataa ) elif isinstance(__lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ : Optional[Any] = [np.asarray([raw_speech] ).T] SCREAMING_SNAKE_CASE_ : List[str] = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding SCREAMING_SNAKE_CASE_ : List[Any] = self.pad( __lowerCAmelCase , padding=__lowerCAmelCase , max_length=max_length if max_length else self.n_samples , truncation=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: SCREAMING_SNAKE_CASE_ : Dict = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) SCREAMING_SNAKE_CASE_ : Dict = np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format SCREAMING_SNAKE_CASE_ : Tuple = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) SCREAMING_SNAKE_CASE_ : str = [self._np_extract_fbank_features(__lowerCAmelCase ) for waveform in input_features[0]] if isinstance(input_features[0] , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = [np.asarray(__lowerCAmelCase , dtype=np.floataa ) for feature in input_features] else: SCREAMING_SNAKE_CASE_ : List[Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) SCREAMING_SNAKE_CASE_ : Optional[int] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: SCREAMING_SNAKE_CASE_ : str = padded_inputs.convert_to_tensors(__lowerCAmelCase ) return padded_inputs def __A ( self ): SCREAMING_SNAKE_CASE_ : Dict = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
715
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__: Optional[Any] = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__: str = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__: Any = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys lowerCAmelCase__: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
311
0
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowerCamelCase_( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , lowerCamelCase__ = 1_0_1 ): _lowerCamelCase = length def __len__( self ): return self.length def __getitem__( self , lowerCamelCase__ ): return i class lowerCamelCase_: '''simple docstring''' def __call__( self , lowerCamelCase__ ): return {"input_ids": torch.tensor(_lowerCAmelCase ), "labels": torch.tensor(_lowerCAmelCase )} class lowerCamelCase_( nn.Module ): '''simple docstring''' def __init__( self ): super().__init__() # Add some (unused) params otherwise DDP will complain. _lowerCamelCase = nn.Linear(1_2_0 , 8_0 ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowerCamelCase_( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch_neuroncore def snake_case__ ( self ): _lowerCamelCase = F"""--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split() _lowerCamelCase = self.get_auto_remove_tmp_dir() _lowerCamelCase = F"""--output_dir {output_dir}""".split() _lowerCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowerCamelCase_( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch_multi_gpu def snake_case__ ( self ): _lowerCamelCase = F"""--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split() _lowerCamelCase = self.get_auto_remove_tmp_dir() _lowerCamelCase = F"""--output_dir {output_dir}""".split() _lowerCamelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __SCREAMING_SNAKE_CASE : int = HfArgumentParser((TrainingArguments,)) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: __SCREAMING_SNAKE_CASE : str = DummyDataset(dataset_length) def lowerCAmelCase_( lowercase_ : EvalPrediction ) -> Dict: _lowerCamelCase = list(range(len(__UpperCAmelCase ) ) ) _lowerCamelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} __SCREAMING_SNAKE_CASE : Tuple = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __SCREAMING_SNAKE_CASE : List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __SCREAMING_SNAKE_CASE : Dict = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __SCREAMING_SNAKE_CASE : List[str] = 2 __SCREAMING_SNAKE_CASE : Tuple = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __SCREAMING_SNAKE_CASE : int = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __SCREAMING_SNAKE_CASE : Union[str, Any] = None
661
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) _a : List[Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) return model def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _a : List[Any] = self.dummy_uncond_unet _a : List[str] = ScoreSdeVeScheduler() _a : Any = ScoreSdeVePipeline(unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) sde_ve.to(lowerCamelCase_ ) sde_ve.set_progress_bar_config(disable=lowerCamelCase_ ) _a : Tuple = torch.manual_seed(0 ) _a : Tuple = sde_ve(num_inference_steps=2 ,output_type='numpy' ,generator=lowerCamelCase_ ).images _a : str = torch.manual_seed(0 ) _a : int = sde_ve(num_inference_steps=2 ,output_type='numpy' ,generator=lowerCamelCase_ ,return_dict=lowerCamelCase_ )[ 0 ] _a : Dict = image[0, -3:, -3:, -1] _a : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _a : Any = """google/ncsnpp-church-256""" _a : Union[str, Any] = UNetaDModel.from_pretrained(lowerCamelCase_ ) _a : Union[str, Any] = ScoreSdeVeScheduler.from_pretrained(lowerCamelCase_ ) _a : Union[str, Any] = ScoreSdeVePipeline(unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) sde_ve.to(lowerCamelCase_ ) sde_ve.set_progress_bar_config(disable=lowerCamelCase_ ) _a : Union[str, Any] = torch.manual_seed(0 ) _a : List[Any] = sde_ve(num_inference_steps=10 ,output_type='numpy' ,generator=lowerCamelCase_ ).images _a : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _a : Union[str, Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
713
'''simple docstring''' def UpperCAmelCase_ (__a : int ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 _a : Optional[Any] = 1 _a : str = 1 while repunit: _a : Union[str, Any] = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_ (__a : int = 1_0_0_0_0_0_0 ): """simple docstring""" _a : int = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__a ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
319
0
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
315
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : jnp.ndarray _UpperCAmelCase : jnp.ndarray class __SCREAMING_SNAKE_CASE ( nn.Module ): _UpperCAmelCase : int _UpperCAmelCase : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) _UpperCAmelCase : jnp.dtype = jnp.floataa def __lowerCamelCase ( self : str ) ->Any: lowerCamelCase__ : List[str] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Any = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase__ : Dict = self.block_out_channels[i] lowerCamelCase__ : Union[str, Any] = self.block_out_channels[i + 1] lowerCamelCase__ : Dict = nn.Conv( A , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A ) lowerCamelCase__ : Union[str, Any] = nn.Conv( A , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(A ) lowerCamelCase__ : int = blocks lowerCamelCase__ : List[str] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Any , A : Dict ) ->int: lowerCamelCase__ : Tuple = self.conv_in(A ) lowerCamelCase__ : Dict = nn.silu(A ) for block in self.blocks: lowerCamelCase__ : Optional[int] = block(A ) lowerCamelCase__ : Optional[int] = nn.silu(A ) lowerCamelCase__ : Union[str, Any] = self.conv_out(A ) return embedding @flax_register_to_config class __SCREAMING_SNAKE_CASE ( nn.Module ,lowerCAmelCase_ ,lowerCAmelCase_ ): _UpperCAmelCase : int = 3_2 _UpperCAmelCase : int = 4 _UpperCAmelCase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCAmelCase : Union[bool, Tuple[bool]] = False _UpperCAmelCase : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _UpperCAmelCase : int = 2 _UpperCAmelCase : Union[int, Tuple[int]] = 8 _UpperCAmelCase : Optional[Union[int, Tuple[int]]] = None _UpperCAmelCase : int = 1_2_8_0 _UpperCAmelCase : float = 0.0 _UpperCAmelCase : bool = False _UpperCAmelCase : jnp.dtype = jnp.floataa _UpperCAmelCase : bool = True _UpperCAmelCase : int = 0 _UpperCAmelCase : str = "rgb" _UpperCAmelCase : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def __lowerCamelCase ( self : int , A : jax.random.KeyArray ) ->FrozenDict: # init input tensors lowerCamelCase__ : Optional[Any] = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase__ : List[Any] = jnp.zeros(A , dtype=jnp.floataa ) lowerCamelCase__ : int = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase__ : List[str] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase__ : int = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase__ : Union[str, Any] = jnp.zeros(A , dtype=jnp.floataa ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] = jax.random.split(A ) lowerCamelCase__ : Any = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(A , A , A , A , A )["params"] def __lowerCamelCase ( self : List[Any] ) ->Dict: lowerCamelCase__ : int = self.block_out_channels lowerCamelCase__ : Tuple = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase__ : Optional[Any] = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase__ : List[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase__ : Optional[Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase__ : int = FlaxTimestepEmbedding(A , dtype=self.dtype ) lowerCamelCase__ : int = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCamelCase__ : Optional[int] = self.only_cross_attention if isinstance(A , A ): lowerCamelCase__ : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(A , A ): lowerCamelCase__ : Tuple = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : Optional[int] = block_out_channels[0] lowerCamelCase__ : Tuple = nn.Conv( A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase__ : Any = output_channel lowerCamelCase__ : int = block_out_channels[i] lowerCamelCase__ : Dict = i == len(A ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase__ : Tuple = FlaxCrossAttnDownBlockaD( in_channels=A , out_channels=A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCamelCase__ : Optional[Any] = FlaxDownBlockaD( in_channels=A , out_channels=A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(A ) for _ in range(self.layers_per_block ): lowerCamelCase__ : str = nn.Conv( A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A ) if not is_final_block: lowerCamelCase__ : int = nn.Conv( A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(A ) lowerCamelCase__ : Union[str, Any] = down_blocks lowerCamelCase__ : Tuple = controlnet_down_blocks # mid lowerCamelCase__ : Dict = block_out_channels[-1] lowerCamelCase__ : Any = FlaxUNetMidBlockaDCrossAttn( in_channels=A , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCamelCase__ : int = nn.Conv( A , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Any , A : Dict , A : Tuple , A : List[str] , A : int , A : float = 1.0 , A : bool = True , A : bool = False , ) ->Union[FlaxControlNetOutput, Tuple]: lowerCamelCase__ : List[Any] = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase__ : Union[str, Any] = jnp.flip(A , axis=1 ) # 1. time if not isinstance(A , jnp.ndarray ): lowerCamelCase__ : Tuple = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(A , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase__ : str = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase__ : Optional[Any] = jnp.expand_dims(A , 0 ) lowerCamelCase__ : Dict = self.time_proj(A ) lowerCamelCase__ : List[Any] = self.time_embedding(A ) # 2. pre-process lowerCamelCase__ : int = jnp.transpose(A , (0, 2, 3, 1) ) lowerCamelCase__ : List[Any] = self.conv_in(A ) lowerCamelCase__ : Dict = jnp.transpose(A , (0, 2, 3, 1) ) lowerCamelCase__ : List[str] = self.controlnet_cond_embedding(A ) sample += controlnet_cond # 3. down lowerCamelCase__ : List[Any] = (sample,) for down_block in self.down_blocks: if isinstance(A , A ): lowerCamelCase__ , lowerCamelCase__ : List[str] = down_block(A , A , A , deterministic=not train ) else: lowerCamelCase__ , lowerCamelCase__ : str = down_block(A , A , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase__ : Any = self.mid_block(A , A , A , deterministic=not train ) # 5. contronet blocks lowerCamelCase__ : Optional[Any] = () for down_block_res_sample, controlnet_block in zip(A , self.controlnet_down_blocks ): lowerCamelCase__ : str = controlnet_block(A ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase__ : str = controlnet_down_block_res_samples lowerCamelCase__ : Optional[int] = self.controlnet_mid_block(A ) # 6. scaling lowerCamelCase__ : Optional[Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=A , mid_block_res_sample=A )
315
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _UpperCamelCase : Dict ={ "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str =["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : str =[ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _UpperCamelCase : List[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase : Tuple ={ "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[Any] =[ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys _UpperCamelCase : int =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
575
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = """ylacombe/bark-small""" lowercase__ : Dict = tempfile.mkdtemp() lowercase__ : Any = """en_speaker_1""" lowercase__ : Optional[int] = """This is a test string""" lowercase__ : Tuple = """speaker_embeddings_path.json""" lowercase__ : str = """speaker_embeddings""" def lowercase__ ( self , **SCREAMING_SNAKE_CASE_): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.get_tokenizer() lowercase__ : int = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_) processor.save_pretrained(self.tmpdirname) lowercase__ : List[str] = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""") lowercase__ : Any = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ : Optional[int] = 35 lowercase__ : Tuple = 2 lowercase__ : Dict = 8 lowercase__ : Optional[int] = { """semantic_prompt""": np.ones(SCREAMING_SNAKE_CASE_), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len)), """fine_prompt""": np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset lowercase__ : Tuple = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([])).tolist()) # test loading voice preset from npz file lowercase__ : List[Any] = os.path.join(self.tmpdirname , """file.npz""") np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : str = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([])).tolist()) # test loading voice preset from the hub lowercase__ : int = processor(text=self.input_string , voice_preset=self.voice_preset) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.get_tokenizer() lowercase__ : str = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = processor(text=self.input_string) lowercase__ : List[str] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
12
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } lowerCamelCase__ = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } lowerCamelCase__ = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } lowerCamelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _UpperCamelCase ( __snake_case): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRContextEncoderTokenizer class _UpperCamelCase ( __snake_case): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = DPRQuestionEncoderTokenizer lowerCamelCase__ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) lowerCamelCase__ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) lowerCamelCase__ = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__snake_case) class _UpperCamelCase : def __call__(self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( lowerCamelCase__ , lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) A__ = titles if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) else [titles] A__ = texts if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) else [texts] A__ = len(lowerCamelCase__ ) A__ = questions if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) else [questions] * n_passages assert len(lowerCamelCase__ ) == len( lowerCamelCase__ ), F"""There should be as many titles than texts but got {len(lowerCamelCase__ )} titles and {len(lowerCamelCase__ )} texts.""" A__ = super().__call__(lowerCamelCase__ , lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ )["""input_ids"""] A__ = super().__call__(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ )["""input_ids"""] A__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase__ , lowerCamelCase__ ) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A__ = attention_mask return self.pad(lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1_6 , lowerCamelCase__ = 6_4 , lowerCamelCase__ = 4 , ): """simple docstring""" A__ = reader_input["""input_ids"""] A__ ,A__ ,A__ = reader_output[:3] A__ = len(lowerCamelCase__ ) A__ = sorted(range(lowerCamelCase__ ) , reverse=lowerCamelCase__ , key=relevance_logits.__getitem__ ) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id ) else: A__ = len(lowerCamelCase__ ) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase__ , top_spans=lowerCamelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase__ , start_index=lowerCamelCase__ , end_index=lowerCamelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def A (self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" A__ = [] for start_index, start_score in enumerate(lowerCamelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A__ = sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[1] , reverse=lowerCamelCase__ ) A__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" A__ = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case) class _UpperCamelCase ( __snake_case , __snake_case): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = READER_PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = READER_PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = ["input_ids", "attention_mask"] __lowerCamelCase = DPRReaderTokenizer
574
0
'''simple docstring''' from maths.prime_factors import prime_factors def UpperCamelCase( UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = F"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCAmelCase_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(UpperCAmelCase_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
704
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : int=0 ) -> List[str]: # Format the message. if name is None: _lowerCAmelCase : Optional[Any] = None else: _lowerCAmelCase : int = """.""" * max(0 ,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _lowerCAmelCase : int = fmt.format(_lowerCamelCase ) # Print and recurse (if needed). if isinstance(_lowerCamelCase ,_lowerCamelCase ): if msg is not None: print(_lowerCamelCase ) for k in val.keys(): recursive_print(_lowerCamelCase ,val[k] ,spaces + 2 ) elif isinstance(_lowerCamelCase ,torch.Tensor ): print(_lowerCamelCase ,""":""" ,val.size() ) else: print(_lowerCamelCase ,""":""" ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ,_lowerCamelCase : Tuple ,_lowerCamelCase : Optional[Any] ) -> int: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _lowerCAmelCase : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _lowerCAmelCase : int = (num_heads, hidden_size, num_splits) + input_shape[1:] _lowerCAmelCase : Tuple = param.view(*_lowerCamelCase ) _lowerCAmelCase : str = param.transpose(0 ,2 ) _lowerCAmelCase : str = param.transpose(1 ,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _lowerCAmelCase : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:] _lowerCAmelCase : str = param.view(*_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = param.transpose(0 ,1 ).contiguous() _lowerCAmelCase : Optional[Any] = param.view(*_lowerCamelCase ) return param def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ) -> Any: # The converted output model. _lowerCAmelCase : Optional[int] = {} # old versions did not store training args _lowerCAmelCase : Dict = input_state_dict.get("""args""" ,_lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _lowerCAmelCase : Optional[Any] = ds_args.padded_vocab_size _lowerCAmelCase : Tuple = ds_args.max_position_embeddings _lowerCAmelCase : Optional[Any] = ds_args.hidden_size _lowerCAmelCase : Union[str, Any] = ds_args.num_layers _lowerCAmelCase : Dict = ds_args.num_attention_heads _lowerCAmelCase : Optional[Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _lowerCAmelCase : List[str] = config.n_head # The hidden_size per head. _lowerCAmelCase : Any = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _lowerCAmelCase : Tuple = input_state_dict["""checkpoint_version"""] else: _lowerCAmelCase : Union[str, Any] = 0.0 # The model. _lowerCAmelCase : Any = input_state_dict["""model"""] # The language model. _lowerCAmelCase : Any = model["""language_model"""] # The embeddings. _lowerCAmelCase : Union[str, Any] = lm["""embedding"""] # The word embeddings. _lowerCAmelCase : int = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _lowerCAmelCase : Dict = word_embeddings[: config.vocab_size, :] _lowerCAmelCase : Optional[int] = word_embeddings # The position embeddings. _lowerCAmelCase : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _lowerCAmelCase : Union[str, Any] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. _lowerCAmelCase : Optional[Any] = pos_embeddings # The transformer. _lowerCAmelCase : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _lowerCAmelCase : Any = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _lowerCAmelCase : Optional[Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _lowerCAmelCase : Tuple = layer_re.match(_lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. _lowerCAmelCase : Optional[int] = int(m.group(1 ) ) # The name of the operation. _lowerCAmelCase : Tuple = m.group(2 ) # Is it a weight or a bias? _lowerCAmelCase : List[Any] = m.group(3 ) # The name of the layer. _lowerCAmelCase : str = f"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _lowerCAmelCase : Optional[Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _lowerCAmelCase : List[Any] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _lowerCAmelCase : Optional[int] = torch.tril(torch.ones((n_positions, n_positions) ,dtype=torch.floataa ) ).view( 1 ,1 ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = causal_mask # Insert a "dummy" tensor for masked_bias. _lowerCAmelCase : Dict = torch.tensor(-1e4 ,dtype=torch.floataa ) _lowerCAmelCase : Dict = masked_bias _lowerCAmelCase : List[Any] = fix_query_key_value_ordering(_lowerCamelCase ,_lowerCamelCase ,3 ,_lowerCamelCase ,_lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _lowerCAmelCase : int = out_val.transpose(0 ,1 ).contiguous() # Store. _lowerCAmelCase : List[str] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _lowerCAmelCase : Union[str, Any] = fix_query_key_value_ordering(_lowerCamelCase ,_lowerCamelCase ,3 ,_lowerCamelCase ,_lowerCamelCase ) # Store. No change of shape. _lowerCAmelCase : str = out_val # Transpose the weights. elif weight_or_bias == "weight": _lowerCAmelCase : Any = megatron_to_transformers[op_name] _lowerCAmelCase : Optional[Any] = val.transpose(0 ,1 ) # Copy the bias. elif weight_or_bias == "bias": _lowerCAmelCase : str = megatron_to_transformers[op_name] _lowerCAmelCase : Union[str, Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _lowerCAmelCase : int = transformer["""final_layernorm.weight"""] _lowerCAmelCase : Union[str, Any] = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _lowerCAmelCase : int = word_embeddings # It should be done! return output_state_dict def SCREAMING_SNAKE_CASE ( ) -> List[str]: # Create the argument parser. _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" ,action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" ,type=_lowerCamelCase ,help="""Path to the checkpoint file (.zip archive or direct .pt file)""" ,) parser.add_argument( """--config_file""" ,default="""""" ,type=_lowerCamelCase ,help="""An optional config json file describing the pre-trained model.""" ,) _lowerCAmelCase : List[Any] = parser.parse_args() # Extract the basename. _lowerCAmelCase : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint ,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _lowerCAmelCase : Any = torch.load(_lowerCamelCase ,map_location="""cpu""" ) else: _lowerCAmelCase : Optional[int] = torch.load(args.path_to_checkpoint ,map_location="""cpu""" ) _lowerCAmelCase : Optional[int] = input_state_dict.get("""args""" ,_lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _lowerCAmelCase : Optional[Any] = """gelu_fast""" elif ds_args.openai_gelu: _lowerCAmelCase : Any = """gelu_new""" else: _lowerCAmelCase : str = """gelu""" else: # in the very early days this used to be "gelu_new" _lowerCAmelCase : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _lowerCAmelCase : Tuple = GPTaConfig( vocab_size=50257 ,n_positions=1024 ,n_embd=1024 ,n_layer=24 ,n_head=16 ,n_inner=4096 ,activation_function=_lowerCamelCase ,resid_pdrop=0.1 ,embd_pdrop=0.1 ,attn_pdrop=0.1 ,layer_norm_epsilon=1e-5 ,initializer_range=0.02 ,summary_type="""cls_index""" ,summary_use_proj=_lowerCamelCase ,summary_activation=_lowerCamelCase ,summary_proj_to_labels=_lowerCamelCase ,summary_first_dropout=0.1 ,scale_attn_weights=_lowerCamelCase ,use_cache=_lowerCamelCase ,bos_token_id=50256 ,eos_token_id=50256 ,) else: _lowerCAmelCase : Optional[Any] = GPTaConfig.from_json_file(args.config_file ) _lowerCAmelCase : Tuple = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _lowerCAmelCase : Tuple = convert_megatron_checkpoint(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_lowerCamelCase ,_lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _lowerCAmelCase : Optional[Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _lowerCAmelCase : Dict = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _lowerCAmelCase : List[str] = ds_args.tokenizer_name_or_path else: raise ValueError(f"Unrecognized tokenizer_type {tokenizer_type}" ) else: _lowerCAmelCase : Optional[Any] = """gpt2""" _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = type(_lowerCamelCase ).__name__ _lowerCAmelCase : Dict = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(_lowerCamelCase ) # Save tokenizer based on args print(f"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_lowerCamelCase ) # Store the state_dict to file. _lowerCAmelCase : List[str] = os.path.join(_lowerCamelCase ,"""pytorch_model.bin""" ) print(f"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_lowerCamelCase ,_lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
213
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_: Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_: int = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_: Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(UpperCamelCase_ ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = self.dummy_uncond_unet UpperCAmelCase_: str = DDIMScheduler() UpperCAmelCase_: Optional[Any] = self.dummy_vq_model UpperCAmelCase_: Union[str, Any] = LDMPipeline(unet=UpperCamelCase_ , vqvae=UpperCamelCase_ , scheduler=UpperCamelCase_ ) ldm.to(UpperCamelCase_ ) ldm.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase_: Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_: Dict = ldm(generator=UpperCamelCase_ , num_inference_steps=2 , output_type="numpy" ).images UpperCAmelCase_: List[str] = torch.manual_seed(0 ) UpperCAmelCase_: Any = ldm(generator=UpperCamelCase_ , num_inference_steps=2 , output_type="numpy" , return_dict=UpperCamelCase_ )[0] UpperCAmelCase_: int = image[0, -3:, -3:, -1] UpperCAmelCase_: Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_: Optional[int] = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172] ) UpperCAmelCase_: str = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class UpperCAmelCase__ ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Dict = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256" ) ldm.to(UpperCamelCase_ ) ldm.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase_: List[Any] = torch.manual_seed(0 ) UpperCAmelCase_: Dict = ldm(generator=UpperCamelCase_ , num_inference_steps=5 , output_type="numpy" ).images UpperCAmelCase_: Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_: List[str] = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447] ) UpperCAmelCase_: List[Any] = 1E-2 if torch_device != "mps" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
710
_lowerCAmelCase = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) _lowerCAmelCase = frozenset(["""prompt""", """negative_prompt"""]) _lowerCAmelCase = frozenset([]) _lowerCAmelCase = frozenset(["""image"""]) _lowerCAmelCase = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) _lowerCAmelCase = frozenset(["""image"""]) _lowerCAmelCase = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) _lowerCAmelCase = frozenset(["""prompt""", """image""", """negative_prompt"""]) _lowerCAmelCase = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) _lowerCAmelCase = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) _lowerCAmelCase = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) _lowerCAmelCase = frozenset(["""image""", """mask_image"""]) _lowerCAmelCase = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) _lowerCAmelCase = frozenset(["""example_image""", """image""", """mask_image"""]) _lowerCAmelCase = frozenset(["""class_labels"""]) _lowerCAmelCase = frozenset(["""class_labels"""]) _lowerCAmelCase = frozenset(["""batch_size"""]) _lowerCAmelCase = frozenset([]) _lowerCAmelCase = frozenset(["""batch_size"""]) _lowerCAmelCase = frozenset([]) _lowerCAmelCase = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) _lowerCAmelCase = frozenset(["""prompt""", """negative_prompt"""]) _lowerCAmelCase = frozenset(["""input_tokens"""]) _lowerCAmelCase = frozenset(["""input_tokens"""])
306
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Tuple =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] ={ '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class A_ ( __a ): _A :Optional[Any] = '''funnel''' _A :Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self : List[str] , snake_case__ : Dict=3_05_22 , snake_case__ : Dict=[4, 4, 4] , snake_case__ : Dict=None , snake_case__ : List[Any]=2 , snake_case__ : Any=7_68 , snake_case__ : List[Any]=12 , snake_case__ : List[str]=64 , snake_case__ : Union[str, Any]=30_72 , snake_case__ : Dict="gelu_new" , snake_case__ : str=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : List[str]=0.0 , snake_case__ : int=0.1 , snake_case__ : Any=None , snake_case__ : Union[str, Any]=1E-9 , snake_case__ : List[str]="mean" , snake_case__ : Tuple="relative_shift" , snake_case__ : Any=True , snake_case__ : Any=True , snake_case__ : Optional[Any]=True , **snake_case__ : Any , ): lowercase = vocab_size lowercase = block_sizes lowercase = [1] * len(snake_case__ ) if block_repeats is None else block_repeats assert len(snake_case__ ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." lowercase = num_decoder_layers lowercase = d_model lowercase = n_head lowercase = d_head lowercase = d_inner lowercase = hidden_act lowercase = hidden_dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = initializer_range lowercase = initializer_std lowercase = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" lowercase = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" lowercase = attention_type lowercase = separate_cls lowercase = truncate_seq lowercase = pool_q_only super().__init__(**snake_case__ ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return sum(self.block_sizes ) @num_hidden_layers.setter def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case__ : Any ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return len(self.block_sizes ) @num_blocks.setter def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : str ): raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
428
import copy import random from transformers import CLIPTokenizer class A_ ( __a ): def __init__( self : Tuple , *snake_case__ : Any , **snake_case__ : Tuple ): super().__init__(*snake_case__ , **snake_case__ ) lowercase = {} def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : Any , *snake_case__ : Tuple , **snake_case__ : str ): lowercase = super().add_tokens(snake_case__ , *snake_case__ , **snake_case__ ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" """ `placeholder_token` that is not already in the tokenizer.""" ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case__ : Any , *snake_case__ : int , snake_case__ : List[str]=1 , **snake_case__ : str ): lowercase = [] if num_vec_per_token == 1: self.try_adding_tokens(snake_case__ , *snake_case__ , **snake_case__ ) output.append(snake_case__ ) else: lowercase = [] for i in range(snake_case__ ): lowercase = placeholder_token + F"""_{i}""" self.try_adding_tokens(snake_case__ , *snake_case__ , **snake_case__ ) output.append(snake_case__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) lowercase = output def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : int , snake_case__ : int=False , snake_case__ : str=1.0 ): if isinstance(snake_case__ , snake_case__ ): lowercase = [] for i in range(len(snake_case__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=snake_case__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowercase = self.token_map[placeholder_token] lowercase = tokens[: 1 + int(len(snake_case__ ) * prop_tokens_to_load )] if vector_shuffle: lowercase = copy.copy(snake_case__ ) random.shuffle(snake_case__ ) lowercase = text.replace(snake_case__ , """ """.join(snake_case__ ) ) return text def __call__( self : Optional[Any] , snake_case__ : str , *snake_case__ : Any , snake_case__ : Dict=False , snake_case__ : Any=1.0 , **snake_case__ : Any ): return super().__call__( self.replace_placeholder_tokens_in_text( snake_case__ , vector_shuffle=snake_case__ , prop_tokens_to_load=snake_case__ ) , *snake_case__ , **snake_case__ , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case__ : List[Any] , *snake_case__ : Tuple , snake_case__ : Dict=False , snake_case__ : Optional[Any]=1.0 , **snake_case__ : Tuple ): return super().encode( self.replace_placeholder_tokens_in_text( snake_case__ , vector_shuffle=snake_case__ , prop_tokens_to_load=snake_case__ ) , *snake_case__ , **snake_case__ , )
428
1
"""simple docstring""" import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any]=None ) -> Any: if subparsers is not None: _lowerCAmelCase : Optional[Any] = subparsers.add_parser("""test""" ) else: _lowerCAmelCase : List[Any] = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" ,default=a_ ,help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """ """such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """ """with \'huggingface\'.""" ) ,) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Optional[Any]: _lowerCAmelCase : List[str] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: _lowerCAmelCase : List[Any] = script_name else: _lowerCAmelCase : Dict = f"--config_file={args.config_file} {script_name}" _lowerCAmelCase : Optional[Any] = ['''accelerate-launch'''] + test_args.split() _lowerCAmelCase : List[Any] = execute_subprocess_async(a_ ,env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def SCREAMING_SNAKE_CASE ( ) -> Dict: _lowerCAmelCase : Optional[Any] = test_command_parser() _lowerCAmelCase : Dict = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
718
"""simple docstring""" import argparse import json import subprocess def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> List[Any]: _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = ( f"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"" """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) _lowerCAmelCase : List[str] = subprocess.run(_lowerCamelCase ,shell=_lowerCamelCase ,stdout=subprocess.PIPE ) _lowerCAmelCase : int = output.stdout.decode("""utf-8""" ) _lowerCAmelCase : Tuple = json.loads(_lowerCamelCase ) _lowerCAmelCase : int = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_lowerCamelCase ) # save the result so we can report them on Slack with open("""offline_runners.txt""" ,"""w""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: _lowerCAmelCase : int = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f"The following runners are offline:\n{failed}" ) if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[int]: return values.split(""",""" ) _a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) _a : Tuple = parser.parse_args() get_runner_status(args.target_runners, args.token)
663
0
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int] ): SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if numbers[j] < numbers[i]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": _lowerCamelCase = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
6
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCamelCase = logging.getLogger(__name__) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=30522, type=int) _lowerCamelCase = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, 'rb') as fp: _lowerCamelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') _lowerCamelCase = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCamelCase = [0] * args.vocab_size for k, v in counter.items(): _lowerCamelCase = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
6
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class UpperCamelCase__ : '''simple docstring''' __a : int __a : Node | None = None __a : Node | None = None def __magic_name__ ( ) -> Node | None: """simple docstring""" lowercase_ : int = Node(1 ) lowercase_ : Optional[int] = Node(2 ) lowercase_ : Any = Node(3 ) lowercase_ : Tuple = Node(4 ) lowercase_ : Any = Node(5 ) return tree def __magic_name__ ( lowercase ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def __magic_name__ ( lowercase ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def __magic_name__ ( lowercase ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def __magic_name__ ( lowercase ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def __magic_name__ ( lowercase ) -> Sequence[Node | None]: """simple docstring""" lowercase_ : list[Any] = [] if root is None: return output lowercase_ : Optional[Any] = deque([root] ) while process_queue: lowercase_ : Any = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def __magic_name__ ( lowercase , lowercase ) -> Sequence[Node | None]: """simple docstring""" lowercase_ : list[Any] = [] def populate_output(lowercase , lowercase ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowercase , lowercase ) return output def __magic_name__ ( lowercase , lowercase ) -> Sequence[Node | None]: """simple docstring""" lowercase_ : list[Any] = [] def populate_output(lowercase , lowercase ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowercase , lowercase ) return output def __magic_name__ ( lowercase ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase_ : list[Sequence[Node | None]] = [] lowercase_ : List[Any] = 0 lowercase_ : List[str] = height(lowercase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowercase , lowercase ) ) lowercase_ : Dict = 1 else: output.append(get_nodes_from_right_to_left(lowercase , lowercase ) ) lowercase_ : Any = 0 return output def __magic_name__ ( ) -> None: # Main function for testing. """simple docstring""" lowercase_ : Optional[Any] = make_tree() print(f"""In-order Traversal: {inorder(lowercase )}""" ) print(f"""Pre-order Traversal: {preorder(lowercase )}""" ) print(f"""Post-order Traversal: {postorder(lowercase )}""" , """\n""" ) print(f"""Height of Tree: {height(lowercase )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(lowercase ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(lowercase ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(lowercase , level=lowercase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
436
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} UpperCAmelCase_ = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } UpperCAmelCase_ = { """allenai/longformer-base-4096""": 4_096, """allenai/longformer-large-4096""": 4_096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4_096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4_096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __magic_name__ ( ) -> Union[str, Any]: """simple docstring""" lowercase_ : Optional[int] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) lowercase_ : Optional[int] = bs[:] lowercase_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 lowercase_ : int = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def __magic_name__ ( lowercase ) -> Optional[int]: """simple docstring""" lowercase_ : str = set() lowercase_ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ : List[str] = char return pairs class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __a : Union[str, Any] = VOCAB_FILES_NAMES __a : Dict = PRETRAINED_VOCAB_FILES_MAP __a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self, snake_case__, snake_case__, snake_case__="replace", snake_case__="<s>", snake_case__="</s>", snake_case__="</s>", snake_case__="<s>", snake_case__="<unk>", snake_case__="<pad>", snake_case__="<mask>", snake_case__=False, **snake_case__, ) -> Optional[Any]: """simple docstring""" lowercase_ : Dict = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else bos_token lowercase_ : List[Any] = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else eos_token lowercase_ : Dict = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else sep_token lowercase_ : Union[str, Any] = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else cls_token lowercase_ : List[Any] = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else unk_token lowercase_ : List[str] = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Tuple = AddedToken(snake_case__, lstrip=snake_case__, rstrip=snake_case__ ) if isinstance(snake_case__, snake_case__ ) else mask_token super().__init__( errors=snake_case__, bos_token=snake_case__, eos_token=snake_case__, unk_token=snake_case__, sep_token=snake_case__, cls_token=snake_case__, pad_token=snake_case__, mask_token=snake_case__, add_prefix_space=snake_case__, **snake_case__, ) with open(snake_case__, encoding="""utf-8""" ) as vocab_handle: lowercase_ : Optional[Any] = json.load(snake_case__ ) lowercase_ : Optional[int] = {v: k for k, v in self.encoder.items()} lowercase_ : Optional[int] = errors # how to handle errors in decoding lowercase_ : Dict = bytes_to_unicode() lowercase_ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(snake_case__, encoding="""utf-8""" ) as merges_handle: lowercase_ : Optional[int] = merges_handle.read().split("""\n""" )[1:-1] lowercase_ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] lowercase_ : List[Any] = dict(zip(snake_case__, range(len(snake_case__ ) ) ) ) lowercase_ : str = {} lowercase_ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase_ : Tuple = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def snake_case__ ( self ) -> Any: """simple docstring""" return len(self.encoder ) def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" return dict(self.encoder, **self.added_tokens_encoder ) def snake_case__ ( self, snake_case__ ) -> Optional[Any]: """simple docstring""" if token in self.cache: return self.cache[token] lowercase_ : Optional[Any] = tuple(snake_case__ ) lowercase_ : Optional[Any] = get_pairs(snake_case__ ) if not pairs: return token while True: lowercase_ : Optional[Any] = min(snake_case__, key=lambda snake_case__ : self.bpe_ranks.get(snake_case__, float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowercase_ , lowercase_ : int = bigram lowercase_ : Tuple = [] lowercase_ : Dict = 0 while i < len(snake_case__ ): try: lowercase_ : List[Any] = word.index(snake_case__, snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ : str = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ : Optional[int] = tuple(snake_case__ ) lowercase_ : Optional[int] = new_word if len(snake_case__ ) == 1: break else: lowercase_ : List[str] = get_pairs(snake_case__ ) lowercase_ : Union[str, Any] = """ """.join(snake_case__ ) lowercase_ : str = word return word def snake_case__ ( self, snake_case__ ) -> int: """simple docstring""" lowercase_ : Tuple = [] for token in re.findall(self.pat, snake_case__ ): lowercase_ : Any = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case__ ).split(""" """ ) ) return bpe_tokens def snake_case__ ( self, snake_case__ ) -> Optional[int]: """simple docstring""" return self.encoder.get(snake_case__, self.encoder.get(self.unk_token ) ) def snake_case__ ( self, snake_case__ ) -> Any: """simple docstring""" return self.decoder.get(snake_case__ ) def snake_case__ ( self, snake_case__ ) -> Any: """simple docstring""" lowercase_ : str = """""".join(snake_case__ ) lowercase_ : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""", errors=self.errors ) return text def snake_case__ ( self, snake_case__, snake_case__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase_ : Any = os.path.join( snake_case__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase_ : Union[str, Any] = os.path.join( snake_case__, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(snake_case__, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=snake_case__, ensure_ascii=snake_case__ ) + """\n""" ) lowercase_ : Optional[int] = 0 with open(snake_case__, """w""", encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) lowercase_ : Optional[Any] = token_index writer.write(""" """.join(snake_case__ ) + """\n""" ) index += 1 return vocab_file, merge_file def snake_case__ ( self, snake_case__, snake_case__ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ : List[Any] = [self.cls_token_id] lowercase_ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__ ( self, snake_case__, snake_case__ = None, snake_case__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__, token_ids_a=snake_case__, already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def snake_case__ ( self, snake_case__, snake_case__ = None ) -> List[int]: """simple docstring""" lowercase_ : List[str] = [self.sep_token_id] lowercase_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self, snake_case__, snake_case__=False, **snake_case__ ) -> Union[str, Any]: """simple docstring""" lowercase_ : int = kwargs.pop("""add_prefix_space""", self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case__ ) > 0 and not text[0].isspace()): lowercase_ : str = """ """ + text return (text, kwargs)
436
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType A_ = logging.get_logger(__name__) A_ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off A_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] A_ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'whisper' SCREAMING_SNAKE_CASE_ = ['past_key_values'] SCREAMING_SNAKE_CASE_ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE_=51865 , SCREAMING_SNAKE_CASE_=80 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=1536 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=50257 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1500 , SCREAMING_SNAKE_CASE_=448 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=50256 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=[220, 50256] , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.05 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=7 , **SCREAMING_SNAKE_CASE_ , ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = vocab_size lowerCamelCase_ = num_mel_bins lowerCamelCase_ = d_model lowerCamelCase_ = encoder_layers lowerCamelCase_ = encoder_attention_heads lowerCamelCase_ = decoder_layers lowerCamelCase_ = decoder_attention_heads lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = encoder_ffn_dim lowerCamelCase_ = dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = activation_function lowerCamelCase_ = init_std lowerCamelCase_ = encoder_layerdrop lowerCamelCase_ = decoder_layerdrop lowerCamelCase_ = use_cache lowerCamelCase_ = encoder_layers lowerCamelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase_ = max_source_positions lowerCamelCase_ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCamelCase_ = classifier_proj_size lowerCamelCase_ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ = apply_spec_augment lowerCamelCase_ = mask_time_prob lowerCamelCase_ = mask_time_length lowerCamelCase_ = mask_time_min_masks lowerCamelCase_ = mask_feature_prob lowerCamelCase_ = mask_feature_length lowerCamelCase_ = mask_feature_min_masks lowerCamelCase_ = median_filter_width super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , suppress_tokens=SCREAMING_SNAKE_CASE_ , begin_suppress_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @property def UpperCamelCase( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowerCamelCase_ = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: lowerCamelCase_ = {0: 'batch'} else: lowerCamelCase_ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='inputs' ) return common_inputs def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 22050 , SCREAMING_SNAKE_CASE_ = 5.0 , SCREAMING_SNAKE_CASE_ = 220 , ) -> Mapping[str, Any]: '''simple docstring''' lowerCamelCase_ = OrderedDict() lowerCamelCase_ = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , time_duration=SCREAMING_SNAKE_CASE_ , frequency=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase_ = encoder_inputs['input_features'].shape[2] lowerCamelCase_ = encoder_sequence_length // 2 if self.use_past else seq_length lowerCamelCase_ = super().generate_dummy_inputs( preprocessor.tokenizer , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = encoder_inputs.pop('input_features' ) lowerCamelCase_ = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: lowerCamelCase_ = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def UpperCamelCase( self ) -> float: '''simple docstring''' return 1E-3
42
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} A_ = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } A_ = { "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = ( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('¡' ) ,ord('¬' ) + 1 ) ) + list(range(ord('®' ) ,ord('ÿ' ) + 1 ) ) ) lowerCamelCase_ = bs[:] lowerCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 lowerCamelCase_ = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase ,__UpperCamelCase ) ) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: lowerCamelCase_ = set() lowerCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase_ = char return pairs class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="replace" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as vocab_handle: lowerCamelCase_ = json.load(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = {v: k for k, v in self.encoder.items()} lowerCamelCase_ = errors # how to handle errors in decoding lowerCamelCase_ = bytes_to_unicode() lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='utf-8' ) as merges_handle: lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1] lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowerCamelCase_ = {} lowerCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: lowerCamelCase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase_ ,lowerCamelCase_ = bigram lowerCamelCase_ = [] lowerCamelCase_ = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: lowerCamelCase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase_ = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase_ = tuple(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: lowerCamelCase_ = get_pairs(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = ' '.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = word return word def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(' ' ) ) return bpe_tokens def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = ''.join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '\n' ) lowerCamelCase_ = 0 with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase_ = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE_ ) + '\n' ) index += 1 return vocab_file, merge_file def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): lowerCamelCase_ = ' ' + text return (text, kwargs)
42
1
def _lowerCamelCase ( snake_case , snake_case ): _lowerCAmelCase = len(snake_case ) _lowerCAmelCase = len(snake_case ) _lowerCAmelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _lowerCAmelCase = True for i in range(snake_case ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _lowerCAmelCase = True if a[i].islower(): _lowerCAmelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
225
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _lowercase: Optional[int] = logging.get_logger(__name__) def _lowerCamelCase ( snake_case , snake_case , snake_case ): _lowerCAmelCase = os.path.abspath(snake_case ) logger.info(F'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model _lowerCAmelCase = tf.train.list_variables(snake_case ) _lowerCAmelCase = [] _lowerCAmelCase = [] _lowerCAmelCase = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _lowerCAmelCase = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(F'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' _lowerCAmelCase = name[1:] # figure out how many levels deep the name is _lowerCAmelCase = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(snake_case ) # read data _lowerCAmelCase = tf.train.load_variable(snake_case , snake_case ) names.append('/'.join(snake_case ) ) arrays.append(snake_case ) logger.info(F'Read a total of {len(snake_case ):,} layers' ) # Sanity check if len(set(snake_case ) ) != 1: raise ValueError(F'Found layer names with different depths (layer depth {list(set(snake_case ) )})' ) _lowerCAmelCase = list(set(snake_case ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(snake_case , snake_case ): _lowerCAmelCase = full_name.split('/' ) _lowerCAmelCase = model _lowerCAmelCase = [] for i, m_name in enumerate(snake_case ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): _lowerCAmelCase = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) _lowerCAmelCase = getattr(snake_case , 'embeddings' ) _lowerCAmelCase = getattr(snake_case , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) _lowerCAmelCase = getattr(snake_case , 'encoder' ) _lowerCAmelCase = getattr(snake_case , 'layer' ) _lowerCAmelCase = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) _lowerCAmelCase = getattr(snake_case , 'pooler' ) _lowerCAmelCase = getattr(snake_case , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) _lowerCAmelCase = getattr(snake_case , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) _lowerCAmelCase = getattr(snake_case , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) _lowerCAmelCase = getattr(snake_case , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) _lowerCAmelCase = getattr(snake_case , 'token_type_embeddings' ) else: raise ValueError(F'Unknown embedding layer with name {full_name}' ) trace.append('weight' ) _lowerCAmelCase = getattr(snake_case , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) _lowerCAmelCase = getattr(snake_case , 'attention' ) _lowerCAmelCase = getattr(snake_case , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) _lowerCAmelCase = getattr(snake_case , 'attention' ) _lowerCAmelCase = getattr(snake_case , 'output' ) _lowerCAmelCase = getattr(snake_case , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) _lowerCAmelCase = getattr(snake_case , 'attention' ) _lowerCAmelCase = getattr(snake_case , 'output' ) _lowerCAmelCase = getattr(snake_case , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) _lowerCAmelCase = getattr(snake_case , 'output' ) _lowerCAmelCase = getattr(snake_case , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) _lowerCAmelCase = getattr(snake_case , 'output' ) _lowerCAmelCase = getattr(snake_case , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) _lowerCAmelCase = getattr(snake_case , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) _lowerCAmelCase = getattr(snake_case , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) _lowerCAmelCase = getattr(snake_case , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) _lowerCAmelCase = getattr(snake_case , 'intermediate' ) _lowerCAmelCase = getattr(snake_case , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) _lowerCAmelCase = getattr(snake_case , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) _lowerCAmelCase = getattr(snake_case , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) _lowerCAmelCase = getattr(snake_case , 'weight' ) else: logger.warning(F'Ignored {m_name}' ) # for certain layers reshape is necessary _lowerCAmelCase = '.'.join(snake_case ) if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , snake_case ) or re.match( R'(\S+)\.attention\.output\.dense\.weight' , snake_case ): _lowerCAmelCase = array.reshape(pointer.data.shape ) if "kernel" in full_name: _lowerCAmelCase = array.transpose() if pointer.shape == array.shape: _lowerCAmelCase = torch.from_numpy(snake_case ) else: raise ValueError( F'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' F' {array.shape}' ) logger.info(F'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def _lowerCamelCase ( snake_case , snake_case , snake_case ): # Instantiate model logger.info(F'Loading model based on config from {config_path}...' ) _lowerCAmelCase = BertConfig.from_json_file(snake_case ) _lowerCAmelCase = BertModel(snake_case ) # Load weights from checkpoint logger.info(F'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(snake_case , snake_case , snake_case ) # Save pytorch-model logger.info(F'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , snake_case ) if __name__ == "__main__": _lowercase: str = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) _lowercase: Optional[int] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
225
1
"""simple docstring""" import os __lowerCAmelCase : List[str] = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def __lowerCAmelCase ( __UpperCamelCase : str ): '''simple docstring''' snake_case_ : List[str] = 0 snake_case_ : Tuple = 0 while index < len(__UpperCamelCase ) - 1: snake_case_ : Any = SYMBOLS[numerals[index]] snake_case_ : Dict = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Union[str, Any] = """""" snake_case_ : Optional[Any] = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 snake_case_ : List[str] = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 snake_case_ : List[str] = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __lowerCAmelCase ( __UpperCamelCase : str = "/p089_roman.txt" ): '''simple docstring''' snake_case_ : Optional[Any] = 0 with open(os.path.dirname(__UpperCamelCase ) + roman_numerals_filename ) as filea: snake_case_ : Any = filea.readlines() for line in lines: snake_case_ : Tuple = line.strip() snake_case_ : Optional[int] = parse_roman_numerals(__UpperCamelCase ) snake_case_ : Tuple = generate_roman_numerals(__UpperCamelCase ) savings += len(__UpperCamelCase ) - len(__UpperCamelCase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
58
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : Dict = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''roformer''' def __init__( self , _lowercase=5_0_0_0_0 , _lowercase=None , _lowercase=7_6_8 , _lowercase=1_2 , _lowercase=1_2 , _lowercase=3_0_7_2 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1_5_3_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase=0 , _lowercase=False , _lowercase=True , **_lowercase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_lowercase , **_lowercase ) snake_case_ : str = vocab_size snake_case_ : Any = hidden_size if embedding_size is None else embedding_size snake_case_ : List[str] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Union[str, Any] = hidden_act snake_case_ : Optional[Any] = intermediate_size snake_case_ : List[str] = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : List[str] = type_vocab_size snake_case_ : Tuple = initializer_range snake_case_ : str = layer_norm_eps snake_case_ : List[str] = rotary_value snake_case_ : str = use_cache class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : Any = {0: """batch""", 1: """sequence"""} snake_case_ : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
58
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ : List[Any] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowerCamelCase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
302
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _UpperCAmelCase : '''simple docstring''' @staticmethod def lowerCamelCase_ ( *snake_case_ , **snake_case_ ): """simple docstring""" pass def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCamelCase_ : int = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowercase_ : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowerCamelCase_ ( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[Any] = pipeline( 'document-question-answering' , model=snake_case_ , tokenizer=snake_case_ , image_processor=snake_case_ ) A_ : List[str] = INVOICE_URL A_ : Union[str, Any] = list(zip(*apply_tesseract(load_image(snake_case_ ) , snake_case_ , '' ) ) ) A_ : Dict = 'What is the placebo?' A_ : Optional[Any] = [ { 'image': load_image(snake_case_ ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : Union[str, Any] = dqa_pipeline(snake_case_ , top_k=2 ) self.assertEqual( snake_case_ , [ [ {'score': ANY(snake_case_ ), 'answer': ANY(snake_case_ ), 'start': ANY(snake_case_ ), 'end': ANY(snake_case_ )}, {'score': ANY(snake_case_ ), 'answer': ANY(snake_case_ ), 'start': ANY(snake_case_ ), 'end': ANY(snake_case_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) A_ : Optional[Any] = INVOICE_URL A_ : Union[str, Any] = 'How many cats are there?' A_ : List[Any] = [ {'score': 0.00_01, 'answer': 'oy 2312/2019', 'start': 3_8, 'end': 3_9}, {'score': 0.00_01, 'answer': 'oy 2312/2019 DUE', 'start': 3_8, 'end': 4_0}, ] A_ : List[str] = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual(nested_simplify(snake_case_ , decimals=4 ) , snake_case_ ) A_ : Any = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(snake_case_ , decimals=4 ) , snake_case_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably A_ : Tuple = './tests/fixtures/tests_samples/COCO/000000039769.png' A_ : str = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual(snake_case_ , [] ) # We can optionnally pass directly the words and bounding boxes A_ : int = './tests/fixtures/tests_samples/COCO/000000039769.png' A_ : Optional[int] = [] A_ : Union[str, Any] = [] A_ : List[Any] = dqa_pipeline(image=snake_case_ , question=snake_case_ , words=snake_case_ , boxes=snake_case_ , top_k=2 ) self.assertEqual(snake_case_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCamelCase_ ( self ): """simple docstring""" A_ : int = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) A_ : int = INVOICE_URL A_ : List[Any] = 'What is the invoice number?' A_ : str = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) A_ : List[Any] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) A_ : str = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'score': 0.99_44, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.00_09, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def lowerCamelCase_ ( self ): """simple docstring""" A_ : Tuple = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=5_0 , ) A_ : Any = INVOICE_URL A_ : Any = 'What is the invoice number?' A_ : int = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) A_ : str = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) A_ : str = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'score': 0.99_74, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.99_48, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def lowerCamelCase_ ( self ): """simple docstring""" A_ : Any = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=snake_case_ ) A_ : Optional[Any] = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=snake_case_ , revision='3dc6de3' , ) A_ : Any = INVOICE_URL A_ : str = 'What is the invoice number?' A_ : Optional[int] = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) A_ : Optional[int] = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) A_ : Any = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] ] * 2 , ) A_ : List[Any] = list(zip(*apply_tesseract(load_image(snake_case_ ) , snake_case_ , '' ) ) ) # This model should also work if `image` is set to None A_ : Dict = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'score': 0.42_51, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.08_19, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def lowerCamelCase_ ( self ): """simple docstring""" A_ : Dict = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=snake_case_ ) A_ : Any = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=snake_case_ , revision='3dc6de3' , max_seq_len=5_0 , ) A_ : str = INVOICE_URL A_ : List[str] = 'What is the invoice number?' A_ : Tuple = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) A_ : Dict = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) A_ : Dict = list(zip(*apply_tesseract(load_image(snake_case_ ) , snake_case_ , '' ) ) ) # This model should also work if `image` is set to None A_ : Dict = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case_ , decimals=4 ) , [ {'score': 0.99_99, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.99_98, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) @slow @require_torch def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[str] = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) A_ : List[Any] = INVOICE_URL A_ : List[str] = 'What is the invoice number?' A_ : List[Any] = dqa_pipeline(image=snake_case_ , question=snake_case_ , top_k=2 ) self.assertEqual(nested_simplify(snake_case_ , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def lowerCamelCase_ ( self ): """simple docstring""" pass
302
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } lowerCAmelCase__ = { '''facebook/mbart-large-50-one-to-many-mmt''': 1024, } # fmt: off lowerCAmelCase__ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class __snake_case ( _lowercase): snake_case__ : Optional[Any] = VOCAB_FILES_NAMES snake_case__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Optional[Any] = ["input_ids", "attention_mask"] snake_case__ : List[int] = [] snake_case__ : List[int] = [] def __init__( self : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Union[str, Any]="</s>" , __lowerCAmelCase : str="</s>" , __lowerCAmelCase : Union[str, Any]="<s>" , __lowerCAmelCase : Any="<unk>" , __lowerCAmelCase : List[Any]="<pad>" , __lowerCAmelCase : List[str]="<mask>" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : Optional[int] , ): """simple docstring""" _lowerCamelCase : Optional[int] = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token _lowerCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCamelCase : List[Any] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCamelCase : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[Any] = len(self.sp_model ) _lowerCamelCase : Any = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__lowerCAmelCase ) } _lowerCamelCase : List[str] = {v: k for k, v in self.lang_code_to_id.items()} _lowerCamelCase : Tuple = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCamelCase : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCamelCase : Tuple = src_lang if src_lang is not None else '''en_XX''' _lowerCamelCase : Optional[int] = self.lang_code_to_id[self._src_lang] _lowerCamelCase : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ): """simple docstring""" _lowerCamelCase : List[str] = self.__dict__.copy() _lowerCamelCase : List[Any] = None return state def __setstate__( self : Optional[int] , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _lowerCamelCase : List[Any] = {} _lowerCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : str = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : str ): """simple docstring""" return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCamelCase : Dict = self.sp_model.PieceToId(__lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : int ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : Dict = [] _lowerCamelCase : Any = '''''' _lowerCamelCase : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token _lowerCamelCase : Dict = True _lowerCamelCase : str = [] else: current_sub_tokens.append(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : str = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _lowerCamelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) _lowerCamelCase : int = [1] * len(self.prefix_tokens ) _lowerCamelCase : Optional[int] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCAmelCase )) + ([0] * len(__lowerCAmelCase )) + suffix_ones def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] , __lowerCAmelCase : Optional[str] , **__lowerCAmelCase : Tuple ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _lowerCamelCase : int = src_lang _lowerCamelCase : Tuple = self(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : int = self.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str = "en_XX" , __lowerCAmelCase : Optional[List[str]] = None , __lowerCAmelCase : str = "ro_RO" , **__lowerCAmelCase : List[str] , ): """simple docstring""" _lowerCamelCase : Optional[int] = src_lang _lowerCamelCase : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : str = self.lang_code_to_id[src_lang] _lowerCamelCase : Tuple = [self.cur_lang_code_id] _lowerCamelCase : str = [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Optional[int] = self.lang_code_to_id[tgt_lang] _lowerCamelCase : List[Any] = [self.cur_lang_code_id] _lowerCamelCase : Any = [self.eos_token_id]
83
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowerCamelCase = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(lowerCamelCase__ ) , torch_builtin(lowerCamelCase__ ) ) ) self.assertFalse(torch.allclose(gelu_python(lowerCamelCase__ ) , gelu_new(lowerCamelCase__ ) ) ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __lowerCamelCase = get_activation('gelu' ) __lowerCamelCase = get_activation('gelu_10' ) __lowerCamelCase = torch_builtin(lowerCamelCase__ ) __lowerCamelCase = geluaa(lowerCamelCase__ ) __lowerCamelCase = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(lowerCamelCase__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowercase_ ( self ) -> Any: '''simple docstring''' get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(lowerCamelCase__ ): get_activation('bogus' ) with self.assertRaises(lowerCamelCase__ ): get_activation(lowerCamelCase__ ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = get_activation('gelu' ) __lowerCamelCase = 1 __lowerCamelCase = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(lowerCamelCase__ ): __lowerCamelCase = acta.a
469
0
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 3 ) -> qiskit.result.counts.Counts: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(SCREAMING_SNAKE_CASE_ ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) lowerCAmelCase__ : Any = QuantumRegister(SCREAMING_SNAKE_CASE_ , 'qr' ) lowerCAmelCase__ : List[Any] = ClassicalRegister(SCREAMING_SNAKE_CASE_ , 'cr' ) lowerCAmelCase__ : Optional[int] = QuantumCircuit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = number_of_qubits for i in range(SCREAMING_SNAKE_CASE_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(SCREAMING_SNAKE_CASE_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(SCREAMING_SNAKE_CASE_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # simulate with 10000 shots lowerCAmelCase__ : str = Aer.get_backend('qasm_simulator' ) lowerCAmelCase__ : List[Any] = execute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shots=10_000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
69
import numpy class A__ : def __init__( self : Tuple , a : numpy.ndarray , a : numpy.ndarray ): '''simple docstring''' lowerCAmelCase__ : int = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCAmelCase__ : Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCAmelCase__ : List[str] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCAmelCase__ : List[Any] = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCAmelCase__ : str = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCAmelCase__ : List[Any] = numpy.zeros(output_array.shape ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : str = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCAmelCase__ : Tuple = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCAmelCase__ : Any = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCAmelCase__ : Optional[Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCAmelCase__ : int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _lowerCamelCase ( self : Optional[int] , a : numpy.ndarray , a : int , a : bool ): '''simple docstring''' for iteration in range(1 , iterations + 1 ): lowerCAmelCase__ : Any = self.feedforward() self.back_propagation() if give_loss: lowerCAmelCase__ : Tuple = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def _lowerCamelCase ( self : Optional[Any] , a : numpy.ndarray ): '''simple docstring''' lowerCAmelCase__ : Dict = input_arr lowerCAmelCase__ : Any = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCAmelCase__ : int = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCAmelCase__ : List[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> numpy.ndarray: return (value) * (1 - (value)) def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : Any = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCAmelCase__ : int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCAmelCase__ : List[str] = TwoHiddenLayerNeuralNetwork( input_array=SCREAMING_SNAKE_CASE_ , output_array=SCREAMING_SNAKE_CASE_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=SCREAMING_SNAKE_CASE_ , iterations=10 , give_loss=SCREAMING_SNAKE_CASE_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
69
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Checks if the entire collection has been sorted if len(SCREAMING_SNAKE_CASE__ ) <= 1 or n <= 1: return insert_next(SCREAMING_SNAKE_CASE__ , n - 1 ) rec_insertion_sort(SCREAMING_SNAKE_CASE__ , n - 1 ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Checks order between adjacent elements if index >= len(SCREAMING_SNAKE_CASE__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __a , __a : Tuple = ( collection[index], collection[index - 1], ) insert_next(SCREAMING_SNAKE_CASE__ , index + 1 ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input("Enter integers separated by spaces: ") SCREAMING_SNAKE_CASE_ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
597
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" _A = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) _A = Features({'text': Value('string' )} ) _A = Features({'summary': Value('string' )} ) _A = "text" _A = "summary" @property def __magic_name__ ( self ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
597
1
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _lowercase ( nn.Module ): def __init__( self : int , a : int , a : int , a : int , a : Tuple=0.0 , a : Optional[int] = None , a : str = "geglu" , a : Optional[int] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : str = "layer_norm" , a : bool = False , ): """simple docstring""" super().__init__() __snake_case : str =only_cross_attention __snake_case : List[Any] =(num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __snake_case : Tuple =(num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __snake_case : Dict =AdaLayerNorm(a , a ) elif self.use_ada_layer_norm_zero: __snake_case : Union[str, Any] =AdaLayerNormZero(a , a ) else: __snake_case : Any =nn.LayerNorm(a , elementwise_affine=a ) __snake_case : Union[str, Any] =Attention( query_dim=a , heads=a , dim_head=a , dropout=a , bias=a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __snake_case : Dict =( AdaLayerNorm(a , a ) if self.use_ada_layer_norm else nn.LayerNorm(a , elementwise_affine=a ) ) __snake_case : Optional[Any] =Attention( query_dim=a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=a , dim_head=a , dropout=a , bias=a , upcast_attention=a , ) # is self-attn if encoder_hidden_states is none else: __snake_case : Tuple =None __snake_case : List[Any] =None # 3. Feed-forward __snake_case : str =nn.LayerNorm(a , elementwise_affine=a ) __snake_case : int =FeedForward(a , dropout=a , activation_fn=a , final_dropout=a ) # let chunk size default to None __snake_case : str =None __snake_case : Optional[int] =0 def _UpperCamelCase ( self : str , a : Optional[int] , a : int ): """simple docstring""" __snake_case : List[Any] =chunk_size __snake_case : Tuple =dim def _UpperCamelCase ( self : List[Any] , a : torch.FloatTensor , a : Optional[torch.FloatTensor] = None , a : Optional[torch.FloatTensor] = None , a : Optional[torch.FloatTensor] = None , a : Optional[torch.LongTensor] = None , a : Dict[str, Any] = None , a : Optional[torch.LongTensor] = None , ): """simple docstring""" if self.use_ada_layer_norm: __snake_case : int =self.norma(a , a ) elif self.use_ada_layer_norm_zero: __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : List[str] =self.norma( a , a , a , hidden_dtype=hidden_states.dtype ) else: __snake_case : List[str] =self.norma(a ) __snake_case : int =cross_attention_kwargs if cross_attention_kwargs is not None else {} __snake_case : Any =self.attna( a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=a , **a , ) if self.use_ada_layer_norm_zero: __snake_case : List[str] =gate_msa.unsqueeze(1 ) * attn_output __snake_case : List[Any] =attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __snake_case : Tuple =( self.norma(a , a ) if self.use_ada_layer_norm else self.norma(a ) ) __snake_case : Optional[int] =self.attna( a , encoder_hidden_states=a , attention_mask=a , **a , ) __snake_case : Any =attn_output + hidden_states # 3. Feed-forward __snake_case : int =self.norma(a ) if self.use_ada_layer_norm_zero: __snake_case : Any =norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) __snake_case : Dict =norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __snake_case : Optional[int] =torch.cat( [self.ff(a ) for hid_slice in norm_hidden_states.chunk(a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __snake_case : str =self.ff(a ) if self.use_ada_layer_norm_zero: __snake_case : Tuple =gate_mlp.unsqueeze(1 ) * ff_output __snake_case : List[Any] =ff_output + hidden_states return hidden_states class _lowercase ( nn.Module ): def __init__( self : List[Any] , a : int , a : Optional[int] = None , a : int = 4 , a : float = 0.0 , a : str = "geglu" , a : bool = False , ): """simple docstring""" super().__init__() __snake_case : Any =int(dim * mult ) __snake_case : int =dim_out if dim_out is not None else dim if activation_fn == "gelu": __snake_case : Optional[Any] =GELU(a , a ) if activation_fn == "gelu-approximate": __snake_case : Any =GELU(a , a , approximate='''tanh''' ) elif activation_fn == "geglu": __snake_case : Optional[Any] =GEGLU(a , a ) elif activation_fn == "geglu-approximate": __snake_case : str =ApproximateGELU(a , a ) __snake_case : List[Any] =nn.ModuleList([] ) # project in self.net.append(a ) # project dropout self.net.append(nn.Dropout(a ) ) # project out self.net.append(nn.Linear(a , a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(a ) ) def _UpperCamelCase ( self : List[str] , a : Optional[Any] ): """simple docstring""" for module in self.net: __snake_case : Dict =module(a ) return hidden_states class _lowercase ( nn.Module ): def __init__( self : Any , a : int , a : int , a : str = "none" ): """simple docstring""" super().__init__() __snake_case : Any =nn.Linear(a , a ) __snake_case : Dict =approximate def _UpperCamelCase ( self : Optional[int] , a : Dict ): """simple docstring""" if gate.device.type != "mps": return F.gelu(a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCamelCase ( self : Optional[Any] , a : Any ): """simple docstring""" __snake_case : Optional[int] =self.proj(a ) __snake_case : int =self.gelu(a ) return hidden_states class _lowercase ( nn.Module ): def __init__( self : Union[str, Any] , a : int , a : int ): """simple docstring""" super().__init__() __snake_case : List[str] =nn.Linear(a , dim_out * 2 ) def _UpperCamelCase ( self : Optional[Any] , a : Dict ): """simple docstring""" if gate.device.type != "mps": return F.gelu(a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCamelCase ( self : List[Any] , a : Optional[Any] ): """simple docstring""" __snake_case , __snake_case : Optional[int] =self.proj(a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(a ) class _lowercase ( nn.Module ): def __init__( self : Union[str, Any] , a : int , a : int ): """simple docstring""" super().__init__() __snake_case : str =nn.Linear(a , a ) def _UpperCamelCase ( self : Optional[Any] , a : List[str] ): """simple docstring""" __snake_case : Union[str, Any] =self.proj(a ) return x * torch.sigmoid(1.7_0_2 * x ) class _lowercase ( nn.Module ): def __init__( self : Tuple , a : str , a : Any ): """simple docstring""" super().__init__() __snake_case : int =nn.Embedding(a , a ) __snake_case : List[Any] =nn.SiLU() __snake_case : Any =nn.Linear(a , embedding_dim * 2 ) __snake_case : Any =nn.LayerNorm(a , elementwise_affine=a ) def _UpperCamelCase ( self : Union[str, Any] , a : Optional[int] , a : str ): """simple docstring""" __snake_case : str =self.linear(self.silu(self.emb(a ) ) ) __snake_case , __snake_case : List[Any] =torch.chunk(a , 2 ) __snake_case : Tuple =self.norm(a ) * (1 + scale) + shift return x class _lowercase ( nn.Module ): def __init__( self : Optional[Any] , a : str , a : Optional[int] ): """simple docstring""" super().__init__() __snake_case : Union[str, Any] =CombinedTimestepLabelEmbeddings(a , a ) __snake_case : int =nn.SiLU() __snake_case : Dict =nn.Linear(a , 6 * embedding_dim , bias=a ) __snake_case : Union[str, Any] =nn.LayerNorm(a , elementwise_affine=a , eps=1e-6 ) def _UpperCamelCase ( self : Union[str, Any] , a : List[Any] , a : int , a : Tuple , a : int=None ): """simple docstring""" __snake_case : Union[str, Any] =self.linear(self.silu(self.emb(a , a , hidden_dtype=a ) ) ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] =emb.chunk(6 , dim=1 ) __snake_case : Tuple =self.norm(a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _lowercase ( nn.Module ): def __init__( self : str , a : int , a : int , a : int , a : Optional[str] = None , a : float = 1e-5 ): """simple docstring""" super().__init__() __snake_case : Union[str, Any] =num_groups __snake_case : Dict =eps if act_fn is None: __snake_case : Union[str, Any] =None else: __snake_case : str =get_activation(a ) __snake_case : Any =nn.Linear(a , out_dim * 2 ) def _UpperCamelCase ( self : str , a : Optional[Any] , a : List[str] ): """simple docstring""" if self.act: __snake_case : Dict =self.act(a ) __snake_case : List[str] =self.linear(a ) __snake_case : List[Any] =emb[:, :, None, None] __snake_case , __snake_case : Dict =emb.chunk(2 , dim=1 ) __snake_case : Any =F.group_norm(a , self.num_groups , eps=self.eps ) __snake_case : str =x * (1 + scale) + shift return x
497
"""simple docstring""" import os from datetime import datetime as dt from github import Github UpperCamelCase_ : List[str] = [ """good first issue""", """good second issue""", """good difficult issue""", """enhancement""", """new pipeline/model""", """new scheduler""", """wip""", ] def __lowercase ( ) -> Optional[Any]: __snake_case : List[Any] =Github(os.environ['''GITHUB_TOKEN'''] ) __snake_case : int =g.get_repo('''huggingface/diffusers''' ) __snake_case : Any =repo.get_issues(state='''open''' ) for issue in open_issues: __snake_case : Dict =sorted(issue.get_comments() , key=lambda a : i.created_at , reverse=a ) __snake_case : Dict =comments[0] if len(a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
497
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase: Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = SpeechTaTokenizer lowercase__ = False lowercase__ = True def lowercase_ ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing a : Dict = SpeechTaTokenizer(__snake_case ) a : Any = AddedToken('<mask>' , lstrip=__snake_case , rstrip=__snake_case ) a : str = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Tuple , __snake_case : int ): a : int = 'this is a test' a : List[str] = 'this is a test' return input_text, output_text def lowercase_ ( self : Optional[Any] , __snake_case : List[Any] , __snake_case : Dict=False , __snake_case : Optional[int]=20 , __snake_case : Tuple=5 ): a , a : Dict = self.get_input_output_texts(__snake_case ) a : str = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) a : Optional[Any] = tokenizer.decode(__snake_case , clean_up_tokenization_spaces=__snake_case ) return text, ids def lowercase_ ( self : Tuple ): a : Any = '<pad>' a : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowercase_ ( self : List[Any] ): a : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(__snake_case ) , 81 ) def lowercase_ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowercase_ ( self : Optional[Any] ): a : Optional[int] = self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): a : Any = tokenizer.vocab_size a : Optional[Any] = len(__snake_case ) self.assertNotEqual(__snake_case , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) a : List[str] = ['aaaaa bbbbbb', 'cccccccccdddddddd'] a : Tuple = tokenizer.add_tokens(__snake_case ) a : Any = tokenizer.vocab_size a : Tuple = len(__snake_case ) self.assertNotEqual(__snake_case , 0 ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , len(__snake_case ) ) self.assertEqual(__snake_case , all_size + len(__snake_case ) ) a : str = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=__snake_case ) self.assertGreaterEqual(len(__snake_case ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) a : int = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} a : int = tokenizer.add_special_tokens(__snake_case ) a : Any = tokenizer.vocab_size a : Union[str, Any] = len(__snake_case ) self.assertNotEqual(__snake_case , 0 ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , len(__snake_case ) ) self.assertEqual(__snake_case , all_size_a + len(__snake_case ) ) a : Tuple = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=__snake_case ) self.assertGreaterEqual(len(__snake_case ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowercase_ ( self : Optional[Any] ): pass def lowercase_ ( self : Optional[int] ): pass def lowercase_ ( self : int ): a : Optional[int] = self.get_tokenizer() a : int = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(__snake_case , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) a : Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) a : Any = tokenizer.convert_tokens_to_ids(__snake_case ) # fmt: off self.assertListEqual(__snake_case , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on a : Any = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def lowercase_ ( self : Optional[int] ): # Use custom sequence because this tokenizer does not handle numbers. a : int = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off a : List[Any] = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=__snake_case , )
526
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a__( lowerCamelCase__ ): lowercase__ = """Salesforce/blip-image-captioning-base""" lowercase__ = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) lowercase__ = """image_captioner""" lowercase__ = AutoModelForVisionaSeq lowercase__ = ["""image"""] lowercase__ = ["""text"""] def __init__( self : Tuple , *__snake_case : int , **__snake_case : List[Any] ): requires_backends(self , ['vision'] ) super().__init__(*__snake_case , **__snake_case ) def lowercase_ ( self : Optional[int] , __snake_case : "Image" ): return self.pre_processor(images=__snake_case , return_tensors='pt' ) def lowercase_ ( self : Optional[Any] , __snake_case : str ): return self.model.generate(**__snake_case ) def lowercase_ ( self : Optional[Any] , __snake_case : Tuple ): return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0].strip()
526
1
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __snake_case ( _UpperCAmelCase ): __a = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __snake_case ( _UpperCAmelCase ): __a = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', '''stage2.cls_token''') ) return token def __snake_case ( ): __a = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = '''imagenet-1k-id2label.json''' __a = 1000 __a = '''huggingface/label-files''' __a = num_labels __a = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) __a = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = __a = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __a = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __a = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __a = [2, 2, 20] __a = [3, 12, 16] __a = [192, 768, 1024] __a = CvtForImageClassification(_UpperCAmelCase ) __a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __a = image_size __a = torch.load(_UpperCAmelCase , map_location=torch.device('''cpu''' ) ) __a = OrderedDict() __a = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __a = list_of_state_dict + cls_token(_UpperCAmelCase ) __a = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): __a = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) __a = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): __a = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __snake_case :str = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __snake_case :Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
700
def __snake_case ( _UpperCAmelCase ): __a = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __snake_case ( _UpperCAmelCase ): __a = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __a = remove_duplicates(key.upper() ) __a = len(_UpperCAmelCase ) # First fill cipher with key characters __a = {alphabet[i]: char for i, char in enumerate(_UpperCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_UpperCAmelCase ) , 26 ): __a = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __a = alphabet[i - offset] __a = char return cipher_alphabet def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return "".join(cipher_map.get(_UpperCAmelCase , _UpperCAmelCase ) for ch in message.upper() ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_UpperCAmelCase , _UpperCAmelCase ) for ch in message.upper() ) def __snake_case ( ): __a = input('''Enter message to encode or decode: ''' ).strip() __a = input('''Enter keyword: ''' ).strip() __a = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __a = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __a = create_cipher_map(_UpperCAmelCase ) print(func(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
0
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A, 'num_attention_heads' ) ) class _a : '''simple docstring''' def __init__( self, A, A=13, A=64, A=3, A=3, A=2, A=1, A=16, A=[128, 256, 384], A=[4, 6, 8], A=[2, 3, 4], A=[16, 16, 16], A=0, A=[2, 2, 2], A=[2, 2, 2], A=0.02, A=True, A=True, A=2, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : List[Any] = kernel_size SCREAMING_SNAKE_CASE : Tuple = stride SCREAMING_SNAKE_CASE : Optional[int] = padding SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Tuple = key_dim SCREAMING_SNAKE_CASE : List[Any] = drop_path_rate SCREAMING_SNAKE_CASE : Any = patch_size SCREAMING_SNAKE_CASE : Any = attention_ratio SCREAMING_SNAKE_CASE : List[str] = mlp_ratio SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE : str = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = num_labels SCREAMING_SNAKE_CASE : List[Any] = initializer_range def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size], self.num_labels ) SCREAMING_SNAKE_CASE : str = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): '''simple docstring''' return LevitConfig( image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = LevitModel(config=A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(A ) SCREAMING_SNAKE_CASE : int = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE : int = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]), ) def UpperCamelCase_ ( self, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = LevitForImageClassification(A ) model.to(A ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(A, labels=A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Dict = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) A : Optional[int] = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) A : Optional[Any] = False A : List[Any] = False A : str = False A : Dict = False A : Dict = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = LevitModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self, config_class=A, has_text_modality=A, hidden_size=37 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ): '''simple docstring''' return @unittest.skip(reason='Levit does not use inputs_embeds' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='Levit does not output attentions' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], A ) def UpperCamelCase_ ( self ): '''simple docstring''' def check_hidden_states_output(A, A, A ): SCREAMING_SNAKE_CASE : Any = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.hidden_states SCREAMING_SNAKE_CASE : Dict = len(self.model_tester.depths ) + 1 self.assertEqual(len(A ), A ) SCREAMING_SNAKE_CASE : List[str] = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE : List[str] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE : str = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [ height * width, self.model_tester.hidden_sizes[0], ], ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(A, A, A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(A, A, A ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self, A, A, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = super()._prepare_for_class(A, A, return_labels=A ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Dict = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(A ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE : Any = model_class(A ) model.to(A ) model.train() SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(A, A, return_labels=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(**A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) model.gradient_checkpointing_enable() model.to(A ) model.train() SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(A, A, return_labels=A ) SCREAMING_SNAKE_CASE : Any = model(**A ).loss loss.backward() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(A ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): SCREAMING_SNAKE_CASE : List[str] = problem_type['title'] SCREAMING_SNAKE_CASE : Tuple = problem_type['num_labels'] SCREAMING_SNAKE_CASE : Tuple = model_class(A ) model.to(A ) model.train() SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(A, A, return_labels=A ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE : List[Any] = inputs['labels'].unsqueeze(1 ).repeat(1, problem_type['num_labels'] ) SCREAMING_SNAKE_CASE : Optional[int] = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=A ) as warning_list: SCREAMING_SNAKE_CASE : Optional[Any] = model(**A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCamelCase_ ( self ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[str] = LevitModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A ) SCREAMING_SNAKE_CASE : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : int = image_processor(images=A, return_tensors='pt' ).to(A ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**A ) # verify the logits SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, A ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([1.04_48, -0.37_45, -1.83_17] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A, atol=1E-4 ) )
28
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowerCAmelCase :Tuple = logging.get_logger(__name__) _lowerCAmelCase :Union[str, Any] = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''dpt''' def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1E-12 , A=3_8_4 , A=1_6 , A=3 , A=False , A=True , A=[2, 5, 8, 1_1] , A="project" , A=[4, 2, 1, 0.5] , A=[9_6, 1_9_2, 3_8_4, 7_6_8] , A=2_5_6 , A=-1 , A=False , A=True , A=0.4 , A=2_5_5 , A=0.1 , A=[1, 1_0_2_4, 2_4, 2_4] , A=[0, 1] , A=None , **A , ) -> int: super().__init__(**A ) _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : Union[str, Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) _UpperCAmelCase : List[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } _UpperCAmelCase : int = BitConfig(**A ) elif isinstance(A , A ): logger.info('''Initializing the config with a `BiT` backbone.''' ) _UpperCAmelCase : Union[str, Any] = BitConfig(**A ) elif isinstance(A , A ): _UpperCAmelCase : Tuple = backbone_config else: raise ValueError( f'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) _UpperCAmelCase : int = backbone_featmap_shape _UpperCAmelCase : Dict = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: _UpperCAmelCase : Tuple = None _UpperCAmelCase : Any = None _UpperCAmelCase : Any = [] _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : int = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : int = patch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Tuple = qkv_bias _UpperCAmelCase : str = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) _UpperCAmelCase : List[Any] = readout_type _UpperCAmelCase : int = reassemble_factors _UpperCAmelCase : int = neck_hidden_sizes _UpperCAmelCase : Tuple = fusion_hidden_size _UpperCAmelCase : Any = head_in_index _UpperCAmelCase : Optional[int] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase : List[str] = use_auxiliary_head _UpperCAmelCase : int = auxiliary_loss_weight _UpperCAmelCase : Any = semantic_loss_ignore_index _UpperCAmelCase : List[Any] = semantic_classifier_dropout def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase : Any = self.backbone_config.to_dict() _UpperCAmelCase : List[str] = self.__class__.model_type return output
506
0
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'align_text_model' def __init__( self ,_lowerCAmelCase=3_05_22 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=12 ,_lowerCAmelCase=12 ,_lowerCAmelCase=30_72 ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=5_12 ,_lowerCAmelCase=2 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-12 ,_lowerCAmelCase=0 ,_lowerCAmelCase="absolute" ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = position_embedding_type lowerCamelCase__ = use_cache lowerCamelCase__ = pad_token_id @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,**_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(_lowerCAmelCase ,**_lowerCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowerCamelCase__ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'align_vision_model' def __init__( self ,_lowerCAmelCase = 3 ,_lowerCAmelCase = 6_00 ,_lowerCAmelCase = 2.0 ,_lowerCAmelCase = 3.1 ,_lowerCAmelCase = 8 ,_lowerCAmelCase = [3, 3, 5, 3, 5, 5, 3] ,_lowerCAmelCase = [32, 16, 24, 40, 80, 1_12, 1_92] ,_lowerCAmelCase = [16, 24, 40, 80, 1_12, 1_92, 3_20] ,_lowerCAmelCase = [] ,_lowerCAmelCase = [1, 2, 2, 2, 1, 2, 1] ,_lowerCAmelCase = [1, 2, 2, 3, 3, 4, 1] ,_lowerCAmelCase = [1, 6, 6, 6, 6, 6, 6] ,_lowerCAmelCase = 0.25 ,_lowerCAmelCase = "swish" ,_lowerCAmelCase = 25_60 ,_lowerCAmelCase = "mean" ,_lowerCAmelCase = 0.02 ,_lowerCAmelCase = 0.001 ,_lowerCAmelCase = 0.99 ,_lowerCAmelCase = 0.2 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = width_coefficient lowerCamelCase__ = depth_coefficient lowerCamelCase__ = depth_divisor lowerCamelCase__ = kernel_sizes lowerCamelCase__ = in_channels lowerCamelCase__ = out_channels lowerCamelCase__ = depthwise_padding lowerCamelCase__ = strides lowerCamelCase__ = num_block_repeats lowerCamelCase__ = expand_ratios lowerCamelCase__ = squeeze_expansion_ratio lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dim lowerCamelCase__ = pooling_type lowerCamelCase__ = initializer_range lowerCamelCase__ = batch_norm_eps lowerCamelCase__ = batch_norm_momentum lowerCamelCase__ = drop_connect_rate lowerCamelCase__ = sum(_lowerCAmelCase ) * 4 @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,**_lowerCAmelCase ): cls._set_token_in_kwargs(_lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ = cls.get_config_dict(_lowerCAmelCase ,**_lowerCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": lowerCamelCase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCAmelCase ,**_lowerCAmelCase ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'align' _UpperCamelCase = True def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=6_40 ,_lowerCAmelCase=1.0 ,_lowerCAmelCase=0.02 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) if text_config is None: lowerCamelCase__ = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: lowerCamelCase__ = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) lowerCamelCase__ = AlignTextConfig(**_lowerCAmelCase ) lowerCamelCase__ = AlignVisionConfig(**_lowerCAmelCase ) lowerCamelCase__ = projection_dim lowerCamelCase__ = temperature_init_value lowerCamelCase__ = initializer_range @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = copy.deepcopy(self.__dict__ ) lowerCamelCase__ = self.text_config.to_dict() lowerCamelCase__ = self.vision_config.to_dict() lowerCamelCase__ = self.__class__.model_type return output
706
'''simple docstring''' from math import factorial UpperCamelCase : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def A__ ( __lowerCAmelCase : int ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : int = 60 , __lowerCAmelCase : int = 100_0000 ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length lowerCamelCase__ = 0 # the cached sizes of the previous chains lowerCamelCase__ = {} for start_chain_element in range(1 , __lowerCAmelCase ): # The temporary set will contain the elements of the chain lowerCamelCase__ = set() lowerCamelCase__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__lowerCAmelCase ) chain_set_length += 1 lowerCamelCase__ = digit_factorial_sum(__lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
9
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase_ : @staticmethod def UpperCamelCase_ ( *_A : Optional[int] , **_A : Optional[Any] ): pass @is_pipeline_test @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): UpperCAmelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCamelCase_ ( self : Optional[Any] , _A : List[Any] , _A : Optional[Any] , _A : List[str] ): _UpperCamelCase = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) _UpperCamelCase = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : str ): _UpperCamelCase = object_detector(examples[0] , threshold=0.0 ) _UpperCamelCase = len(_A ) self.assertGreater(_A , 0 ) self.assertEqual( _A , [ { '''score''': ANY(_A ), '''label''': ANY(_A ), '''box''': {'''xmin''': ANY(_A ), '''ymin''': ANY(_A ), '''xmax''': ANY(_A ), '''ymax''': ANY(_A )}, } for i in range(_A ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCamelCase_ ( self : List[Any] ): pass @require_torch def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) _UpperCamelCase = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) _UpperCamelCase = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {'''score''': 0.7235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = pipeline('''zero-shot-object-detection''' ) _UpperCamelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) _UpperCamelCase = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCamelCase_ ( self : List[Any] ): pass @require_torch @slow def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = 0.2 _UpperCamelCase = pipeline('''zero-shot-object-detection''' ) _UpperCamelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=_A , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def UpperCamelCase_ ( self : Any ): _UpperCamelCase = 2 _UpperCamelCase = pipeline('''zero-shot-object-detection''' ) _UpperCamelCase = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=_A , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {'''score''': 0.2868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
10
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
1
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ = "AAPL" ) -> str: UpperCamelCase_ = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ ).text , "html.parser" ) UpperCamelCase_ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
712
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} _UpperCAmelCase = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } _UpperCAmelCase = { 'facebook/nllb-200-distilled-600M': 1_0_2_4, } # fmt: off _UpperCAmelCase = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : List[int] = [] _UpperCamelCase : List[int] = [] def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str]="<s>" , _SCREAMING_SNAKE_CASE: Optional[int]="</s>" , _SCREAMING_SNAKE_CASE: int="</s>" , _SCREAMING_SNAKE_CASE: Union[str, Any]="<s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: Union[str, Any]="<pad>" , _SCREAMING_SNAKE_CASE: int="<mask>" , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: Tuple=False , **_SCREAMING_SNAKE_CASE: List[str] , ) -> Tuple: """simple docstring""" UpperCamelCase_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase_ = legacy_behaviour super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase_ = 1 UpperCamelCase_ = len(self.sp_model ) UpperCamelCase_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_SCREAMING_SNAKE_CASE ) } UpperCamelCase_ = {v: k for k, v in self.lang_code_to_id.items()} UpperCamelCase_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCamelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCamelCase_ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCamelCase_ = src_lang if src_lang is not None else "eng_Latn" UpperCamelCase_ = self.lang_code_to_id[self._src_lang] UpperCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self: Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None UpperCamelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase ( self: Union[str, Any] ) -> Dict: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> None: """simple docstring""" UpperCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [1] * len(self.prefix_tokens ) UpperCamelCase_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(_SCREAMING_SNAKE_CASE )) + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] , _SCREAMING_SNAKE_CASE: Optional[str] , **_SCREAMING_SNAKE_CASE: Tuple ) -> int: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCamelCase_ = src_lang UpperCamelCase_ = self(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tgt_lang_id return inputs def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: str ) -> Optional[int]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase_ = self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = "".join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , " " ).strip() return out_string def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: str = "eng_Latn" , _SCREAMING_SNAKE_CASE: Optional[List[str]] = None , _SCREAMING_SNAKE_CASE: str = "fra_Latn" , **_SCREAMING_SNAKE_CASE: List[str] , ) -> BatchEncoding: """simple docstring""" UpperCamelCase_ = src_lang UpperCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Any ) -> Optional[int]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowercase ( self: Dict ) -> Optional[int]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Any ) -> None: """simple docstring""" UpperCamelCase_ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: UpperCamelCase_ = [] UpperCamelCase_ = [self.eos_token_id, self.cur_lang_code] else: UpperCamelCase_ = [self.cur_lang_code] UpperCamelCase_ = [self.eos_token_id] def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str ) -> None: """simple docstring""" UpperCamelCase_ = self.lang_code_to_id[lang] if self.legacy_behaviour: UpperCamelCase_ = [] UpperCamelCase_ = [self.eos_token_id, self.cur_lang_code] else: UpperCamelCase_ = [self.cur_lang_code] UpperCamelCase_ = [self.eos_token_id]
371
0
"""simple docstring""" _lowerCamelCase = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.355_818, } def lowerCAmelCase_ ( lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : str ): '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __SCREAMING_SNAKE_CASE : Optional[int] = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {', '.join(__A )}''' ) raise ValueError(__A ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
674
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''torch''', '''scipy'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""torch""", """scipy"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""torch""", """scipy"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""torch""", """scipy"""] )
601
0
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def _a ( _snake_case ): """simple docstring""" if (len(_snake_case ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" from __future__ import annotations from typing import Any class lowerCamelCase__ : def __init__( self ,A = 6 ): UpperCAmelCase = None UpperCAmelCase = None self.create_linked_list(A ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = Node() UpperCAmelCase = current_node UpperCAmelCase = current_node UpperCAmelCase = current_node for _ in range(1 ,A ): UpperCAmelCase = Node() UpperCAmelCase = current_node UpperCAmelCase = previous_node UpperCAmelCase = current_node UpperCAmelCase = self.front UpperCAmelCase = previous_node def _UpperCamelCase ( self ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCamelCase ( self ): self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCamelCase ( self ,A ): if self.rear is None: return self.check_is_full() if not self.is_empty(): UpperCAmelCase = self.rear.next if self.rear: UpperCAmelCase = data def _UpperCamelCase ( self ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: UpperCAmelCase = self.front.data UpperCAmelCase = None return data UpperCAmelCase = self.front UpperCAmelCase = old_front.next UpperCAmelCase = old_front.data UpperCAmelCase = None return data def _UpperCamelCase ( self ): if self.is_empty(): raise Exception("""Empty Queue""" ) def _UpperCamelCase ( self ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class lowerCamelCase__ : def __init__( self ): UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if __name__ == "__main__": import doctest doctest.testmod()
74
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): a__: List[Any] = StableDiffusionXLImgaImgPipeline a__: Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} a__: Dict = PipelineTesterMixin.required_optional_params - {'latents'} a__: int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a__: Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS a__: str = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self ): torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCamelCase_ = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , ) lowerCamelCase_ = CLIPTextModel(UpperCAmelCase ) lowerCamelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=UpperCAmelCase ) lowerCamelCase_ = CLIPTextModelWithProjection(UpperCAmelCase ) lowerCamelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=UpperCAmelCase ) lowerCamelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=0 ): lowerCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCamelCase_ = image / 2 + 0.5 if str(UpperCAmelCase ).startswith('''mps''' ): lowerCamelCase_ = torch.manual_seed(UpperCAmelCase ) else: lowerCamelCase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCamelCase_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.7_5, } return inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase ) lowerCamelCase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase ) lowerCamelCase_ = sd_pipe(**UpperCAmelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase_ = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase ) lowerCamelCase_ = sd_pipe.to(UpperCAmelCase ) lowerCamelCase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) # forward without prompt embeds lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase ) lowerCamelCase_ = 3 * ['''this is a negative prompt'''] lowerCamelCase_ = negative_prompt lowerCamelCase_ = 3 * [inputs['''prompt''']] lowerCamelCase_ = sd_pipe(**UpperCAmelCase ) lowerCamelCase_ = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase ) lowerCamelCase_ = 3 * ['''this is a negative prompt'''] lowerCamelCase_ = 3 * [inputs.pop('''prompt''' )] ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = sd_pipe.encode_prompt(UpperCAmelCase , negative_prompt=UpperCAmelCase ) lowerCamelCase_ = sd_pipe( **UpperCAmelCase , prompt_embeds=UpperCAmelCase , negative_prompt_embeds=UpperCAmelCase , pooled_prompt_embeds=UpperCAmelCase , negative_pooled_prompt_embeds=UpperCAmelCase , ) lowerCamelCase_ = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase="cpu" , UpperCAmelCase=torch.floataa , UpperCAmelCase=0 ): lowerCamelCase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCamelCase_ = np.random.RandomState(UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) lowerCamelCase_ = torch.from_numpy(UpperCAmelCase ).to(device=UpperCAmelCase , dtype=UpperCAmelCase ) lowerCamelCase_ = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCamelCase_ = self.get_inputs(UpperCAmelCase ) lowerCamelCase_ = pipe(**UpperCAmelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCamelCase_ = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
29
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = embedding_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def UpperCAmelCase ( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = MobileBertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = MobileBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = MobileBertForNextSentencePrediction(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = MobileBertForPreTraining(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , next_sentence_label=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = MobileBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileBertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = MobileBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): __a = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) __a = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) __a = True def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): _UpperCAmelCase = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def UpperCAmelCase ( self ): _UpperCAmelCase = MobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase ( self ): self.config_tester.run_common_tests() def UpperCAmelCase ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> Optional[int]: return torch.tensor( snake_case , dtype=torch.long , device=snake_case , ) a = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): _UpperCAmelCase = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] _UpperCAmelCase = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor( [ [ [-2.4_73_65_26e07, 8.2_69_16_56e04, 1.6_52_18_38e05], [-5.7_54_17_04e-01, 3.9_05_60_22e00, 4.4_01_15_07e00], [2.6_04_73_59e00, 1.5_67_76_52e00, -1.7_32_41_88e-01], ] ] , device=_SCREAMING_SNAKE_CASE , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE _UpperCAmelCase = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) _UpperCAmelCase = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
518
0
import collections import importlib.util import os import re from pathlib import Path _A : Optional[Any] = '''src/transformers''' # Matches is_xxx_available() _A : str = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _A : Optional[Any] = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _A : str = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _A : int = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _A : List[Any] = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _A : int = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _A : Optional[Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], _A : Optional[int] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _A : Optional[int] = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _A : Optional[Any] = re.compile(r'''^\s*try:''') # Catches a line with else: _A : Union[str, Any] = re.compile(r'''^\s*else:''') def __lowerCAmelCase ( snake_case : int ) -> Optional[int]: if _re_test_backend.search(snake_case ) is None: return None __lowerCamelCase: Tuple = [b[0] for b in _re_backend.findall(snake_case )] backends.sort() return "_and_".join(snake_case ) def __lowerCAmelCase ( snake_case : Tuple ) -> List[str]: with open(snake_case , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowerCamelCase: Any = f.readlines() __lowerCamelCase: Optional[int] = 0 while line_index < len(snake_case ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case ): return None # First grab the objects without a specific backend in _import_structure __lowerCamelCase: Tuple = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: __lowerCamelCase: List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case ): __lowerCamelCase: Optional[int] = _re_one_line_import_struct.search(snake_case ).groups()[0] __lowerCamelCase: Optional[int] = re.findall("""\[([^\]]+)\]""" , snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue __lowerCamelCase: Dict = _re_import_struct_key_value.search(snake_case ) if single_line_import_search is not None: __lowerCamelCase: str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(snake_case ) > 0] objects.extend(snake_case ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 __lowerCamelCase: Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. __lowerCamelCase: Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCamelCase: Union[str, Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCamelCase: Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): __lowerCamelCase: Optional[Any] = lines[line_index] if _re_import_struct_add_one.search(snake_case ) is not None: objects.append(_re_import_struct_add_one.search(snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(snake_case ) is not None: __lowerCamelCase: int = _re_import_struct_add_many.search(snake_case ).groups()[0].split(""", """ ) __lowerCamelCase: str = [obj[1:-1] for obj in imports if len(snake_case ) > 0] objects.extend(snake_case ) elif _re_between_brackets.search(snake_case ) is not None: __lowerCamelCase: str = _re_between_brackets.search(snake_case ).groups()[0].split(""", """ ) __lowerCamelCase: Optional[int] = [obj[1:-1] for obj in imports if len(snake_case ) > 0] objects.extend(snake_case ) elif _re_quote_object.search(snake_case ) is not None: objects.append(_re_quote_object.search(snake_case ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 __lowerCamelCase: List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowerCamelCase: Any = [] while ( line_index < len(snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): __lowerCamelCase: str = lines[line_index] __lowerCamelCase: str = _re_import.search(snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowerCamelCase: List[str] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(snake_case ): # If the line is an if is_backend_available, we grab all objects associated. __lowerCamelCase: str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCamelCase: Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCamelCase: Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): __lowerCamelCase: Tuple = lines[line_index] __lowerCamelCase: List[Any] = _re_import.search(snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowerCamelCase: Union[str, Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __lowerCAmelCase ( snake_case : int , snake_case : Tuple ) -> Any: def find_duplicates(snake_case : Any ): return [k for k, v in collections.Counter(snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowerCamelCase: List[Any] = [] for key in import_dict_objects.keys(): __lowerCamelCase: List[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) __lowerCamelCase: List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowerCamelCase: Optional[Any] = """base imports""" if key == """none""" else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def __lowerCAmelCase ( ) -> Dict: __lowerCamelCase: Union[str, Any] = [] for root, _, files in os.walk(snake_case ): if "__init__.py" in files: __lowerCamelCase: Tuple = os.path.join(snake_case , """__init__.py""" ) __lowerCamelCase: str = parse_init(snake_case ) if objects is not None: __lowerCamelCase: Union[str, Any] = analyze_results(*snake_case ) if len(snake_case ) > 0: __lowerCamelCase: List[str] = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("""\n""".join(snake_case ) ) if len(snake_case ) > 0: raise ValueError("""\n\n""".join(snake_case ) ) def __lowerCAmelCase ( ) -> Optional[int]: __lowerCamelCase: int = [] for path, directories, files in os.walk(snake_case ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case ) / folder).glob("""*.py""" ) ) ) == 0: continue __lowerCamelCase: int = str((Path(snake_case ) / folder).relative_to(snake_case ) ) __lowerCamelCase: Tuple = short_path.replace(os.path.sep , """.""" ) submodules.append(snake_case ) for fname in files: if fname == "__init__.py": continue __lowerCamelCase: List[Any] = str((Path(snake_case ) / fname).relative_to(snake_case ) ) __lowerCamelCase: int = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(snake_case ) return submodules _A : Dict = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def __lowerCAmelCase ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase: Dict = importlib.util.spec_from_file_location( """transformers""" , os.path.join(snake_case , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowerCamelCase: Union[str, Any] = spec.loader.load_module() __lowerCamelCase: str = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(snake_case ) > 0: __lowerCamelCase: Optional[int] = """\n""".join(f'- {module}' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'{list_of_modules}\n' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
189
_A : Tuple = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def __lowerCAmelCase ( ) -> None: __lowerCamelCase: Optional[int] = input("""Enter message: """ ) __lowerCamelCase: Dict = input("""Enter key [alphanumeric]: """ ) __lowerCamelCase: List[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __lowerCamelCase: Optional[int] = """encrypt""" __lowerCamelCase: Optional[int] = encrypt_message(snake_case , snake_case ) elif mode.lower().startswith("""d""" ): __lowerCamelCase: Union[str, Any] = """decrypt""" __lowerCamelCase: Optional[Any] = decrypt_message(snake_case , snake_case ) print(f'\n{mode.title()}ed message:' ) print(snake_case ) def __lowerCAmelCase ( snake_case : str , snake_case : str ) -> str: return translate_message(snake_case , snake_case , """encrypt""" ) def __lowerCAmelCase ( snake_case : str , snake_case : str ) -> str: return translate_message(snake_case , snake_case , """decrypt""" ) def __lowerCAmelCase ( snake_case : str , snake_case : str , snake_case : str ) -> str: __lowerCamelCase: Any = [] __lowerCamelCase: Optional[int] = 0 __lowerCamelCase: Any = key.upper() for symbol in message: __lowerCamelCase: int = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(snake_case ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(snake_case ): __lowerCamelCase: Union[str, Any] = 0 else: translated.append(snake_case ) return "".join(snake_case ) if __name__ == "__main__": main()
189
1
import math from collections.abc import Iterator from itertools import takewhile def __lowerCamelCase ( __lowerCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCamelCase ( ) -> Iterator[int]: __UpperCamelCase : int = 2 while True: if is_prime(__lowerCAmelCase ): yield num num += 1 def __lowerCamelCase ( __lowerCAmelCase : int = 2000000 ) -> int: return sum(takewhile(lambda __lowerCAmelCase : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"""{solution() = }""")
269
from collections.abc import Iterable from typing import Generic, TypeVar UpperCamelCase = TypeVar('_T') class _A ( Generic[_T] ): def __init__( self : int , lowerCamelCase__ : Iterable[_T] | None = None ): """simple docstring""" __UpperCamelCase : list[_T] = list(iterable or [] ) __UpperCamelCase : list[_T] = [] def __len__( self : str ): """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self : Dict ): """simple docstring""" return f'Queue({tuple(self._stacka[::-1] + self._stacka )})' def a ( self : Union[str, Any] , lowerCamelCase__ : _T ): """simple docstring""" self._stacka.append(lowerCamelCase__ ) def a ( self : Union[str, Any] ): """simple docstring""" __UpperCamelCase : Any = self._stacka.pop __UpperCamelCase : int = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
269
1
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class a : def lowerCamelCase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: int =TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: str =UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[str] =DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCamelCase__ ( self : str ) -> Any: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Any =TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Dict =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[Any] =UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: str =DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[Any] =DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Tuple =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCamelCase__ ( self : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =self.get_dummy_components() SCREAMING_SNAKE_CASE_: str =self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =inputs["""prompt"""] SCREAMING_SNAKE_CASE_: Tuple =inputs["""generator"""] SCREAMING_SNAKE_CASE_: Tuple =inputs["""num_inference_steps"""] SCREAMING_SNAKE_CASE_: Tuple =inputs["""output_type"""] if "image" in inputs: SCREAMING_SNAKE_CASE_: List[str] =inputs["""image"""] else: SCREAMING_SNAKE_CASE_: Union[str, Any] =None if "mask_image" in inputs: SCREAMING_SNAKE_CASE_: Optional[Any] =inputs["""mask_image"""] else: SCREAMING_SNAKE_CASE_: Tuple =None if "original_image" in inputs: SCREAMING_SNAKE_CASE_: List[str] =inputs["""original_image"""] else: SCREAMING_SNAKE_CASE_: Optional[int] =None SCREAMING_SNAKE_CASE_: str =pipe.encode_prompt(lowerCAmelCase ) # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE_: Union[str, Any] ={ """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: SCREAMING_SNAKE_CASE_: int =image if mask_image is not None: SCREAMING_SNAKE_CASE_: Optional[Any] =mask_image if original_image is not None: SCREAMING_SNAKE_CASE_: str =original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =pipe(**lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =self.pipeline_class.from_pretrained(lowerCAmelCase ) pipe_loaded.to(lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase , lowerCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) SCREAMING_SNAKE_CASE_: Optional[int] =self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =inputs["""generator"""] SCREAMING_SNAKE_CASE_: List[str] =inputs["""num_inference_steps"""] SCREAMING_SNAKE_CASE_: List[str] =inputs["""output_type"""] # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE_: Dict ={ """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =image if mask_image is not None: SCREAMING_SNAKE_CASE_: List[str] =mask_image if original_image is not None: SCREAMING_SNAKE_CASE_: int =original_image SCREAMING_SNAKE_CASE_: List[str] =pipe_loaded(**lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_: Optional[int] =np.abs(to_np(lowerCAmelCase ) - to_np(lowerCAmelCase ) ).max() self.assertLess(lowerCAmelCase , 1E-4 ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =self.get_dummy_components() SCREAMING_SNAKE_CASE_: Any =self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =pipe(**lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =self.pipeline_class.from_pretrained(lowerCAmelCase ) pipe_loaded.to(lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests SCREAMING_SNAKE_CASE_: Tuple =self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =pipe_loaded(**lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_: List[Any] =np.abs(to_np(lowerCAmelCase ) - to_np(lowerCAmelCase ) ).max() self.assertLess(lowerCAmelCase , 1E-4 )
709
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _UpperCAmelCase = parser.parse_args() if args.model_type == "bert": _UpperCAmelCase = BertForMaskedLM.from_pretrained(args.model_name) _UpperCAmelCase = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _UpperCAmelCase = model.state_dict() _UpperCAmelCase = {} for w in ["word_embeddings", "position_embeddings"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _UpperCAmelCase = state_dict["""cls.predictions.decoder.weight"""] _UpperCAmelCase = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""cls.predictions.transform.dense.{w}"""] _UpperCAmelCase = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
36
0
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @property def __UpperCAmelCase ( self ) -> Any: torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Optional[int] = self.dummy_uncond_unet UpperCAmelCase_ : Optional[Any] = KarrasVeScheduler() UpperCAmelCase_ : int = KarrasVePipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=2 , generator=_UpperCamelCase , output_type='numpy' ).images UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = pipe(num_inference_steps=2 , generator=_UpperCamelCase , output_type='numpy' , return_dict=_UpperCamelCase )[0] UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCAmelCase_ : Tuple = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : int = 'google/ncsnpp-celebahq-256' UpperCAmelCase_ : Optional[int] = UNetaDModel.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Any = KarrasVeScheduler() UpperCAmelCase_ : Dict = KarrasVePipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = pipe(num_inference_steps=2_0 , generator=_UpperCamelCase , output_type='numpy' ).images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) UpperCAmelCase_ : List[Any] = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
406
def lowercase__ ( __snake_case : list , __snake_case : list ): '''simple docstring''' _validate_point(__snake_case ) _validate_point(__snake_case ) if len(__snake_case ) != len(__snake_case ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(__snake_case , __snake_case ) ) ) def lowercase__ ( __snake_case : list[float] ): '''simple docstring''' if point: if isinstance(__snake_case , __snake_case ): for item in point: if not isinstance(__snake_case , (int, float) ): UpperCAmelCase_ : Optional[int] = ( 'Expected a list of numbers as input, found ' F"{type(__snake_case ).__name__}" ) raise TypeError(__snake_case ) else: UpperCAmelCase_ : int = F"Expected a list of numbers as input, found {type(__snake_case ).__name__}" raise TypeError(__snake_case ) else: raise ValueError('Missing an input' ) def lowercase__ ( __snake_case : list , __snake_case : list ): '''simple docstring''' _validate_point(__snake_case ) _validate_point(__snake_case ) if len(__snake_case ) != len(__snake_case ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(__snake_case , __snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
406
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase_ = 250_004 UpperCAmelCase_ = 250_020 @require_sentencepiece @require_tokenizers class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Any = MBartTokenizer UpperCAmelCase__ : Union[str, Any] = MBartTokenizerFast UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : Tuple = True def lowerCAmelCase__ ( self: Dict ): super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = MBartTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = MBartTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) __lowerCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowerCAmelCase__ ( self: Union[str, Any] ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowerCamelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __lowerCamelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_ ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCamelCase_ ) # Save tokenizer rust, legacy_format=True __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_ ) __lowerCamelCase = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_ ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) # Save tokenizer rust, legacy_format=False __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_ ) __lowerCamelCase = tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = 'facebook/mbart-large-en-ro' UpperCAmelCase__ : Optional[Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] UpperCAmelCase__ : Tuple = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] UpperCAmelCase__ : int = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE] @classmethod def lowerCAmelCase__ ( cls: List[Any] ): __lowerCamelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) __lowerCamelCase = 1 return cls def lowerCAmelCase__ ( self: str ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_00_20 ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): self.assertIn(UpperCamelCase_ , self.tokenizer.all_special_ids ) __lowerCamelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __lowerCamelCase = self.tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) __lowerCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , UpperCamelCase_ ) __lowerCamelCase = 10 __lowerCamelCase = self.tokenizer(UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_00_26, 25_00_01] ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = MBartTokenizer.from_pretrained(UpperCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase_ ) @require_torch def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , return_tensors="""pt""" ) __lowerCamelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) __lowerCamelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __lowerCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.tokenizer(self.src_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=3 , return_tensors="""pt""" ) __lowerCamelCase = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=10 , return_tensors="""pt""" ) __lowerCamelCase = targets["""input_ids"""] __lowerCamelCase = shift_tokens_right(UpperCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[62, 30_34, 2, 25_00_04]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_00_01, } , )
80
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = [] __lowerCamelCase = [] for i in range(self.num_layers ): __lowerCamelCase = self.in_channels if i == 0 else self.out_channels __lowerCamelCase = FlaxResnetBlockaD( in_channels=UpperCamelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase_ ) __lowerCamelCase = resnets __lowerCamelCase = attentions if self.add_downsample: __lowerCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int=True ): __lowerCamelCase = () for resnet, attn in zip(self.resnets , self.attentions ): __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) __lowerCamelCase = attn(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: __lowerCamelCase = self.downsamplers_a(UpperCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = [] for i in range(self.num_layers ): __lowerCamelCase = self.in_channels if i == 0 else self.out_channels __lowerCamelCase = FlaxResnetBlockaD( in_channels=UpperCamelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = resnets if self.add_downsample: __lowerCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: str , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: int=True ): __lowerCamelCase = () for resnet in self.resnets: __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: __lowerCamelCase = self.downsamplers_a(UpperCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = [] __lowerCamelCase = [] for i in range(self.num_layers ): __lowerCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCamelCase = self.prev_output_channel if i == 0 else self.out_channels __lowerCamelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase_ ) __lowerCamelCase = resnets __lowerCamelCase = attentions if self.add_upsample: __lowerCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: List[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __lowerCamelCase = res_hidden_states_tuple[-1] __lowerCamelCase = res_hidden_states_tuple[:-1] __lowerCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) __lowerCamelCase = attn(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) if self.add_upsample: __lowerCamelCase = self.upsamplers_a(UpperCamelCase_ ) return hidden_states class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = [] for i in range(self.num_layers ): __lowerCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCamelCase = self.prev_output_channel if i == 0 else self.out_channels __lowerCamelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = resnets if self.add_upsample: __lowerCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: List[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any]=True ): for resnet in self.resnets: # pop res hidden states __lowerCamelCase = res_hidden_states_tuple[-1] __lowerCamelCase = res_hidden_states_tuple[:-1] __lowerCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) if self.add_upsample: __lowerCamelCase = self.upsamplers_a(UpperCamelCase_ ) return hidden_states class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: int ): # there is always at least one resnet __lowerCamelCase = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __lowerCamelCase = [] for _ in range(self.num_layers ): __lowerCamelCase = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase_ ) __lowerCamelCase = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = resnets __lowerCamelCase = attentions def __call__( self: int , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int]=True ): __lowerCamelCase = self.resnets[0](UpperCamelCase_ , UpperCamelCase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __lowerCamelCase = attn(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) return hidden_states
80
1
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : str = (UniPCMultistepScheduler,) __SCREAMING_SNAKE_CASE : Dict = (("""num_inference_steps""", 25),) def UpperCAmelCase__ ( self : str , **__UpperCamelCase : Any ): _UpperCAmelCase = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__UpperCamelCase ) return config def UpperCAmelCase__ ( self : int , __UpperCamelCase : Any=0 , **__UpperCamelCase : Any ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase , _UpperCAmelCase = sample, sample for t in range(__UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any]=0 , **__UpperCamelCase : List[Any] ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Dict=None , **__UpperCamelCase : Optional[Any] ): if scheduler is None: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(__UpperCamelCase ) elif num_inference_steps is not None and not hasattr(__UpperCamelCase , "set_timesteps" ): _UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] _UpperCAmelCase = scheduler.timesteps[5] _UpperCAmelCase = scheduler.timesteps[6] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self : Union[str, Any] ): # make sure that iterating over schedulers with same config names gives same results # for defaults _UpperCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 _UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase__ ( self : str ): for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def UpperCAmelCase__ ( self : int ): self.check_over_configs(thresholding=__UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , ) def UpperCAmelCase__ ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def UpperCAmelCase__ ( self : int ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) _UpperCAmelCase = self.full_loop( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) assert not torch.isnan(__UpperCamelCase ).any(), "Samples have nan numbers" def UpperCAmelCase__ ( self : Optional[int] ): self.check_over_configs(lower_order_final=__UpperCamelCase ) self.check_over_configs(lower_order_final=__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__UpperCamelCase , time_step=0 ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = self.full_loop() _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.full_loop(prediction_type="v_prediction" ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(thresholding=__UpperCamelCase , dynamic_thresholding_ratio=0 ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase__ ( self : str , **__UpperCamelCase : Optional[Any] ): for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
684
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __a , unittest.TestCase ): _UpperCAmelCase = None _UpperCAmelCase = BloomTokenizerFast _UpperCAmelCase = BloomTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = '''tokenizer_file''' _UpperCAmelCase = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def UpperCamelCase ( self ) -> Dict: super().setUp() snake_case = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , **A__ ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase ( self ) -> List[Any]: snake_case = self.get_rust_tokenizer() snake_case = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] snake_case = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] snake_case = tokenizer.batch_encode_plus(A__ )['''input_ids'''] self.assertListEqual(A__ , A__ ) snake_case = tokenizer.batch_decode(A__ ) self.assertListEqual(A__ , A__ ) def UpperCamelCase ( self , A__=6 ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input snake_case = '''This is a simple input''' snake_case = ['''This is a simple input 1''', '''This is a simple input 2'''] snake_case = ('''This is a simple input''', '''This is a pair''') snake_case = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(A__ , max_length=A__ ) tokenizer_r.encode_plus(A__ , max_length=A__ ) tokenizer_r.batch_encode_plus(A__ , max_length=A__ ) tokenizer_r.encode(A__ , max_length=A__ ) tokenizer_r.batch_encode_plus(A__ , max_length=A__ ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) snake_case = None # Hotfixing padding = None self.assertRaises(A__ , tokenizer_r.encode , A__ , max_length=A__ , padding='''max_length''' ) # Simple input self.assertRaises(A__ , tokenizer_r.encode_plus , A__ , max_length=A__ , padding='''max_length''' ) # Simple input self.assertRaises( A__ , tokenizer_r.batch_encode_plus , A__ , max_length=A__ , padding='''max_length''' , ) # Pair input self.assertRaises(A__ , tokenizer_r.encode , A__ , max_length=A__ , padding='''max_length''' ) # Pair input self.assertRaises(A__ , tokenizer_r.encode_plus , A__ , max_length=A__ , padding='''max_length''' ) # Pair input self.assertRaises( A__ , tokenizer_r.batch_encode_plus , A__ , max_length=A__ , padding='''max_length''' , ) def UpperCamelCase ( self ) -> Any: snake_case = self.get_rust_tokenizer() snake_case = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=A__ ) snake_case = next(iter(A__ ) )['''premise'''] # pick up one data snake_case = list(sample_data.values() ) snake_case = list(map(tokenizer.encode , A__ ) ) snake_case = [tokenizer.decode(A__ , clean_up_tokenization_spaces=A__ ) for x in output_tokens] self.assertListEqual(A__ , A__ ) def UpperCamelCase ( self ) -> Optional[Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
44
'''simple docstring''' import argparse import copy def __UpperCamelCase ( a : Union[str, Any] ) ->Tuple: snake_case = {} with open(a ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[1], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: snake_case = [] _list.append([line.split()[0], line.split()[2]] ) snake_case = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def __UpperCamelCase ( a : Dict , a : Tuple ) ->int: with open(a ) as f: snake_case = f.read(1 ) snake_case = start_node snake_case = [] snake_case = start_node snake_case = 0 while visiting not in first_solution: snake_case = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(a ) and k[0] not in first_solution: snake_case = k[1] snake_case = k[0] first_solution.append(a ) snake_case = distance_of_first_solution + int(a ) snake_case = best_node first_solution.append(a ) snake_case = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 snake_case = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def __UpperCamelCase ( a : Optional[int] , a : str ) ->str: snake_case = [] for n in solution[1:-1]: snake_case = solution.index(a ) for kn in solution[1:-1]: snake_case = solution.index(a ) if n == kn: continue snake_case = copy.deepcopy(a ) snake_case = kn snake_case = n snake_case = 0 for k in _tmp[:-1]: snake_case = _tmp[_tmp.index(a ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: snake_case = distance + int(i[1] ) _tmp.append(a ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) snake_case = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda a : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def __UpperCamelCase ( a : Any , a : Optional[Any] , a : int , a : Optional[int] , a : Union[str, Any] ) ->List[Any]: snake_case = 1 snake_case = first_solution snake_case = [] snake_case = distance_of_first_solution snake_case = solution while count <= iters: snake_case = find_neighborhood(a , a ) snake_case = 0 snake_case = neighborhood[index_of_best_solution] snake_case = len(a ) - 1 snake_case = False while not found: snake_case = 0 while i < len(a ): if best_solution[i] != solution[i]: snake_case = best_solution[i] snake_case = solution[i] break snake_case = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) snake_case = True snake_case = best_solution[:-1] snake_case = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: snake_case = cost snake_case = solution else: snake_case = index_of_best_solution + 1 snake_case = neighborhood[index_of_best_solution] if len(a ) >= size: tabu_list.pop(0 ) snake_case = count + 1 return best_solution_ever, best_cost def __UpperCamelCase ( a : Union[str, Any]=None ) ->Optional[Any]: snake_case = generate_neighbours(args.File ) snake_case , snake_case = generate_first_solution( args.File , a ) snake_case , snake_case = tabu_search( a , a , a , args.Iterations , args.Size , ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
44
1