code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCAmelCase__ : List[str] =None lowerCAmelCase__ : str =logging.get_logger(__name__) lowerCAmelCase__ : Any ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ : List[Any] ={ 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCAmelCase__ : Any ={ 'google/fnet-base': 5_12, 'google/fnet-large': 5_12, } lowerCAmelCase__ : Optional[Any] ='▁' class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["""input_ids""", """token_type_ids"""] _UpperCAmelCase = FNetTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="<unk>" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , **lowerCAmelCase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ( AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ , normalized=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token ) super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE_ : int = remove_space SCREAMING_SNAKE_CASE_ : Optional[int] = keep_accents SCREAMING_SNAKE_CASE_ : Any = vocab_file SCREAMING_SNAKE_CASE_ : Optional[Any] = False if not self.vocab_file else True def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
101
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowercase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = GPTaTokenizer SCREAMING_SNAKE_CASE__ = GPTaTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = {'add_prefix_space': True} SCREAMING_SNAKE_CASE__ = False def __A ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] UpperCAmelCase_ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) UpperCAmelCase_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase_ = {"unk_token": "<unk>"} UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase ) ) def __A ( self : Optional[int] , **lowerCAmelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def __A ( self : Union[str, Any] , **lowerCAmelCase : Tuple ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def __A ( self : Optional[Any] , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase_ = "lower newer" UpperCAmelCase_ = "lower newer" return input_text, output_text def __A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ = "lower newer" UpperCAmelCase_ = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase , add_prefix_space=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = tokens + [tokenizer.unk_token] UpperCAmelCase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) def __A ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase ) UpperCAmelCase_ = "lower newer" # Testing tokenization UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase , add_prefix_space=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Testing conversion to ids without special tokens UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Testing conversion to ids with special tokens UpperCAmelCase_ = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_prefix_space=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Testing the unknown token UpperCAmelCase_ = tokens + [rust_tokenizer.unk_token] UpperCAmelCase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) def __A ( self : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : int ): '''simple docstring''' pass def __A ( self : str , lowerCAmelCase : List[str]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) # Simple input UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] UpperCAmelCase_ = ("This is a simple input", "This is a pair") UpperCAmelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , ) def __A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input looooooooong", "This is a simple input"] UpperCAmelCase_ = ("This is a simple input", "This is a pair") UpperCAmelCase_ = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] UpperCAmelCase_ = tokenizer.pad_token_id UpperCAmelCase_ = tokenizer(lowerCAmelCase , padding="max_length" , max_length=30 , return_tensors="np" ) UpperCAmelCase_ = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , truncate=lowerCAmelCase , return_tensors="np" ) UpperCAmelCase_ = tokenizer(*lowerCAmelCase , padding="max_length" , max_length=60 , return_tensors="np" ) UpperCAmelCase_ = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , truncate=lowerCAmelCase , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __A ( self : Dict ): '''simple docstring''' UpperCAmelCase_ = "$$$" UpperCAmelCase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=lowerCAmelCase , add_bos_token=lowerCAmelCase ) UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] UpperCAmelCase_ = tokenizer.bos_token_id UpperCAmelCase_ = tokenizer(lowerCAmelCase ) UpperCAmelCase_ = tokenizer(lowerCAmelCase ) self.assertEqual(out_s.input_ids[0] , lowerCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) UpperCAmelCase_ = tokenizer.decode(out_s.input_ids ) UpperCAmelCase_ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , lowerCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __A ( self : int ): '''simple docstring''' pass def __A ( self : Dict ): '''simple docstring''' UpperCAmelCase_ = [self.get_tokenizer(do_lower_case=lowerCAmelCase , add_bos_token=lowerCAmelCase )] for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): UpperCAmelCase_ = "Encode this." UpperCAmelCase_ = "This one too please." UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) encoded_sequence += tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode_plus( lowerCAmelCase , lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , ) UpperCAmelCase_ = encoded_sequence_dict["input_ids"] UpperCAmelCase_ = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) UpperCAmelCase_ = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(lowerCAmelCase ) ] UpperCAmelCase_ = [x for x in filtered_sequence if x is not None] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): def __A ( self : int ): '''simple docstring''' UpperCAmelCase_ = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=lowerCAmelCase ) UpperCAmelCase_ = "A photo of a cat" UpperCAmelCase_ = tokenizer.encode( lowerCAmelCase , ) self.assertEqual(lowerCAmelCase , [2, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained("test_opt" ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("./test_opt" ) UpperCAmelCase_ = tokenizer.encode( lowerCAmelCase , ) self.assertEqual(lowerCAmelCase , [2, 250, 1_345, 9, 10, 4_758] ) def __A ( self : int ): '''simple docstring''' UpperCAmelCase_ = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=lowerCAmelCase ) UpperCAmelCase_ = "A photo of a cat" UpperCAmelCase_ = tokenizer.encode( lowerCAmelCase , ) # Same as above self.assertEqual(lowerCAmelCase , [2, 250, 1_345, 9, 10, 4_758] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def __A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=lowerCAmelCase ) UpperCAmelCase_ = "bos" UpperCAmelCase_ = tokenizer.get_vocab()["bos"] UpperCAmelCase_ = "A photo of a cat" UpperCAmelCase_ = tokenizer.encode( lowerCAmelCase , ) # We changed the bos token self.assertEqual(lowerCAmelCase , [31_957, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained("./tok" ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) UpperCAmelCase_ = tokenizer.encode( lowerCAmelCase , ) self.assertEqual(lowerCAmelCase , [31_957, 250, 1_345, 9, 10, 4_758] )
162
0
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=30 , lowerCAmelCase_=2 , lowerCAmelCase_=3 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=10 , lowerCAmelCase_=0.02 , lowerCAmelCase_=None , lowerCAmelCase_=2 , ): '''simple docstring''' a_ : Optional[Any] = parent a_ : Dict = batch_size a_ : Optional[Any] = image_size a_ : Any = patch_size a_ : str = num_channels a_ : Union[str, Any] = is_training a_ : Tuple = use_labels a_ : Tuple = hidden_size a_ : Any = num_hidden_layers a_ : Optional[Any] = num_attention_heads a_ : List[str] = intermediate_size a_ : Tuple = hidden_act a_ : List[str] = hidden_dropout_prob a_ : List[str] = attention_probs_dropout_prob a_ : str = type_sequence_label_size a_ : List[str] = initializer_range a_ : Optional[Any] = scope a_ : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a_ : Any = (image_size // patch_size) ** 2 a_ : int = num_patches + 1 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : List[str] = None if self.use_labels: a_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] = ViTModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : Any = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : str = ViTForMaskedImageModeling(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : List[Any] = model(lowerCAmelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images a_ : Optional[Any] = 1 a_ : Union[str, Any] = ViTForMaskedImageModeling(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a_ : List[str] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Optional[Any] = self.type_sequence_label_size a_ : Union[str, Any] = ViTForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : str = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a_ : Optional[int] = 1 a_ : Tuple = ViTForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() a_ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a_ : Tuple = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ) : Union[str, Any] = config_and_inputs a_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): """simple docstring""" a_ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) a_ = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) a_ = True a_ = False a_ = False a_ = False def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = ViTModelTester(self ) a_ : Dict = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def _lowerCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def _lowerCAmelCase ( self ): '''simple docstring''' pass def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Optional[int] = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a_ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ , a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Union[str, Any] = model_class(lowerCAmelCase_ ) a_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : str = [*signature.parameters.keys()] a_ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def _lowerCAmelCase ( self ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : List[str] = ViTModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def _snake_case ( ): """simple docstring""" a_ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(lowerCAmelCase_ ) a_ : Union[str, Any] = self.default_image_processor a_ : List[Any] = prepare_img() a_ : Union[str, Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): a_ : List[str] = model(**lowerCAmelCase_ ) # verify the logits a_ : List[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) a_ : int = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(lowerCAmelCase_ ) a_ : int = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=4_80 ) a_ : int = prepare_img() a_ : Tuple = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) a_ : Union[str, Any] = inputs.pixel_values.to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): a_ : int = model(lowerCAmelCase_ , interpolate_pos_encoding=lowerCAmelCase_ ) # verify the logits a_ : Optional[int] = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase_ ) a_ : Any = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) a_ : Any = self.default_image_processor a_ : Union[str, Any] = prepare_img() a_ : Optional[int] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) a_ : List[Any] = inputs.pixel_values.to(lowerCAmelCase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): a_ : str = model(lowerCAmelCase_ )
460
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = 42 a_ = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
460
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """char""" A_ = """bpe""" A_ = """wp""" snake_case__ : Union[str, Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = ["""image_processor""", """char_tokenizer"""] A_ = """ViTImageProcessor""" A_ = """MgpstrTokenizer""" def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , a_ , ) UpperCamelCase_ = kwargs.pop('feature_extractor' ) UpperCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) UpperCamelCase_ = tokenizer UpperCamelCase_ = AutoTokenizer.from_pretrained('gpt2' ) UpperCamelCase_ = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(a_ , a_ ) def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ) -> List[Any]: if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: UpperCamelCase_ = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None: UpperCamelCase_ = self.char_tokenizer(a_ , return_tensors=a_ , **a_ ) if text is None: return inputs elif images is None: return encodings else: UpperCamelCase_ = encodings['input_ids'] return inputs def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = sequences UpperCamelCase_ = char_preds.size(0 ) UpperCamelCase_ , UpperCamelCase_ = self._decode_helper(a_ , 'char' ) UpperCamelCase_ , UpperCamelCase_ = self._decode_helper(a_ , 'bpe' ) UpperCamelCase_ , UpperCamelCase_ = self._decode_helper(a_ , 'wp' ) UpperCamelCase_ = [] UpperCamelCase_ = [] for i in range(a_ ): UpperCamelCase_ = [char_scores[i], bpe_scores[i], wp_scores[i]] UpperCamelCase_ = [char_strs[i], bpe_strs[i], wp_strs[i]] UpperCamelCase_ = scores.index(max(a_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCamelCase_ = {} UpperCamelCase_ = final_strs UpperCamelCase_ = final_scores UpperCamelCase_ = char_strs UpperCamelCase_ = bpe_strs UpperCamelCase_ = wp_strs return out def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: if format == DecodeType.CHARACTER: UpperCamelCase_ = self.char_decode UpperCamelCase_ = 1 UpperCamelCase_ = '[s]' elif format == DecodeType.BPE: UpperCamelCase_ = self.bpe_decode UpperCamelCase_ = 2 UpperCamelCase_ = '#' elif format == DecodeType.WORDPIECE: UpperCamelCase_ = self.wp_decode UpperCamelCase_ = 102 UpperCamelCase_ = '[SEP]' else: raise ValueError(f"""Format {format} is not supported.""" ) UpperCamelCase_ , UpperCamelCase_ = [], [] UpperCamelCase_ = pred_logits.size(0 ) UpperCamelCase_ = pred_logits.size(1 ) UpperCamelCase_ , UpperCamelCase_ = pred_logits.topk(1 , dim=-1 , largest=a_ , sorted=a_ ) UpperCamelCase_ = preds_index.view(-1 , a_ )[:, 1:] UpperCamelCase_ = decoder(a_ ) UpperCamelCase_ , UpperCamelCase_ = torch.nn.functional.softmax(a_ , dim=2 ).max(dim=2 ) UpperCamelCase_ = preds_max_prob[:, 1:] for index in range(a_ ): UpperCamelCase_ = preds_str[index].find(a_ ) UpperCamelCase_ = preds_str[index][:pred_eos] UpperCamelCase_ = preds_index[index].cpu().tolist() UpperCamelCase_ = pred_index.index(a_ ) if eos_token in pred_index else -1 UpperCamelCase_ = preds_max_prob[index][: pred_eos_index + 1] UpperCamelCase_ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(a_ ) conf_scores.append(a_ ) return dec_strs, conf_scores def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Any: UpperCamelCase_ = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(a_ )] return decode_strs def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[int]: return self.bpe_tokenizer.batch_decode(a_ ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(a_ )] return decode_strs
23
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on lowerCAmelCase__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowerCAmelCase__ = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } lowerCAmelCase__ = os.path.join(self.tmpdirname ,a_ ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(a_ ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ,**a_ ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname ,**a_ ) def SCREAMING_SNAKE_CASE_ ( self ,**a_ ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname ,**a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(a_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) lowerCAmelCase__ = self.get_image_processor(do_normalize=a_ ,padding_value=1.0 ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=a_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(a_ ,return_tensors='np' ) lowerCAmelCase__ = processor(images=a_ ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = 'lower newer' lowerCAmelCase__ = processor(text=a_ ) lowerCAmelCase__ = tokenizer(a_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = 'lower newer' lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=a_ ,images=a_ ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(a_ ): processor() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(a_ ) lowerCAmelCase__ = tokenizer.batch_decode(a_ ) self.assertListEqual(a_ ,a_ ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=a_ ,image_processor=a_ ) lowerCAmelCase__ = 'lower newer' lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=a_ ,images=a_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
193
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType A__: List[Any] = get_logger(__name__) def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_ ,A_=0): os.makedirs(A_ ,exist_ok=A_) with FSDP.state_dict_type( A_ ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config): UpperCamelCase__: List[str] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCamelCase__: List[str] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" UpperCamelCase__: Dict = os.path.join(A_ ,A_) if accelerator.process_index == 0: logger.info(F"Saving model to {output_model_file}") torch.save(A_ ,A_) logger.info(F"Model saved to {output_model_file}") elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCamelCase__: List[Any] = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) UpperCamelCase__: Optional[Any] = os.path.join(A_ ,A_) logger.info(F"Saving model to {output_model_file}") torch.save(A_ ,A_) logger.info(F"Model saved to {output_model_file}") elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCamelCase__: Optional[int] = os.path.join(A_ ,F"{MODEL_NAME}_{model_index}") os.makedirs(A_ ,exist_ok=A_) logger.info(F"Saving model to {ckpt_dir}") UpperCamelCase__: Dict = {"model": state_dict} dist_cp.save_state_dict( state_dict=A_ ,storage_writer=dist_cp.FileSystemWriter(A_) ,planner=DefaultSavePlanner() ,) logger.info(F"Model saved to {ckpt_dir}") def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_ ,A_=0): accelerator.wait_for_everyone() with FSDP.state_dict_type( A_ ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A_) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object") return UpperCamelCase__: int = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin" UpperCamelCase__: List[str] = os.path.join(A_ ,A_) logger.info(F"Loading model from {input_model_file}") UpperCamelCase__: Any = torch.load(A_) logger.info(F"Model loaded from {input_model_file}") elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCamelCase__: List[Any] = ( F"{MODEL_NAME}_rank{accelerator.process_index}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" ) UpperCamelCase__: str = os.path.join(A_ ,A_) logger.info(F"Loading model from {input_model_file}") UpperCamelCase__: Any = torch.load(A_) logger.info(F"Model loaded from {input_model_file}") elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCamelCase__: Optional[Any] = ( os.path.join(A_ ,F"{MODEL_NAME}_{model_index}") if F"{MODEL_NAME}" not in input_dir else input_dir ) logger.info(F"Loading model from {ckpt_dir}") UpperCamelCase__: Optional[int] = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=A_ ,storage_reader=dist_cp.FileSystemReader(A_) ,planner=DefaultLoadPlanner() ,) UpperCamelCase__: Any = state_dict["model"] logger.info(F"Model loaded from {ckpt_dir}") model.load_state_dict(A_) def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_ ,A_ ,A_=0): os.makedirs(A_ ,exist_ok=A_) with FSDP.state_dict_type( A_ ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config): UpperCamelCase__: str = FSDP.optim_state_dict(A_ ,A_) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCamelCase__: List[str] = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) UpperCamelCase__: Any = os.path.join(A_ ,A_) logger.info(F"Saving Optimizer state to {output_optimizer_file}") torch.save(A_ ,A_) logger.info(F"Optimizer state saved in {output_optimizer_file}") else: UpperCamelCase__: Any = os.path.join(A_ ,F"{OPTIMIZER_NAME}_{optimizer_index}") os.makedirs(A_ ,exist_ok=A_) logger.info(F"Saving Optimizer state to {ckpt_dir}") dist_cp.save_state_dict( state_dict={"optimizer": optim_state} ,storage_writer=dist_cp.FileSystemWriter(A_) ,planner=DefaultSavePlanner() ,) logger.info(F"Optimizer state saved in {ckpt_dir}") def lowerCAmelCase_ ( A_ ,A_ ,A_ ,A_ ,A_ ,A_=0): accelerator.wait_for_everyone() with FSDP.state_dict_type( A_ ,fsdp_plugin.state_dict_type ,fsdp_plugin.state_dict_config ,fsdp_plugin.optim_state_dict_config): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCamelCase__: Union[str, Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCamelCase__: Dict = ( F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin" ) UpperCamelCase__: Union[str, Any] = os.path.join(A_ ,A_) logger.info(F"Loading Optimizer state from {input_optimizer_file}") UpperCamelCase__: Optional[int] = torch.load(A_) logger.info(F"Optimizer state loaded from {input_optimizer_file}") else: UpperCamelCase__: List[str] = ( os.path.join(A_ ,F"{OPTIMIZER_NAME}_{optimizer_index}") if F"{OPTIMIZER_NAME}" not in input_dir else input_dir ) logger.info(F"Loading Optimizer from {ckpt_dir}") UpperCamelCase__: Dict = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() ,optimizer_key="optimizer" ,storage_reader=dist_cp.FileSystemReader(A_) ,) UpperCamelCase__: List[str] = optim_state["optimizer"] logger.info(F"Optimizer loaded from {ckpt_dir}") UpperCamelCase__: Optional[int] = FSDP.optim_state_dict_to_load(A_ ,A_ ,A_) optimizer.load_state_dict(A_)
221
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__: Dict = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: int = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys A__: List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
221
1
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : str ) -> Optional[int]: """simple docstring""" A__ , A__ = [], [] while len(UpperCAmelCase_ ) > 1: A__ , A__ = min(UpperCAmelCase_ ), max(UpperCAmelCase_ ) start.append(UpperCAmelCase_ ) end.append(UpperCAmelCase_ ) collection.remove(UpperCAmelCase_ ) collection.remove(UpperCAmelCase_ ) end.reverse() return start + collection + end if __name__ == "__main__": UpperCamelCase = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
104
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase = logging.get_logger(__name__) class snake_case__ ( _UpperCamelCase ): _SCREAMING_SNAKE_CASE : str = ["pixel_values"] def __init__( self : List[Any] , A__ : bool = True , A__ : Optional[Dict[str, int]] = None , A__ : PILImageResampling = PILImageResampling.BILINEAR , A__ : bool = True , A__ : Dict[str, int] = None , A__ : bool = True , A__ : Union[int, float] = 1 / 2_55 , A__ : bool = True , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[float, List[float]]] = None , **A__ : int , ) -> None: '''simple docstring''' super().__init__(**A__ ) snake_case_ : Optional[int] = size if size is not None else {"shortest_edge": 2_56} snake_case_ : Dict = get_size_dict(A__ , default_to_square=A__ ) snake_case_ : List[str] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} snake_case_ : Any = get_size_dict(A__ , param_name="crop_size" ) snake_case_ : int = do_resize snake_case_ : Optional[Any] = size snake_case_ : Optional[Any] = resample snake_case_ : Optional[int] = do_center_crop snake_case_ : List[Any] = crop_size snake_case_ : List[Any] = do_rescale snake_case_ : Optional[int] = rescale_factor snake_case_ : Optional[Any] = do_normalize snake_case_ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case_ : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ ( self : List[str] , A__ : np.ndarray , A__ : Dict[str, int] , A__ : PILImageResampling = PILImageResampling.BICUBIC , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : str , ) -> np.ndarray: '''simple docstring''' snake_case_ : Optional[Any] = get_size_dict(A__ , default_to_square=A__ ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) snake_case_ : Any = get_resize_output_image_size(A__ , size=size["shortest_edge"] , default_to_square=A__ ) return resize(A__ , size=A__ , resample=A__ , data_format=A__ , **A__ ) def UpperCAmelCase__ ( self : int , A__ : np.ndarray , A__ : Dict[str, int] , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' snake_case_ : Tuple = get_size_dict(A__ ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(A__ , size=(size["height"], size["width"]) , data_format=A__ , **A__ ) def UpperCAmelCase__ ( self : List[str] , A__ : np.ndarray , A__ : float , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Tuple ) -> np.ndarray: '''simple docstring''' return rescale(A__ , scale=A__ , data_format=A__ , **A__ ) def UpperCAmelCase__ ( self : Tuple , A__ : np.ndarray , A__ : Union[float, List[float]] , A__ : Union[float, List[float]] , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Dict , ) -> np.ndarray: '''simple docstring''' return normalize(A__ , mean=A__ , std=A__ , data_format=A__ , **A__ ) def UpperCAmelCase__ ( self : Union[str, Any] , A__ : ImageInput , A__ : Optional[bool] = None , A__ : Dict[str, int] = None , A__ : PILImageResampling = None , A__ : bool = None , A__ : Dict[str, int] = None , A__ : Optional[bool] = None , A__ : Optional[float] = None , A__ : Optional[bool] = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[str, TensorType]] = None , A__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **A__ : Union[str, Any] , ) -> Optional[int]: '''simple docstring''' snake_case_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case_ : Dict = size if size is not None else self.size snake_case_ : Optional[Any] = get_size_dict(A__ , default_to_square=A__ ) snake_case_ : Tuple = resample if resample is not None else self.resample snake_case_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case_ : str = crop_size if crop_size is not None else self.crop_size snake_case_ : Tuple = get_size_dict(A__ , param_name="crop_size" ) snake_case_ : Dict = do_rescale if do_rescale is not None else self.do_rescale snake_case_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case_ : Any = do_normalize if do_normalize is not None else self.do_normalize snake_case_ : Any = image_mean if image_mean is not None else self.image_mean snake_case_ : List[str] = image_std if image_std is not None else self.image_std snake_case_ : Dict = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case_ : Tuple = [to_numpy_array(A__ ) for image in images] if do_resize: snake_case_ : Any = [self.resize(image=A__ , size=A__ , resample=A__ ) for image in images] if do_center_crop: snake_case_ : List[str] = [self.center_crop(image=A__ , size=A__ ) for image in images] if do_rescale: snake_case_ : Any = [self.rescale(image=A__ , scale=A__ ) for image in images] if do_normalize: snake_case_ : Union[str, Any] = [self.normalize(image=A__ , mean=A__ , std=A__ ) for image in images] snake_case_ : Optional[Any] = [to_channel_dimension_format(A__ , A__ ) for image in images] snake_case_ : Any = {"pixel_values": images} return BatchFeature(data=A__ , tensor_type=A__ ) def UpperCAmelCase__ ( self : List[str] , A__ : Dict , A__ : List[Tuple] = None ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A__ ) != len(A__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(A__ ): snake_case_ : Dict = target_sizes.numpy() snake_case_ : int = [] for idx in range(len(A__ ) ): snake_case_ : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=A__ ) snake_case_ : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A__ ) else: snake_case_ : List[Any] = logits.argmax(dim=1 ) snake_case_ : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
666
0
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def lowerCamelCase (a_ :Union[str, Any]) -> Optional[Any]: for pegasus_name, hf_name in PATTERNS: lowercase :List[Any] = k.replace(a_ , a_) return k def lowerCamelCase (a_ :dict , a_ :dict) -> PegasusForConditionalGeneration: lowercase :Union[str, Any] = DEFAULTS.copy() cfg_kwargs.update(a_) lowercase :Optional[Any] = PegasusConfig(**a_) lowercase :int = PegasusForConditionalGeneration(a_) lowercase :Optional[int] = torch_model.model.state_dict() lowercase :Tuple = {} for k, v in tf_weights.items(): lowercase :Dict = rename_state_dict_key(a_) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""") if "dense" in k or "proj" in new_k: lowercase :Union[str, Any] = v.T lowercase :List[str] = torch.tensor(a_ , dtype=sd[new_k].dtype) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected lowercase :Optional[int] = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1]) lowercase :Union[str, Any] = mapping['''shared.weight'''] lowercase :Dict = mapping['''shared.weight'''] lowercase :int = {k: torch.zeros_like(a_) for k, v in sd.items() if k.endswith('''bias''') and k not in mapping} mapping.update(**a_) lowercase , lowercase :Tuple = torch_model.model.load_state_dict(a_ , strict=a_) lowercase :Dict = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def lowerCamelCase (a_ :Union[str, Any]="./ckpt/aeslc/model.ckpt-32000") -> Dict: lowercase :Any = tf.train.list_variables(a_) lowercase :str = {} lowercase :Optional[Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(a_ , desc='''converting tf checkpoint to dict'''): lowercase :str = any(pat in name for pat in ignore_name) if skip_key: continue lowercase :str = tf.train.load_variable(a_ , a_) lowercase :Dict = array return tf_weights def lowerCamelCase (a_ :str , a_ :str) -> List[str]: # save tokenizer first lowercase :List[str] = Path(a_).parent.name lowercase :List[Any] = task_specific_params[F"""summarization_{dataset}"""]['''max_position_embeddings'''] lowercase :List[Any] = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=a_) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a_) # convert model lowercase :Any = get_tf_weights_as_numpy(a_) lowercase :str = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": lowercase :int = task_specific_params lowercase :List[Any] = convert_pegasus(a_ , a_) torch_model.save_pretrained(a_) lowercase :Union[str, Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''') sd.pop('''model.encoder.embed_positions.weight''') torch.save(a_ , Path(a_) / '''pytorch_model.bin''') if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCAmelCase = parser.parse_args() if args.save_dir is None: UpperCAmelCase = Path(args.tf_ckpt_path).parent.name UpperCAmelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
475
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : List[str] = VQModel __A : Any = "sample" @property def __snake_case ( self : int , snake_case__ : int=(3_2, 3_2) ): '''simple docstring''' lowercase :Optional[int] = 4 lowercase :Tuple = 3 lowercase :List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case__ ) return {"sample": image} @property def __snake_case ( self : Union[str, Any] ): '''simple docstring''' return (3, 3_2, 3_2) @property def __snake_case ( self : List[str] ): '''simple docstring''' return (3, 3_2, 3_2) def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Optional[int] = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } lowercase :Dict = self.dummy_input return init_dict, inputs_dict def __snake_case ( self : Optional[int] ): '''simple docstring''' pass def __snake_case ( self : Union[str, Any] ): '''simple docstring''' pass def __snake_case ( self : Dict ): '''simple docstring''' lowercase , lowercase :Optional[int] = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(snake_case__ ) lowercase :List[str] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Optional[int] = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(snake_case__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowercase :List[Any] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowercase :int = image.to(snake_case__ ) with torch.no_grad(): lowercase :str = model(snake_case__ ).sample lowercase :List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowercase :Tuple = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) )
475
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : List[Any] = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class snake_case_ ( _lowerCAmelCase ): '''simple docstring''' lowerCamelCase = '''longformer''' def __init__( self : Tuple , __magic_name__ : Union[List[int], int] = 512 , __magic_name__ : int = 2 , __magic_name__ : int = 1 , __magic_name__ : int = 0 , __magic_name__ : int = 2 , __magic_name__ : int = 3_0522 , __magic_name__ : int = 768 , __magic_name__ : int = 12 , __magic_name__ : int = 12 , __magic_name__ : int = 3072 , __magic_name__ : str = "gelu" , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : int = 512 , __magic_name__ : int = 2 , __magic_name__ : float = 0.02 , __magic_name__ : float = 1e-12 , __magic_name__ : bool = False , **__magic_name__ : str , ) -> List[Any]: super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase_ : Optional[int] = attention_window lowerCamelCase_ : str = sep_token_id lowerCamelCase_ : List[str] = bos_token_id lowerCamelCase_ : Tuple = eos_token_id lowerCamelCase_ : Optional[int] = vocab_size lowerCamelCase_ : str = hidden_size lowerCamelCase_ : Dict = num_hidden_layers lowerCamelCase_ : Optional[int] = num_attention_heads lowerCamelCase_ : List[Any] = hidden_act lowerCamelCase_ : List[Any] = intermediate_size lowerCamelCase_ : List[str] = hidden_dropout_prob lowerCamelCase_ : str = attention_probs_dropout_prob lowerCamelCase_ : Any = max_position_embeddings lowerCamelCase_ : List[Any] = type_vocab_size lowerCamelCase_ : Union[str, Any] = initializer_range lowerCamelCase_ : Optional[int] = layer_norm_eps lowerCamelCase_ : int = onnx_export class snake_case_ ( _lowerCAmelCase ): '''simple docstring''' def __init__( self : int , __magic_name__ : "PretrainedConfig" , __magic_name__ : str = "default" , __magic_name__ : "List[PatchingSpec]" = None ) -> Union[str, Any]: super().__init__(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase_ : Optional[int] = True @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase_ : str = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase_ : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: lowerCamelCase_ : Union[str, Any] = super().outputs if self.task == "default": lowerCamelCase_ : Optional[Any] = {0: "batch"} return outputs @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> float: return 1e-4 @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: return max(super().default_onnx_opset , 14 ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : "PreTrainedTokenizerBase" , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: lowerCamelCase_ : Any = super().generate_dummy_inputs( preprocessor=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowerCamelCase_ : List[Any] = torch.zeros_like(inputs["input_ids"] ) # make every second token global lowerCamelCase_ : Optional[int] = 1 return inputs
488
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False , )-> str: """simple docstring""" super().__init__() UpperCamelCase = nn.Embedding(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = nn.Embedding(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = False UpperCamelCase = nn.Dropout(p=UpperCAmelCase_ ) UpperCamelCase = TaConfig( vocab_size=UpperCAmelCase_ , d_model=UpperCAmelCase_ , num_heads=UpperCAmelCase_ , d_kv=UpperCAmelCase_ , d_ff=UpperCAmelCase_ , dropout_rate=UpperCAmelCase_ , feed_forward_proj=UpperCAmelCase_ , is_decoder=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , ) UpperCamelCase = nn.ModuleList() for lyr_num in range(UpperCAmelCase_ ): UpperCamelCase = TaBlock(UpperCAmelCase_ ) self.encoders.append(UpperCAmelCase_ ) UpperCamelCase = TaLayerNorm(UpperCAmelCase_ ) UpperCamelCase = nn.Dropout(p=UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str )-> List[Any]: """simple docstring""" UpperCamelCase = self.token_embedder(UpperCAmelCase_ ) UpperCamelCase = encoder_input_tokens.shape[1] UpperCamelCase = torch.arange(UpperCAmelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCAmelCase_ ) UpperCamelCase = self.dropout_pre(UpperCAmelCase_ ) # inverted the attention mask UpperCamelCase = encoder_input_tokens.size() UpperCamelCase = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ ) for lyr in self.encoders: UpperCamelCase = lyr(UpperCAmelCase_ , UpperCAmelCase_ )[0] UpperCamelCase = self.layer_norm(UpperCAmelCase_ ) return self.dropout_post(UpperCAmelCase_ ), encoder_inputs_mask
554
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _snake_case ( ) -> Optional[int]: '''simple docstring''' _A = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) _A = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(__lowercase ) DownloadCommand.register_subcommand(__lowercase ) EnvironmentCommand.register_subcommand(__lowercase ) RunCommand.register_subcommand(__lowercase ) ServeCommand.register_subcommand(__lowercase ) UserCommands.register_subcommand(__lowercase ) AddNewModelCommand.register_subcommand(__lowercase ) AddNewModelLikeCommand.register_subcommand(__lowercase ) LfsCommands.register_subcommand(__lowercase ) PTtoTFCommand.register_subcommand(__lowercase ) # Let's go _A = parser.parse_args() if not hasattr(__lowercase , 'func' ): parser.print_help() exit(1 ) # Run _A = args.func(__lowercase ) service.run() if __name__ == "__main__": main()
704
"""simple docstring""" # using dfs for finding eulerian path traversal def _snake_case ( _snake_case : str , _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : Optional[Any]=None ) -> int: '''simple docstring''' _A = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _A , _A = True, True _A = dfs(_snake_case , _snake_case , _snake_case , _snake_case ) return path def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any] ) -> List[str]: '''simple docstring''' _A = 0 _A = -1 for i in range(_snake_case ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _A = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _snake_case ( _snake_case : Tuple , _snake_case : Any ) -> Tuple: '''simple docstring''' _A = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _A , _A = check_circuit_or_path(_snake_case , _snake_case ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return _A = 1 if check == 2: _A = odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) _A = dfs(_snake_case , _snake_case , _snake_case ) print(_snake_case ) def _snake_case ( ) -> str: '''simple docstring''' _A = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _A = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _A = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _A = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _A = { 1: [], 2: [] # all degree is zero } _A = 10 check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) if __name__ == "__main__": main()
505
0
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" return " ".join( """""".join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
341
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowerCamelCase__ ( snake_case ): def __init__( self ,*A ,**A ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" ,A ,) super().__init__(*A ,**A )
341
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = 42 class UpperCamelCase_ ( snake_case_ , snake_case_ ): '''simple docstring''' @register_to_config def __init__( self , a = 32 , a = 64 , a = 20 , a = 7_68 , a=77 , a=4 , a = 0.0 , a = "silu" , a = None , a = None , a = "linear" , a = "prd" , a = None , a = None , a = None , ) -> Union[str, Any]: super().__init__() snake_case_ = num_attention_heads snake_case_ = attention_head_dim snake_case_ = num_attention_heads * attention_head_dim snake_case_ = additional_embeddings snake_case_ = time_embed_dim or inner_dim snake_case_ = embedding_proj_dim or embedding_dim snake_case_ = clip_embed_dim or embedding_dim snake_case_ = Timesteps(UpperCamelCase_ , UpperCamelCase_ , 0 ) snake_case_ = TimestepEmbedding(UpperCamelCase_ , UpperCamelCase_ , out_dim=UpperCamelCase_ , act_fn=UpperCamelCase_ ) snake_case_ = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) if embedding_proj_norm_type is None: snake_case_ = None elif embedding_proj_norm_type == "layer": snake_case_ = nn.LayerNorm(UpperCamelCase_ ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) snake_case_ = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) if encoder_hid_proj_type is None: snake_case_ = None elif encoder_hid_proj_type == "linear": snake_case_ = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) snake_case_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase_ ) ) if added_emb_type == "prd": snake_case_ = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase_ ) ) elif added_emb_type is None: snake_case_ = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) snake_case_ = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dropout=UpperCamelCase_ , activation_fn='gelu' , attention_bias=UpperCamelCase_ , ) for d in range(UpperCamelCase_ ) ] ) if norm_in_type == "layer": snake_case_ = nn.LayerNorm(UpperCamelCase_ ) elif norm_in_type is None: snake_case_ = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) snake_case_ = nn.LayerNorm(UpperCamelCase_ ) snake_case_ = nn.Linear(UpperCamelCase_ , UpperCamelCase_ ) snake_case_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) snake_case_ = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase_ , persistent=UpperCamelCase_ ) snake_case_ = nn.Parameter(torch.zeros(1 , UpperCamelCase_ ) ) snake_case_ = nn.Parameter(torch.zeros(1 , UpperCamelCase_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _UpperCamelCase ( self ) -> List[str]: snake_case_ = {} def fn_recursive_add_processors(a , a , a ): if hasattr(UpperCamelCase_ , 'set_processor' ): snake_case_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , UpperCamelCase_ , UpperCamelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return processors def _UpperCamelCase ( self , a ) -> List[str]: snake_case_ = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(UpperCamelCase_ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(a , a , a ): if hasattr(UpperCamelCase_ , 'set_processor' ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): module.set_processor(UpperCamelCase_ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , UpperCamelCase_ , UpperCamelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def _UpperCamelCase ( self ) -> Tuple: self.set_attn_processor(AttnProcessor() ) def _UpperCamelCase ( self , a , a , a , a = None , a = None , a = True , ) -> Dict: snake_case_ = hidden_states.shape[0] snake_case_ = timestep if not torch.is_tensor(UpperCamelCase_ ): snake_case_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase_ ) and len(timesteps.shape ) == 0: snake_case_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML snake_case_ = timesteps * torch.ones(UpperCamelCase_ , dtype=timesteps.dtype , device=timesteps.device ) snake_case_ = self.time_proj(UpperCamelCase_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. snake_case_ = timesteps_projected.to(dtype=self.dtype ) snake_case_ = self.time_embedding(UpperCamelCase_ ) if self.embedding_proj_norm is not None: snake_case_ = self.embedding_proj_norm(UpperCamelCase_ ) snake_case_ = self.embedding_proj(UpperCamelCase_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: snake_case_ = self.encoder_hidden_states_proj(UpperCamelCase_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) snake_case_ = self.proj_in(UpperCamelCase_ ) snake_case_ = self.positional_embedding.to(hidden_states.dtype ) snake_case_ = [] snake_case_ = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: snake_case_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: snake_case_ = hidden_states[:, None, :] snake_case_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: snake_case_ = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase_ , -1 , -1 ) additional_embeds.append(UpperCamelCase_ ) snake_case_ = torch.cat( UpperCamelCase_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens snake_case_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: snake_case_ = F.pad( UpperCamelCase_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) snake_case_ = hidden_states + positional_embeddings if attention_mask is not None: snake_case_ = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 snake_case_ = F.pad(UpperCamelCase_ , (0, self.additional_embeddings) , value=0.0 ) snake_case_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) snake_case_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: snake_case_ = self.norm_in(UpperCamelCase_ ) for block in self.transformer_blocks: snake_case_ = block(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) snake_case_ = self.norm_out(UpperCamelCase_ ) if self.prd_embedding is not None: snake_case_ = hidden_states[:, -1] else: snake_case_ = hidden_states[:, additional_embeddings_len:] snake_case_ = self.proj_to_clip_embeddings(UpperCamelCase_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase_ ) def _UpperCamelCase ( self , a ) -> List[str]: snake_case_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
710
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
607
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowercase_ ( snake_case_ ): A_ = "unispeech-sat" def __init__( self : str , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : Tuple=768 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[int]=0.0_2 , __lowerCamelCase : Optional[Any]=1E-5 , __lowerCamelCase : str="group" , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __lowerCamelCase : Dict=(5, 2, 2, 2, 2, 2, 2) , __lowerCamelCase : Dict=(10, 3, 3, 3, 3, 2, 2) , __lowerCamelCase : Any=False , __lowerCamelCase : List[str]=128 , __lowerCamelCase : Any=16 , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : int=True , __lowerCamelCase : List[Any]=0.0_5 , __lowerCamelCase : Dict=10 , __lowerCamelCase : str=2 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : List[str]=10 , __lowerCamelCase : Dict=0 , __lowerCamelCase : Any=320 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=100 , __lowerCamelCase : Tuple=256 , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Dict="mean" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Any=256 , __lowerCamelCase : Dict=(512, 512, 512, 512, 1500) , __lowerCamelCase : Optional[int]=(5, 3, 3, 1, 1) , __lowerCamelCase : int=(1, 2, 3, 1, 1) , __lowerCamelCase : Any=512 , __lowerCamelCase : Dict=0 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : int=2 , __lowerCamelCase : str=504 , **__lowerCamelCase : Optional[Any] , ): super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) snake_case__ : Tuple = hidden_size snake_case__ : Dict = feat_extract_norm snake_case__ : List[str] = feat_extract_activation snake_case__ : Optional[Any] = list(A_ ) snake_case__ : Optional[int] = list(A_ ) snake_case__ : Optional[Any] = list(A_ ) snake_case__ : Dict = conv_bias snake_case__ : str = num_conv_pos_embeddings snake_case__ : Optional[Any] = num_conv_pos_embedding_groups snake_case__ : Any = len(self.conv_dim ) snake_case__ : Optional[int] = num_hidden_layers snake_case__ : List[str] = intermediate_size snake_case__ : Union[str, Any] = hidden_act snake_case__ : Any = num_attention_heads snake_case__ : Tuple = hidden_dropout snake_case__ : Any = attention_dropout snake_case__ : Optional[int] = activation_dropout snake_case__ : Tuple = feat_proj_dropout snake_case__ : Any = final_dropout snake_case__ : Tuple = layerdrop snake_case__ : Tuple = layer_norm_eps snake_case__ : str = initializer_range snake_case__ : List[Any] = vocab_size snake_case__ : Optional[Any] = num_clusters snake_case__ : int = do_stable_layer_norm snake_case__ : int = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case__ : Optional[Any] = apply_spec_augment snake_case__ : List[Any] = mask_time_prob snake_case__ : Optional[int] = mask_time_length snake_case__ : List[str] = mask_time_min_masks snake_case__ : Optional[int] = mask_feature_prob snake_case__ : Any = mask_feature_length snake_case__ : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case__ : List[str] = num_codevectors_per_group snake_case__ : Tuple = num_codevector_groups snake_case__ : List[str] = contrastive_logits_temperature snake_case__ : Any = feat_quantizer_dropout snake_case__ : Tuple = num_negatives snake_case__ : Optional[int] = codevector_dim snake_case__ : Tuple = proj_codevector_dim snake_case__ : Dict = diversity_loss_weight # ctc loss snake_case__ : int = ctc_loss_reduction snake_case__ : Tuple = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case__ : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case__ : Union[str, Any] = list(A_ ) snake_case__ : Union[str, Any] = list(A_ ) snake_case__ : int = list(A_ ) snake_case__ : List[Any] = xvector_output_dim @property def _lowerCAmelCase ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Tuple = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Optional[int] = TaTokenizerFast lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Tuple = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
3
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart lowercase__ : List[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } lowercase__ : Optional[int] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = BartTokenizer def __init__( self : List[Any] , __lowercase : Optional[int]=None , __lowercase : Any=None , __lowercase : Dict=None , __lowercase : Any="replace" , __lowercase : Tuple="<s>" , __lowercase : Union[str, Any]="</s>" , __lowercase : Optional[Any]="</s>" , __lowercase : Tuple="<s>" , __lowercase : Optional[Any]="<unk>" , __lowercase : Dict="<pad>" , __lowercase : Any="<mask>" , __lowercase : Tuple=False , __lowercase : List[str]=True , **__lowercase : Union[str, Any] , ): """simple docstring""" super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase , **__lowercase , ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __lowercase ) != add_prefix_space: snake_case_ = getattr(__lowercase , pre_tok_state.pop("type" ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**__lowercase ) snake_case_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case_ = "post_processor" snake_case_ = getattr(self.backend_tokenizer , __lowercase , __lowercase ) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state["sep"] ) if "cls" in state: snake_case_ = tuple(state["cls"] ) snake_case_ = False if state.get("add_prefix_space" , __lowercase ) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get("trim_offsets" , __lowercase ) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(__lowercase , state.pop("type" ) ) snake_case_ = component_class(**__lowercase ) setattr(self.backend_tokenizer , __lowercase , __lowercase ) @property def snake_case__ ( self : Optional[int] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def snake_case__ ( self : Any , __lowercase : Optional[Any] ): """simple docstring""" snake_case_ = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else value snake_case_ = value def snake_case__ ( self : Optional[int] , *__lowercase : List[Any] , **__lowercase : Union[str, Any] ): """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowercase , **__lowercase ) def snake_case__ ( self : Dict , *__lowercase : int , **__lowercase : Optional[Any] ): """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowercase , **__lowercase ) def snake_case__ ( self : Optional[Any] , __lowercase : str , __lowercase : Optional[str] = None ): """simple docstring""" snake_case_ = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def snake_case__ ( self : Optional[int] , __lowercase : Union[str, Any] , __lowercase : int=None ): """simple docstring""" snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case__ ( self : Optional[int] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
139
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCamelCase__ ( _A , _A , _A , _A=1024 ): '''simple docstring''' snake_case_ , snake_case_ = [], [] snake_case_ = list(zip(_A , _A ) ) snake_case_ , snake_case_ = sorted_examples[0] def is_too_big(_A ): return tok(_A , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): snake_case_ = new_src + " " + src snake_case_ = new_tgt + " " + tgt if is_too_big(_A ) or is_too_big(_A ): # cant fit, finalize example finished_src.append(_A ) finished_tgt.append(_A ) snake_case_ , snake_case_ = src, tgt else: # can fit, keep adding snake_case_ , snake_case_ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_A ) finished_tgt.append(_A ) return finished_src, finished_tgt def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = Path(_A ) save_path.mkdir(exist_ok=_A ) for split in ["train"]: snake_case_ , snake_case_ = data_dir / f"{split}.source", data_dir / f"{split}.target" snake_case_ = [x.rstrip() for x in Path(_A ).open().readlines()] snake_case_ = [x.rstrip() for x in Path(_A ).open().readlines()] snake_case_ , snake_case_ = pack_examples(_A , _A , _A , _A ) print(f"packed {split} split from {len(_A )} examples -> {len(_A )}." ) Path(save_path / f"{split}.source" ).open("w" ).write("\n".join(_A ) ) Path(save_path / f"{split}.target" ).open("w" ).write("\n".join(_A ) ) for split in ["val", "test"]: snake_case_ , snake_case_ = data_dir / f"{split}.source", data_dir / f"{split}.target" shutil.copyfile(_A , save_path / f"{split}.source" ) shutil.copyfile(_A , save_path / f"{split}.target" ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=_A , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=_A , default=128 ) parser.add_argument("--data_dir" , type=_A ) parser.add_argument("--save_path" , type=_A ) snake_case_ = parser.parse_args() snake_case_ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_A , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
139
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class A ( __UpperCAmelCase ): __snake_case = 'gpt_neox_japanese' def __init__( self, UpperCamelCase__=3_2000, UpperCamelCase__=2560, UpperCamelCase__=32, UpperCamelCase__=32, UpperCamelCase__=4, UpperCamelCase__="gelu", UpperCamelCase__=1.00, UpperCamelCase__=1_0000, UpperCamelCase__=2048, UpperCamelCase__=0.02, UpperCamelCase__=1E-5, UpperCamelCase__=True, UpperCamelCase__=3_1996, UpperCamelCase__=3_1999, UpperCamelCase__=0.1, UpperCamelCase__=0.0, **UpperCamelCase__, ): """simple docstring""" super().__init__(bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_multiple_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = rotary_pct lowerCAmelCase_ = rotary_emb_base lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = use_cache lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = hidden_dropout
431
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A : def __init__( self, UpperCamelCase__, UpperCamelCase__=13, UpperCamelCase__=10, UpperCamelCase__=3, UpperCamelCase__=2, UpperCamelCase__=2, UpperCamelCase__=2, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=32, UpperCamelCase__=5, UpperCamelCase__=4, UpperCamelCase__=37, UpperCamelCase__="gelu", UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=10, UpperCamelCase__=0.02, UpperCamelCase__=0.9, UpperCamelCase__=None, ): """simple docstring""" lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = patch_size lowerCAmelCase_ = tubelet_size lowerCAmelCase_ = num_frames lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = mask_ratio lowerCAmelCase_ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowerCAmelCase_ = (image_size // patch_size) ** 2 lowerCAmelCase_ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowerCAmelCase_ = int(mask_ratio * self.seq_length ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return VideoMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, tubelet_size=self.tubelet_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCamelCase__, initializer_range=self.initializer_range, ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = VideoMAEModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = VideoMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCAmelCase_ = torch.ones((self.num_masks,) ) lowerCAmelCase_ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowerCAmelCase_ = mask.expand(self.batch_size, -1 ).bool() lowerCAmelCase_ = model(UpperCamelCase__, UpperCamelCase__ ) # model only returns predictions for masked patches lowerCAmelCase_ = mask.sum().item() lowerCAmelCase_ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __snake_case = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __snake_case = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = VideoMAEModelTester(self ) lowerCAmelCase_ = ConfigTester(self, config_class=UpperCamelCase__, has_text_modality=UpperCamelCase__, hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=False ): """simple docstring""" lowerCAmelCase_ = copy.deepcopy(UpperCamelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowerCAmelCase_ = torch.ones((self.model_tester.num_masks,) ) lowerCAmelCase_ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowerCAmelCase_ = mask.expand(self.model_tester.batch_size, -1 ).bool() lowerCAmelCase_ = bool_masked_pos.to(UpperCamelCase__ ) if return_labels: if model_class in [ *get_values(UpperCamelCase__ ), ]: lowerCAmelCase_ = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=UpperCamelCase__ ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__, nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(UpperCamelCase__ ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = VideoMAEModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" if not self.has_attentions: pass else: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = True for model_class in self.all_model_classes: lowerCAmelCase_ = self.model_tester.seq_length - self.model_tester.num_masks lowerCAmelCase_ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) lowerCAmelCase_ = outputs.attentions self.assertEqual(len(UpperCamelCase__ ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase_ = True lowerCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) lowerCAmelCase_ = outputs.attentions self.assertEqual(len(UpperCamelCase__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) lowerCAmelCase_ = len(UpperCamelCase__ ) # Check attention is always last and order is fine lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) self.assertEqual(out_len + 1, len(UpperCamelCase__ ) ) lowerCAmelCase_ = outputs.attentions self.assertEqual(len(UpperCamelCase__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): lowerCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) lowerCAmelCase_ = outputs.hidden_states lowerCAmelCase_ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase__ ), UpperCamelCase__ ) lowerCAmelCase_ = self.model_tester.seq_length - self.model_tester.num_masks lowerCAmelCase_ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def __UpperCamelCase ( ): lowerCAmelCase_ = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowerCAmelCase_ = np.load(_A ) return list(_A ) @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( UpperCamelCase__ ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_video() lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**UpperCamelCase__ ) # verify the logits lowerCAmelCase_ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], UpperCamelCase__, atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(UpperCamelCase__ ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_video() lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''pt''' ).to(UpperCamelCase__ ) # add boolean mask, indicating which patches to mask lowerCAmelCase_ = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''', filename='''bool_masked_pos.pt''' ) lowerCAmelCase_ = torch.load(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**UpperCamelCase__ ) # verify the logits lowerCAmelCase_ = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]], device=UpperCamelCase__ ) self.assertEqual(outputs.logits.shape, UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], UpperCamelCase__, atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowerCAmelCase_ = torch.tensor([0.5_142], device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss, UpperCamelCase__, atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowerCAmelCase_ = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''', norm_pix_loss=UpperCamelCase__ ).to( UpperCamelCase__ ) with torch.no_grad(): lowerCAmelCase_ = model(**UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor(torch.tensor([0.6_469] ), device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss, UpperCamelCase__, atol=1E-4 ) )
431
1
'''simple docstring''' from torch import nn def A_ ( __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"Unsupported activation function: {act_fn}" )
704
'''simple docstring''' def A_ ( __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __A : Tuple = generate_pascal_triangle(__SCREAMING_SNAKE_CASE ) for row_idx in range(__SCREAMING_SNAKE_CASE ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def A_ ( __SCREAMING_SNAKE_CASE : int ) -> list[list[int]]: """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __A : list[list[int]] = [] for current_row_idx in range(__SCREAMING_SNAKE_CASE ): __A : Tuple = populate_current_row(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) triangle.append(__SCREAMING_SNAKE_CASE ) return triangle def A_ ( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" __A : Union[str, Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __A , __A : Tuple = 1, 1 for current_col_idx in range(1 , __SCREAMING_SNAKE_CASE ): calculate_current_element( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return current_row def A_ ( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : list[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , ) -> None: """simple docstring""" __A : str = triangle[current_row_idx - 1][current_col_idx - 1] __A : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx] __A : Any = above_to_left_elt + above_to_right_elt def A_ ( __SCREAMING_SNAKE_CASE : int ) -> list[list[int]]: """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __A : list[list[int]] = [[1]] for row_index in range(1 , __SCREAMING_SNAKE_CASE ): __A : Optional[Any] = [0] + result[-1] + [0] __A : Optional[Any] = row_index + 1 # Calculate the number of distinct elements in a row __A : int = sum(divmod(__SCREAMING_SNAKE_CASE , 2 ) ) __A : str = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __A : Tuple = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __A : Any = row_first_half + row_second_half result.append(__SCREAMING_SNAKE_CASE ) return result def A_ ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(__SCREAMING_SNAKE_CASE : Callable , __SCREAMING_SNAKE_CASE : int ) -> None: __A : List[Any] = F"{func.__name__}({value})" __A : Dict = timeit(F"__main__.{call}" , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
499
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) lowerCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _lowerCamelCase : Optional[Any] =model_type_to_module_name(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : int =importlib.import_module(F'''.{module_name}''' , 'transformers.models' ) try: return getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE__ , '__name__' , SCREAMING_SNAKE_CASE__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowerCamelCase : Optional[Any] =importlib.import_module('transformers' ) if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return None def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, str]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[bool, str]] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : bool = False , **SCREAMING_SNAKE_CASE__ : str , ): '''simple docstring''' _lowerCamelCase : str =get_file_from_repo( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , revision=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as reader: return json.load(SCREAMING_SNAKE_CASE__ ) class A : def __init__( self : Tuple ) -> List[str]: """simple docstring""" raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(lowercase_ ) def lowerCamelCase ( cls : str , lowercase_ : Optional[Any] , **lowercase_ : int ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : int =kwargs.pop('config' , lowercase_ ) _lowerCamelCase : Dict =kwargs.pop('trust_remote_code' , lowercase_ ) _lowerCamelCase : Tuple =True _lowerCamelCase , _lowerCamelCase : str =ImageProcessingMixin.get_image_processor_dict(lowercase_ , **lowercase_ ) _lowerCamelCase : int =config_dict.get('image_processor_type' , lowercase_ ) _lowerCamelCase : Union[str, Any] =None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): _lowerCamelCase : Tuple =config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _lowerCamelCase : Union[str, Any] =config_dict.pop('feature_extractor_type' , lowercase_ ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) _lowerCamelCase : List[Any] =feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): _lowerCamelCase : Tuple =config_dict['auto_map']['AutoFeatureExtractor'] _lowerCamelCase : Union[str, Any] =feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowercase_ , lowercase_ ): _lowerCamelCase : str =AutoConfig.from_pretrained(lowercase_ , **lowercase_ ) # It could be in `config.image_processor_type`` _lowerCamelCase : int =getattr(lowercase_ , 'image_processor_type' , lowercase_ ) if hasattr(lowercase_ , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: _lowerCamelCase : List[Any] =config.auto_map['AutoImageProcessor'] if image_processor_class is not None: _lowerCamelCase : Any =image_processor_class_from_name(lowercase_ ) _lowerCamelCase : Optional[Any] =image_processor_auto_map is not None _lowerCamelCase : str =image_processor_class is not None or type(lowercase_ ) in IMAGE_PROCESSOR_MAPPING _lowerCamelCase : List[Any] =resolve_trust_remote_code( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if has_remote_code and trust_remote_code: _lowerCamelCase : str =get_class_from_dynamic_module( lowercase_ , lowercase_ , **lowercase_ ) _lowerCamelCase : Tuple =kwargs.pop('code_revision' , lowercase_ ) if os.path.isdir(lowercase_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowercase_ , **lowercase_ ) elif image_processor_class is not None: return image_processor_class.from_dict(lowercase_ , **lowercase_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowercase_ ) in IMAGE_PROCESSOR_MAPPING: _lowerCamelCase : Optional[int] =IMAGE_PROCESSOR_MAPPING[type(lowercase_ )] return image_processor_class.from_dict(lowercase_ , **lowercase_ ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCamelCase ( lowercase_ : List[str] , lowercase_ : List[str] ) -> List[Any]: """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(lowercase_ , lowercase_ )
464
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : List[Any] =XLMRobertaTokenizer UpperCamelCase__ : Union[str, Any] =XLMRobertaTokenizerFast UpperCamelCase__ : int =True UpperCamelCase__ : Optional[Any] =True def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Dict =XLMRobertaTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : Dict ) -> Any: """simple docstring""" _lowerCamelCase : Tuple ='<pad>' _lowerCamelCase : Optional[int] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _lowerCamelCase : str =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowercase_ ) , 1002 ) def lowerCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def lowerCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[Any] =XLMRobertaTokenizer(lowercase_ , keep_accents=lowercase_ ) _lowerCamelCase : List[Any] =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : int =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCamelCase : List[str] =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : int =self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) _lowerCamelCase : List[Any] =self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) _lowerCamelCase : int =tempfile.mkdtemp() _lowerCamelCase : List[str] =tokenizer_r.save_pretrained(lowercase_ ) _lowerCamelCase : int =tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCamelCase : Optional[Any] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way _lowerCamelCase : int =tokenizer_r.from_pretrained(lowercase_ ) _lowerCamelCase : Any =tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True _lowerCamelCase : Dict =tempfile.mkdtemp() _lowerCamelCase : int =tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) _lowerCamelCase : Optional[Any] =tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way _lowerCamelCase : int =tokenizer_r.from_pretrained(lowercase_ ) _lowerCamelCase : List[Any] =tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False _lowerCamelCase : str =tempfile.mkdtemp() _lowerCamelCase : Optional[Any] =tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) _lowerCamelCase : Any =tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCamelCase : str =tokenizer_r.from_pretrained(lowercase_ ) _lowerCamelCase : List[str] =tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @cached_property def lowerCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def lowerCamelCase ( self : Tuple ) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowercase_ , f.name ) _lowerCamelCase : Union[str, Any] =XLMRobertaTokenizer(f.name , keep_accents=lowercase_ ) _lowerCamelCase : Dict =pickle.dumps(lowercase_ ) pickle.loads(lowercase_ ) def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : Any =self.get_tokenizer() _lowerCamelCase : Optional[int] =self.get_rust_tokenizer() _lowerCamelCase : Tuple ='I was born in 92000, and this is falsé.' _lowerCamelCase : Any =tokenizer.tokenize(lowercase_ ) _lowerCamelCase : List[str] =rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : int =tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) _lowerCamelCase : Union[str, Any] =rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Dict =self.get_rust_tokenizer() _lowerCamelCase : Optional[int] =tokenizer.encode(lowercase_ ) _lowerCamelCase : Optional[Any] =rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) @slow def lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Optional[Any] ='Hello World!' _lowerCamelCase : Union[str, Any] =[0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def lowerCamelCase ( self : Any ) -> int: """simple docstring""" _lowerCamelCase : Union[str, Any] =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) _lowerCamelCase : List[str] =[ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def lowerCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _lowerCamelCase : List[Any] ={'input_ids': [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
464
1
'''simple docstring''' def __a ( __lowerCamelCase : Any ) -> List[Any]: '''simple docstring''' stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def __a ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowercase_ , lowercase_ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowercase_ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCAmelCase_ : Any = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase_ : str = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
715
'''simple docstring''' from __future__ import annotations def __a ( __lowerCamelCase : int ) -> list[int]: '''simple docstring''' lowercase_ = [True] * limit lowercase_ = False lowercase_ = False lowercase_ = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowercase_ = i * 2 while index < limit: lowercase_ = False lowercase_ = index + i lowercase_ = [2] for i in range(3 , __lowerCamelCase , 2 ): if is_prime[i]: primes.append(__lowerCamelCase ) return primes def __a ( __lowerCamelCase : int = 1_000_000 ) -> int: '''simple docstring''' lowercase_ = prime_sieve(__lowerCamelCase ) lowercase_ = 0 lowercase_ = 0 for i in range(len(__lowerCamelCase ) ): for j in range(i + length , len(__lowerCamelCase ) ): lowercase_ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase_ = j - i lowercase_ = sol return largest if __name__ == "__main__": print(F'''{solution() = }''')
461
0
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __snake_case ( __lowerCAmelCase ): """simple docstring""" _lowerCamelCase = '''data2vec-audio''' def __init__( self , __lowerCamelCase=32 , __lowerCamelCase=768 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=3072 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase="gelu" , __lowerCamelCase=(512, 512, 512, 512, 512, 512, 512) , __lowerCamelCase=(5, 2, 2, 2, 2, 2, 2) , __lowerCamelCase=(10, 3, 3, 3, 3, 2, 2) , __lowerCamelCase=False , __lowerCamelCase=16 , __lowerCamelCase=19 , __lowerCamelCase=5 , __lowerCamelCase=0.0_5 , __lowerCamelCase=10 , __lowerCamelCase=2 , __lowerCamelCase=0.0 , __lowerCamelCase=10 , __lowerCamelCase=0 , __lowerCamelCase="sum" , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=256 , __lowerCamelCase=(512, 512, 512, 512, 1500) , __lowerCamelCase=(5, 3, 3, 1, 1) , __lowerCamelCase=(1, 2, 3, 1, 1) , __lowerCamelCase=512 , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=2 , __lowerCamelCase=False , __lowerCamelCase=3 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase ) __A : Optional[Any] = hidden_size __A : Dict = feat_extract_activation __A : Any = list(_lowerCamelCase ) __A : Tuple = list(_lowerCamelCase ) __A : Optional[int] = list(_lowerCamelCase ) __A : List[Any] = conv_bias __A : List[str] = num_conv_pos_embeddings __A : Optional[int] = num_conv_pos_embedding_groups __A : Tuple = conv_pos_kernel_size __A : List[Any] = len(self.conv_dim ) __A : int = num_hidden_layers __A : List[str] = intermediate_size __A : Tuple = hidden_act __A : List[Any] = num_attention_heads __A : List[str] = hidden_dropout __A : List[str] = attention_dropout __A : Optional[Any] = activation_dropout __A : Optional[Any] = feat_proj_dropout __A : Tuple = final_dropout __A : Union[str, Any] = layerdrop __A : Optional[Any] = layer_norm_eps __A : Dict = initializer_range __A : Union[str, Any] = vocab_size __A : Optional[int] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : Union[str, Any] = mask_time_min_masks __A : Dict = mask_feature_prob __A : List[str] = mask_feature_length __A : Union[str, Any] = mask_feature_min_masks # ctc loss __A : Any = ctc_loss_reduction __A : str = ctc_zero_infinity # adapter __A : Optional[Any] = add_adapter __A : Union[str, Any] = adapter_kernel_size __A : List[str] = adapter_stride __A : Union[str, Any] = num_adapter_layers __A : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __A : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __A : Any = list(_lowerCamelCase ) __A : Union[str, Any] = list(_lowerCamelCase ) __A : Optional[Any] = list(_lowerCamelCase ) __A : str = xvector_output_dim @property def UpperCamelCase__( self ): '''simple docstring''' return math.prod(self.conv_stride )
177
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: a =None a =logging.get_logger(__name__) a ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } a ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } a ='▁' class __UpperCAmelCase ( __lowerCAmelCase ): A__ : Dict = VOCAB_FILES_NAMES A__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = AlbertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="[CLS]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="<unk>" , _lowerCamelCase="[SEP]" , _lowerCamelCase="<pad>" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , **_lowerCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCamelCase__ =( AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase , normalized=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token ) super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) lowerCamelCase__ =do_lower_case lowerCamelCase__ =remove_space lowerCamelCase__ =keep_accents lowerCamelCase__ =vocab_file lowerCamelCase__ =False if not self.vocab_file else True def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): lowerCamelCase__ =[self.sep_token_id] lowerCamelCase__ =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): lowerCamelCase__ =[self.sep_token_id] lowerCamelCase__ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ =os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
530
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__(self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=4_00 , __a=True , __a=None , __a=True , __a=False , __a=True , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = num_channels lowerCamelCase = image_size lowerCamelCase = min_resolution lowerCamelCase = max_resolution lowerCamelCase = do_resize lowerCamelCase = size if size is not None else {"height": 18, "width": 20} lowerCamelCase = do_thumbnail lowerCamelCase = do_align_axis lowerCamelCase = do_pad lowerCamelCase = do_normalize lowerCamelCase = image_mean lowerCamelCase = image_std def _a (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase): """simple docstring""" _A = DonutImageProcessor if is_vision_available() else None def _a (self ): '''simple docstring''' lowerCamelCase = DonutImageProcessingTester(self ) @property def _a (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "size" ) ) self.assertTrue(hasattr(__a , "do_thumbnail" ) ) self.assertTrue(hasattr(__a , "do_align_long_axis" ) ) self.assertTrue(hasattr(__a , "do_pad" ) ) self.assertTrue(hasattr(__a , "do_normalize" ) ) self.assertTrue(hasattr(__a , "image_mean" ) ) self.assertTrue(hasattr(__a , "image_std" ) ) def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 20} ) lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"height": 84, "width": 42} ) def _a (self ): '''simple docstring''' pass @is_flaky() def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowerCamelCase = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
484
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging a_ : int = logging.get_logger(__name__) a_ : List[str] = {'vocab_file': 'spiece.model'} a_ : Optional[Any] = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def __init__(self , __a , __a=False , __a=True , __a=False , __a="<s>" , __a="</s>" , __a="<unk>" , __a="<sep>" , __a="<pad>" , __a="<cls>" , __a="<mask>" , __a=["<eop>", "<eod>"] , __a = None , **__a , ): '''simple docstring''' lowerCamelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) lowerCamelCase = 3 lowerCamelCase = do_lower_case lowerCamelCase = remove_space lowerCamelCase = keep_accents lowerCamelCase = vocab_file lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) lowerCamelCase = jieba lowerCamelCase = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _a (self ): '''simple docstring''' return len(self.sp_model ) def _a (self ): '''simple docstring''' lowerCamelCase = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): '''simple docstring''' lowerCamelCase = self.__dict__.copy() lowerCamelCase = None return state def __setstate__(self , __a ): '''simple docstring''' lowerCamelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase = {} lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a (self , __a ): '''simple docstring''' if self.remove_space: lowerCamelCase = " ".join(inputs.strip().split() ) else: lowerCamelCase = inputs lowerCamelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowerCamelCase = unicodedata.normalize("NFKD" , __a ) lowerCamelCase = "".join([c for c in outputs if not unicodedata.combining(__a )] ) if self.do_lower_case: lowerCamelCase = outputs.lower() return outputs def _a (self , __a ): '''simple docstring''' lowerCamelCase = self.preprocess_text(__a ) lowerCamelCase = self.sp_model.encode(__a , out_type=__a ) lowerCamelCase = [] for piece in pieces: if len(__a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowerCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(__a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase = cur_pieces[1:] else: lowerCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__a ) else: new_pieces.append(__a ) return new_pieces def _a (self , __a ): '''simple docstring''' return self.sp_model.PieceToId(__a ) def _a (self , __a ): '''simple docstring''' return self.sp_model.IdToPiece(__a ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = "".join(__a ).replace(__a , " " ).strip() return out_string def _a (self , __a , __a = None ): '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _a (self , __a , __a = None , __a = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is not None: return ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1, 1] return ([0] * len(__a )) + [1, 1] def _a (self , __a , __a = None ): '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _a (self , __a , __a = None ): '''simple docstring''' if not os.path.isdir(__a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,) def _a (self , *__a , **__a ): '''simple docstring''' lowerCamelCase = super()._decode(*__a , **__a ) lowerCamelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
484
1
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __A = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def lowercase__ ( A_: int , A_: Optional[Any] , A_: List[str]=None ) -> List[str]: """simple docstring""" if rng is None: __UpperCAmelCase =random.Random() __UpperCAmelCase =1 for dim in shape: total_dims *= dim __UpperCAmelCase =[] for _ in range(A_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) __UpperCAmelCase =np.array(A_ , dtype=jnp.intaa ).reshape(A_ ) return output def lowercase__ ( A_: List[str] , A_: List[str]=None ) -> Any: """simple docstring""" __UpperCAmelCase =ids_tensor(A_ , vocab_size=2 , rng=A_ ) # make sure that at least one token is attended to for each batch __UpperCAmelCase =1 return attn_mask @require_flax class _A : """simple docstring""" lowerCamelCase : Optional[Any] = None lowerCamelCase : int = () def _a ( self : str ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __UpperCAmelCase =2 __UpperCAmelCase =inputs["""input_ids"""].shape[-1] // 2 __UpperCAmelCase =inputs["""input_ids"""][:max_batch_size, :sequence_length] __UpperCAmelCase =jnp.ones_like(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __UpperCAmelCase =input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __UpperCAmelCase =config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _a ( self : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =False __UpperCAmelCase =max_length __UpperCAmelCase =0 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =pt_model_class(__SCREAMING_SNAKE_CASE ).eval() __UpperCAmelCase =load_flax_weights_in_pytorch_model(__SCREAMING_SNAKE_CASE , flax_model.params ) __UpperCAmelCase =flax_model.generate(__SCREAMING_SNAKE_CASE ).sequences __UpperCAmelCase =pt_model.generate(torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __UpperCAmelCase =flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def _a ( self : Optional[int] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =False __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Union[str, Any] ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =True __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : List[Any] ) -> Any: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =False __UpperCAmelCase =max_length __UpperCAmelCase =2 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Any ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =False __UpperCAmelCase =max_length __UpperCAmelCase =2 __UpperCAmelCase =2 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def _a ( self : Union[str, Any] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =True __UpperCAmelCase =max_length __UpperCAmelCase =0.8 __UpperCAmelCase =10 __UpperCAmelCase =0.3 __UpperCAmelCase =1 __UpperCAmelCase =8 __UpperCAmelCase =9 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =max_length __UpperCAmelCase =1 __UpperCAmelCase =8 __UpperCAmelCase =9 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Optional[int] ) -> Any: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() __UpperCAmelCase =max_length __UpperCAmelCase =2 __UpperCAmelCase =1 __UpperCAmelCase =8 __UpperCAmelCase =9 for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() # pad attention mask on the left __UpperCAmelCase =attention_mask.at[(0, 0)].set(0 ) __UpperCAmelCase =False __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Dict ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() # pad attention mask on the left __UpperCAmelCase =attention_mask.at[(0, 0)].set(0 ) __UpperCAmelCase =True __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _a ( self : Dict ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =self._get_input_ids_and_config() # pad attention mask on the left __UpperCAmelCase =attention_mask.at[(0, 0)].set(0 ) __UpperCAmelCase =2 __UpperCAmelCase =max_length for model_class in self.all_generative_model_classes: __UpperCAmelCase =model_class(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model.generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertEqual(generation_outputs.shape[-1] , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =jit(model.generate ) __UpperCAmelCase =jit_generate(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _A ( unittest.TestCase ): """simple docstring""" def _a ( self : int ) -> Any: __UpperCAmelCase =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) __UpperCAmelCase =FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) __UpperCAmelCase ="""Hello world""" __UpperCAmelCase =tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , """do_samples""" ): model.generate(__SCREAMING_SNAKE_CASE , do_samples=__SCREAMING_SNAKE_CASE ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__SCREAMING_SNAKE_CASE , """foo""" ): __UpperCAmelCase ={"""foo""": """bar"""} model.generate(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
68
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' a__ : int = 0 def __lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' a__ : Optional[int] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : Dict ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[Any] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[Any] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[Any] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type a__ : int = Path(A__ ) / '''preprocessor_config.json''' a__ : Optional[int] = Path(A__ ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally a__ : List[Any] = AutoImageProcessor.from_pretrained(A__ ).to_dict() config_dict.pop('''image_processor_type''' ) a__ : Union[str, Any] = CLIPImageProcessor(**A__ ) # save in new folder model_config.save_pretrained(A__ ) config.save_pretrained(A__ ) a__ : Union[str, Any] = AutoImageProcessor.from_pretrained(A__ ) # make sure private variable is not incorrectly saved a__ : Optional[Any] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) a__ : Any = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) def __lowerCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''clip-base is not a local folder and is not a valid model identifier''' ): a__ : str = AutoImageProcessor.from_pretrained('''clip-base''' ) def __lowerCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' with self.assertRaisesRegex( A__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): a__ : Tuple = AutoImageProcessor.from_pretrained(A__ , revision='''aaaaaa''' ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( A__ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): a__ : Union[str, Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' with self.assertRaises(A__ ): a__ : str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A__ ): a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : str = AutoImageProcessor.from_pretrained(A__ , trust_remote_code=A__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A__ ): AutoImageProcessor.register(A__ , A__ ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] = Path(A__ ) / '''preprocessor_config.json''' a__ : List[str] = Path(A__ ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(A__ , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(A__ , '''w''' ) ) a__ : Tuple = CustomImageProcessor.from_pretrained(A__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(A__ ) a__ : Tuple = AutoImageProcessor.from_pretrained(A__ ) self.assertIsInstance(A__ , A__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = True try: AutoConfig.register('''custom''' , A__ ) AutoImageProcessor.register(A__ , A__ ) # If remote code is not set, the default is to use local a__ : Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. a__ : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub a__ : Optional[int] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=A__ ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(A__ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
688
0
import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _UpperCAmelCase ( lowercase ): def __init__( self : List[str]): SCREAMING_SNAKE_CASE_ :Dict = [] def _snake_case ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict): self.events.append("on_init_end") def _snake_case ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , **UpperCAmelCase : List[str]): self.events.append("on_train_begin") def _snake_case ( self : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , **UpperCAmelCase : int): self.events.append("on_train_end") def _snake_case ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str]): self.events.append("on_epoch_begin") def _snake_case ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , **UpperCAmelCase : Dict): self.events.append("on_epoch_end") def _snake_case ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Tuple): self.events.append("on_step_begin") def _snake_case ( self : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , **UpperCAmelCase : int): self.events.append("on_step_end") def _snake_case ( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , **UpperCAmelCase : List[str]): self.events.append("on_evaluate") def _snake_case ( self : str , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[int]): self.events.append("on_predict") def _snake_case ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int]): self.events.append("on_save") def _snake_case ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Any): self.events.append("on_log") def _snake_case ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , **UpperCAmelCase : int): self.events.append("on_prediction_step") @require_torch class _UpperCAmelCase ( unittest.TestCase ): def _snake_case ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ :Dict = tempfile.mkdtemp() def _snake_case ( self : Optional[int]): shutil.rmtree(self.output_dir) def _snake_case ( self : int , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Tuple=0 , UpperCAmelCase : int=64 , UpperCAmelCase : str=64 , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=False , **UpperCAmelCase : Union[str, Any]): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. SCREAMING_SNAKE_CASE_ :Union[str, Any] = RegressionDataset(length=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Any = RegressionDataset(length=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Tuple = RegressionModelConfig(a=UpperCAmelCase , b=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[str] = RegressionPreTrainedModel(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = TrainingArguments(self.output_dir , disable_tqdm=UpperCAmelCase , report_to=[] , **UpperCAmelCase) return Trainer( UpperCAmelCase , UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , callbacks=UpperCAmelCase , ) def _snake_case ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Any): self.assertEqual(len(UpperCAmelCase) , len(UpperCAmelCase)) # Order doesn't matter SCREAMING_SNAKE_CASE_ :Any = sorted(UpperCAmelCase , key=lambda UpperCAmelCase: cb.__name__ if isinstance(UpperCAmelCase , UpperCAmelCase) else cb.__class__.__name__) SCREAMING_SNAKE_CASE_ :Tuple = sorted(UpperCAmelCase , key=lambda UpperCAmelCase: cb.__name__ if isinstance(UpperCAmelCase , UpperCAmelCase) else cb.__class__.__name__) for cba, cba in zip(UpperCAmelCase , UpperCAmelCase): if isinstance(UpperCAmelCase , UpperCAmelCase) and isinstance(UpperCAmelCase , UpperCAmelCase): self.assertEqual(UpperCAmelCase , UpperCAmelCase) elif isinstance(UpperCAmelCase , UpperCAmelCase) and not isinstance(UpperCAmelCase , UpperCAmelCase): self.assertEqual(UpperCAmelCase , cba.__class__) elif not isinstance(UpperCAmelCase , UpperCAmelCase) and isinstance(UpperCAmelCase , UpperCAmelCase): self.assertEqual(cba.__class__ , UpperCAmelCase) else: self.assertEqual(UpperCAmelCase , UpperCAmelCase) def _snake_case ( self : Optional[Any] , UpperCAmelCase : Union[str, Any]): SCREAMING_SNAKE_CASE_ :List[str] = ["on_init_end", "on_train_begin"] SCREAMING_SNAKE_CASE_ :List[Any] = 0 SCREAMING_SNAKE_CASE_ :str = len(trainer.get_eval_dataloader()) SCREAMING_SNAKE_CASE_ :Tuple = ["on_prediction_step"] * len(trainer.get_eval_dataloader()) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs): expected_events.append("on_epoch_begin") for _ in range(UpperCAmelCase): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log") if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save") expected_events.append("on_epoch_end") if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _snake_case ( self : Any): SCREAMING_SNAKE_CASE_ :List[Any] = self.get_trainer() SCREAMING_SNAKE_CASE_ :Dict = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase) # Callbacks passed at init are added to the default callbacks SCREAMING_SNAKE_CASE_ :List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback]) expected_callbacks.append(UpperCAmelCase) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback SCREAMING_SNAKE_CASE_ :int = self.get_trainer(disable_tqdm=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase) def _snake_case ( self : Any): SCREAMING_SNAKE_CASE_ :List[Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] SCREAMING_SNAKE_CASE_ :Optional[Any] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCAmelCase) expected_callbacks.remove(UpperCAmelCase) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = self.get_trainer() SCREAMING_SNAKE_CASE_ :Optional[Any] = trainer.pop_callback(UpperCAmelCase) self.assertEqual(cb.__class__ , UpperCAmelCase) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase) trainer.add_callback(UpperCAmelCase) expected_callbacks.insert(0 , UpperCAmelCase) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase) # We can also add, pop, or remove by instance SCREAMING_SNAKE_CASE_ :str = self.get_trainer() SCREAMING_SNAKE_CASE_ :Optional[int] = trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCAmelCase) expected_callbacks.remove(UpperCAmelCase) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :str = self.get_trainer() SCREAMING_SNAKE_CASE_ :Union[str, Any] = trainer.callback_handler.callbacks[0] SCREAMING_SNAKE_CASE_ :Optional[int] = trainer.pop_callback(UpperCAmelCase) self.assertEqual(UpperCAmelCase , UpperCAmelCase) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase) trainer.add_callback(UpperCAmelCase) expected_callbacks.insert(0 , UpperCAmelCase) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCAmelCase) def _snake_case ( self : Any): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :str = self.get_trainer(callbacks=[MyTestTrainerCallback]) trainer.train() SCREAMING_SNAKE_CASE_ :Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase)) # Independent log/save/eval SCREAMING_SNAKE_CASE_ :Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5) trainer.train() SCREAMING_SNAKE_CASE_ :str = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase)) SCREAMING_SNAKE_CASE_ :List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5) trainer.train() SCREAMING_SNAKE_CASE_ :str = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase)) SCREAMING_SNAKE_CASE_ :str = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps") trainer.train() SCREAMING_SNAKE_CASE_ :Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase)) SCREAMING_SNAKE_CASE_ :Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch") trainer.train() SCREAMING_SNAKE_CASE_ :Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase)) # A bit of everything SCREAMING_SNAKE_CASE_ :Tuple = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() SCREAMING_SNAKE_CASE_ :List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCAmelCase , self.get_expected_events(UpperCAmelCase)) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning") as warn_mock: SCREAMING_SNAKE_CASE_ :int = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCAmelCase) in warn_mock.call_args[0][0]
140
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( lowercase , unittest.TestCase ): lowerCamelCase_ : Tuple = CodeGenTokenizer lowerCamelCase_ : str = CodeGenTokenizerFast lowerCamelCase_ : List[str] = True lowerCamelCase_ : Dict = {"""add_prefix_space""": True} lowerCamelCase_ : Any = False def _snake_case ( self : Optional[Any]): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ :Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] SCREAMING_SNAKE_CASE_ :List[Any] = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase)))) SCREAMING_SNAKE_CASE_ :Optional[int] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE_ :str = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE_ :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) SCREAMING_SNAKE_CASE_ :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(UpperCAmelCase) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(UpperCAmelCase)) def _snake_case ( self : Dict , **UpperCAmelCase : List[str]): kwargs.update(self.special_tokens_map) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase) def _snake_case ( self : Optional[Any] , **UpperCAmelCase : Any): kwargs.update(self.special_tokens_map) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase) def _snake_case ( self : Any , UpperCAmelCase : List[Any]): SCREAMING_SNAKE_CASE_ :Tuple = "lower newer" SCREAMING_SNAKE_CASE_ :Tuple = "lower newer" return input_text, output_text def _snake_case ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ :Optional[int] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) SCREAMING_SNAKE_CASE_ :List[Any] = "lower newer" SCREAMING_SNAKE_CASE_ :Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE_ :Tuple = tokenizer.tokenize(UpperCAmelCase , add_prefix_space=UpperCAmelCase) self.assertListEqual(UpperCAmelCase , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ :Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase) , UpperCAmelCase) def _snake_case ( self : str): if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ :List[str] = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[str] = "lower newer" # Testing tokenization SCREAMING_SNAKE_CASE_ :Dict = tokenizer.tokenize(UpperCAmelCase , add_prefix_space=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = rust_tokenizer.tokenize(UpperCAmelCase) self.assertListEqual(UpperCAmelCase , UpperCAmelCase) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE_ :Union[str, Any] = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :int = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase) self.assertListEqual(UpperCAmelCase , UpperCAmelCase) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE_ :Optional[Any] = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Dict = tokenizer.encode(UpperCAmelCase , add_prefix_space=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = rust_tokenizer.encode(UpperCAmelCase) self.assertListEqual(UpperCAmelCase , UpperCAmelCase) # Testing the unknown token SCREAMING_SNAKE_CASE_ :Union[str, Any] = tokens + [rust_tokenizer.unk_token] SCREAMING_SNAKE_CASE_ :Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCAmelCase) , UpperCAmelCase) def _snake_case ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any]): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def _snake_case ( self : Tuple , UpperCAmelCase : Any=15): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})"): SCREAMING_SNAKE_CASE_ :Any = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase) # Simple input SCREAMING_SNAKE_CASE_ :List[str] = "This is a simple input" SCREAMING_SNAKE_CASE_ :Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE_ :Union[str, Any] = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE_ :Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length") # Simple input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length") # Simple input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length") # Pair input self.assertRaises(UpperCAmelCase , tokenizer_r.encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length") # Pair input self.assertRaises( UpperCAmelCase , tokenizer_r.batch_encode_plus , UpperCAmelCase , max_length=UpperCAmelCase , padding="max_length" , ) def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>") # Simple input SCREAMING_SNAKE_CASE_ :List[Any] = "This is a simple input" SCREAMING_SNAKE_CASE_ :List[Any] = ["This is a simple input looooooooong", "This is a simple input"] SCREAMING_SNAKE_CASE_ :Optional[int] = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE_ :Optional[int] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] SCREAMING_SNAKE_CASE_ :Any = tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ :List[str] = tokenizer(UpperCAmelCase , padding="max_length" , max_length=30 , return_tensors="np") SCREAMING_SNAKE_CASE_ :Optional[Any] = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , truncate=UpperCAmelCase , return_tensors="np") SCREAMING_SNAKE_CASE_ :Optional[Any] = tokenizer(*UpperCAmelCase , padding="max_length" , max_length=60 , return_tensors="np") SCREAMING_SNAKE_CASE_ :Optional[Any] = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , truncate=UpperCAmelCase , return_tensors="np") # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30) self.assertTrue(pad_token_id in out_s["input_ids"]) self.assertTrue(0 in out_s["attention_mask"]) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0]) self.assertFalse(0 in out_sa["attention_mask"][0]) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1]) self.assertTrue(0 in out_sa["attention_mask"][1]) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60) self.assertTrue(pad_token_id in out_p["input_ids"]) self.assertTrue(0 in out_p["attention_mask"]) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0]) self.assertFalse(0 in out_pa["attention_mask"][0]) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1]) self.assertTrue(0 in out_pa["attention_mask"][1]) def _snake_case ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ :Tuple = "$$$" SCREAMING_SNAKE_CASE_ :str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=UpperCAmelCase , add_bos_token=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = "This is a simple input" SCREAMING_SNAKE_CASE_ :int = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE_ :List[str] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE_ :int = tokenizer(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[int] = tokenizer(UpperCAmelCase) self.assertEqual(out_s.input_ids[0] , UpperCAmelCase) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids)) SCREAMING_SNAKE_CASE_ :Optional[Any] = tokenizer.decode(out_s.input_ids) SCREAMING_SNAKE_CASE_ :List[str] = tokenizer.batch_decode(out_sa.input_ids) self.assertEqual(decode_s.split()[0] , UpperCAmelCase) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa)) @slow def _snake_case ( self : Tuple): SCREAMING_SNAKE_CASE_ :Optional[int] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono") SCREAMING_SNAKE_CASE_ :List[str] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" SCREAMING_SNAKE_CASE_ :str = "\nif len_a > len_b: result = a\nelse: result = b" SCREAMING_SNAKE_CASE_ :Optional[int] = tokenizer.encode(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[Any] = ["^#", re.escape("<|endoftext|>"), "^'''", "^\"\"\"", "\n\n\n"] SCREAMING_SNAKE_CASE_ :Any = tokenizer.decode(UpperCAmelCase , truncate_before_pattern=UpperCAmelCase) self.assertEqual(UpperCAmelCase , UpperCAmelCase) def _snake_case ( self : Dict): pass
140
1
"""simple docstring""" class __UpperCAmelCase : # Public class to implement a graph """simple docstring""" def __init__( self : Dict , A_ : int , A_ : int , A_ : list[list[bool]] )-> None: __UpperCamelCase = row __UpperCamelCase = col __UpperCamelCase = graph def A ( self : List[str] , A_ : int , A_ : int , A_ : list[list[bool]] )-> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def A ( self : int , A_ : int , A_ : int , A_ : list[list[bool]] )-> None: # Checking all 8 elements surrounding nth element __UpperCamelCase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __UpperCamelCase = [-1, 0, 1, -1, 1, -1, 0, 1] __UpperCamelCase = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , A_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , A_ ) def A ( self : Optional[Any] )-> int: # And finally, count all islands. __UpperCamelCase = [[False for j in range(self.COL )] for i in range(self.ROW )] __UpperCamelCase = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(A_ , A_ , A_ ) count += 1 return count
505
"""simple docstring""" _A = 256 # Modulus to hash a string _A = 1_000_003 def lowercase (_snake_case ,_snake_case ) -> bool: '''simple docstring''' __UpperCamelCase = len(_snake_case ) __UpperCamelCase = len(_snake_case ) if p_len > t_len: return False __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): __UpperCamelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCamelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCamelCase = (modulus_power * alphabet_size) % modulus for i in range(0 ,t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCamelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowercase () -> None: '''simple docstring''' __UpperCamelCase = "abc1abc12" __UpperCamelCase = "alskfjaldsabc1abc1abc12k23adsfabcabc" __UpperCamelCase = "alskfjaldsk23adsfabcabc" assert rabin_karp(_snake_case ,_snake_case ) and not rabin_karp(_snake_case ,_snake_case ) # Test 2) __UpperCamelCase = "ABABX" __UpperCamelCase = "ABABZABABYABABX" assert rabin_karp(_snake_case ,_snake_case ) # Test 3) __UpperCamelCase = "AAAB" __UpperCamelCase = "ABAAAAAB" assert rabin_karp(_snake_case ,_snake_case ) # Test 4) __UpperCamelCase = "abcdabcy" __UpperCamelCase = "abcxabcdabxabcdabcdabcy" assert rabin_karp(_snake_case ,_snake_case ) # Test 5) __UpperCamelCase = "Lü" __UpperCamelCase = "Lüsai" assert rabin_karp(_snake_case ,_snake_case ) __UpperCamelCase = "Lue" assert not rabin_karp(_snake_case ,_snake_case ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
505
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> YolosConfig: UpperCamelCase__ : str = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCamelCase__ : Dict = 192 UpperCamelCase__ : Dict = 768 UpperCamelCase__ : Optional[Any] = 12 UpperCamelCase__ : List[Any] = 3 UpperCamelCase__ : Optional[int] = [800, 1333] UpperCamelCase__ : Tuple = False elif yolos_name == "yolos_s_dWr": UpperCamelCase__ : int = 330 UpperCamelCase__ : Tuple = 14 UpperCamelCase__ : str = 6 UpperCamelCase__ : Optional[int] = 1320 elif "yolos_s" in yolos_name: UpperCamelCase__ : Optional[int] = 384 UpperCamelCase__ : Any = 1536 UpperCamelCase__ : Union[str, Any] = 12 UpperCamelCase__ : int = 6 elif "yolos_b" in yolos_name: UpperCamelCase__ : Dict = [800, 1344] UpperCamelCase__ : List[Any] = 91 UpperCamelCase__ : str = '''huggingface/label-files''' UpperCamelCase__ : Dict = '''coco-detection-id2label.json''' UpperCamelCase__ : List[str] = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ : str = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : str = idalabel UpperCamelCase__ : Optional[int] = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( __UpperCAmelCase: dict , __UpperCAmelCase: YolosConfig , __UpperCAmelCase: bool = False ) -> str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : str = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCamelCase__ : Dict = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : Any = in_proj_bias[: config.hidden_size] UpperCamelCase__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : Optional[int] = in_proj_weight[-config.hidden_size :, :] UpperCamelCase__ : Optional[int] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> str: if "backbone" in name: UpperCamelCase__ : str = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: UpperCamelCase__ : str = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: UpperCamelCase__ : str = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: UpperCamelCase__ : List[str] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: UpperCamelCase__ : List[Any] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: UpperCamelCase__ : Union[str, Any] = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCamelCase__ : Dict = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCamelCase__ : Optional[int] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCamelCase__ : int = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCamelCase__ : str = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase__ : Optional[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase__ : List[str] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: UpperCamelCase__ : List[Any] = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: UpperCamelCase__ : Optional[int] = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: UpperCamelCase__ : Tuple = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def lowerCAmelCase_ ( __UpperCAmelCase: dict , __UpperCAmelCase: YolosForObjectDetection ) -> dict: for key in orig_state_dict.copy().keys(): UpperCamelCase__ : Union[str, Any] = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: UpperCamelCase__ : Optional[int] = key.split('''.''' ) UpperCamelCase__ : Union[str, Any] = int(key_split[2] ) UpperCamelCase__ : Tuple = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCamelCase__ : Dict = val[:dim, :] UpperCamelCase__ : int = val[ dim : dim * 2, : ] UpperCamelCase__ : Dict = val[-dim:, :] else: UpperCamelCase__ : List[Any] = val[:dim] UpperCamelCase__ : List[str] = val[dim : dim * 2] UpperCamelCase__ : int = val[-dim:] else: UpperCamelCase__ : Union[str, Any] = val return orig_state_dict def lowerCAmelCase_ ( ) -> torch.Tensor: UpperCamelCase__ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : Dict = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: str , __UpperCAmelCase: str , __UpperCAmelCase: bool = False ) -> Optional[int]: UpperCamelCase__ : List[str] = get_yolos_config(__UpperCAmelCase ) # load original state_dict UpperCamelCase__ : List[Any] = torch.load(__UpperCAmelCase , map_location='''cpu''' )['''model'''] # load 🤗 model UpperCamelCase__ : List[Any] = YolosForObjectDetection(__UpperCAmelCase ) model.eval() UpperCamelCase__ : Dict = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by YolosImageProcessor UpperCamelCase__ : List[Any] = 800 if yolos_name != '''yolos_ti''' else 512 UpperCamelCase__ : int = YolosImageProcessor(format='''coco_detection''' , size=__UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCamelCase__ : Dict = model(**__UpperCAmelCase ) UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = outputs.logits, outputs.pred_boxes UpperCamelCase__ ,UpperCamelCase__ : int = None, None if yolos_name == "yolos_ti": UpperCamelCase__ : List[str] = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) UpperCamelCase__ : Dict = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": UpperCamelCase__ : Optional[int] = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) UpperCamelCase__ : Union[str, Any] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": UpperCamelCase__ : Optional[Any] = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) UpperCamelCase__ : List[Any] = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": UpperCamelCase__ : Any = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) UpperCamelCase__ : List[Any] = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": UpperCamelCase__ : Optional[Any] = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) UpperCamelCase__ : List[Any] = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: UpperCamelCase__ : Any = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) UpperCamelCase__ : Optional[int] = model_mapping[yolos_name] image_processor.push_to_hub(__UpperCAmelCase , organization='''hustvl''' ) model.push_to_hub(__UpperCAmelCase , organization='''hustvl''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
369
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCAmelCase_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : bool = field(default=__lowerCamelCase , metadata={"help": "Whether to use SortishSampler or not."} ) a : bool = field( default=__lowerCamelCase , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) a : Optional[int] = field( default=__lowerCamelCase , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) a : Optional[int] = field( default=__lowerCamelCase , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) a : Optional[Union[str, Path, GenerationConfig]] = field( default=__lowerCamelCase , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : Tuple = super().to_dict() for k, v in d.items(): if isinstance(__magic_name__, __magic_name__ ): UpperCamelCase__ : Tuple = v.to_dict() return d
369
1
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
216
from itertools import product def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = sides_number SCREAMING_SNAKE_CASE_ : List[str] = max_face_number * dice_number SCREAMING_SNAKE_CASE_ : Tuple = [0] * (max_total + 1) SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : List[str] = range(lowerCAmelCase , max_face_number + 1 ) for dice_numbers in product(lowerCAmelCase , repeat=lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = sum(lowerCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) SCREAMING_SNAKE_CASE_ : List[str] = total_frequency_distribution( sides_number=6 , dice_number=6 ) SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : str = 9 SCREAMING_SNAKE_CASE_ : Any = 4 * 9 SCREAMING_SNAKE_CASE_ : str = 6 for peter_total in range(lowerCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) SCREAMING_SNAKE_CASE_ : Dict = (4**9) * (6**6) SCREAMING_SNAKE_CASE_ : Union[str, Any] = peter_wins_count / total_games_number SCREAMING_SNAKE_CASE_ : Optional[Any] = round(lowerCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
216
1
"""simple docstring""" from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __UpperCAmelCase = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" __UpperCAmelCase = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" __UpperCAmelCase = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' return float((preds == labels).mean() ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Tuple = simple_accuracy(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = float(fa_score(y_true=__UpperCamelCase , y_pred=__UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : List[Any] = float(pearsonr(__UpperCamelCase , __UpperCamelCase )[0] ) UpperCAmelCase__ : Optional[int] = float(spearmanr(__UpperCamelCase , __UpperCamelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def __lowercase ( self : int ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" ,) def __lowercase ( self : List[Any] ,A : Union[str, Any] ,A : List[str] ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(A_ ,A_ )} elif self.config_name == "stsb": return pearson_and_spearman(A_ ,A_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(A_ ,A_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(A_ ,A_ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
703
"""simple docstring""" import argparse import os import re import packaging.version __UpperCAmelCase = 'examples/' __UpperCAmelCase = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } __UpperCAmelCase = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } __UpperCAmelCase = 'README.md' def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ : Dict = f.read() UpperCAmelCase__ , UpperCAmelCase__ : Any = REPLACE_PATTERNS[pattern] UpperCAmelCase__ : List[str] = replace.replace("""VERSION""" , __UpperCamelCase ) UpperCAmelCase__ : Tuple = re_pattern.sub(__UpperCamelCase , __UpperCamelCase ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' for folder, directories, fnames in os.walk(__UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , pattern="""examples""" ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if not patch: update_version_in_examples(__UpperCamelCase ) def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Dict = """🤗 Transformers currently provides the following architectures""" UpperCAmelCase__ : Union[str, Any] = """1. Want to contribute a new model?""" with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ : str = f.readlines() # Find the start of the list. UpperCAmelCase__ : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase__ : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): UpperCAmelCase__ : List[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__UpperCamelCase ) def lowerCAmelCase ( ): '''simple docstring''' with open(REPLACE_FILES["""init"""] , """r""" ) as f: UpperCAmelCase__ : Optional[Any] = f.read() UpperCAmelCase__ : int = REPLACE_PATTERNS["""init"""][0].search(__UpperCamelCase ).groups()[0] return packaging.version.parse(__UpperCamelCase ) def lowerCAmelCase ( __UpperCamelCase=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: UpperCAmelCase__ : List[str] = default_version.base_version elif patch: UpperCAmelCase__ : Any = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: UpperCAmelCase__ : Optional[Any] = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. UpperCAmelCase__ : Optional[int] = input(F"Which version are you releasing? [{default_version}]" ) if len(__UpperCamelCase ) == 0: UpperCAmelCase__ : Union[str, Any] = default_version print(F"Updating version to {version}." ) global_version_update(__UpperCamelCase , patch=__UpperCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = get_version() UpperCAmelCase__ : Any = F"{current_version.major}.{current_version.minor + 1}.0.dev0" UpperCAmelCase__ : List[Any] = current_version.base_version # Check with the user we got that right. UpperCAmelCase__ : Dict = input(F"Which version are we developing now? [{dev_version}]" ) if len(__UpperCamelCase ) == 0: UpperCAmelCase__ : List[Any] = dev_version print(F"Updating version to {version}." ) global_version_update(__UpperCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') __UpperCAmelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
194
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Any=None , **__lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =[x.strip() for x in open(__snake_case ).readlines()] _UpperCAmelCase : int =[x.strip() for x in open(__snake_case ).readlines()][: len(__snake_case )] _UpperCAmelCase : Tuple =calculate_rouge(__snake_case , __snake_case , **__snake_case ) if save_path is not None: save_json(__snake_case , __snake_case , indent=__snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
446
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['pixel_values'] def __init__( self , __a = True , __a = None , __a = PILImageResampling.BICUBIC , __a = True , __a = True , __a = 1 / 2_55 , __a = None , __a = True , __a = None , __a = None , **__a , ) -> None: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = size if size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} _UpperCamelCase = get_size_dict(__a , default_to_square=__a , param_name='''crop_size''') _UpperCamelCase = do_resize _UpperCamelCase = do_rescale _UpperCamelCase = do_normalize _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = rescale_factor _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self , __a , __a , __a = PILImageResampling.BILINEAR , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "shortest_edge" in size: _UpperCamelCase = get_resize_output_image_size(__a , size=size['''shortest_edge'''] , default_to_square=__a) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''') return resize(__a , size=__a , resample=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(__a) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''') return center_crop(__a , size=(size['''height'''], size['''width''']) , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a = None , **__a) -> np.ndarray: '''simple docstring''' return rescale(__a , scale=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a = None , **__a , ) -> np.ndarray: '''simple docstring''' return normalize(__a , mean=__a , std=__a , data_format=__a , **__a) def UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ) -> BatchFeature: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(__a , param_name='''crop_size''' , default_to_square=__a) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(__a) if not is_batched(__a): _UpperCamelCase = [images] if not valid_images(__a): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(__a) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=__a , size=__a , resample=__a) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=__a , size=__a) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=__a , scale=__a) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=__a , mean=__a , std=__a) for image in images] _UpperCamelCase = [to_channel_dimension_format(__a , __a) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=__a , tensor_type=__a)
19
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class A_ : def __init__( self: int ): '''simple docstring''' _lowerCamelCase : str = {} def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Dict ,__lowerCAmelCase: Optional[int]=1 ): '''simple docstring''' if self.graph.get(__lowerCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _lowerCamelCase : Any = [[w, v]] if not self.graph.get(__lowerCAmelCase ): _lowerCamelCase : Optional[int] = [] def _lowercase ( self: Any ): '''simple docstring''' return list(self.graph ) def _lowercase ( self: str ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Dict ): '''simple docstring''' if self.graph.get(__lowerCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__lowerCAmelCase ) def _lowercase ( self: List[str] ,__lowerCAmelCase: int=-2 ,__lowerCAmelCase: Optional[Any]=-1 ): '''simple docstring''' if s == d: return [] _lowerCamelCase : str = [] _lowerCamelCase : List[Any] = [] if s == -2: _lowerCamelCase : int = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) _lowerCamelCase : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__lowerCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__lowerCAmelCase ) != 0: _lowerCamelCase : Optional[Any] = stack[len(__lowerCAmelCase ) - 1] else: _lowerCamelCase : Dict = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return visited def _lowercase ( self: str ,__lowerCAmelCase: Optional[Any]=-1 ): '''simple docstring''' if c == -1: _lowerCamelCase : Union[str, Any] = floor(random() * 10_000 ) + 10 for i in range(__lowerCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _lowerCamelCase : List[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(__lowerCAmelCase ,__lowerCAmelCase ,1 ) def _lowercase ( self: Any ,__lowerCAmelCase: List[Any]=-2 ): '''simple docstring''' _lowerCamelCase : int = deque() _lowerCamelCase : List[Any] = [] if s == -2: _lowerCamelCase : Optional[int] = list(self.graph )[0] d.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) while d: _lowerCamelCase : Any = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _lowercase ( self: Tuple ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str ): '''simple docstring''' return len(self.graph[u] ) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Optional[Any]=-2 ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : Optional[Any] = [] if s == -2: _lowerCamelCase : Union[str, Any] = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = s _lowerCamelCase : Dict = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : Dict = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__lowerCAmelCase ) != 0: _lowerCamelCase : List[Any] = stack[len(__lowerCAmelCase ) - 1] else: _lowerCamelCase : Tuple = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return sorted_nodes def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : int = [] _lowerCamelCase : Any = [] _lowerCamelCase : Dict = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) _lowerCamelCase : int = -2 _lowerCamelCase : Tuple = [] _lowerCamelCase : int = s _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowerCamelCase : List[str] = len(__lowerCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : int = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCamelCase : Union[str, Any] = True if len(__lowerCAmelCase ) != 0: _lowerCamelCase : Any = stack[len(__lowerCAmelCase ) - 1] else: _lowerCamelCase : Dict = False indirect_parents.append(__lowerCAmelCase ) _lowerCamelCase : str = s _lowerCamelCase : Optional[int] = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return list(__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = [] _lowerCamelCase : Any = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = -2 _lowerCamelCase : Optional[int] = [] _lowerCamelCase : str = s _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowerCamelCase : Any = len(__lowerCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : int = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCamelCase : Any = True if len(__lowerCAmelCase ) != 0: _lowerCamelCase : str = stack[len(__lowerCAmelCase ) - 1] else: _lowerCamelCase : Dict = False indirect_parents.append(__lowerCAmelCase ) _lowerCamelCase : str = s _lowerCamelCase : Dict = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return False def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=-2 ,__lowerCAmelCase: Any=-1 ): '''simple docstring''' _lowerCamelCase : Tuple = time() self.dfs(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Tuple = time() return end - begin def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: str=-2 ): '''simple docstring''' _lowerCamelCase : Optional[Any] = time() self.bfs(__lowerCAmelCase ) _lowerCamelCase : List[str] = time() return end - begin class A_ : def __init__( self: int ): '''simple docstring''' _lowerCamelCase : Dict = {} def _lowercase ( self: List[str] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: str=1 ): '''simple docstring''' if self.graph.get(__lowerCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _lowerCamelCase : Optional[Any] = [[w, v]] # add the other way if self.graph.get(__lowerCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _lowerCamelCase : Tuple = [[w, u]] def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Tuple ,__lowerCAmelCase: int ): '''simple docstring''' if self.graph.get(__lowerCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__lowerCAmelCase ) # the other way round if self.graph.get(__lowerCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=-2 ,__lowerCAmelCase: Optional[Any]=-1 ): '''simple docstring''' if s == d: return [] _lowerCamelCase : str = [] _lowerCamelCase : Tuple = [] if s == -2: _lowerCamelCase : Optional[int] = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) _lowerCamelCase : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : Tuple = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__lowerCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__lowerCAmelCase ) != 0: _lowerCamelCase : Union[str, Any] = stack[len(__lowerCAmelCase ) - 1] else: _lowerCamelCase : Optional[Any] = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return visited def _lowercase ( self: int ,__lowerCAmelCase: Optional[Any]=-1 ): '''simple docstring''' if c == -1: _lowerCamelCase : str = floor(random() * 10_000 ) + 10 for i in range(__lowerCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _lowerCamelCase : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(__lowerCAmelCase ,__lowerCAmelCase ,1 ) def _lowercase ( self: Dict ,__lowerCAmelCase: Dict=-2 ): '''simple docstring''' _lowerCamelCase : List[Any] = deque() _lowerCamelCase : List[str] = [] if s == -2: _lowerCamelCase : Tuple = list(self.graph )[0] d.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) while d: _lowerCamelCase : int = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _lowercase ( self: Dict ,__lowerCAmelCase: Any ): '''simple docstring''' return len(self.graph[u] ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = [] _lowerCamelCase : Optional[int] = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) _lowerCamelCase : List[str] = -2 _lowerCamelCase : Any = [] _lowerCamelCase : Union[str, Any] = s _lowerCamelCase : str = False _lowerCamelCase : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowerCamelCase : int = len(__lowerCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCamelCase : Dict = True if len(__lowerCAmelCase ) != 0: _lowerCamelCase : Any = stack[len(__lowerCAmelCase ) - 1] else: _lowerCamelCase : Optional[int] = False indirect_parents.append(__lowerCAmelCase ) _lowerCamelCase : List[Any] = s _lowerCamelCase : Dict = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return list(__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Any = [] _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Union[str, Any] = list(self.graph )[0] stack.append(__lowerCAmelCase ) visited.append(__lowerCAmelCase ) _lowerCamelCase : List[Any] = -2 _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Dict = s _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowerCamelCase : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowerCamelCase : Dict = len(__lowerCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowerCamelCase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowerCamelCase : Any = True if len(__lowerCAmelCase ) != 0: _lowerCamelCase : Dict = stack[len(__lowerCAmelCase ) - 1] else: _lowerCamelCase : int = False indirect_parents.append(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = s _lowerCamelCase : Any = ss # check if se have reached the starting point if len(__lowerCAmelCase ) == 0: return False def _lowercase ( self: Tuple ): '''simple docstring''' return list(self.graph ) def _lowercase ( self: Dict ,__lowerCAmelCase: List[str]=-2 ,__lowerCAmelCase: str=-1 ): '''simple docstring''' _lowerCamelCase : str = time() self.dfs(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = time() return end - begin def _lowercase ( self: List[Any] ,__lowerCAmelCase: Dict=-2 ): '''simple docstring''' _lowerCamelCase : int = time() self.bfs(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = time() return end - begin
703
"""simple docstring""" import argparse import json from tqdm import tqdm def lowerCamelCase_( ) -> Any: '''simple docstring''' _lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=_lowerCamelCase , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=_lowerCamelCase , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=_lowerCamelCase , help="where to store parsed gold_data_path file" , ) _lowerCamelCase : Tuple = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: _lowerCamelCase : Union[str, Any] = json.load(_lowerCamelCase ) for dpr_record in tqdm(_lowerCamelCase ): _lowerCamelCase : Tuple = dpr_record["question"] _lowerCamelCase : List[str] = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(_lowerCamelCase ) + "\n" ) if __name__ == "__main__": main()
386
0
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : int = list(SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = list(SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = 0 for i in range(len(SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count += 1 UpperCamelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(SCREAMING_SNAKE_CASE ) def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : str = [] while True: UpperCamelCase : int = ["""$"""] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase : Dict = compare_string(binary[i] , binary[j] ) if k is False: UpperCamelCase : Tuple = """*""" UpperCamelCase : int = """*""" temp.append("""X""" ) for i in range(len(SCREAMING_SNAKE_CASE ) ): if checka[i] == "$": pi.append(binary[i] ) if len(SCREAMING_SNAKE_CASE ) == 0: return pi UpperCamelCase : Optional[int] = list(set(SCREAMING_SNAKE_CASE ) ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : int = [] for minterm in minterms: UpperCamelCase : List[Any] = """""" for _ in range(SCREAMING_SNAKE_CASE ): UpperCamelCase : str = str(minterm % 2 ) + string minterm //= 2 temp.append(SCREAMING_SNAKE_CASE ) return temp def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = list(SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = list(SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = 0 for i in range(len(SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[Any] = [] UpperCamelCase : List[Any] = [0] * len(SCREAMING_SNAKE_CASE ) for i in range(len(chart[0] ) ): UpperCamelCase : List[Any] = 0 UpperCamelCase : List[str] = -1 for j in range(len(SCREAMING_SNAKE_CASE ) ): if chart[j][i] == 1: count += 1 UpperCamelCase : Any = j if count == 1: UpperCamelCase : Union[str, Any] = 1 for i in range(len(SCREAMING_SNAKE_CASE ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase : Tuple = 0 temp.append(prime_implicants[i] ) while True: UpperCamelCase : Dict = 0 UpperCamelCase : List[Any] = -1 UpperCamelCase : Union[str, Any] = 0 for i in range(len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase : List[str] = chart[i].count(1 ) if count_n > max_n: UpperCamelCase : str = count_n UpperCamelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase : Dict = 0 def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = [[0 for x in range(len(SCREAMING_SNAKE_CASE ) )] for x in range(len(SCREAMING_SNAKE_CASE ) )] for i in range(len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase : Optional[int] = prime_implicants[i].count("""_""" ) for j in range(len(SCREAMING_SNAKE_CASE ) ): if is_for_table(prime_implicants[i] , binary[j] , SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = 1 return chart def UpperCamelCase (): UpperCamelCase : Optional[int] = int(input("""Enter the no. of variables\n""" ) ) UpperCamelCase : Optional[Any] = [ float(SCREAMING_SNAKE_CASE ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCamelCase : List[str] = decimal_to_binary(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase : int = check(SCREAMING_SNAKE_CASE ) print("""Prime Implicants are:""" ) print(SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = prime_implicant_chart(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = selection(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print("""Essential Prime Implicants are:""" ) print(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
102
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( A__ ): '''simple docstring''' def __init__( self : Optional[int] ): UpperCAmelCase_ :int = [] def snake_case_ ( self : Tuple , snake_case : Dict , snake_case : Optional[int] , snake_case : Union[str, Any] , **snake_case : Optional[Any] ): self.events.append('''on_init_end''' ) def snake_case_ ( self : Optional[Any] , snake_case : List[Any] , snake_case : int , snake_case : int , **snake_case : Dict ): self.events.append('''on_train_begin''' ) def snake_case_ ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , **snake_case : Any ): self.events.append('''on_train_end''' ) def snake_case_ ( self : Tuple , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Union[str, Any] , **snake_case : Optional[int] ): self.events.append('''on_epoch_begin''' ) def snake_case_ ( self : Optional[int] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , **snake_case : Optional[int] ): self.events.append('''on_epoch_end''' ) def snake_case_ ( self : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Union[str, Any] , **snake_case : Optional[int] ): self.events.append('''on_step_begin''' ) def snake_case_ ( self : int , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Any , **snake_case : str ): self.events.append('''on_step_end''' ) def snake_case_ ( self : Union[str, Any] , snake_case : List[str] , snake_case : Any , snake_case : List[Any] , **snake_case : str ): self.events.append('''on_evaluate''' ) def snake_case_ ( self : List[Any] , snake_case : str , snake_case : List[str] , snake_case : List[Any] , **snake_case : Dict ): self.events.append('''on_predict''' ) def snake_case_ ( self : Optional[int] , snake_case : Any , snake_case : int , snake_case : Tuple , **snake_case : int ): self.events.append('''on_save''' ) def snake_case_ ( self : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Any , **snake_case : Tuple ): self.events.append('''on_log''' ) def snake_case_ ( self : Optional[int] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : List[str] , **snake_case : Optional[Any] ): self.events.append('''on_prediction_step''' ) @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self : Optional[Any] ): UpperCAmelCase_ :Any = tempfile.mkdtemp() def snake_case_ ( self : Optional[Any] ): shutil.rmtree(self.output_dir ) def snake_case_ ( self : Optional[Any] , snake_case : Tuple=0 , snake_case : Union[str, Any]=0 , snake_case : Optional[int]=64 , snake_case : Dict=64 , snake_case : Optional[Any]=None , snake_case : List[Any]=False , **snake_case : str ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. UpperCAmelCase_ :str = RegressionDataset(length=snake_case ) UpperCAmelCase_ :Optional[Any] = RegressionDataset(length=snake_case ) UpperCAmelCase_ :List[Any] = RegressionModelConfig(a=snake_case , b=snake_case ) UpperCAmelCase_ :str = RegressionPreTrainedModel(snake_case ) UpperCAmelCase_ :Optional[int] = TrainingArguments(self.output_dir , disable_tqdm=snake_case , report_to=[] , **snake_case ) return Trainer( snake_case , snake_case , train_dataset=snake_case , eval_dataset=snake_case , callbacks=snake_case , ) def snake_case_ ( self : str , snake_case : Tuple , snake_case : List[Any] ): self.assertEqual(len(snake_case ) , len(snake_case ) ) # Order doesn't matter UpperCAmelCase_ :Dict = sorted(snake_case , key=lambda snake_case : cb.__name__ if isinstance(snake_case , snake_case ) else cb.__class__.__name__ ) UpperCAmelCase_ :Union[str, Any] = sorted(snake_case , key=lambda snake_case : cb.__name__ if isinstance(snake_case , snake_case ) else cb.__class__.__name__ ) for cba, cba in zip(snake_case , snake_case ): if isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): self.assertEqual(snake_case , snake_case ) elif isinstance(snake_case , snake_case ) and not isinstance(snake_case , snake_case ): self.assertEqual(snake_case , cba.__class__ ) elif not isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): self.assertEqual(cba.__class__ , snake_case ) else: self.assertEqual(snake_case , snake_case ) def snake_case_ ( self : Any , snake_case : Dict ): UpperCAmelCase_ :List[Any] = ['''on_init_end''', '''on_train_begin'''] UpperCAmelCase_ :Dict = 0 UpperCAmelCase_ :Tuple = len(trainer.get_eval_dataloader() ) UpperCAmelCase_ :Dict = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(snake_case ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def snake_case_ ( self : int ): UpperCAmelCase_ :Dict = self.get_trainer() UpperCAmelCase_ :int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # Callbacks passed at init are added to the default callbacks UpperCAmelCase_ :Any = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback UpperCAmelCase_ :Union[str, Any] = self.get_trainer(disable_tqdm=snake_case ) UpperCAmelCase_ :Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) def snake_case_ ( self : List[str] ): UpperCAmelCase_ :List[Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] UpperCAmelCase_ :int = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(snake_case ) expected_callbacks.remove(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) UpperCAmelCase_ :Optional[int] = self.get_trainer() UpperCAmelCase_ :Dict = trainer.pop_callback(snake_case ) self.assertEqual(cb.__class__ , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) trainer.add_callback(snake_case ) expected_callbacks.insert(0 , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # We can also add, pop, or remove by instance UpperCAmelCase_ :List[Any] = self.get_trainer() UpperCAmelCase_ :Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(snake_case ) expected_callbacks.remove(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) UpperCAmelCase_ :Dict = self.get_trainer() UpperCAmelCase_ :int = trainer.callback_handler.callbacks[0] UpperCAmelCase_ :List[str] = trainer.pop_callback(snake_case ) self.assertEqual(snake_case , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) trainer.add_callback(snake_case ) expected_callbacks.insert(0 , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) def snake_case_ ( self : Tuple ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' , category=snake_case ) UpperCAmelCase_ :Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() UpperCAmelCase_ :int = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # Independent log/save/eval UpperCAmelCase_ :Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() UpperCAmelCase_ :Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) UpperCAmelCase_ :Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() UpperCAmelCase_ :List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) UpperCAmelCase_ :Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' ) trainer.train() UpperCAmelCase_ :List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) UpperCAmelCase_ :Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' ) trainer.train() UpperCAmelCase_ :Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # A bit of everything UpperCAmelCase_ :List[str] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , ) trainer.train() UpperCAmelCase_ :Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: UpperCAmelCase_ :str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(snake_case ) in warn_mock.call_args[0][0]
608
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class snake_case_ : A_ = MBartConfig A_ = {} A_ = 'gelu' def __init__( self : List[str] , _snake_case : Dict , _snake_case : List[Any]=13 , _snake_case : Tuple=7 , _snake_case : List[Any]=True , _snake_case : List[str]=False , _snake_case : Optional[Any]=99 , _snake_case : Optional[Any]=32 , _snake_case : str=2 , _snake_case : Dict=4 , _snake_case : Any=37 , _snake_case : str=0.1 , _snake_case : Any=0.1 , _snake_case : List[str]=20 , _snake_case : Optional[int]=2 , _snake_case : List[Any]=1 , _snake_case : str=0 , )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = parent __lowerCAmelCase : Dict = batch_size __lowerCAmelCase : Optional[Any] = seq_length __lowerCAmelCase : str = is_training __lowerCAmelCase : Tuple = use_labels __lowerCAmelCase : Any = vocab_size __lowerCAmelCase : int = hidden_size __lowerCAmelCase : List[str] = num_hidden_layers __lowerCAmelCase : Optional[Any] = num_attention_heads __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : int = hidden_dropout_prob __lowerCAmelCase : Tuple = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : Any = eos_token_id __lowerCAmelCase : Any = pad_token_id __lowerCAmelCase : str = bos_token_id def UpperCAmelCase__ ( self : List[Any] )->Tuple: '''simple docstring''' __lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCAmelCase : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCAmelCase : Optional[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Optional[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowerCAmelCase : Tuple = prepare_mbart_inputs_dict(_snake_case , _snake_case , _snake_case ) return config, inputs_dict def UpperCAmelCase__ ( self : List[str] , _snake_case : List[str] , _snake_case : List[str] )->Dict: '''simple docstring''' __lowerCAmelCase : Optional[int] = TFMBartModel(config=_snake_case ).get_decoder() __lowerCAmelCase : Dict = inputs_dict["""input_ids"""] __lowerCAmelCase : int = input_ids[:1, :] __lowerCAmelCase : int = inputs_dict["""attention_mask"""][:1, :] __lowerCAmelCase : Any = inputs_dict["""head_mask"""] __lowerCAmelCase : str = 1 # first forward pass __lowerCAmelCase : Optional[int] = model(_snake_case , attention_mask=_snake_case , head_mask=_snake_case , use_cache=_snake_case ) __lowerCAmelCase , __lowerCAmelCase : int = outputs.to_tuple() __lowerCAmelCase : str = past_key_values[1] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[Any]=None , SCREAMING_SNAKE_CASE :Optional[Any]=None , SCREAMING_SNAKE_CASE :Union[str, Any]=None , SCREAMING_SNAKE_CASE :Optional[Any]=None , SCREAMING_SNAKE_CASE :Any=None , ) -> List[Any]: if attention_mask is None: __lowerCAmelCase : int = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCAmelCase : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class snake_case_ ( __lowercase ,__lowercase ,unittest.TestCase ): A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def UpperCAmelCase__ ( self : Tuple , _snake_case : str , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : Optional[int] , _snake_case : List[Any] )->Tuple: '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCAmelCase__ ( self : Tuple )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Optional[int] = TFMBartModelTester(self ) __lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=_snake_case ) def UpperCAmelCase__ ( self : int )->Any: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) @require_sentencepiece @require_tokenizers @require_tf class snake_case_ ( unittest.TestCase ): A_ = [ ' UN Chief Says There Is No Military Solution in Syria', ] A_ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] A_ = 'facebook/mbart-large-en-ro' @cached_property def UpperCAmelCase__ ( self : Optional[int] )->Tuple: '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self : Union[str, Any] )->Tuple: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase__ ( self : int , **_snake_case : Dict )->List[str]: '''simple docstring''' __lowerCAmelCase : str = self.translate_src_text(**_snake_case ) self.assertListEqual(self.expected_text , _snake_case ) def UpperCAmelCase__ ( self : Tuple , **_snake_case : Union[str, Any] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Dict = self.tokenizer(self.src_text , **_snake_case , return_tensors="""tf""" ) __lowerCAmelCase : List[Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __lowerCAmelCase : Optional[Any] = self.tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case ) return generated_words @slow def UpperCAmelCase__ ( self : List[Any] )->int: '''simple docstring''' self._assert_generated_batch_equal_expected()
240
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class snake_case_ ( __lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization A_ = field(default='summarization' ,metadata={'include_in_asdict_even_if_is_default': True} ) A_ = Features({'text': Value('string' )} ) A_ = Features({'summary': Value('string' )} ) A_ = "text" A_ = "summary" @property def UpperCAmelCase__ ( self : int )->Dict[str, str]: '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
240
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCamelCase__ ( UpperCAmelCase_ )-> Optional[Any]: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) SCREAMING_SNAKE_CASE = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class __a ( _lowerCAmelCase ): @staticmethod def _SCREAMING_SNAKE_CASE ( UpperCAmelCase_ : Optional[Any] )-> Union[str, Any]: """simple docstring""" UpperCamelCase = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=_a , required=_a , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=_a , required=_a , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=_a , required=_a , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=_a , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=_a , default=_a , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=_a ) def __init__( self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , )-> Tuple: """simple docstring""" UpperCamelCase = logging.get_logger("transformers-cli/converting" ) self._logger.info(f"Loading model {model_type}" ) UpperCamelCase = model_type UpperCamelCase = tf_checkpoint UpperCamelCase = pytorch_dump_output UpperCamelCase = config UpperCamelCase = finetuning_task_name def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Any: """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_a ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) if "ckpt" in self._tf_checkpoint.lower(): UpperCamelCase = self._tf_checkpoint UpperCamelCase = "" else: UpperCamelCase = self._tf_checkpoint UpperCamelCase = "" convert_transfo_xl_checkpoint_to_pytorch( _a , self._config , self._pytorch_dump_output , _a ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_a ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
554
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _snake_case ( snake_case ): UpperCamelCase__ = 42 UpperCamelCase__ = 42 class _snake_case ( nn.Module ): UpperCamelCase__ = 42 UpperCamelCase__ = (16, 32, 96, 256) UpperCamelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __magic_name__ : Any = [] for i in range(len(self.block_out_channels ) - 1 ): __magic_name__ : Any = self.block_out_channels[i] __magic_name__ : Optional[int] = self.block_out_channels[i + 1] __magic_name__ : List[str] = nn.Conv( _a , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_a ) __magic_name__ : Optional[Any] = nn.Conv( _a , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_a ) __magic_name__ : Union[str, Any] = blocks __magic_name__ : List[str] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _a ): __magic_name__ : List[Any] = self.conv_in(_a ) __magic_name__ : Dict = nn.silu(_a ) for block in self.blocks: __magic_name__ : Dict = block(_a ) __magic_name__ : int = nn.silu(_a ) __magic_name__ : str = self.conv_out(_a ) return embedding @flax_register_to_config class _snake_case ( nn.Module , snake_case , snake_case ): UpperCamelCase__ = 32 UpperCamelCase__ = 4 UpperCamelCase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCamelCase__ = False UpperCamelCase__ = (320, 640, 1280, 1280) UpperCamelCase__ = 2 UpperCamelCase__ = 8 UpperCamelCase__ = None UpperCamelCase__ = 1280 UpperCamelCase__ = 0.0 UpperCamelCase__ = False UpperCamelCase__ = jnp.floataa UpperCamelCase__ = True UpperCamelCase__ = 0 UpperCamelCase__ = "rgb" UpperCamelCase__ = (16, 32, 96, 256) def SCREAMING_SNAKE_CASE ( self , _a ): # init input tensors __magic_name__ : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) __magic_name__ : Dict = jnp.zeros(_a , dtype=jnp.floataa ) __magic_name__ : int = jnp.ones((1,) , dtype=jnp.intaa ) __magic_name__ : Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __magic_name__ : List[str] = (1, 3, self.sample_size * 8, self.sample_size * 8) __magic_name__ : Optional[int] = jnp.zeros(_a , dtype=jnp.floataa ) __magic_name__ , __magic_name__ : Dict = jax.random.split(_a ) __magic_name__ : str = {"params": params_rng, "dropout": dropout_rng} return self.init(_a , _a , _a , _a , _a )["params"] def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = self.block_out_channels __magic_name__ : Tuple = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __magic_name__ : str = self.num_attention_heads or self.attention_head_dim # input __magic_name__ : Tuple = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __magic_name__ : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __magic_name__ : str = FlaxTimestepEmbedding(_a , dtype=self.dtype ) __magic_name__ : Tuple = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __magic_name__ : Tuple = self.only_cross_attention if isinstance(_a , _a ): __magic_name__ : List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_a , _a ): __magic_name__ : Union[str, Any] = (num_attention_heads,) * len(self.down_block_types ) # down __magic_name__ : List[Any] = [] __magic_name__ : Union[str, Any] = [] __magic_name__ : Any = block_out_channels[0] __magic_name__ : str = nn.Conv( _a , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_a ) for i, down_block_type in enumerate(self.down_block_types ): __magic_name__ : Optional[int] = output_channel __magic_name__ : int = block_out_channels[i] __magic_name__ : List[str] = i == len(_a ) - 1 if down_block_type == "CrossAttnDownBlock2D": __magic_name__ : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=_a , out_channels=_a , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __magic_name__ : List[Any] = FlaxDownBlockaD( in_channels=_a , out_channels=_a , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_a ) for _ in range(self.layers_per_block ): __magic_name__ : List[Any] = nn.Conv( _a , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_a ) if not is_final_block: __magic_name__ : str = nn.Conv( _a , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_a ) __magic_name__ : Any = down_blocks __magic_name__ : Any = controlnet_down_blocks # mid __magic_name__ : Optional[int] = block_out_channels[-1] __magic_name__ : List[str] = FlaxUNetMidBlockaDCrossAttn( in_channels=_a , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __magic_name__ : Optional[int] = nn.Conv( _a , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , _a , _a , _a , _a , _a = 1.0 , _a = True , _a = False , ): __magic_name__ : List[str] = self.controlnet_conditioning_channel_order if channel_order == "bgr": __magic_name__ : int = jnp.flip(_a , axis=1 ) # 1. time if not isinstance(_a , jnp.ndarray ): __magic_name__ : Dict = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_a , jnp.ndarray ) and len(timesteps.shape ) == 0: __magic_name__ : Optional[int] = timesteps.astype(dtype=jnp.floataa ) __magic_name__ : Dict = jnp.expand_dims(_a , 0 ) __magic_name__ : Any = self.time_proj(_a ) __magic_name__ : int = self.time_embedding(_a ) # 2. pre-process __magic_name__ : Dict = jnp.transpose(_a , (0, 2, 3, 1) ) __magic_name__ : Any = self.conv_in(_a ) __magic_name__ : List[str] = jnp.transpose(_a , (0, 2, 3, 1) ) __magic_name__ : Tuple = self.controlnet_cond_embedding(_a ) sample += controlnet_cond # 3. down __magic_name__ : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_a , _a ): __magic_name__ , __magic_name__ : List[str] = down_block(_a , _a , _a , deterministic=not train ) else: __magic_name__ , __magic_name__ : List[Any] = down_block(_a , _a , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __magic_name__ : int = self.mid_block(_a , _a , _a , deterministic=not train ) # 5. contronet blocks __magic_name__ : Any = () for down_block_res_sample, controlnet_block in zip(_a , self.controlnet_down_blocks ): __magic_name__ : Dict = controlnet_block(_a ) controlnet_down_block_res_samples += (down_block_res_sample,) __magic_name__ : Optional[Any] = controlnet_down_block_res_samples __magic_name__ : int = self.controlnet_mid_block(_a ) # 6. scaling __magic_name__ : Dict = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_a , mid_block_res_sample=_a )
124
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): A__ : List[str] = StableDiffusionXLImgaImgPipeline A__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A__ : Optional[int] = PipelineTesterMixin.required_optional_params - {'''latents'''} A__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A__ : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS A__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _a ( self ): torch.manual_seed(0 ) lowerCamelCase__ =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=__a , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCamelCase__ =EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) lowerCamelCase__ =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase__ =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=32 , ) lowerCamelCase__ =CLIPTextModel(__a ) lowerCamelCase__ =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=__a ) lowerCamelCase__ =CLIPTextModelWithProjection(__a ) lowerCamelCase__ =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=__a ) lowerCamelCase__ ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _a ( self , _lowerCamelCase , _lowerCamelCase=0 ): lowerCamelCase__ =floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) lowerCamelCase__ =image / 2 + 0.5 if str(__a ).startswith("mps" ): lowerCamelCase__ =torch.manual_seed(__a ) else: lowerCamelCase__ =torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase__ ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.7_5, } return inputs def _a ( self ): lowerCamelCase__ ='cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ =self.get_dummy_components() lowerCamelCase__ =StableDiffusionXLImgaImgPipeline(**__a ) lowerCamelCase__ =sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__ =self.get_dummy_inputs(__a ) lowerCamelCase__ =sd_pipe(**__a ).images lowerCamelCase__ =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__ =np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _a ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _a ( self ): pass def _a ( self ): lowerCamelCase__ =self.get_dummy_components() lowerCamelCase__ =StableDiffusionXLImgaImgPipeline(**__a ) lowerCamelCase__ =sd_pipe.to(__a ) lowerCamelCase__ =sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) # forward without prompt embeds lowerCamelCase__ =self.get_dummy_inputs(__a ) lowerCamelCase__ =3 * ['this is a negative prompt'] lowerCamelCase__ =negative_prompt lowerCamelCase__ =3 * [inputs['prompt']] lowerCamelCase__ =sd_pipe(**__a ) lowerCamelCase__ =output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCamelCase__ =self.get_dummy_inputs(__a ) lowerCamelCase__ =3 * ['this is a negative prompt'] lowerCamelCase__ =3 * [inputs.pop("prompt" )] ( lowerCamelCase__ ) =sd_pipe.encode_prompt(__a , negative_prompt=__a ) lowerCamelCase__ =sd_pipe( **__a , prompt_embeds=__a , negative_prompt_embeds=__a , pooled_prompt_embeds=__a , negative_pooled_prompt_embeds=__a , ) lowerCamelCase__ =output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def _a ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _lowerCamelCase , _lowerCamelCase="cpu" , _lowerCamelCase=torch.floataa , _lowerCamelCase=0 ): lowerCamelCase__ =torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase__ =np.random.RandomState(__a ).standard_normal((1, 4, 64, 64) ) lowerCamelCase__ =torch.from_numpy(__a ).to(device=__a , dtype=__a ) lowerCamelCase__ ={ 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _a ( self ): lowerCamelCase__ =DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__ =self.get_inputs(__a ) lowerCamelCase__ =pipe(**__a ).images lowerCamelCase__ =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCamelCase__ =np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
717
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a =logging.get_logger(__name__) class __UpperCAmelCase ( __lowerCAmelCase ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
132
0
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Union[str, Any] = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Any = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pipe(num_inference_steps=2 , generator=a , output_type="numpy" , return_dict=a )[0] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "google/ncsnpp-celebahq-256" SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(a ) SCREAMING_SNAKE_CASE : Any = KarrasVeScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = KarrasVePipeline(unet=a , scheduler=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe(num_inference_steps=20 , generator=a , output_type="numpy" ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : str = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class __a ( _snake_case ): __UpperCamelCase : str = 'esm' def __init__( self : Tuple ,lowerCamelCase : List[Any]=None ,lowerCamelCase : str=None ,lowerCamelCase : Any=None ,lowerCamelCase : Union[str, Any]=768 ,lowerCamelCase : Tuple=12 ,lowerCamelCase : int=12 ,lowerCamelCase : Optional[int]=3072 ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Optional[int]=0.1 ,lowerCamelCase : Any=1026 ,lowerCamelCase : str=0.02 ,lowerCamelCase : int=1E-1_2 ,lowerCamelCase : Union[str, Any]="absolute" ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : str=None ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : int=False ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Any=None ,**lowerCamelCase : Any ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase ,mask_token_id=lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = emb_layer_norm_before __SCREAMING_SNAKE_CASE = token_dropout __SCREAMING_SNAKE_CASE = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) __SCREAMING_SNAKE_CASE = EsmFoldConfig() elif isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = EsmFoldConfig(**lowerCamelCase ) __SCREAMING_SNAKE_CASE = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) __SCREAMING_SNAKE_CASE = get_default_vocab_list() else: __SCREAMING_SNAKE_CASE = vocab_list else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.esmfold_config is not None and getattr(self.esmfold_config ,"""use_esm_attn_map""" ,lowerCamelCase ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = super().to_dict() if isinstance(self.esmfold_config ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = self.esmfold_config.to_dict() return output @dataclass class __a : __UpperCamelCase : str = None __UpperCamelCase : bool = True __UpperCamelCase : bool = False __UpperCamelCase : bool = False __UpperCamelCase : bool = False __UpperCamelCase : float = 0 __UpperCamelCase : bool = True __UpperCamelCase : bool = False __UpperCamelCase : int = 128 __UpperCamelCase : "TrunkConfig" = None def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' if self.trunk is None: __SCREAMING_SNAKE_CASE = TrunkConfig() elif isinstance(self.trunk ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = asdict(self ) __SCREAMING_SNAKE_CASE = self.trunk.to_dict() return output @dataclass class __a : __UpperCamelCase : int = 48 __UpperCamelCase : int = 1024 __UpperCamelCase : int = 128 __UpperCamelCase : int = 32 __UpperCamelCase : int = 32 __UpperCamelCase : int = 32 __UpperCamelCase : float = 0 __UpperCamelCase : float = 0 __UpperCamelCase : bool = False __UpperCamelCase : int = 4 __UpperCamelCase : Optional[int] = 128 __UpperCamelCase : "StructureModuleConfig" = None def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' if self.structure_module is None: __SCREAMING_SNAKE_CASE = StructureModuleConfig() elif isinstance(self.structure_module ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) __SCREAMING_SNAKE_CASE = self.sequence_state_dim // self.sequence_head_width __SCREAMING_SNAKE_CASE = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = asdict(self ) __SCREAMING_SNAKE_CASE = self.structure_module.to_dict() return output @dataclass class __a : __UpperCamelCase : int = 384 __UpperCamelCase : int = 128 __UpperCamelCase : int = 16 __UpperCamelCase : int = 128 __UpperCamelCase : int = 12 __UpperCamelCase : int = 4 __UpperCamelCase : int = 8 __UpperCamelCase : float = 0.1 __UpperCamelCase : int = 8 __UpperCamelCase : int = 1 __UpperCamelCase : int = 2 __UpperCamelCase : int = 7 __UpperCamelCase : int = 10 __UpperCamelCase : float = 1E-8 __UpperCamelCase : float = 1E5 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' return asdict(self ) def __magic_name__ ( ) -> Dict: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
109
0
from functools import lru_cache def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = 2 lowercase__ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_UpperCamelCase ) if n > 1: factors.add(_UpperCamelCase ) return factors @lru_cache def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return len(unique_prime_factors(_UpperCamelCase ) ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return len(set(_UpperCamelCase ) ) in (0, 1) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = 2 while True: # Increment each value of a generated range lowercase__ = [base + i for i in range(_UpperCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase__ = [upf_len(_UpperCamelCase ) for x in group] checker.append(_UpperCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(_UpperCamelCase ): return group # Increment our base variable by 1 base += 1 def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = 4 ): lowercase__ = run(_UpperCamelCase ) return results[0] if len(_UpperCamelCase ) else None if __name__ == "__main__": print(solution())
715
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowerCAmelCase ( ): lowercase__ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=SCREAMING_SNAKE_CASE_ ) lowercase__ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=SCREAMING_SNAKE_CASE_ ) env_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) launch_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) tpu_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) test_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) # Let's go lowercase__ = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , "func" ): parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
37
0
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ): if not len(_UpperCAmelCase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase ,lowerCAmelCase = imgs[0].size lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase ,lowerCAmelCase = grid.size for i, img in enumerate(_UpperCAmelCase ): grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]="robotic cat with wings" , _UpperCAmelCase : Optional[int]=7.5 , _UpperCAmelCase : Dict=50 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=42 , ): lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = pipeline( _UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase : Optional[Any] = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __UpperCamelCase : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __UpperCamelCase : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __UpperCamelCase : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __UpperCamelCase : Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __UpperCamelCase : Dict = unet.to(torch.device('''cuda''', args.cuda_id)) __UpperCamelCase : Optional[Any] = pipeline.to(unet.device) __UpperCamelCase ,__UpperCamelCase : List[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __UpperCamelCase : int = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
4
from __future__ import annotations from typing import TypedDict class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 42 __snake_case = 42 def lowerCamelCase__ (__lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(__lowerCamelCase ) )] def lowerCamelCase__ (__lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) _SCREAMING_SNAKE_CASE : Any = all_rotations(__lowerCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _SCREAMING_SNAKE_CASE : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__lowerCamelCase ), } return response def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: _SCREAMING_SNAKE_CASE : Optional[int] = int(__lowerCamelCase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(__lowerCamelCase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) _SCREAMING_SNAKE_CASE : Optional[int] = [""] * len(__lowerCamelCase ) for _ in range(len(__lowerCamelCase ) ): for i in range(len(__lowerCamelCase ) ): _SCREAMING_SNAKE_CASE : List[str] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCamelCase__ ='Provide a string that I will generate its BWT transform: ' UpperCamelCase__ =input(entry_msg).strip() UpperCamelCase__ =bwt_transform(s) print( f"Burrows Wheeler transform for string '{s}' results " f"in '{result['bwt_string']}'" ) UpperCamelCase__ =reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " f"we get original string '{original_string}'" )
249
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _SCREAMING_SNAKE_CASE ( pl.LightningModule ): def __init__( self : Tuple , __lowerCamelCase : Union[str, Any] ): super().__init__() UpperCamelCase :Dict = model UpperCamelCase :Optional[Any] = 2 UpperCamelCase :Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _A ( self : Any ): pass def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : str ) -> Dict: """simple docstring""" UpperCamelCase :Optional[Any] = LongformerModel.from_pretrained(__magic_name__ ) UpperCamelCase :Any = LightningModel(__magic_name__ ) UpperCamelCase :Any = torch.load(__magic_name__ , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model UpperCamelCase :Optional[int] = LongformerForQuestionAnswering.from_pretrained(__magic_name__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__magic_name__ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : str = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
590
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : jnp.ndarray snake_case__ : jnp.ndarray class _SCREAMING_SNAKE_CASE ( nn.Module ): snake_case__ : int snake_case__ : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) snake_case__ : jnp.dtype = jnp.floataa def _A ( self : Any ): UpperCamelCase :Union[str, Any] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCamelCase :List[str] = [] for i in range(len(self.block_out_channels ) - 1 ): UpperCamelCase :Optional[Any] = self.block_out_channels[i] UpperCamelCase :List[Any] = self.block_out_channels[i + 1] UpperCamelCase :List[Any] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCamelCase ) UpperCamelCase :List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCamelCase ) UpperCamelCase :Tuple = blocks UpperCamelCase :Optional[Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Dict , __lowerCamelCase : Dict ): UpperCamelCase :Tuple = self.conv_in(__lowerCamelCase ) UpperCamelCase :Optional[Any] = nn.silu(__lowerCamelCase ) for block in self.blocks: UpperCamelCase :Tuple = block(__lowerCamelCase ) UpperCamelCase :List[str] = nn.silu(__lowerCamelCase ) UpperCamelCase :Dict = self.conv_out(__lowerCamelCase ) return embedding @flax_register_to_config class _SCREAMING_SNAKE_CASE ( nn.Module , _a , _a ): snake_case__ : int = 3_2 snake_case__ : int = 4 snake_case__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case__ : Union[bool, Tuple[bool]] = False snake_case__ : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) snake_case__ : int = 2 snake_case__ : Union[int, Tuple[int]] = 8 snake_case__ : Optional[Union[int, Tuple[int]]] = None snake_case__ : int = 1_2_8_0 snake_case__ : float = 0.0 snake_case__ : bool = False snake_case__ : jnp.dtype = jnp.floataa snake_case__ : bool = True snake_case__ : int = 0 snake_case__ : str = "rgb" snake_case__ : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def _A ( self : int , __lowerCamelCase : jax.random.KeyArray ): # init input tensors UpperCamelCase :int = (1, self.in_channels, self.sample_size, self.sample_size) UpperCamelCase :Union[str, Any] = jnp.zeros(__lowerCamelCase , dtype=jnp.floataa ) UpperCamelCase :int = jnp.ones((1,) , dtype=jnp.intaa ) UpperCamelCase :Tuple = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCamelCase :Tuple = (1, 3, self.sample_size * 8, self.sample_size * 8) UpperCamelCase :Tuple = jnp.zeros(__lowerCamelCase , dtype=jnp.floataa ) UpperCamelCase , UpperCamelCase :int = jax.random.split(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["params"] def _A ( self : int ): UpperCamelCase :Dict = self.block_out_channels UpperCamelCase :Tuple = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCamelCase :List[Any] = self.num_attention_heads or self.attention_head_dim # input UpperCamelCase :Optional[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCamelCase :Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCamelCase :Tuple = FlaxTimestepEmbedding(__lowerCamelCase , dtype=self.dtype ) UpperCamelCase :List[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) UpperCamelCase :Union[str, Any] = self.only_cross_attention if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :str = (num_attention_heads,) * len(self.down_block_types ) # down UpperCamelCase :int = [] UpperCamelCase :str = [] UpperCamelCase :str = block_out_channels[0] UpperCamelCase :Optional[Any] = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) for i, down_block_type in enumerate(self.down_block_types ): UpperCamelCase :List[str] = output_channel UpperCamelCase :Optional[Any] = block_out_channels[i] UpperCamelCase :Tuple = i == len(__lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCamelCase :List[Any] = FlaxCrossAttnDownBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: UpperCamelCase :List[Any] = FlaxDownBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__lowerCamelCase ) for _ in range(self.layers_per_block ): UpperCamelCase :List[Any] = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) if not is_final_block: UpperCamelCase :str = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) UpperCamelCase :Optional[Any] = down_blocks UpperCamelCase :Optional[Any] = controlnet_down_blocks # mid UpperCamelCase :str = block_out_channels[-1] UpperCamelCase :Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=__lowerCamelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) UpperCamelCase :List[str] = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : float = 1.0 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = False , ): UpperCamelCase :Dict = self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCamelCase :List[Any] = jnp.flip(__lowerCamelCase , axis=1 ) # 1. time if not isinstance(__lowerCamelCase , jnp.ndarray ): UpperCamelCase :Any = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCamelCase :Any = timesteps.astype(dtype=jnp.floataa ) UpperCamelCase :Optional[Any] = jnp.expand_dims(__lowerCamelCase , 0 ) UpperCamelCase :Optional[Any] = self.time_proj(__lowerCamelCase ) UpperCamelCase :Any = self.time_embedding(__lowerCamelCase ) # 2. pre-process UpperCamelCase :int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) UpperCamelCase :Dict = self.conv_in(__lowerCamelCase ) UpperCamelCase :Any = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) UpperCamelCase :Optional[int] = self.controlnet_cond_embedding(__lowerCamelCase ) sample += controlnet_cond # 3. down UpperCamelCase :int = (sample,) for down_block in self.down_blocks: if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase , UpperCamelCase :Optional[Any] = down_block(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , deterministic=not train ) else: UpperCamelCase , UpperCamelCase :Union[str, Any] = down_block(__lowerCamelCase , __lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCamelCase :List[str] = self.mid_block(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , deterministic=not train ) # 5. contronet blocks UpperCamelCase :str = () for down_block_res_sample, controlnet_block in zip(__lowerCamelCase , self.controlnet_down_blocks ): UpperCamelCase :Any = controlnet_block(__lowerCamelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCamelCase :Optional[Any] = controlnet_down_block_res_samples UpperCamelCase :str = self.controlnet_mid_block(__lowerCamelCase ) # 6. scaling UpperCamelCase :str = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__lowerCamelCase , mid_block_res_sample=__lowerCamelCase )
590
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( snake_case = 10**9): __snake_case = 1 __snake_case = 2 __snake_case = 0 __snake_case = 0 __snake_case = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
564
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase : List[Any] = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = ["ConvNextFeatureExtractor"] __lowercase : Union[str, Any] = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __lowercase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
564
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case_ : Dict = logging.get_logger(__name__) class UpperCamelCase__ ( __lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ['pixel_values'] def __init__( self , snake_case = True , snake_case = 3_2 , snake_case=PILImageResampling.BILINEAR , snake_case = True , **snake_case , ): '''simple docstring''' UpperCAmelCase : Any = do_resize UpperCAmelCase : Any = do_rescale UpperCAmelCase : Tuple = size_divisor UpperCAmelCase : List[str] = resample super().__init__(**__A ) def A_ ( self , snake_case , snake_case , snake_case , snake_case = None , **snake_case ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Optional[int] = get_image_size(__A ) # Rounds the height and width down to the closest multiple of size_divisor UpperCAmelCase : Optional[int] = height // size_divisor * size_divisor UpperCAmelCase : Optional[int] = width // size_divisor * size_divisor UpperCAmelCase : Tuple = resize(__A , (new_h, new_w) , resample=__A , data_format=__A , **__A ) return image def A_ ( self , snake_case , snake_case , snake_case = None , **snake_case ): '''simple docstring''' return rescale(image=__A , scale=__A , data_format=__A , **__A ) def A_ ( self , snake_case , snake_case = None , snake_case = None , snake_case=None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ): '''simple docstring''' UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Union[str, Any] = size_divisor if size_divisor is not None else self.size_divisor UpperCAmelCase : List[Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing" ) UpperCAmelCase : Union[str, Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError("Invalid image(s)" ) # All transformations expect numpy arrays. UpperCAmelCase : Optional[Any] = [to_numpy_array(__A ) for img in images] if do_resize: UpperCAmelCase : int = [self.resize(__A , size_divisor=__A , resample=__A ) for image in images] if do_rescale: UpperCAmelCase : Optional[Any] = [self.rescale(__A , scale=1 / 2_5_5 ) for image in images] UpperCAmelCase : List[str] = [to_channel_dimension_format(__A , __A ) for image in images] UpperCAmelCase : Optional[int] = {"pixel_values": images} return BatchFeature(data=__A , tensor_type=__A )
714
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
609
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __a : Tuple = '''▁''' __a : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class UpperCAmelCase( snake_case_ , unittest.TestCase ): """simple docstring""" a : Optional[int] = BigBirdTokenizer a : List[str] = BigBirdTokenizerFast a : str = True a : int = True def __a ( self ) -> Optional[int]: """simple docstring""" super().setUp() lowercase__ : List[Any] = self.tokenizer_class(lowerCamelCase , keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = "<s>" lowercase__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(lowerCamelCase ) , 1004 ) def __a ( self ) -> List[str]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __a ( self ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ : Tuple = self.get_tokenizer() lowercase__ : List[Any] = self.get_rust_tokenizer() lowercase__ : List[Any] = "I was born in 92000, and this is falsé." lowercase__ : Union[str, Any] = tokenizer.tokenize(lowerCamelCase ) lowercase__ : Tuple = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) lowercase__ : str = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) lowercase__ : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) lowercase__ : Union[str, Any] = self.get_rust_tokenizer() lowercase__ : int = tokenizer.encode(lowerCamelCase ) lowercase__ : Any = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = BigBirdTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) lowercase__ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [285, 46, 10, 170, 382] , ) lowercase__ : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase__ : int = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __a ( self ) -> Optional[Any]: """simple docstring""" return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : List[Any] = "Hello World!" lowercase__ : Union[str, Any] = [65, 18536, 2260, 101, 66] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def __a ( self ) -> Dict: """simple docstring""" lowercase__ : Any = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off lowercase__ : Dict = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @require_torch @slow def __a ( self ) -> List[Any]: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence lowercase__ : Union[str, Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase__ : Any = " ".join(lowerCamelCase ) lowercase__ : Dict = self.big_tokenizer.encode_plus(lowerCamelCase , return_tensors="pt" , return_token_type_ids=lowerCamelCase ) lowercase__ : Dict = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=lowerCamelCase ) lowercase__ : str = BigBirdConfig(attention_type="original_full" ) lowercase__ : Union[str, Any] = BigBirdModel(lowerCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase ) model(**lowerCamelCase ) @slow def __a ( self ) -> Dict: """simple docstring""" lowercase__ : str = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) lowercase__ : List[Any] = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def __a ( self ) -> Any: """simple docstring""" lowercase__ : str = {"input_ids": [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
397
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) __a : List[Any] = logging.getLogger(__name__) __a : int = {'''facebook/bart-base''': BartForConditionalGeneration} __a : List[str] = {'''facebook/bart-base''': BartTokenizer} def snake_case_ ( ) -> List[Any]: lowercase__ : Any = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" ,type=SCREAMING_SNAKE_CASE_ ,default=SCREAMING_SNAKE_CASE_ ,help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" ,type=SCREAMING_SNAKE_CASE_ ,default=5 ,help="The maximum total input sequence length after tokenization." ,) parser.add_argument( "--num_beams" ,type=SCREAMING_SNAKE_CASE_ ,default=SCREAMING_SNAKE_CASE_ ,help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) ,) parser.add_argument( "--model_name_or_path" ,type=SCREAMING_SNAKE_CASE_ ,help="Path to pretrained model or model identifier from huggingface.co/models." ,required=SCREAMING_SNAKE_CASE_ ,) parser.add_argument( "--config_name" ,type=SCREAMING_SNAKE_CASE_ ,default=SCREAMING_SNAKE_CASE_ ,help="Pretrained config name or path if not the same as model_name" ,) parser.add_argument( "--device" ,type=SCREAMING_SNAKE_CASE_ ,default="cpu" ,help="Device where the model will be run" ,) parser.add_argument("--output_file_path" ,type=SCREAMING_SNAKE_CASE_ ,default=SCREAMING_SNAKE_CASE_ ,help="Where to store the final ONNX file." ) lowercase__ : str = parser.parse_args() return args def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_="cpu" ) -> str: lowercase__ : int = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE_ ) if model_name in ["facebook/bart-base"]: lowercase__ : Any = 0 lowercase__ : List[str] = None lowercase__ : int = 0 return huggingface_model, tokenizer def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Any: model.eval() lowercase__ : List[Any] = None lowercase__ : Optional[Any] = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE_ ) ) with torch.no_grad(): lowercase__ : str = "My friends are cool but they eat too many carbs." lowercase__ : Optional[Any] = tokenizer([ARTICLE_TO_SUMMARIZE] ,max_length=10_24 ,return_tensors="pt" ).to(model.device ) lowercase__ : Optional[int] = model.generate( inputs["input_ids"] ,attention_mask=inputs["attention_mask"] ,num_beams=SCREAMING_SNAKE_CASE_ ,max_length=SCREAMING_SNAKE_CASE_ ,early_stopping=SCREAMING_SNAKE_CASE_ ,decoder_start_token_id=model.config.decoder_start_token_id ,) torch.onnx.export( SCREAMING_SNAKE_CASE_ ,( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) ,SCREAMING_SNAKE_CASE_ ,opset_version=14 ,input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] ,output_names=["output_ids"] ,dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } ,example_outputs=SCREAMING_SNAKE_CASE_ ,) logger.info("Model exported to {}".format(SCREAMING_SNAKE_CASE_ ) ) lowercase__ : Tuple = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE_ ) ) logger.info("Deduplicated and optimized model written to {}".format(SCREAMING_SNAKE_CASE_ ) ) lowercase__ : int = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE_ ) lowercase__ : Tuple = ort_sess.run( SCREAMING_SNAKE_CASE_ ,{ "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(SCREAMING_SNAKE_CASE_ ), "max_length": np.array(SCREAMING_SNAKE_CASE_ ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } ,) np.testing.assert_allclose(summary_ids.cpu().numpy() ,ort_out[0] ,rtol=1E-3 ,atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def snake_case_ ( ) -> List[Any]: lowercase__ : Optional[Any] = parse_args() lowercase__ : List[Any] = 5 lowercase__ : List[Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO ,) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowercase__ : Optional[int] = torch.device(args.device ) lowercase__ , lowercase__ : Any = load_model_tokenizer(args.model_name_or_path ,SCREAMING_SNAKE_CASE_ ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(SCREAMING_SNAKE_CASE_ ) if args.max_length: lowercase__ : Tuple = args.max_length if args.num_beams: lowercase__ : str = args.num_beams if args.output_file_path: lowercase__ : str = args.output_file_path else: lowercase__ : Tuple = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
397
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase , unittest.TestCase ): __a =LongformerTokenizer __a =True __a =LongformerTokenizerFast __a =True def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __a = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __a = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __a = {'unk_token': '<unk>'} __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase ) ) def __UpperCamelCase ( self , **lowerCamelCase ) ->Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __UpperCamelCase ( self , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase ) ->Optional[int]: '''simple docstring''' __a = 'lower newer' __a = 'lower newer' return input_text, output_text def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' __a = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a = 'lower newer' __a = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] __a = tokenizer.tokenize(lowerCamelCase ) # , add_prefix_space=True) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __a = tokens + [tokenizer.unk_token] __a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase ) def __UpperCamelCase ( self ) ->Tuple: '''simple docstring''' __a = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowerCamelCase ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowerCamelCase ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def __UpperCamelCase ( self ) ->Tuple: '''simple docstring''' __a = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) __a = tokenizer.encode('sequence builders' , add_special_tokens=lowerCamelCase ) __a = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCamelCase ) __a = tokenizer.encode( 'sequence builders' , add_special_tokens=lowerCamelCase , add_prefix_space=lowerCamelCase ) __a = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowerCamelCase , add_prefix_space=lowerCamelCase ) __a = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) __a = tokenizer.build_inputs_with_special_tokens(lowerCamelCase , lowerCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' __a = self.get_tokenizer() __a = 'Encode this sequence.' __a = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments __a = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase , add_prefix_space=lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCamelCase , lowerCamelCase ) __a = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase , add_prefix_space=lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCamelCase , lowerCamelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) __a = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCamelCase , lowerCamelCase ) # Testing spaces after special tokens __a = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase )} ) # mask token has a left space __a = tokenizer.convert_tokens_to_ids(lowerCamelCase ) __a = 'Encode <mask> sequence' __a = 'Encode <mask>sequence' __a = tokenizer.encode(lowerCamelCase ) __a = encoded.index(lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCamelCase , lowerCamelCase ) __a = tokenizer.encode(lowerCamelCase ) __a = encoded.index(lowerCamelCase ) __a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCamelCase , lowerCamelCase ) def __UpperCamelCase ( self ) ->int: '''simple docstring''' pass def __UpperCamelCase ( self ) ->int: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __a = self.tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __a = 'A, <mask> AllenNLP sentence.' __a = tokenizer_r.encode_plus(lowerCamelCase , add_special_tokens=lowerCamelCase , return_token_type_ids=lowerCamelCase ) __a = tokenizer_p.encode_plus(lowerCamelCase , add_special_tokens=lowerCamelCase , return_token_type_ids=lowerCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __a = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __a = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCamelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def __UpperCamelCase ( self ) ->Any: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __a = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) __a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowerCamelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , lowerCamelCase ) self.assertEqual(post_processor_state['trim_offsets'] , lowerCamelCase ) def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __a = F"""{text_of_1_token} {text_of_1_token}""" __a = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) __a = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase ) + 1, len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) __a = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) __a = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase ) + 1, len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) __a = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) __a = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase ), len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) __a = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) __a = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase ), len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) __a = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __a = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) __a = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase ) + 1, 1 + len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) __a = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) __a = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase ), 1 + len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) __a = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , add_prefix_space=lowerCamelCase , trim_offsets=lowerCamelCase ) __a = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase ), 1 + len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , )
270
'''simple docstring''' __UpperCamelCase : Tuple = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
270
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __magic_name__ : UpperCamelCase : Tuple = XGLMConfig UpperCamelCase : List[Any] = {} UpperCamelCase : Union[str, Any] = "gelu" def __init__( self , __magic_name__ , __magic_name__=1_4 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=9_9 , __magic_name__=3_2 , __magic_name__=2 , __magic_name__=4 , __magic_name__=3_7 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_1_2 , __magic_name__=0.02 , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = d_model _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = ffn_dim _lowerCAmelCase = activation_function _lowerCAmelCase = activation_dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = initializer_range _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = 2 _lowerCAmelCase = 1 def _lowerCamelCase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = self.get_config() _lowerCAmelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCamelCase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__magic_name__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__magic_name__ , ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : Tuple = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase : str = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase : int = False UpperCamelCase : Any = False UpperCamelCase : str = False def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TFXGLMModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=__magic_name__ , n_embd=3_7 ) def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFXGLMModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def _lowerCamelCase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class __magic_name__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self , __magic_name__=True ): """simple docstring""" _lowerCAmelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _lowerCAmelCase = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCAmelCase = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _lowerCAmelCase = model.generate(__magic_name__ , do_sample=__magic_name__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _lowerCAmelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) _lowerCAmelCase = tokenizer('Today is a nice day and' , return_tensors='tf' ) _lowerCAmelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): _lowerCAmelCase = model.generate(__magic_name__ , do_sample=__magic_name__ , seed=[7, 0] ) _lowerCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ ) _lowerCAmelCase = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(__magic_name__ , __magic_name__ ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _lowerCAmelCase = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _lowerCAmelCase = 'left' # use different length sentences to test batching _lowerCAmelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] _lowerCAmelCase = tokenizer(__magic_name__ , return_tensors='tf' , padding=__magic_name__ ) _lowerCAmelCase = inputs['input_ids'] _lowerCAmelCase = model.generate(input_ids=__magic_name__ , attention_mask=inputs['attention_mask'] , max_new_tokens=1_2 ) _lowerCAmelCase = tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCAmelCase = model.generate(input_ids=__magic_name__ , max_new_tokens=1_2 ) _lowerCAmelCase = tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCAmelCase = model.generate(input_ids=__magic_name__ , max_new_tokens=1_2 ) _lowerCAmelCase = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) _lowerCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ ) _lowerCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ ) _lowerCAmelCase = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
707
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : Dict = StableDiffusionControlNetImgaImgPipeline UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) UpperCamelCase : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _lowerCAmelCase = CLIPTextModel(__magic_name__ ) _lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowerCamelCase ( self , __magic_name__ , __magic_name__=0 ): """simple docstring""" if str(__magic_name__ ).startswith('mps' ): _lowerCAmelCase = torch.manual_seed(__magic_name__ ) else: _lowerCAmelCase = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) _lowerCAmelCase = 2 _lowerCAmelCase = randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , ) _lowerCAmelCase = floats_tensor(control_image.shape , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__magic_name__ ) ).convert('RGB' ).resize((6_4, 6_4) ) _lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _lowerCamelCase ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __magic_name__ ( _UpperCamelCase ,_UpperCamelCase ,unittest.TestCase ): UpperCamelCase : str = StableDiffusionControlNetImgaImgPipeline UpperCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} UpperCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) def init_weights(__magic_name__ ): if isinstance(__magic_name__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(__magic_name__ ) torch.manual_seed(0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(__magic_name__ ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _lowerCAmelCase = CLIPTextModel(__magic_name__ ) _lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase = MultiControlNetModel([controlneta, controlneta] ) _lowerCAmelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowerCamelCase ( self , __magic_name__ , __magic_name__=0 ): """simple docstring""" if str(__magic_name__ ).startswith('mps' ): _lowerCAmelCase = torch.manual_seed(__magic_name__ ) else: _lowerCAmelCase = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) _lowerCAmelCase = 2 _lowerCAmelCase = [ randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , ), randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=__magic_name__ , device=torch.device(__magic_name__ ) , ), ] _lowerCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__magic_name__ ) ).convert('RGB' ).resize((6_4, 6_4) ) _lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) _lowerCAmelCase = 10.0 _lowerCAmelCase = 4 _lowerCAmelCase = self.get_dummy_inputs(__magic_name__ ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__magic_name__ )[0] _lowerCAmelCase = self.get_dummy_inputs(__magic_name__ ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__magic_name__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _lowerCAmelCase = self.get_dummy_inputs(__magic_name__ ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__magic_name__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _lowerCAmelCase = self.get_dummy_inputs(__magic_name__ ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__magic_name__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def _lowerCamelCase ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _lowerCamelCase ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__magic_name__ ) except NotImplementedError: pass @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def _lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) _lowerCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=__magic_name__ , controlnet=__magic_name__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__magic_name__ ) _lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase = 'evil space-punk bird' _lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((5_1_2, 5_1_2) ) _lowerCAmelCase = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((5_1_2, 5_1_2) ) _lowerCAmelCase = pipe( __magic_name__ , __magic_name__ , control_image=__magic_name__ , generator=__magic_name__ , output_type='np' , num_inference_steps=5_0 , strength=0.6 , ) _lowerCAmelCase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) _lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9e-2
309
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class a ( a__ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
4
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __UpperCamelCase : List[Any] = ["""text""", """image""", """audio"""] def a_ ( _A ) -> Optional[int]: """simple docstring""" snake_case__ = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_A , _A ): inputs.append(create_inputs(_A ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def a_ ( _A ) -> Dict: """simple docstring""" snake_case__ = [] for output in outputs: if isinstance(_A , (str, AgentText) ): output_types.append('text' ) elif isinstance(_A , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(_A , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class __SCREAMING_SNAKE_CASE: def lowerCAmelCase_ ( self: Optional[int] ) -> List[str]: self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) snake_case__ = self.tool.inputs for _input in inputs: if isinstance(_input , UpperCamelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) snake_case__ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase_ ( self: Optional[int] ) -> Union[str, Any]: snake_case__ = create_inputs(self.tool.inputs ) snake_case__ = self.tool(*UpperCamelCase ) # There is a single output if len(self.tool.outputs ) == 1: snake_case__ = [outputs] self.assertListEqual(output_types(UpperCamelCase ) , self.tool.outputs ) def lowerCAmelCase_ ( self: int ) -> List[str]: self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: snake_case__ = create_inputs(self.tool.inputs ) snake_case__ = self.tool(*UpperCamelCase ) if not isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = [outputs] self.assertEqual(len(UpperCamelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(UpperCamelCase , self.tool.outputs ): snake_case__ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(UpperCamelCase , UpperCamelCase ) ) def lowerCAmelCase_ ( self: Any ) -> Optional[int]: snake_case__ = create_inputs(self.tool.inputs ) snake_case__ = [] for _input, input_type in zip(UpperCamelCase , self.tool.inputs ): if isinstance(UpperCamelCase , UpperCamelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error snake_case__ = self.tool(*UpperCamelCase ) if not isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = [outputs] self.assertEqual(len(UpperCamelCase ) , len(self.tool.outputs ) )
328
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[int] = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class lowercase_ ( __snake_case ): _lowerCamelCase = 'deberta-v2' def __init__( self , lowercase_=128_100 , lowercase_=1_536 , lowercase_=24 , lowercase_=24 , lowercase_=6_144 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=512 , lowercase_=0 , lowercase_=0.02 , lowercase_=1e-7 , lowercase_=False , lowercase_=-1 , lowercase_=0 , lowercase_=True , lowercase_=None , lowercase_=0 , lowercase_="gelu" , **lowercase_ , ): super().__init__(**lowercase_ ) _snake_case : Tuple = hidden_size _snake_case : Tuple = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : int = intermediate_size _snake_case : List[Any] = hidden_act _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : Union[str, Any] = type_vocab_size _snake_case : Optional[Any] = initializer_range _snake_case : int = relative_attention _snake_case : Tuple = max_relative_positions _snake_case : List[Any] = pad_token_id _snake_case : List[str] = position_biased_input # Backwards compatibility if type(lowercase_ ) == str: _snake_case : Union[str, Any] = [x.strip() for x in pos_att_type.lower().split("|" )] _snake_case : Union[str, Any] = pos_att_type _snake_case : List[str] = vocab_size _snake_case : int = layer_norm_eps _snake_case : int = kwargs.get("pooler_hidden_size" , lowercase_ ) _snake_case : Union[str, Any] = pooler_dropout _snake_case : Union[str, Any] = pooler_hidden_act class lowercase_ ( __snake_case ): @property def UpperCamelCase ( self ): if self.task == "multiple-choice": _snake_case : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: _snake_case : Dict = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def UpperCamelCase ( self ): return 12 def UpperCamelCase ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , lowercase_ = 3 , lowercase_ = 40 , lowercase_ = 40 , lowercase_ = None , ): _snake_case : Optional[int] = super().generate_dummy_inputs(preprocessor=lowercase_ , framework=lowercase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
580
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) __SCREAMING_SNAKE_CASE : int = 'bert-base-cased' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'fp16' __SCREAMING_SNAKE_CASE : str = 'bf16' __SCREAMING_SNAKE_CASE : Optional[int] = [FPaa, BFaa] @require_fsdp @require_cuda class lowercase_ ( __snake_case ): def UpperCamelCase ( self ): super().setUp() _snake_case : Optional[int] = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def UpperCamelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(lowercase_ ): _snake_case : Optional[Any] = self.dist_env.copy() _snake_case : List[str] = f"""{i + 1}""" _snake_case : int = strategy with mockenv_context(**lowercase_ ): _snake_case : Any = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def UpperCamelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(lowercase_ ): _snake_case : List[str] = self.dist_env.copy() _snake_case : List[Any] = prefetch_policy with mockenv_context(**lowercase_ ): _snake_case : List[str] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def UpperCamelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(lowercase_ ): _snake_case : str = self.dist_env.copy() _snake_case : List[str] = state_dict_type with mockenv_context(**lowercase_ ): _snake_case : List[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def UpperCamelCase ( self ): _snake_case : Tuple = AutoModel.from_pretrained(lowercase_ ) for policy in FSDP_AUTO_WRAP_POLICY: _snake_case : Optional[Any] = self.dist_env.copy() _snake_case : List[str] = policy if policy == "TRANSFORMER_BASED_WRAP": _snake_case : List[str] = "BertLayer" elif policy == "SIZE_BASED_WRAP": _snake_case : str = "2000" with mockenv_context(**lowercase_ ): _snake_case : List[str] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase_ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _snake_case : str = self.dist_env.copy() _snake_case : Tuple = "TRANSFORMER_BASED_WRAP" _snake_case : Union[str, Any] = "T5Layer" with mockenv_context(**lowercase_ ): _snake_case : Optional[int] = FullyShardedDataParallelPlugin() with self.assertRaises(lowercase_ ) as cm: fsdp_plugin.set_auto_wrap_policy(lowercase_ ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) _snake_case : str = self.dist_env.copy() _snake_case : Any = "SIZE_BASED_WRAP" _snake_case : str = "0" with mockenv_context(**lowercase_ ): _snake_case : Optional[int] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(lowercase_ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def UpperCamelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _snake_case : Union[str, Any] = self.dist_env.copy() _snake_case : int = mp_dtype with mockenv_context(**lowercase_ ): _snake_case : str = Accelerator() if mp_dtype == "fp16": _snake_case : List[str] = torch.floataa elif mp_dtype == "bf16": _snake_case : Any = torch.bfloataa _snake_case : Dict = MixedPrecision(param_dtype=lowercase_ , reduce_dtype=lowercase_ , buffer_dtype=lowercase_ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , lowercase_ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , lowercase_ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(lowercase_ ) def UpperCamelCase ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _snake_case : Union[str, Any] = self.dist_env.copy() _snake_case : Tuple = str(lowercase_ ).lower() with mockenv_context(**lowercase_ ): _snake_case : Dict = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=lowercase_ ) ) @require_fsdp @require_multi_gpu @slow class lowercase_ ( __snake_case ): def UpperCamelCase ( self ): super().setUp() _snake_case : Dict = 0.82 _snake_case : str = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] _snake_case : Tuple = { "multi_gpu_fp16": 3_200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2_000, "fsdp_full_shard_transformer_based_wrap_fp16": 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _snake_case : Tuple = 160 _snake_case : Optional[int] = 160 _snake_case : Optional[Any] = inspect.getfile(accelerate.test_utils ) _snake_case : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def UpperCamelCase ( self ): _snake_case : Optional[int] = os.path.join(self.test_scripts_folder , "test_performance.py" ) _snake_case : int = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: _snake_case : str = cmd.copy() for i, strategy in enumerate(lowercase_ ): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) def UpperCamelCase ( self ): _snake_case : Tuple = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) _snake_case : str = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(lowercase_ ): _snake_case : str = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue _snake_case : int = len(lowercase_ ) for state_dict_type in FSDP_STATE_DICT_TYPE: _snake_case : int = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) _snake_case : Union[str, Any] = cmd_config[:-1] _snake_case : Dict = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() ) def UpperCamelCase ( self ): _snake_case : List[Any] = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) _snake_case : Any = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _snake_case : Tuple = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(lowercase_ ): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() )
580
1
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__UpperCamelCase ) ,'Tatoeba directory does not exist.' ) class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' @cached_property def _a ( self ): """simple docstring""" snake_case_ :List[Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=a ) @slow def _a ( self ): """simple docstring""" self.resolver.convert_models(["heb-eng"] ) @slow def _a ( self ): """simple docstring""" snake_case_ , snake_case_ :Optional[int] = self.resolver.write_model_card("opus-mt-he-en" , dry_run=a ) assert mmeta["long_pair"] == "heb-eng"
584
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def A ( _A, _A ): """simple docstring""" snake_case_ :List[str] = list(_A ) snake_case_ :Any = list(_A ) snake_case_ :Optional[Any] = 0 for i in range(len(_A ) ): if lista[i] != lista[i]: count += 1 snake_case_ :Optional[int] = "_" if count > 1: return False else: return "".join(_A ) def A ( _A ): """simple docstring""" snake_case_ :Tuple = [] while True: snake_case_ :int = ["$"] * len(_A ) snake_case_ :Union[str, Any] = [] for i in range(len(_A ) ): for j in range(i + 1, len(_A ) ): snake_case_ :Dict = compare_string(binary[i], binary[j] ) if k is False: snake_case_ :Tuple = "*" snake_case_ :List[str] = "*" temp.append("X" ) for i in range(len(_A ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_A ) == 0: return pi snake_case_ :Dict = list(set(_A ) ) def A ( _A, _A ): """simple docstring""" snake_case_ :Optional[int] = [] for minterm in minterms: snake_case_ :Tuple = "" for _ in range(_A ): snake_case_ :Optional[int] = str(minterm % 2 ) + string minterm //= 2 temp.append(_A ) return temp def A ( _A, _A, _A ): """simple docstring""" snake_case_ :Tuple = list(_A ) snake_case_ :List[str] = list(_A ) snake_case_ :Dict = 0 for i in range(len(_A ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def A ( _A, _A ): """simple docstring""" snake_case_ :List[Any] = [] snake_case_ :List[Any] = [0] * len(_A ) for i in range(len(chart[0] ) ): snake_case_ :List[Any] = 0 snake_case_ :Optional[Any] = -1 for j in range(len(_A ) ): if chart[j][i] == 1: count += 1 snake_case_ :Dict = j if count == 1: snake_case_ :str = 1 for i in range(len(_A ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_A ) ): snake_case_ :str = 0 temp.append(prime_implicants[i] ) while True: snake_case_ :Any = 0 snake_case_ :Optional[int] = -1 snake_case_ :List[Any] = 0 for i in range(len(_A ) ): snake_case_ :str = chart[i].count(1 ) if count_n > max_n: snake_case_ :Optional[Any] = count_n snake_case_ :List[str] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_A ) ): snake_case_ :Any = 0 def A ( _A, _A ): """simple docstring""" snake_case_ :Optional[Any] = [[0 for x in range(len(_A ) )] for x in range(len(_A ) )] for i in range(len(_A ) ): snake_case_ :Dict = prime_implicants[i].count("_" ) for j in range(len(_A ) ): if is_for_table(prime_implicants[i], binary[j], _A ): snake_case_ :Optional[int] = 1 return chart def A ( ): """simple docstring""" snake_case_ :str = int(input("Enter the no. of variables\n" ) ) snake_case_ :Dict = [ float(_A ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] snake_case_ :Tuple = decimal_to_binary(_A, _A ) snake_case_ :Tuple = check(_A ) print("Prime Implicants are:" ) print(_A ) snake_case_ :List[Any] = prime_implicant_chart(_A, _A ) snake_case_ :int = selection(_A, _A ) print("Essential Prime Implicants are:" ) print(_A ) if __name__ == "__main__": import doctest doctest.testmod() main()
584
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowercase_ = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] lowercase_ = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->str: """simple docstring""" __magic_name__ : List[Any] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __magic_name__ : Optional[Any] = int(re.match(r'''.*layer_(\d*).*''', UpperCAmelCase )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def lowerCAmelCase ( UpperCAmelCase ) ->Any: """simple docstring""" if dtype == torch.bool: return 1 / 8 __magic_name__ : Optional[int] = re.search(r'''[^\d](\d+)$''', str(UpperCAmelCase ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) __magic_name__ : Tuple = int(bit_search.groups()[0] ) return bit_size // 8 def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) ->List[Any]: """simple docstring""" if bloom_config_file == "": __magic_name__ : Union[str, Any] = BloomConfig() else: __magic_name__ : List[Any] = BloomConfig.from_json_file(UpperCAmelCase ) if shard_model: __magic_name__ : Tuple = os.listdir(UpperCAmelCase ) __magic_name__ : int = sorted(filter(lambda UpperCAmelCase : s.startswith('''layer''' ) and "model_00" in s, UpperCAmelCase ) ) __magic_name__ : Optional[Any] = {'''weight_map''': {}, '''metadata''': {}} __magic_name__ : int = 0 __magic_name__ : List[str] = None __magic_name__ : Dict = BloomConfig() for j, file in enumerate(UpperCAmelCase ): print('''Processing file: {}'''.format(UpperCAmelCase ) ) __magic_name__ : Tuple = None for i in range(UpperCAmelCase ): # load all TP files __magic_name__ : Union[str, Any] = file.replace('''model_00''', F'''model_0{i}''' ) __magic_name__ : List[str] = torch.load(os.path.join(UpperCAmelCase, UpperCAmelCase ), map_location='''cpu''' ) # Rename keys in the transformers names __magic_name__ : Optional[Any] = list(temp.keys() ) for key in keys: __magic_name__ : Optional[Any] = temp.pop(UpperCAmelCase ) if tensors is None: __magic_name__ : Any = temp else: for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __magic_name__ : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __magic_name__ : List[Any] = torch.cat([tensors[key], temp[key]], dim=UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __magic_name__ : Dict = tensors[key] / pretraining_tp torch.save( UpperCAmelCase, os.path.join( UpperCAmelCase, '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ), str(len(UpperCAmelCase ) ).zfill(5 ) ), ), ) for key in tensors.keys(): __magic_name__ : Tuple = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __magic_name__ : str = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ), str(len(UpperCAmelCase ) ).zfill(5 ) ) __magic_name__ : List[str] = BloomConfig() __magic_name__ : List[str] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME __magic_name__ : Tuple = total_size with open(UpperCAmelCase, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCAmelCase, WEIGHTS_NAME + '''.index.json''' ), '''w''', encoding='''utf-8''' ) as f: __magic_name__ : str = json.dumps(UpperCAmelCase, indent=2, sort_keys=UpperCAmelCase ) + '''\n''' f.write(UpperCAmelCase ) else: __magic_name__ : Dict = BloomModel(UpperCAmelCase ) __magic_name__ : Tuple = os.listdir(UpperCAmelCase ) __magic_name__ : Optional[Any] = sorted(filter(lambda UpperCAmelCase : s.startswith('''layer''' ) and "model_00" in s, UpperCAmelCase ) ) __magic_name__ : List[str] = None for i, file in enumerate(UpperCAmelCase ): __magic_name__ : str = None for i in range(UpperCAmelCase ): # load all TP files __magic_name__ : List[str] = file.replace('''model_00''', F'''model_0{i}''' ) __magic_name__ : int = torch.load(os.path.join(UpperCAmelCase, UpperCAmelCase ), map_location='''cpu''' ) # Rename keys in the transformers names __magic_name__ : Dict = list(temp.keys() ) for key in keys: __magic_name__ : Tuple = temp.pop(UpperCAmelCase ) if tensors is None: __magic_name__ : Any = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __magic_name__ : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __magic_name__ : str = torch.cat([tensors[key], temp[key]], dim=UpperCAmelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __magic_name__ : Optional[int] = tensors[key] / pretraining_tp __magic_name__ : int = model.load_state_dict(UpperCAmelCase, strict=UpperCAmelCase ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: __magic_name__ : Any = set(other_keys.missing_keys ) else: __magic_name__ : Optional[int] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(UpperCAmelCase, exist_ok=UpperCAmelCase ) __magic_name__ : str = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __magic_name__ : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: __magic_name__ : List[Any] = model.to(config.torch_dtype ) torch.save(model.state_dict(), UpperCAmelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCAmelCase, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) lowercase_ = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
336
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowercase_ = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowercase_ = subprocess.check_output(f"git diff --name-only {fork_point_sha}".split()).decode('''utf-8''').split() lowercase_ = '''|'''.join(sys.argv[1:]) lowercase_ = re.compile(rf"^({joined_dirs}).*?\.py$") lowercase_ = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
336
1
'''simple docstring''' from __future__ import annotations from collections import deque class _snake_case : def __init__( self ,_snake_case ): UpperCAmelCase_ : list[dict] = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(_snake_case ) self.set_fail_transitions() def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Optional[int] = 0 for character in keyword: UpperCAmelCase_ : List[str] = self.find_next_state(_snake_case ,_snake_case ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase_ : str = len(self.adlist ) - 1 else: UpperCAmelCase_ : str = next_state self.adlist[current_state]["output"].append(_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : deque = deque() for node in self.adlist[0]["next_states"]: q.append(_snake_case ) UpperCAmelCase_ : Optional[int] = 0 while q: UpperCAmelCase_ : int = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_snake_case ) UpperCAmelCase_ : int = self.adlist[r]["fail_state"] while ( self.find_next_state(_snake_case ,self.adlist[child]["value"] ) is None and state != 0 ): UpperCAmelCase_ : Tuple = self.adlist[state]["fail_state"] UpperCAmelCase_ : Union[str, Any] = self.find_next_state( _snake_case ,self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Union[str, Any] = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : dict = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase_ : Optional[Any] = 0 for i in range(len(_snake_case ) ): while ( self.find_next_state(_snake_case ,string[i] ) is None and current_state != 0 ): UpperCAmelCase_ : List[str] = self.adlist[current_state]["fail_state"] UpperCAmelCase_ : Union[str, Any] = self.find_next_state(_snake_case ,string[i] ) if next_state is None: UpperCAmelCase_ : Optional[Any] = 0 else: UpperCAmelCase_ : Union[str, Any] = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase_ : int = [] result[key].append(i - len(_snake_case ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
71
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _lowercase = logging.get_logger(__name__) _lowercase = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) _lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __UpperCamelCase ( a : str ) ->str: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: snake_case = model_type_to_module_name(a ) snake_case = importlib.import_module(f""".{module_name}""" , '''transformers.models''' ) try: return getattr(a , a ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(a , '''__name__''' , a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. snake_case = importlib.import_module('''transformers''' ) if hasattr(a , a ): return getattr(a , a ) return None def __UpperCamelCase ( a : Union[str, os.PathLike] , a : Optional[Union[str, os.PathLike]] = None , a : bool = False , a : bool = False , a : Optional[Dict[str, str]] = None , a : Optional[Union[bool, str]] = None , a : Optional[str] = None , a : bool = False , **a : Any , ) ->Any: snake_case = get_file_from_repo( a , a , cache_dir=a , force_download=a , resume_download=a , proxies=a , use_auth_token=a , revision=a , local_files_only=a , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(a , encoding='''utf-8''' ) as reader: return json.load(a ) class _lowercase : def __init__( self ) -> Tuple: raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A__ ) def UpperCamelCase ( cls , A__ , **A__ ) -> List[str]: snake_case = kwargs.pop('''config''' , A__ ) snake_case = kwargs.pop('''trust_remote_code''' , A__ ) snake_case = True snake_case , snake_case = ImageProcessingMixin.get_image_processor_dict(A__ , **A__ ) snake_case = config_dict.get('''image_processor_type''' , A__ ) snake_case = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): snake_case = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: snake_case = config_dict.pop('''feature_extractor_type''' , A__ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) snake_case = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): snake_case = config_dict['''auto_map''']['''AutoFeatureExtractor'''] snake_case = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(A__ , A__ ): snake_case = AutoConfig.from_pretrained(A__ , **A__ ) # It could be in `config.image_processor_type`` snake_case = getattr(A__ , '''image_processor_type''' , A__ ) if hasattr(A__ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: snake_case = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: snake_case = image_processor_class_from_name(A__ ) snake_case = image_processor_auto_map is not None snake_case = image_processor_class is not None or type(A__ ) in IMAGE_PROCESSOR_MAPPING snake_case = resolve_trust_remote_code( A__ , A__ , A__ , A__ ) if has_remote_code and trust_remote_code: snake_case = get_class_from_dynamic_module( A__ , A__ , **A__ ) snake_case = kwargs.pop('''code_revision''' , A__ ) if os.path.isdir(A__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(A__ , **A__ ) elif image_processor_class is not None: return image_processor_class.from_dict(A__ , **A__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(A__ ) in IMAGE_PROCESSOR_MAPPING: snake_case = IMAGE_PROCESSOR_MAPPING[type(A__ )] return image_processor_class.from_dict(A__ , **A__ ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCamelCase ( A__ , A__ ) -> Tuple: IMAGE_PROCESSOR_MAPPING.register(A__ , A__ )
342
0
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase = "AAPL" ): snake_case__ = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case__ = BeautifulSoup(requests.get(__lowerCAmelCase ).text , "html.parser" ) snake_case__ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
706
import os import re import shutil import sys import tempfile import unittest import black __magic_name__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __magic_name__ = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def A_ ( self ): snake_case__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) snake_case__ = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def A_ ( self ): snake_case__ = "src/transformers" shutil.rmtree(self.transformer_dir ) def A_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): snake_case__ = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: snake_case__ = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result snake_case__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) snake_case__ = black.format_str(lowerCamelCase , mode=lowerCamelCase ) snake_case__ = os.path.join(self.transformer_dir , "new_code.py" ) with open(lowerCamelCase , "w" , newline="\n" ) as f: f.write(lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCamelCase ) with open(lowerCamelCase , "r" ) as f: self.assertTrue(f.read() , lowerCamelCase ) def A_ ( self ): snake_case__ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def A_ ( self ): # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , lowerCamelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , lowerCamelCase ) , ) # Copy consistency with a really long name snake_case__ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , F"""{long_class_name}LMPredictionHead""" , re.sub("Bert" , lowerCamelCase , lowerCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , lowerCamelCase , overwrite_result=re.sub("Bert" , "TestModel" , lowerCamelCase ) , ) def A_ ( self ): snake_case__ = check_copies.LOCALIZED_READMES["README_zh-hans.md"] snake_case__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) snake_case__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) snake_case__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) snake_case__ , snake_case__ = check_copies.convert_to_localized_md( lowerCamelCase , lowerCamelCase , localized_readme["format_model_list"] ) self.assertFalse(lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) snake_case__ , snake_case__ = check_copies.convert_to_localized_md( lowerCamelCase , lowerCamelCase , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase ) snake_case__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) snake_case__ = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) snake_case__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) snake_case__ , snake_case__ = check_copies.convert_to_localized_md( lowerCamelCase , lowerCamelCase , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase , lowerCamelCase )
530
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCamelCase ( __snake_case , unittest.TestCase): __lowerCamelCase = KandinskyVaaControlnetImgaImgPipeline __lowerCamelCase = ["image_embeds", "negative_image_embeds", "image", "hint"] __lowerCamelCase = ["image_embeds", "negative_image_embeds", "image", "hint"] __lowerCamelCase = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowerCamelCase = False @property def A (self ): """simple docstring""" return 3_2 @property def A (self ): """simple docstring""" return 3_2 @property def A (self ): """simple docstring""" return self.time_input_dim @property def A (self ): """simple docstring""" return self.time_input_dim * 4 @property def A (self ): """simple docstring""" return 1_0_0 @property def A (self ): """simple docstring""" torch.manual_seed(0 ) A__ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A__ = UNetaDConditionModel(**lowerCamelCase__ ) return model @property def A (self ): """simple docstring""" return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def A (self ): """simple docstring""" torch.manual_seed(0 ) A__ = VQModel(**self.dummy_movq_kwargs ) return model def A (self ): """simple docstring""" A__ = self.dummy_unet A__ = self.dummy_movq A__ = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } A__ = DDIMScheduler(**lowerCamelCase__ ) A__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A (self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase__ ) # create init_image A__ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) A__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create hint A__ = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith("""mps""" ): A__ = torch.manual_seed(lowerCamelCase__ ) else: A__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) A__ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def A (self ): """simple docstring""" A__ = """cpu""" A__ = self.get_dummy_components() A__ = self.pipeline_class(**lowerCamelCase__ ) A__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A__ = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) A__ = output.images A__ = pipe( **self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) A__ = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase): def A (self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A (self ): """simple docstring""" A__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) A__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) A__ = init_image.resize((5_1_2, 5_1_2) ) A__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) A__ = torch.from_numpy(np.array(lowerCamelCase__ ) ).float() / 2_5_5.0 A__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) A__ = """A robot, 4k photo""" A__ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase__ ) A__ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) A__ = pipeline.to(lowerCamelCase__ ) pipeline.set_progress_bar_config(disable=lowerCamelCase__ ) A__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) A__ ,A__ = pipe_prior( lowerCamelCase__ , image=lowerCamelCase__ , strength=0.8_5 , generator=lowerCamelCase__ , negative_prompt="""""" , ).to_tuple() A__ = pipeline( image=lowerCamelCase__ , image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , hint=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type="""np""" , ) A__ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
574
"""simple docstring""" from math import isqrt def _SCREAMING_SNAKE_CASE ( UpperCamelCase : int ): A__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCamelCase , UpperCamelCase ): A__ = False return [i for i in range(2 , UpperCamelCase ) if is_prime[i]] def _SCREAMING_SNAKE_CASE ( UpperCamelCase : int = 10**8 ): A__ = calculate_prime_numbers(max_number // 2 ) A__ = 0 A__ = 0 A__ = len(UpperCamelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
574
1
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 1000 ) -> int: """simple docstring""" UpperCamelCase :Dict = -1 UpperCamelCase :Optional[Any] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c UpperCamelCase :List[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a) UpperCamelCase :Tuple = n - a - b if c * c == (a * a + b * b): UpperCamelCase :List[Any] = a * b * c if candidate >= product: UpperCamelCase :str = candidate return product if __name__ == "__main__": print(F'''{solution() = }''')
717
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : int = OpenAIGPTTokenizer snake_case__ : Tuple = OpenAIGPTTokenizerFast snake_case__ : Tuple = True snake_case__ : Union[str, Any] = False def _A ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase :Optional[int] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase :List[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) UpperCamelCase :Dict = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] UpperCamelCase :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__lowerCamelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__lowerCamelCase ) ) def _A ( self : List[Any] , __lowerCamelCase : List[str] ): return "lower newer", "lower newer" def _A ( self : List[str] ): UpperCamelCase :Union[str, Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) UpperCamelCase :List[Any] = """lower""" UpperCamelCase :Any = ["""low""", """er</w>"""] UpperCamelCase :List[str] = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[Any] = tokens + ["""<unk>"""] UpperCamelCase :List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def _A ( self : Dict , __lowerCamelCase : List[Any]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase :Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # Simple input UpperCamelCase :Optional[int] = """This is a simple input""" UpperCamelCase :Optional[int] = ["""This is a simple input 1""", """This is a simple input 2"""] UpperCamelCase :Optional[int] = ("""This is a simple input""", """This is a pair""") UpperCamelCase :int = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="""max_length""" ) # Simple input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="""max_length""" ) # Simple input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="""max_length""" , ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="""max_length""" ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="""max_length""" ) # Pair input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="""max_length""" , ) def _A ( self : Dict ): pass @require_ftfy @require_spacy @require_tokenizers class _SCREAMING_SNAKE_CASE ( _a ): pass
590
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : List[str] = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys A__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
353
"""simple docstring""" from collections.abc import Callable def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase: float = a _lowercase: float = b if function(_UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCamelCase ) == 0: return b elif ( function(_UpperCamelCase ) * function(_UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: _lowercase: float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_UpperCamelCase ) == 0: return mid elif function(_UpperCamelCase ) * function(_UpperCamelCase ) < 0: _lowercase: Union[str, Any] = mid else: _lowercase: Any = mid _lowercase: List[Any] = start + (end - start) / 2.0 return mid def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
353
1
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowerCamelCase__ = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class lowerCAmelCase__ : def __init__( self : Optional[Any] , lowerCamelCase__ : int = 14 ) ->None: '''simple docstring''' if group not in primes: raise ValueError("Unsupported Group" ) _UpperCAmelCase : List[Any] = primes[group]["prime"] _UpperCAmelCase : List[Any] = primes[group]["generator"] _UpperCAmelCase : int = int(hexlify(urandom(32 ) ) , base=16 ) def lowerCAmelCase__ ( self : Optional[Any] ) ->str: '''simple docstring''' return hex(self.__private_key )[2:] def lowerCAmelCase__ ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase : Tuple = pow(self.generator , self.__private_key , self.prime ) return hex(lowerCamelCase__ )[2:] def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : int ) ->bool: '''simple docstring''' return ( 2 <= key <= self.prime - 2 and pow(lowerCamelCase__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : str ) ->str: '''simple docstring''' _UpperCAmelCase : Optional[int] = int(lowerCamelCase__ , base=16 ) if not self.is_valid_public_key(lowerCamelCase__ ): raise ValueError("Invalid public key" ) _UpperCAmelCase : Dict = pow(lowerCamelCase__ , self.__private_key , self.prime ) return shaaaa(str(lowerCamelCase__ ).encode() ).hexdigest() @staticmethod def lowerCAmelCase__ ( lowerCamelCase__ : int , lowerCamelCase__ : int ) ->bool: '''simple docstring''' return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCamelCase__ , (prime - 1) // 2 , lowerCamelCase__ ) == 1 ) @staticmethod def lowerCAmelCase__ ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : int = 14 ) ->str: '''simple docstring''' _UpperCAmelCase : Any = int(lowerCamelCase__ , base=16 ) _UpperCAmelCase : List[str] = int(lowerCamelCase__ , base=16 ) _UpperCAmelCase : Any = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError("Invalid public key" ) _UpperCAmelCase : Any = pow(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return shaaaa(str(lowerCamelCase__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
40
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ) ) ) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if dataset.ndim != value_array.ndim: _UpperCAmelCase : Optional[Any] = ( "Wrong input data's dimensions... " F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__lowerCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCAmelCase : Optional[int] = ( "Wrong input data's shape... " F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__lowerCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: _UpperCAmelCase : Union[str, Any] = ( "Input data have different datatype... " F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = [] for value in value_array: _UpperCAmelCase : List[str] = euclidean(__lowerCAmelCase , dataset[0] ) _UpperCAmelCase : Dict = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCAmelCase : int = euclidean(__lowerCAmelCase , __lowerCAmelCase ) if dist > temp_dist: _UpperCAmelCase : Tuple = temp_dist _UpperCAmelCase : Dict = dataset_value.tolist() answer.append([vector, dist] ) return answer def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return np.dot(__lowerCAmelCase , __lowerCAmelCase ) / (norm(__lowerCAmelCase ) * norm(__lowerCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
40
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Any = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _a : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
479
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = CustomTokenizer pass
479
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowerCAmelCase ( ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = torch.nn.Linear(2 , 4 ) __SCREAMING_SNAKE_CASE: Optional[int] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __SCREAMING_SNAKE_CASE: Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(__A , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __SCREAMING_SNAKE_CASE: Optional[int] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __SCREAMING_SNAKE_CASE: Optional[Any] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowerCAmelCase ( UpperCamelCase__ : Tuple ) -> List[str]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowerCAmelCase ( UpperCamelCase__ : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(__A ) class a ( __lowerCAmelCase ): @require_cuda def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(_UpperCamelCase ): __SCREAMING_SNAKE_CASE: str = Accelerator(cpu=_UpperCamelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = Accelerator() __SCREAMING_SNAKE_CASE: List[Any] = GradientState() assert state.num_steps == 1 __SCREAMING_SNAKE_CASE: Union[str, Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True __SCREAMING_SNAKE_CASE: Dict = False assert state.sync_gradients is False GradientState._reset_state() def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = Accelerator() __SCREAMING_SNAKE_CASE: str = create_components() ( __SCREAMING_SNAKE_CASE ): Tuple = accelerator.prepare(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = Accelerator() __SCREAMING_SNAKE_CASE: int = create_components() accelerator.prepare(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def snake_case_ ( self ): """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*_lowerCAmelCase , **_lowerCAmelCase ): pass with patch('''torch.cuda.set_device''' , _UpperCamelCase ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __SCREAMING_SNAKE_CASE: Any = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = Accelerator() __SCREAMING_SNAKE_CASE: Optional[int] = create_components() accelerator.prepare(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = get_signature(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCamelCase ) # make sure random weights don't match load_random_weights(_UpperCamelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(_UpperCamelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase ) ) < 1e-3 ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = Accelerator() __SCREAMING_SNAKE_CASE: Dict = create_components() accelerator.prepare(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __SCREAMING_SNAKE_CASE: List[Any] = get_signature(_UpperCamelCase ) # saving hook def save_config(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: int = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(_UpperCamelCase , '''data.json''' ) , '''w''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) # loading hook def load_config(_lowerCAmelCase , _lowerCAmelCase ): with open(os.path.join(_UpperCamelCase , '''data.json''' ) , '''r''' ) as f: __SCREAMING_SNAKE_CASE: Optional[Any] = json.load(_UpperCamelCase ) __SCREAMING_SNAKE_CASE: Optional[int] = config["""class_name"""] __SCREAMING_SNAKE_CASE: Union[str, Any] = accelerator.register_save_state_pre_hook(_UpperCamelCase ) __SCREAMING_SNAKE_CASE: List[str] = accelerator.register_load_state_pre_hook(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCamelCase ) # make sure random weights don't match with hooks load_random_weights(_UpperCamelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded __SCREAMING_SNAKE_CASE: Tuple = """random""" # make sure loaded weights match with hooks accelerator.load_state(_UpperCamelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(_UpperCamelCase ) # make sure random weights don't match with hooks removed load_random_weights(_UpperCamelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded __SCREAMING_SNAKE_CASE: Optional[int] = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(_UpperCamelCase ) self.assertTrue(abs(model_signature - get_signature(_UpperCamelCase ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = Accelerator() __SCREAMING_SNAKE_CASE: Dict = create_components() __SCREAMING_SNAKE_CASE: List[str] = None # This should work __SCREAMING_SNAKE_CASE: Dict = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertTrue(dummy_obj is None ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = Accelerator() __SCREAMING_SNAKE_CASE: List[Any] = create_components() __SCREAMING_SNAKE_CASE: List[str] = [1, 2, 3] # This should work __SCREAMING_SNAKE_CASE: Union[str, Any] = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) self.assertEqual( getattr(_UpperCamelCase , '''_is_accelerate_prepared''' , _UpperCamelCase ) , _UpperCamelCase , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(_UpperCamelCase , '''_is_accelerate_prepared''' , _UpperCamelCase ) , _UpperCamelCase , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(_UpperCamelCase , '''_is_accelerate_prepared''' , _UpperCamelCase ) , _UpperCamelCase , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(_UpperCamelCase , '''_is_accelerate_prepared''' , _UpperCamelCase ) , _UpperCamelCase , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(_UpperCamelCase , '''_is_accelerate_prepared''' , _UpperCamelCase ) , _UpperCamelCase , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(_UpperCamelCase , '''_is_accelerate_prepared''' , _UpperCamelCase ) , _UpperCamelCase , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def snake_case_ ( self ): """simple docstring""" from transformers import AutoModelForCausalLM __SCREAMING_SNAKE_CASE: Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=_UpperCamelCase , device_map={'''''': 0} , ) __SCREAMING_SNAKE_CASE: Union[str, Any] = Accelerator() # This should work __SCREAMING_SNAKE_CASE: int = accelerator.prepare(_UpperCamelCase ) @slow @require_bnb def snake_case_ ( self ): """simple docstring""" from transformers import AutoModelForCausalLM __SCREAMING_SNAKE_CASE: List[str] = Accelerator() with init_empty_weights(): __SCREAMING_SNAKE_CASE: Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __SCREAMING_SNAKE_CASE: Union[str, Any] = infer_auto_device_map(_UpperCamelCase ) __SCREAMING_SNAKE_CASE: Any = """cpu""" __SCREAMING_SNAKE_CASE: List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=_UpperCamelCase , load_in_abit=_UpperCamelCase , llm_inta_enable_fpaa_cpu_offload=_UpperCamelCase ) # This should not work and get value error with self.assertRaises(_UpperCamelCase ): __SCREAMING_SNAKE_CASE: Tuple = accelerator.prepare(_UpperCamelCase ) @slow @require_bnb @require_multi_gpu def snake_case_ ( self ): """simple docstring""" from transformers import AutoModelForCausalLM __SCREAMING_SNAKE_CASE: Union[str, Any] = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): __SCREAMING_SNAKE_CASE: Optional[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __SCREAMING_SNAKE_CASE: List[Any] = infer_auto_device_map(_UpperCamelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = 1 __SCREAMING_SNAKE_CASE: Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=_UpperCamelCase , device_map=_UpperCamelCase , ) __SCREAMING_SNAKE_CASE: Optional[Any] = Accelerator() # This should not work and get value error with self.assertRaises(_UpperCamelCase ): __SCREAMING_SNAKE_CASE: str = accelerator.prepare(_UpperCamelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def snake_case_ ( self ): """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): __SCREAMING_SNAKE_CASE: Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __SCREAMING_SNAKE_CASE: int = infer_auto_device_map(_UpperCamelCase ) __SCREAMING_SNAKE_CASE: List[str] = 1 __SCREAMING_SNAKE_CASE: Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=_UpperCamelCase , device_map=_UpperCamelCase , ) __SCREAMING_SNAKE_CASE: List[str] = Accelerator() # This should work __SCREAMING_SNAKE_CASE: List[Any] = accelerator.prepare(_UpperCamelCase ) @require_cuda def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = torch.nn.Linear(10 , 10 ) __SCREAMING_SNAKE_CASE: Dict = torch.optim.SGD(model.parameters() , lr=0.01 ) __SCREAMING_SNAKE_CASE: Tuple = Accelerator(cpu=_UpperCamelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = accelerator.prepare(_UpperCamelCase )
715
from sklearn.metrics import recall_score import datasets lowerCAmelCase : str = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ lowerCAmelCase : Dict = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ lowerCAmelCase : List[Any] = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def snake_case_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'''] , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=1 , _lowerCAmelCase="binary" , _lowerCAmelCase=None , _lowerCAmelCase="warn" , ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = recall_score( _lowerCAmelCase , _lowerCAmelCase , labels=_lowerCAmelCase , pos_label=_lowerCAmelCase , average=_lowerCAmelCase , sample_weight=_lowerCAmelCase , zero_division=_lowerCAmelCase , ) return {"recall": float(_lowerCAmelCase ) if score.size == 1 else score}
146
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class snake_case__ ( UpperCamelCase_ ): _lowerCAmelCase ='segformer' def __init__( self : Union[str, Any] , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : List[Any]=4 , _lowerCamelCase : Union[str, Any]=[2, 2, 2, 2] , _lowerCamelCase : Dict=[8, 4, 2, 1] , _lowerCamelCase : Any=[3_2, 6_4, 1_6_0, 2_5_6] , _lowerCamelCase : List[Any]=[7, 3, 3, 3] , _lowerCamelCase : int=[4, 2, 2, 2] , _lowerCamelCase : List[Any]=[1, 2, 5, 8] , _lowerCamelCase : Tuple=[4, 4, 4, 4] , _lowerCamelCase : Optional[int]="gelu" , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Union[str, Any]=0.1 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : int=0.1 , _lowerCamelCase : Optional[int]=1E-6 , _lowerCamelCase : Optional[Any]=2_5_6 , _lowerCamelCase : int=2_5_5 , **_lowerCamelCase : Any , ): super().__init__(**_lowerCamelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , _lowerCamelCase , ) snake_case__ : Dict = num_channels snake_case__ : Optional[Any] = num_encoder_blocks snake_case__ : Optional[int] = depths snake_case__ : Optional[int] = sr_ratios snake_case__ : Optional[int] = hidden_sizes snake_case__ : Union[str, Any] = patch_sizes snake_case__ : Union[str, Any] = strides snake_case__ : Any = mlp_ratios snake_case__ : List[str] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Union[str, Any] = classifier_dropout_prob snake_case__ : str = initializer_range snake_case__ : Union[str, Any] = drop_path_rate snake_case__ : List[Any] = layer_norm_eps snake_case__ : Optional[int] = decoder_hidden_size snake_case__ : str = kwargs.get('reshape_last_stage' , _lowerCamelCase ) snake_case__ : Dict = semantic_loss_ignore_index class snake_case__ ( UpperCamelCase_ ): _lowerCAmelCase =version.parse('1.11' ) @property def UpperCAmelCase__ ( self : List[str] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase__ ( self : List[Any] ): return 1E-4 @property def UpperCAmelCase__ ( self : Optional[Any] ): return 1_2
170
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowercase__( A ): return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowercase__( A ): snake_case__ : Dict = create_tensor(A ) snake_case__ : Any = gather(A ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowercase__( A ): snake_case__ : Dict = [state.process_index] snake_case__ : List[str] = gather_object(A ) assert len(A ) == state.num_processes, f'''{gathered_obj}, {len(A )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def lowercase__( A ): snake_case__ : Optional[Any] = create_tensor(A ) snake_case__ : Optional[int] = broadcast(A ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowercase__( A ): # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: snake_case__ : Dict = torch.arange(state.num_processes + 1 ).to(state.device ) else: snake_case__ : Optional[Any] = torch.arange(state.num_processes ).to(state.device ) snake_case__ : List[Any] = pad_across_processes(A ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowercase__( A ): # For now runs on only two processes if state.num_processes != 2: return snake_case__ : Tuple = create_tensor(A ) snake_case__ : Optional[Any] = reduce(A , 'sum' ) snake_case__ : Optional[Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(A , A ), f'''{reduced_tensor} != {truth_tensor}''' def lowercase__( A ): # For now runs on only two processes if state.num_processes != 2: return snake_case__ : Optional[Any] = create_tensor(A ) snake_case__ : Optional[Any] = reduce(A , 'mean' ) snake_case__ : int = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(A , A ), f'''{reduced_tensor} != {truth_tensor}''' def lowercase__( A ): # For xla_spawn (TPUs) main() def lowercase__( ): snake_case__ : Optional[Any] = PartialState() state.print(f'''State: {state}''' ) state.print('testing gather' ) test_gather(A ) state.print('testing gather_object' ) test_gather_object(A ) state.print('testing broadcast' ) test_broadcast(A ) state.print('testing pad_across_processes' ) test_pad_across_processes(A ) state.print('testing reduce_sum' ) test_reduce_sum(A ) state.print('testing reduce_mean' ) test_reduce_mean(A ) if __name__ == "__main__": main()
170
1
from cva import destroyAllWindows, imread, imshow, waitKey def a__ (__lowercase :List[Any] ) -> Dict: # getting number of pixels in the image _A = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowercase ): for j in range(__lowercase ): _A = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image _UpperCamelCase : Union[str, Any] =imread('image_data/lena.jpg', 1) # convert to its negative _UpperCamelCase : Optional[int] =convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
712
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _UpperCamelCase : Optional[int] ={'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[Any] =['DPTFeatureExtractor'] _UpperCamelCase : Optional[Any] =['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] =[ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _UpperCamelCase : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
0
'''simple docstring''' from __future__ import annotations import math _lowercase : Dict = """2020.9.26""" _lowercase : Any = """xcodz-dot, cclaus, dhruvmanila""" def lowerCamelCase__ ( A : float , A : float , A : float , A : float , A : float ): '''simple docstring''' if not all(isinstance(A , (float, int) ) for val in locals().values() ): UpperCAmelCase = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(A ) UpperCAmelCase = ((x * distance) / (z + distance)) * scale UpperCAmelCase = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCamelCase__ ( A : float , A : float , A : float , A : str , A : float ): '''simple docstring''' if not isinstance(A , A ): raise TypeError('''Axis must be a str''' ) UpperCAmelCase = locals() del input_variables["axis"] if not all(isinstance(A , (float, int) ) for val in input_variables.values() ): UpperCAmelCase = ( '''Input values except axis must either be float or int: ''' f"""{list(input_variables.values() )}""" ) raise TypeError(A ) UpperCAmelCase = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": UpperCAmelCase = x * math.cos(A ) - y * math.sin(A ) UpperCAmelCase = y * math.cos(A ) + x * math.sin(A ) UpperCAmelCase = z elif axis == "x": UpperCAmelCase = y * math.cos(A ) - z * math.sin(A ) UpperCAmelCase = z * math.cos(A ) + y * math.sin(A ) UpperCAmelCase = x elif axis == "y": UpperCAmelCase = x * math.cos(A ) - z * math.sin(A ) UpperCAmelCase = z * math.cos(A ) + x * math.sin(A ) UpperCAmelCase = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
210
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowercase : Tuple = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _lowercase : str = importlib.util.spec_from_file_location( """transformers""", os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _lowercase : Optional[Any] = spec.loader.load_module() _lowercase : List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowercase : List[Any] = re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") _lowercase : List[str] = { """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): UpperCAmelCase = False # source code of `config_class` UpperCAmelCase = inspect.getsource(A ) UpperCAmelCase = _re_checkpoint.findall(A ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCAmelCase , UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCAmelCase = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: UpperCAmelCase = True break UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(A ) if len(A ) > 0: UpperCAmelCase = '''\n'''.join(sorted(A ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
210
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Tuple = "▁" __A : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} __A : Union[str, Any] = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } __A : Tuple = {"vinai/bartpho-syllable": 1_024} class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : str = ["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple="<s>" , UpperCamelCase__ : Any="</s>" , UpperCamelCase__ : Union[str, Any]="</s>" , UpperCamelCase__ : str="<s>" , UpperCamelCase__ : Any="<unk>" , UpperCamelCase__ : Union[str, Any]="<pad>" , UpperCamelCase__ : Any="<mask>" , UpperCamelCase__ : Optional[Dict[str, Any]] = None , **UpperCamelCase__ : int , ): # Mask token behave like a normal word, i.e. include the space before it A__ : Optional[int] =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token A__ : Tuple ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) A__ : int =vocab_file A__ : int =monolingual_vocab_file A__ : List[Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility A__ : Optional[Any] ={} A__ : Optional[Any] =0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCamelCase__ ) not in self.fairseq_tokens_to_ids: A__ : List[Any] =cnt cnt += 1 with open(UpperCamelCase__ , "r" , encoding="utf-8" ) as f: for line in f.readlines(): A__ : Tuple =line.strip().split()[0] A__ : str =len(self.fairseq_tokens_to_ids ) if str(UpperCamelCase__ ) not in self.fairseq_tokens_to_ids: A__ : Optional[int] =len(self.fairseq_tokens_to_ids ) A__ : int ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ): A__ : Any =self.__dict__.copy() A__ : Optional[Any] =None A__ : Optional[Any] =self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] , UpperCamelCase__ : str ): A__ : Optional[int] =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ : List[str] ={} A__ : Tuple =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _UpperCAmelCase ( self : Any , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : List[str] =[self.cls_token_id] A__ : Optional[int] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def _UpperCAmelCase ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): A__ : Tuple =[self.sep_token_id] A__ : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCAmelCase ( self : str ): return len(self.fairseq_ids_to_tokens ) def _UpperCAmelCase ( self : Dict ): A__ : Any ={self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : str ): return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def _UpperCAmelCase ( self : int , UpperCamelCase__ : int ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def _UpperCAmelCase ( self : Tuple , UpperCamelCase__ : Dict ): return self.fairseq_ids_to_tokens[index] def _UpperCAmelCase ( self : int , UpperCamelCase__ : Dict ): A__ : Dict ="".join(UpperCamelCase__ ).replace(UpperCamelCase__ , " " ).strip() return out_string def _UpperCAmelCase ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A__ : str =os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A__ : Optional[Any] =os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: A__ : Dict =self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCamelCase__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(UpperCamelCase__ )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
595
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Any = {"vocab_file": "sentencepiece.bpe.model"} __A : List[Any] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } __A : List[Any] = { "camembert-base": 512, } __A : Optional[int] = "▁" class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : Tuple = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int="<s>" , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : str="<s>" , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : List[str]="<pad>" , UpperCamelCase__ : Union[str, Any]="<mask>" , UpperCamelCase__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , UpperCamelCase__ : Optional[Dict[str, Any]] = None , **UpperCamelCase__ : Dict , ): # Mask token behave like a normal word, i.e. include the space before it A__ : str =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token A__ : List[Any] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) A__ : Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) A__ : Any =vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> A__ : Optional[Any] ={"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} A__ : str =len(self.fairseq_tokens_to_ids ) A__ : Union[str, Any] =len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) A__ : Optional[int] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def _UpperCAmelCase ( self : Any , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Optional[int] =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def _UpperCAmelCase ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): A__ : Optional[int] =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCAmelCase ( self : Any ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def _UpperCAmelCase ( self : Union[str, Any] ): A__ : List[Any] ={self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase ( self : str , UpperCamelCase__ : str ): return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCamelCase__ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCamelCase__ ) def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : Optional[Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCAmelCase ( self : Optional[int] , UpperCamelCase__ : Union[str, Any] ): A__ : Dict =[] A__ : Tuple ="" A__ : int =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token A__ : List[Any] =True A__ : Optional[int] =[] else: current_sub_tokens.append(UpperCamelCase__ ) A__ : Dict =False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def __getstate__( self : Dict ): A__ : Dict =self.__dict__.copy() A__ : List[Any] =None return state def __setstate__( self : Any , UpperCamelCase__ : int ): A__ : Union[str, Any] =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ : List[str] ={} A__ : int =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self : str , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A__ : int =os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: A__ : Union[str, Any] =self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
595
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = '''naver-clova-ix/donut-base-finetuned-docvqa''' __lowercase : Any = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) __lowercase : Optional[int] = '''document_qa''' __lowercase : Optional[Any] = AutoProcessor __lowercase : Optional[Any] = VisionEncoderDecoderModel __lowercase : str = ['''image''', '''text'''] __lowercase : Dict = ['''text'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : Optional[int] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowerCAmelCase__ : Tuple = task_prompt.replace("""{user_input}""" ,__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = self.pre_processor.tokenizer( __UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors="""pt""" ).input_ids lowerCAmelCase__ : Dict = self.pre_processor(__UpperCAmelCase ,return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: return self.model.generate( inputs["""pixel_values"""].to(self.device ) ,decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) ,max_length=self.model.decoder.config.max_position_embeddings ,early_stopping=__UpperCAmelCase ,pad_token_id=self.pre_processor.tokenizer.pad_token_id ,eos_token_id=self.pre_processor.tokenizer.eos_token_id ,use_cache=__UpperCAmelCase ,num_beams=1 ,bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] ,return_dict_in_generate=__UpperCAmelCase ,).sequences def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Optional[int] = self.pre_processor.batch_decode(__UpperCAmelCase )[0] lowerCAmelCase__ : str = sequence.replace(self.pre_processor.tokenizer.eos_token ,"""""" ) lowerCAmelCase__ : Tuple = sequence.replace(self.pre_processor.tokenizer.pad_token ,"""""" ) lowerCAmelCase__ : Optional[Any] = re.sub(R"""<.*?>""" ,"""""" ,__UpperCAmelCase ,count=1 ).strip() # remove first task start token lowerCAmelCase__ : int = self.pre_processor.tokenajson(__UpperCAmelCase ) return sequence["answer"]
565
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowerCAmelCase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[str] = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase__ : Optional[Any] = g.get_repo("""huggingface/diffusers""" ) lowerCAmelCase__ : Tuple = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase__ : Optional[int] = sorted(issue.get_comments() , key=lambda UpperCamelCase : i.created_at , reverse=UpperCamelCase ) lowerCAmelCase__ : Any = comments[0] if len(UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
565
1
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): A_ , A_ : Union[str, Any] = array[indexa], array[indexa] def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if length > 1: A_ : Any = int(length / 2 ) for i in range(_UpperCAmelCase , low + middle ): comp_and_swap(_UpperCAmelCase , _UpperCAmelCase , i + middle , _UpperCAmelCase ) bitonic_merge(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) bitonic_merge(_UpperCAmelCase , low + middle , _UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if length > 1: A_ : str = int(length / 2 ) bitonic_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , 1 ) bitonic_sort(_UpperCAmelCase , low + middle , _UpperCAmelCase , 0 ) bitonic_merge(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase_ : Dict = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase_ : List[str] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
302
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[Any] = tempfile.mkdtemp() # fmt: off A_ : List[str] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on A_ : Union[str, Any] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) A_ : Dict = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] A_ : Optional[int] = {'unk_token': '<unk>'} A_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case_ ) ) A_ : str = { 'do_resize': True, 'size': 2_0, 'do_center_crop': True, 'crop_size': 1_8, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[str] = os.path.join(self.tmpdirname , snake_case_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(snake_case_ , snake_case_ ) def lowerCamelCase_ ( self , **snake_case_ ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase_ ( self , **snake_case_ ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase_ ( self , **snake_case_ ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[str] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] A_ : int = [Image.fromarray(np.moveaxis(snake_case_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self ): """simple docstring""" A_ : Dict = self.get_tokenizer() A_ : Optional[Any] = self.get_rust_tokenizer() A_ : Any = self.get_image_processor() A_ : Any = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor_slow.save_pretrained(self.tmpdirname ) A_ : List[str] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case_ ) A_ : List[Any] = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) processor_fast.save_pretrained(self.tmpdirname ) A_ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case_ ) self.assertIsInstance(processor_fast.tokenizer , snake_case_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case_ ) self.assertIsInstance(processor_fast.image_processor , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Tuple = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) A_ : List[str] = self.get_image_processor(do_normalize=snake_case_ , padding_value=1.0 ) A_ : Dict = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = self.get_image_processor() A_ : Dict = self.get_tokenizer() A_ : Tuple = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) A_ : List[str] = self.prepare_image_inputs() A_ : Dict = image_processor(snake_case_ , return_tensors='np' ) A_ : List[Any] = processor(images=snake_case_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[Any] = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) A_ : Tuple = 'lower newer' A_ : List[str] = processor(text=snake_case_ ) A_ : Any = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : List[str] = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) A_ : Optional[Any] = 'lower newer' A_ : Optional[Any] = self.prepare_image_inputs() A_ : Any = processor(text=snake_case_ , images=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def lowerCamelCase_ ( self ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Dict = self.get_tokenizer() A_ : Optional[int] = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) A_ : Optional[int] = self.prepare_image_inputs() A_ : List[str] = self.prepare_image_inputs() A_ : int = processor(images=snake_case_ , visual_prompt=snake_case_ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case_ ): processor() def lowerCamelCase_ ( self ): """simple docstring""" A_ : List[str] = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[Any] = CLIPSegProcessor(tokenizer=snake_case_ , image_processor=snake_case_ ) A_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : Tuple = processor.batch_decode(snake_case_ ) A_ : Optional[int] = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ )
302
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class UpperCAmelCase ( __lowerCamelCase ): a__: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a__: ClassVar[Features] = Features({"""audio""": Audio()} ) a__: ClassVar[Features] = Features({"""transcription""": Value("""string""" )} ) a__: str = "audio" a__: str = "transcription" def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase : Tuple ): if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) lowercase : str = copy.deepcopy(self ) lowercase : List[Any] = self.input_schema.copy() lowercase : Optional[Any] = features[self.audio_column] lowercase : str = input_schema return task_template @property def _lowerCAmelCase ( self : Dict ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
583
class UpperCAmelCase : def __init__( self : Union[str, Any] , lowerCAmelCase : str = "" , lowerCAmelCase : bool = False ): # Mapping from the first character of the prefix of the node lowercase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowercase : Union[str, Any] = is_leaf lowercase : Optional[int] = prefix def _lowerCAmelCase ( self : str , lowerCAmelCase : str ): lowercase : Optional[int] = 0 for q, w in zip(self.prefix , lowerCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _lowerCAmelCase ( self : int , lowerCAmelCase : list[str] ): for word in words: self.insert(lowerCAmelCase ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase : str ): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: lowercase : List[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowercase : Tuple = RadixNode(prefix=lowerCAmelCase , is_leaf=lowerCAmelCase ) else: lowercase : Union[str, Any] = self.nodes[word[0]] lowercase , lowercase , lowercase : Any = incoming_node.match( lowerCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowercase : Tuple = remaining_prefix lowercase : Tuple = self.nodes[matching_string[0]] lowercase : Optional[Any] = RadixNode(lowerCAmelCase , lowerCAmelCase ) lowercase : Any = aux_node if remaining_word == "": lowercase : Tuple = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase : str ): lowercase : List[Any] = self.nodes.get(word[0] , lowerCAmelCase ) if not incoming_node: return False else: lowercase , lowercase , lowercase : Dict = incoming_node.match( lowerCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase : str ): lowercase : Optional[int] = self.nodes.get(word[0] , lowerCAmelCase ) if not incoming_node: return False else: lowercase , lowercase , lowercase : Tuple = incoming_node.match( lowerCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowercase : List[Any] = list(self.nodes.values() )[0] lowercase : List[Any] = merging_node.is_leaf self.prefix += merging_node.prefix lowercase : List[str] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowercase : Dict = False # If there is 1 edge, we merge it with its child else: lowercase : Optional[int] = list(incoming_node.nodes.values() )[0] lowercase : Dict = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowercase : Dict = merging_node.nodes return True def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int = 0 ): if self.prefix != "": print('''-''' * height , self.prefix , ''' (leaf)''' if self.is_leaf else '''''' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCamelCase_ ( ): lowercase : Optional[int] = '''banana bananas bandana band apple all beast'''.split() lowercase : str = RadixNode() root.insert_many(UpperCAmelCase_ ) assert all(root.find(UpperCAmelCase_ ) for word in words ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def lowerCamelCase_ ( ): assert test_trie() def lowerCamelCase_ ( ): lowercase : List[str] = RadixNode() lowercase : Optional[int] = '''banana bananas bandanas bandana band apple all beast'''.split() root.insert_many(UpperCAmelCase_ ) print('''Words:''' , UpperCAmelCase_ ) print('''Tree:''' ) root.print_tree() if __name__ == "__main__": main()
583
1
"""simple docstring""" A__ : Dict= [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__ : Union[str, Any]= [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__ : Optional[int]= { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def lowerCAmelCase_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" assert len(str(SCREAMING_SNAKE_CASE ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCamelCase__ = year // 1_00 UpperCamelCase__ = (5 * (century % 4) + 2) % 7 UpperCamelCase__ = year % 1_00 UpperCamelCase__ = centurian % 12 UpperCamelCase__ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCamelCase__ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCamelCase__ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
20
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A__ : List[Any]= ["""bert-base-uncased""", """bert-base-cased"""] A__ : Optional[int]= """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __lowerCamelCase ( tf.keras.Model ): def __init__( self , snake_case_ ) -> Optional[int]: super().__init__() UpperCamelCase__ = tokenizer UpperCamelCase__ = AutoConfig.from_pretrained(snake_case_ ) UpperCamelCase__ = TFAutoModel.from_config(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> int: UpperCamelCase__ = self.tokenizer(snake_case_ ) UpperCamelCase__ = self.bert(**snake_case_ ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: super().setUp() UpperCamelCase__ = [ BertTokenizer.from_pretrained(snake_case_ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase__ = [TFBertTokenizer.from_pretrained(snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(snake_case_ , use_fast_bert_tokenizer=snake_case_ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCamelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tokenizer(snake_case_ , return_tensors='tf' , padding='longest' ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf_tokenizer(self.paired_sentences ) UpperCamelCase__ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = tf.function(snake_case_ ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase__ = tf.constant(snake_case_ ) UpperCamelCase__ = compiled_tokenizer(snake_case_ ) UpperCamelCase__ = tf_tokenizer(snake_case_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: UpperCamelCase__ = ModelToSave(tokenizer=snake_case_ ) UpperCamelCase__ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase__ = model(snake_case_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase__ = Path(snake_case_ ) / 'saved.model' model.save(snake_case_ ) UpperCamelCase__ = tf.keras.models.load_model(snake_case_ ) UpperCamelCase__ = loaded_model(snake_case_ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
20
1
'''simple docstring''' __snake_case : str = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} __snake_case : Dict = ['a', 'b', 'c', 'd', 'e'] def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Any, __snake_case : int ) -> Union[str, Any]: """simple docstring""" A__ : Union[str, Any] =start # add current to visited visited.append(__snake_case ) A__ : Dict =edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: A__ : Any =topological_sort(__snake_case, __snake_case, __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: A__ : List[str] =topological_sort(__snake_case, __snake_case, __snake_case ) # return sort return sort if __name__ == "__main__": __snake_case : Optional[int] = topological_sort('a', [], []) print(sort)
215
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
215
1
"""simple docstring""" import enum import shutil import sys __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE =shutil.get_terminal_size() __SCREAMING_SNAKE_CASE ={"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class UpperCamelCase ( enum.Enum ): lowercase = 0 lowercase = 1 def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str="" ): sys.stdout.write(str(__SCREAMING_SNAKE_CASE ) + end ) sys.stdout.flush() def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any]="" ): forceWrite(F'''\u001b[{color}m{content}\u001b[0m''' , __SCREAMING_SNAKE_CASE ) def lowercase__( ): forceWrite('\r' ) def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): forceWrite(F'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' ) def lowercase__( ): forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def lowercase__( ): reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
715
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowercase_ : Optional[int] = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' ,safety_checker=__UpperCamelCase ,cache_dir=__UpperCamelCase ) lowercase_ : Dict = [t[-1] for t in os.walk(os.path.join(__UpperCamelCase ,os.listdir(__UpperCamelCase )[0] ,'snapshots' ) )] lowercase_ : Tuple = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ , lowercase_ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' ,safety_checker=__UpperCamelCase ) lowercase_ : Dict = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : Optional[Any] = jax.random.PRNGKey(0 ) lowercase_ : Optional[int] = 4 lowercase_ : int = jax.device_count() lowercase_ : Optional[int] = num_samples * [prompt] lowercase_ : List[Any] = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : Dict = replicate(__UpperCamelCase ) lowercase_ : Optional[Any] = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = shard(__UpperCamelCase ) lowercase_ : List[Any] = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 4.151_4745 ) < 1e-3 assert np.abs(np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 4_9947.875 ) < 5e-1 lowercase_ : List[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__UpperCamelCase ) == num_samples def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ : Any = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='flax' ,safety_checker=__UpperCamelCase ) lowercase_ : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : List[str] = jax.random.PRNGKey(0 ) lowercase_ : Tuple = 50 lowercase_ : Optional[Any] = jax.device_count() lowercase_ : List[Any] = num_samples * [prompt] lowercase_ : Union[str, Any] = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : List[str] = replicate(__UpperCamelCase ) lowercase_ : Optional[int] = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[Any] = shard(__UpperCamelCase ) lowercase_ : Optional[int] = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0565_2401) ) < 1e-3 assert np.abs((np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 238_3808.2) ) < 5e-1 def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ,safety_checker=__UpperCamelCase ) lowercase_ : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : Dict = jax.random.PRNGKey(0 ) lowercase_ : Optional[int] = 50 lowercase_ : Tuple = jax.device_count() lowercase_ : Dict = num_samples * [prompt] lowercase_ : Any = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : int = replicate(__UpperCamelCase ) lowercase_ : int = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Union[str, Any] = shard(__UpperCamelCase ) lowercase_ : List[str] = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ) lowercase_ : Optional[int] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : Optional[Any] = jax.random.PRNGKey(0 ) lowercase_ : Union[str, Any] = 50 lowercase_ : Optional[Any] = jax.device_count() lowercase_ : Tuple = num_samples * [prompt] lowercase_ : Union[str, Any] = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : List[Any] = replicate(__UpperCamelCase ) lowercase_ : Union[str, Any] = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[int] = shard(__UpperCamelCase ) lowercase_ : Optional[Any] = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Tuple = FlaxDDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,set_alpha_to_one=__UpperCamelCase ,steps_offset=1 ,) lowercase_ , lowercase_ : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ,scheduler=__UpperCamelCase ,safety_checker=__UpperCamelCase ,) lowercase_ : Optional[int] = scheduler.create_state() lowercase_ : List[Any] = scheduler_state lowercase_ : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : str = jax.random.PRNGKey(0 ) lowercase_ : str = 50 lowercase_ : List[Any] = jax.device_count() lowercase_ : List[str] = num_samples * [prompt] lowercase_ : Union[str, Any] = pipeline.prepare_inputs(__UpperCamelCase ) # shard inputs and rng lowercase_ : List[Any] = replicate(__UpperCamelCase ) lowercase_ : int = jax.random.split(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : str = shard(__UpperCamelCase ) lowercase_ : str = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] ,dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1e-3 assert np.abs((np.abs(__UpperCamelCase ,dtype=np.floataa ).sum() - 234_7693.5) ) < 5e-1 def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) lowercase_ : Union[str, Any] = jax.device_count() lowercase_ : List[str] = num_samples * [prompt] lowercase_ : int = jax.random.split(jax.random.PRNGKey(0 ) ,__UpperCamelCase ) lowercase_ , lowercase_ : Dict = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ,safety_checker=__UpperCamelCase ,) lowercase_ : str = replicate(__UpperCamelCase ) lowercase_ : int = pipeline.prepare_inputs(__UpperCamelCase ) lowercase_ : Optional[int] = shard(__UpperCamelCase ) lowercase_ : Tuple = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) lowercase_ : Union[str, Any] = images[2, 0, 256, 10:17, 1] # With memory efficient attention lowercase_ , lowercase_ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='bf16' ,dtype=jnp.bfloataa ,safety_checker=__UpperCamelCase ,use_memory_efficient_attention=__UpperCamelCase ,) lowercase_ : List[Any] = replicate(__UpperCamelCase ) lowercase_ : Union[str, Any] = pipeline.prepare_inputs(__UpperCamelCase ) lowercase_ : List[Any] = shard(__UpperCamelCase ) lowercase_ : Any = pipeline(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,jit=__UpperCamelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) lowercase_ : Optional[int] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
477
0
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _lowercase ( ): _a = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } _a = Dataset.from_dict(lowerCamelCase__ ) return dataset class A ( a ): def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = get_dataset() _a = make_duplicate_clusters(snake_case_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __lowerCAmelCase ( self ) -> int: _a = get_dataset() _a , _a = deduplicate_dataset(snake_case_ ) self.assertEqual(len(snake_case_ ) , 2 ) print(snake_case_ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , snake_case_ )
131
'''simple docstring''' from math import pi, sqrt def _lowercase ( lowerCamelCase__ : float ): if num <= 0: raise ValueError("math domain error" ) if num > 1_71.5: raise OverflowError("math range error" ) elif num - int(lowerCamelCase__ ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(lowerCamelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _lowercase ( ): assert gamma(0.5 ) == sqrt(lowerCamelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __snake_case : Union[str, Any] = 1.0 while num: __snake_case : Optional[Any] = float(input("Gamma of: ")) print(f'''gamma({num}) = {gamma(num)}''') print("\nEnter 0 to exit...")
131
1
"""simple docstring""" def snake_case ( lowerCAmelCase_ = 1000 ) -> int: _snake_case , _snake_case = 1, 1 _snake_case = 2 while True: _snake_case = 0 _snake_case = fa + fa _snake_case , _snake_case = fa, f index += 1 for _ in str(lowerCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
404
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): A__ : Tuple = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Union[str, Any] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Optional[int] ): """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __UpperCAmelCase ( cls : List[Any] , *__lowerCamelCase : Tuple , **__lowerCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *__lowerCamelCase : Tuple , **__lowerCamelCase : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): A__ : Union[str, Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[str] , *__lowerCamelCase : int , **__lowerCamelCase : Tuple ): """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): A__ : Optional[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Dict , *__lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ): """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __UpperCAmelCase ( cls : int , *__lowerCamelCase : Dict , **__lowerCamelCase : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *__lowerCamelCase : List[str] , **__lowerCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): A__ : List[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[int] , *__lowerCamelCase : List[str] , **__lowerCamelCase : Dict ): """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __UpperCAmelCase ( cls : str , *__lowerCamelCase : Tuple , **__lowerCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Any ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): A__ : Union[str, Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[Any] , *__lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ): """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , *__lowerCamelCase : int , **__lowerCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __UpperCAmelCase ( cls : List[str] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : List[str] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class UpperCAmelCase ( metaclass=__SCREAMING_SNAKE_CASE ): A__ : Dict = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[str] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Optional[Any] ): """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __UpperCAmelCase ( cls : List[Any] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Tuple ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def __UpperCAmelCase ( cls : List[Any] , *__lowerCamelCase : Any , **__lowerCamelCase : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
404
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __a = logging.get_logger(__name__) class __a( _a ): """simple docstring""" lowerCAmelCase = '''linear''' lowerCAmelCase = '''cosine''' lowerCAmelCase = '''cosine_with_restarts''' lowerCAmelCase = '''polynomial''' lowerCAmelCase = '''constant''' lowerCAmelCase = '''constant_with_warmup''' lowerCAmelCase = '''piecewise_constant''' def lowerCamelCase__ ( _lowercase , _lowercase = -1 ): '''simple docstring''' return LambdaLR(_lowercase , lambda _lowercase : 1 , last_epoch=_lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase = -1 ): '''simple docstring''' def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1.0 , _lowercase ) ) return 1.0 return LambdaLR(_lowercase , _lowercase , last_epoch=_lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase = -1 ): '''simple docstring''' UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Tuple = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = rule_str.split(''':''' ) UpperCAmelCase_ : List[Any] = int(_lowercase ) UpperCAmelCase_ : Optional[int] = float(_lowercase ) UpperCAmelCase_ : List[str] = value UpperCAmelCase_ : Optional[Any] = float(rule_list[-1] ) def create_rules_function(_lowercase , _lowercase ): def rule_func(_lowercase ) -> float: UpperCAmelCase_ : str = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowercase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCAmelCase_ : Dict = create_rules_function(_lowercase , _lowercase ) return LambdaLR(_lowercase , _lowercase , last_epoch=_lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase=-1 ): '''simple docstring''' def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase = 0.5 , _lowercase = -1 ): '''simple docstring''' def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) UpperCAmelCase_ : Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowercase ) * 2.0 * progress )) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase = 1 , _lowercase = -1 ): '''simple docstring''' def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) UpperCAmelCase_ : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowercase ) * progress) % 1.0) )) ) return LambdaLR(_lowercase , _lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase=1E-7 , _lowercase=1.0 , _lowercase=-1 ): '''simple docstring''' UpperCAmelCase_ : List[str] = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(_lowercase ): if current_step < num_warmup_steps: return float(_lowercase ) / float(max(1 , _lowercase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCAmelCase_ : Tuple = lr_init - lr_end UpperCAmelCase_ : Tuple = num_training_steps - num_warmup_steps UpperCAmelCase_ : List[str] = 1 - (current_step - num_warmup_steps) / decay_steps UpperCAmelCase_ : str = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowercase , _lowercase , _lowercase ) __a = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = 1 , _lowercase = 1.0 , _lowercase = -1 , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = SchedulerType(_lowercase ) UpperCAmelCase_ : Optional[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowercase , last_epoch=_lowercase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowercase , step_rules=_lowercase , last_epoch=_lowercase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowercase , num_warmup_steps=_lowercase , last_epoch=_lowercase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , num_cycles=_lowercase , last_epoch=_lowercase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , power=_lowercase , last_epoch=_lowercase , ) return schedule_func( _lowercase , num_warmup_steps=_lowercase , num_training_steps=_lowercase , last_epoch=_lowercase )
30
'''simple docstring''' from statistics import mean, stdev def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 3 ): __a : List[str] = min(SCREAMING_SNAKE_CASE__ ) __a : Tuple = max(SCREAMING_SNAKE_CASE__ ) # normalize data return [round((x - x_min) / (x_max - x_min) , SCREAMING_SNAKE_CASE__ ) for x in data] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 3 ): __a : Dict = mean(SCREAMING_SNAKE_CASE__ ) __a : str = stdev(SCREAMING_SNAKE_CASE__ ) # standardize data return [round((x - mu) / (sigma) , SCREAMING_SNAKE_CASE__ ) for x in data]
597
0
"""simple docstring""" __lowerCAmelCase : List[str] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __lowerCAmelCase : List[str] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __lowerCAmelCase : Union[str, Any] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
21
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __lowerCAmelCase : Optional[int] = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __lowerCAmelCase : Optional[Any] = parser.parse_args() __lowerCAmelCase : Dict = '''cpu''' __lowerCAmelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __lowerCAmelCase : Tuple = '''path-to-your-trained-model''' __lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __lowerCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __lowerCAmelCase : List[Any] = pipe.to(device) # to channels last __lowerCAmelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __lowerCAmelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __lowerCAmelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __lowerCAmelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __lowerCAmelCase : Tuple = torch.randn(2, 4, 64, 64) __lowerCAmelCase : Any = torch.rand(1) * 999 __lowerCAmelCase : List[str] = torch.randn(2, 77, 768) __lowerCAmelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __lowerCAmelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __lowerCAmelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __lowerCAmelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __lowerCAmelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __lowerCAmelCase : List[str] = 666 __lowerCAmelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __lowerCAmelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __lowerCAmelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __lowerCAmelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
21
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Dict = """Wav2Vec2FeatureExtractor""" a__ : str = """AutoTokenizer""" def __init__( self , __lowercase , __lowercase) -> Any: super().__init__(__lowercase , __lowercase) __UpperCamelCase :int = self.feature_extractor __UpperCamelCase :str = False @classmethod def UpperCamelCase__ ( cls , __lowercase , **__lowercase) -> Optional[int]: try: return super().from_pretrained(__lowercase , **__lowercase) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , __lowercase , ) __UpperCamelCase :Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(__lowercase , **__lowercase) __UpperCamelCase :Optional[int] = WavaVecaCTCTokenizer.from_pretrained(__lowercase , **__lowercase) return cls(feature_extractor=__lowercase , tokenizer=__lowercase) def __call__( self , *__lowercase , **__lowercase) -> str: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowercase , **__lowercase) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''') __UpperCamelCase :Union[str, Any] = kwargs.pop('''raw_speech''') else: __UpperCamelCase :Union[str, Any] = kwargs.pop('''audio''' , __lowercase) __UpperCamelCase :List[str] = kwargs.pop('''sampling_rate''' , __lowercase) __UpperCamelCase :str = kwargs.pop('''text''' , __lowercase) if len(__lowercase) > 0: __UpperCamelCase :str = args[0] __UpperCamelCase :Optional[Any] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''') if audio is not None: __UpperCamelCase :Optional[int] = self.feature_extractor(__lowercase , *__lowercase , sampling_rate=__lowercase , **__lowercase) if text is not None: __UpperCamelCase :Union[str, Any] = self.tokenizer(__lowercase , **__lowercase) if text is None: return inputs elif audio is None: return encodings else: __UpperCamelCase :Optional[Any] = encodings['''input_ids'''] return inputs def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__lowercase , **__lowercase) __UpperCamelCase :int = kwargs.pop('''input_features''' , __lowercase) __UpperCamelCase :Union[str, Any] = kwargs.pop('''labels''' , __lowercase) if len(__lowercase) > 0: __UpperCamelCase :Union[str, Any] = args[0] __UpperCamelCase :str = args[1:] if input_features is not None: __UpperCamelCase :List[Any] = self.feature_extractor.pad(__lowercase , *__lowercase , **__lowercase) if labels is not None: __UpperCamelCase :Dict = self.tokenizer.pad(__lowercase , **__lowercase) if labels is None: return input_features elif input_features is None: return labels else: __UpperCamelCase :int = labels['''input_ids'''] return input_features def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> Tuple: return self.tokenizer.batch_decode(*__lowercase , **__lowercase) def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> Any: return self.tokenizer.decode(*__lowercase , **__lowercase) @contextmanager def UpperCamelCase__ ( self) -> Tuple: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''') __UpperCamelCase :Union[str, Any] = True __UpperCamelCase :Dict = self.tokenizer yield __UpperCamelCase :Optional[Any] = self.feature_extractor __UpperCamelCase :str = False
167
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __lowercase = logging.getLogger(__name__) @dataclass class lowerCamelCase_ : '''simple docstring''' a__ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__ : Optional[str] = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) a__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__ : bool = field(default=UpperCAmelCase_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class lowerCamelCase_ : '''simple docstring''' a__ : str = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) a__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) a__ : int = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) __UpperCamelCase :Union[str, Any] = import_module('''tasks''' ) try: __UpperCamelCase :int = getattr(SCREAMING_SNAKE_CASE , model_args.task_type ) __UpperCamelCase :TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __UpperCamelCase :Optional[Any] = token_classification_task.get_labels(data_args.labels ) __UpperCamelCase :Dict[int, str] = dict(enumerate(SCREAMING_SNAKE_CASE ) ) __UpperCamelCase :Tuple = len(SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase :Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} , cache_dir=model_args.cache_dir , ) __UpperCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __UpperCamelCase :str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets __UpperCamelCase :Dict = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __UpperCamelCase :Optional[int] = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple[List[int], List[int]]: __UpperCamelCase :Optional[int] = np.argmax(SCREAMING_SNAKE_CASE , axis=2 ) __UpperCamelCase , __UpperCamelCase :int = preds.shape __UpperCamelCase :str = [[] for _ in range(SCREAMING_SNAKE_CASE )] __UpperCamelCase :int = [[] for _ in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(SCREAMING_SNAKE_CASE ) -> Dict: __UpperCamelCase , __UpperCamelCase :Optional[Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "precision": precision_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "recall": recall_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "f1": fa_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), } # Data collator __UpperCamelCase :Tuple = DataCollatorWithPadding(SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __UpperCamelCase :Union[str, Any] = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , compute_metrics=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCamelCase :int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __UpperCamelCase :Union[str, Any] = trainer.evaluate() __UpperCamelCase :List[str] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) writer.write('''%s = %s\n''' % (key, value) ) results.update(SCREAMING_SNAKE_CASE ) # Predict if training_args.do_predict: __UpperCamelCase :Any = TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :int = trainer.predict(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :Tuple = align_predictions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Tuple = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions __UpperCamelCase :List[str] = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' main() if __name__ == "__main__": main()
167
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def snake_case ( UpperCAmelCase : List[Any], UpperCAmelCase : List[Any]=False ): try: A = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A = default else: # KEY is set, convert it to True or False. try: A = strtobool(UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value lowerCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False) def snake_case ( UpperCAmelCase : Dict ): return unittest.skip('Test was skipped' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : int ): return unittest.skipUnless(_run_slow_tests, 'test is slow' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : List[Any] ): return unittest.skipUnless(not torch.cuda.is_available(), 'test requires only a CPU' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Tuple ): return unittest.skipUnless(torch.cuda.is_available(), 'test requires a GPU' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : List[Any] ): return unittest.skipUnless(is_xpu_available(), 'test requires a XPU' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : str ): return unittest.skipUnless(is_mps_available(), 'test requires a `mps` backend support in `torch`' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Union[str, Any] ): return unittest.skipUnless( is_transformers_available() and is_datasets_available(), 'test requires the Hugging Face suite' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Optional[int] ): return unittest.skipUnless(is_bnb_available(), 'test requires the bitsandbytes library' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : str ): return unittest.skipUnless(is_tpu_available(), 'test requires TPU' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Dict ): return unittest.skipUnless(torch.cuda.device_count() == 1, 'test requires a GPU' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Tuple ): return unittest.skipUnless(torch.xpu.device_count() == 1, 'test requires a XPU' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Union[str, Any] ): return unittest.skipUnless(torch.cuda.device_count() > 1, 'test requires multiple GPUs' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : int ): return unittest.skipUnless(torch.xpu.device_count() > 1, 'test requires multiple XPUs' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : int ): return unittest.skipUnless(is_safetensors_available(), 'test requires safetensors' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Optional[int] ): return unittest.skipUnless(is_deepspeed_available(), 'test requires DeepSpeed' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Dict ): return unittest.skipUnless(is_torch_version('>=', '1.12.0' ), 'test requires torch version >= 1.12.0' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Optional[int]=None, UpperCAmelCase : Optional[int]=None ): if test_case is None: return partial(UpperCAmelCase, version=UpperCAmelCase ) return unittest.skipUnless(is_torch_version('>=', UpperCAmelCase ), f'test requires torch version >= {version}' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : int ): return unittest.skipUnless(is_tensorboard_available(), 'test requires Tensorboard' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : str ): return unittest.skipUnless(is_wandb_available(), 'test requires wandb' )(UpperCAmelCase ) def snake_case ( UpperCAmelCase : str ): return unittest.skipUnless(is_comet_ml_available(), 'test requires comet_ml' )(UpperCAmelCase ) lowerCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def snake_case ( UpperCAmelCase : List[str] ): return unittest.skipUnless( _atleast_one_tracker_available, 'test requires at least one tracker to be available and for `comet_ml` to not be installed', )(UpperCAmelCase ) class UpperCamelCase ( unittest.TestCase ): """simple docstring""" snake_case = True @classmethod def A( cls : Union[str, Any] ) -> Tuple: '''simple docstring''' A = tempfile.mkdtemp() @classmethod def A( cls : List[str] ) -> Tuple: '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def A( self : Dict ) -> Dict: '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_SCREAMING_SNAKE_CASE ) class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def A( self : Dict ) -> Any: '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def A( self : List[Any] ,_SCREAMING_SNAKE_CASE : Union[mock.Mock, List[mock.Mock]] ) -> int: '''simple docstring''' A = mocks if isinstance(_SCREAMING_SNAKE_CASE ,(tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def snake_case ( UpperCAmelCase : Optional[Any] ): A = AcceleratorState() A = tensor[None].clone().to(state.device ) A = gather(UpperCAmelCase ).cpu() A = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i], UpperCAmelCase ): return False return True class UpperCamelCase : """simple docstring""" def __init__( self : List[Any] ,_SCREAMING_SNAKE_CASE : Dict ,_SCREAMING_SNAKE_CASE : List[str] ,_SCREAMING_SNAKE_CASE : Any ) -> Tuple: '''simple docstring''' A = returncode A = stdout A = stderr async def snake_case ( UpperCAmelCase : List[str], UpperCAmelCase : Any ): while True: A = await stream.readline() if line: callback(UpperCAmelCase ) else: break async def snake_case ( UpperCAmelCase : List[str], UpperCAmelCase : List[str]=None, UpperCAmelCase : Union[str, Any]=None, UpperCAmelCase : List[str]=None, UpperCAmelCase : Tuple=False, UpperCAmelCase : int=False ): if echo: print('\nRunning: ', ' '.join(UpperCAmelCase ) ) A = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=UpperCAmelCase, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=UpperCAmelCase, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A = [] A = [] def tee(UpperCAmelCase : List[str], UpperCAmelCase : List[str], UpperCAmelCase : Dict, UpperCAmelCase : Any="" ): A = line.decode('utf-8' ).rstrip() sink.append(UpperCAmelCase ) if not quiet: print(UpperCAmelCase, UpperCAmelCase, file=UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout, lambda UpperCAmelCase : tee(UpperCAmelCase, UpperCAmelCase, sys.stdout, label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr, lambda UpperCAmelCase : tee(UpperCAmelCase, UpperCAmelCase, sys.stderr, label='stderr:' ) ) ), ], timeout=UpperCAmelCase, ) return _RunOutput(await p.wait(), UpperCAmelCase, UpperCAmelCase ) def snake_case ( UpperCAmelCase : Optional[int], UpperCAmelCase : List[str]=None, UpperCAmelCase : List[Any]=None, UpperCAmelCase : Union[str, Any]=1_80, UpperCAmelCase : List[Any]=False, UpperCAmelCase : Optional[int]=True ): A = asyncio.get_event_loop() A = loop.run_until_complete( _stream_subprocess(UpperCAmelCase, env=UpperCAmelCase, stdin=UpperCAmelCase, timeout=UpperCAmelCase, quiet=UpperCAmelCase, echo=UpperCAmelCase ) ) A = ' '.join(UpperCAmelCase ) if result.returncode > 0: A = '\n'.join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class UpperCamelCase ( snake_case__ ): """simple docstring""" pass def snake_case ( UpperCAmelCase : List[str], UpperCAmelCase : Dict=False ): try: A = subprocess.check_output(UpperCAmelCase, stderr=subprocess.STDOUT ) if return_stdout: if hasattr(UpperCAmelCase, 'decode' ): A = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(UpperCAmelCase )}` failed with the following error:\n\n{e.output.decode()}' ) from e
110
from collections.abc import Callable class UpperCamelCase : """simple docstring""" def __init__( self : Tuple ,_SCREAMING_SNAKE_CASE : Callable | None = None ) -> None: '''simple docstring''' # Stores actual heap items. A = [] # Stores indexes of each item for supporting updates and deletion. A = {} # Stores current size of heap. A = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. A = key or (lambda _SCREAMING_SNAKE_CASE : x) def A( self : Tuple ,_SCREAMING_SNAKE_CASE : int ) -> int | None: '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def A( self : Union[str, Any] ,_SCREAMING_SNAKE_CASE : int ) -> int | None: '''simple docstring''' A = int(2 * i + 1 ) return left if 0 < left < self.size else None def A( self : Union[str, Any] ,_SCREAMING_SNAKE_CASE : int ) -> int | None: '''simple docstring''' A = int(2 * i + 2 ) return right if 0 < right < self.size else None def A( self : List[str] ,_SCREAMING_SNAKE_CASE : int ,_SCREAMING_SNAKE_CASE : int ) -> None: '''simple docstring''' A , A = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. A , A = self.arr[j], self.arr[i] def A( self : List[str] ,_SCREAMING_SNAKE_CASE : int ,_SCREAMING_SNAKE_CASE : int ) -> bool: '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def A( self : int ,_SCREAMING_SNAKE_CASE : int ) -> int: '''simple docstring''' A = self._left(_SCREAMING_SNAKE_CASE ) A = self._right(_SCREAMING_SNAKE_CASE ) A = i if left is not None and not self._cmp(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): A = left if right is not None and not self._cmp(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): A = right return valid_parent def A( self : Any ,_SCREAMING_SNAKE_CASE : int ) -> None: '''simple docstring''' A = self._parent(_SCREAMING_SNAKE_CASE ) while parent is not None and not self._cmp(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self._swap(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) A , A = parent, self._parent(_SCREAMING_SNAKE_CASE ) def A( self : List[Any] ,_SCREAMING_SNAKE_CASE : int ) -> None: '''simple docstring''' A = self._get_valid_parent(_SCREAMING_SNAKE_CASE ) while valid_parent != index: self._swap(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) A , A = valid_parent, self._get_valid_parent(_SCREAMING_SNAKE_CASE ) def A( self : Optional[Any] ,_SCREAMING_SNAKE_CASE : int ,_SCREAMING_SNAKE_CASE : int ) -> None: '''simple docstring''' if item not in self.pos_map: return A = self.pos_map[item] A = [item, self.key(_SCREAMING_SNAKE_CASE )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_SCREAMING_SNAKE_CASE ) self._heapify_down(_SCREAMING_SNAKE_CASE ) def A( self : int ,_SCREAMING_SNAKE_CASE : int ) -> None: '''simple docstring''' if item not in self.pos_map: return A = self.pos_map[item] del self.pos_map[item] A = self.arr[self.size - 1] A = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_SCREAMING_SNAKE_CASE ) self._heapify_down(_SCREAMING_SNAKE_CASE ) def A( self : Optional[Any] ,_SCREAMING_SNAKE_CASE : int ,_SCREAMING_SNAKE_CASE : int ) -> None: '''simple docstring''' A = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_SCREAMING_SNAKE_CASE )] ) else: A = [item, self.key(_SCREAMING_SNAKE_CASE )] A = self.size self.size += 1 self._heapify_up(self.size - 1 ) def A( self : str ) -> tuple | None: '''simple docstring''' return self.arr[0] if self.size else None def A( self : Any ) -> tuple | None: '''simple docstring''' A = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def snake_case ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
110
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] , _lowercase : Optional[Any] ) ->int: '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
633
"""simple docstring""" def A_ ( snake_case__ ) -> int: _UpperCamelCase :Dict = 1 for i in range(1 , num + 1 ): fact *= i return fact def A_ ( snake_case__ ) -> int: _UpperCamelCase :Dict = 0 while number > 0: _UpperCamelCase :Tuple = number % 10 sum_of_digits += last_digit _UpperCamelCase :str = number // 10 # Removing the last_digit from the given number return sum_of_digits def A_ ( snake_case__ = 1_00 ) -> int: _UpperCamelCase :int = factorial(snake_case__ ) _UpperCamelCase :Dict = split_and_add(snake_case__ ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
355
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=_snake_case ): lowerCAmelCase :str = ['''flax''', '''transformers'''] def __init__( self , *_lowerCamelCase , **_lowerCamelCase): requires_backends(self , ["""flax""", """transformers"""]) @classmethod def snake_case__ ( cls , *_lowerCamelCase , **_lowerCamelCase): requires_backends(cls , ["""flax""", """transformers"""]) @classmethod def snake_case__ ( cls , *_lowerCamelCase , **_lowerCamelCase): requires_backends(cls , ["""flax""", """transformers"""]) class _snake_case ( metaclass=_snake_case ): lowerCAmelCase :List[Any] = ['''flax''', '''transformers'''] def __init__( self , *_lowerCamelCase , **_lowerCamelCase): requires_backends(self , ["""flax""", """transformers"""]) @classmethod def snake_case__ ( cls , *_lowerCamelCase , **_lowerCamelCase): requires_backends(cls , ["""flax""", """transformers"""]) @classmethod def snake_case__ ( cls , *_lowerCamelCase , **_lowerCamelCase): requires_backends(cls , ["""flax""", """transformers"""]) class _snake_case ( metaclass=_snake_case ): lowerCAmelCase :List[Any] = ['''flax''', '''transformers'''] def __init__( self , *_lowerCamelCase , **_lowerCamelCase): requires_backends(self , ["""flax""", """transformers"""]) @classmethod def snake_case__ ( cls , *_lowerCamelCase , **_lowerCamelCase): requires_backends(cls , ["""flax""", """transformers"""]) @classmethod def snake_case__ ( cls , *_lowerCamelCase , **_lowerCamelCase): requires_backends(cls , ["""flax""", """transformers"""]) class _snake_case ( metaclass=_snake_case ): lowerCAmelCase :Dict = ['''flax''', '''transformers'''] def __init__( self , *_lowerCamelCase , **_lowerCamelCase): requires_backends(self , ["""flax""", """transformers"""]) @classmethod def snake_case__ ( cls , *_lowerCamelCase , **_lowerCamelCase): requires_backends(cls , ["""flax""", """transformers"""]) @classmethod def snake_case__ ( cls , *_lowerCamelCase , **_lowerCamelCase): requires_backends(cls , ["""flax""", """transformers"""])
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __A ={ 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
113
0
def _lowercase ( __lowerCamelCase : int ) -> int: '''simple docstring''' if not isinstance(__lowerCamelCase ,__lowerCamelCase ): UpperCamelCase__ : Any = F'Input value of [number={number}] must be an integer' raise TypeError(__lowerCamelCase ) if number < 1: UpperCamelCase__ : Optional[int] = F'Input value of [number={number}] must be > 0' raise ValueError(__lowerCamelCase ) UpperCamelCase__ : List[str] = 1 for i in range(1 ,__lowerCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
344
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } _SCREAMING_SNAKE_CASE : List[Any] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowercase ( __lowerCamelCase : Optional[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Dict ) -> str: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : List[str] = '''lm_head''' UpperCamelCase__ : Any = getattr(__lowerCamelCase ,__lowerCamelCase ) if weight_type is not None: UpperCamelCase__ : List[str] = getattr(__lowerCamelCase ,__lowerCamelCase ).shape else: UpperCamelCase__ : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : int = value elif weight_type == "weight_g": UpperCamelCase__ : int = value elif weight_type == "weight_v": UpperCamelCase__ : int = value elif weight_type == "bias": UpperCamelCase__ : Optional[Any] = value else: UpperCamelCase__ : Any = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowercase ( __lowerCamelCase : int ,__lowerCamelCase : Any ,__lowerCamelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Any = [] UpperCamelCase__ : Union[str, Any] = fairseq_model.state_dict() UpperCamelCase__ : List[str] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Tuple = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) UpperCamelCase__ : str = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : Dict = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCamelCase__ : Optional[int] = True if "*" in mapped_key: UpperCamelCase__ : int = name.split(__lowerCamelCase )[0].split('''.''' )[-2] UpperCamelCase__ : int = mapped_key.replace('''*''' ,__lowerCamelCase ) if "weight_g" in name: UpperCamelCase__ : str = '''weight_g''' elif "weight_v" in name: UpperCamelCase__ : Union[str, Any] = '''weight_v''' elif "bias" in name: UpperCamelCase__ : Dict = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : List[Any] = '''weight''' else: UpperCamelCase__ : Optional[Any] = None set_recursively(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def _lowercase ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Any ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Any = full_name.split('''conv_layers.''' )[-1] UpperCamelCase__ : Optional[int] = name.split('''.''' ) UpperCamelCase__ : Optional[int] = int(items[0] ) UpperCamelCase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : str = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : str = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : Dict = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def _lowercase ( __lowerCamelCase : Dict ,__lowerCamelCase : str ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : List[Any]=None ,__lowerCamelCase : Tuple=True ) -> Any: '''simple docstring''' if config_path is not None: UpperCamelCase__ : Optional[int] = UniSpeechConfig.from_pretrained(__lowerCamelCase ) else: UpperCamelCase__ : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : List[Any] = Dictionary.load_from_json(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[str] = target_dict.pad_index UpperCamelCase__ : Optional[Any] = target_dict.bos_index UpperCamelCase__ : str = target_dict.eos_index UpperCamelCase__ : Optional[Any] = len(target_dict.symbols ) UpperCamelCase__ : int = os.path.join(__lowerCamelCase ,'''vocab.json''' ) if not os.path.isdir(__lowerCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) UpperCamelCase__ : int = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Tuple = 42 UpperCamelCase__ : List[str] = 43 with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(__lowerCamelCase ,__lowerCamelCase ) UpperCamelCase__ : Tuple = WavaVecaPhonemeCTCTokenizer( __lowerCamelCase ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__lowerCamelCase ,) UpperCamelCase__ : List[str] = True if config.feat_extract_norm == '''layer''' else False UpperCamelCase__ : int = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,) UpperCamelCase__ : Dict = WavaVecaProcessor(feature_extractor=__lowerCamelCase ,tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) UpperCamelCase__ : int = UniSpeechForCTC(__lowerCamelCase ) else: UpperCamelCase__ : Any = UniSpeechForPreTraining(__lowerCamelCase ) if is_finetuned: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCamelCase__ : Tuple = model[0].eval() recursively_load_weights(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) hf_unispeech.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
344
1
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase_ : Any = logging.get_logger(__name__) UpperCamelCase_ : Union[str, Any] = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} UpperCamelCase_ : int = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } UpperCamelCase_ : List[str] = { """abeja/gpt-neox-japanese-2.7b""": 2_048, } def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" with open(_lowercase , "r" , encoding="utf-8" ) as f: a__ = json.loads(f.read() ) a__ = collections.OrderedDict() a__ = collections.OrderedDict() a__ = collections.OrderedDict() with open(_lowercase , "r" , encoding="utf-8" ) as f: a__ = f.readlines() a__ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(_lowercase ): a__ = b a__ = idx for wd in b: a__ = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Any ,a__ : Optional[int] ,a__ : Any ,a__ : Tuple="<|endoftext|>" ,a__ : List[str]="<|endoftext|>" ,a__ : List[str]="<|startoftext|>" ,a__ : Union[str, Any]="<|endoftext|>" ,a__ : Dict=False ,**a__ : Dict ,): super().__init__( unk_token=a__ ,pad_token=a__ ,bos_token=a__ ,eos_token=a__ ,do_clean_text=a__ ,**a__ ,) if not os.path.isfile(a__ ): raise ValueError( f'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(a__ ): raise ValueError( f'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) a__ = do_clean_text a__ , a__ , a__ , a__ = load_vocab_and_emoji(a__ ,a__ ) a__ = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def lowerCAmelCase_ ( self : Tuple ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def lowerCAmelCase_ ( self : Dict ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def lowerCAmelCase_ ( self : Dict ,a__ : Any ): return self.subword_tokenizer.tokenize(a__ ,clean=self.do_clean_text ) def lowerCAmelCase_ ( self : str ,a__ : Optional[int] ): return self.vocab.get(a__ ,self.vocab.get(self.unk_token ) ) def lowerCAmelCase_ ( self : Dict ,a__ : Union[str, Any] ): return self.subword_tokenizer.convert_id_to_token(a__ ) def lowerCAmelCase_ ( self : Union[str, Any] ,a__ : Union[str, Any] ): a__ = "".join(a__ ).strip() return out_string def lowerCAmelCase_ ( self : str ,a__ : "Conversation" ): a__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a__ ,add_special_tokens=a__ ) + [self.eos_token_id] ) if len(a__ ) > self.model_max_length: a__ = input_ids[-self.model_max_length :] return input_ids def lowerCAmelCase_ ( self : str ,a__ : str ,a__ : Optional[str] = None ): a__ = 0 if os.path.isdir(a__ ): a__ = os.path.join( a__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) a__ = os.path.join( a__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: a__ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) a__ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(a__ ,"w" ,encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' " Please check that the vocabulary is not corrupted!" ) a__ = token_index writer.write(",".join(a__ ) + "\n" ) index += 1 with open(a__ ,"w" ,encoding="utf-8" ) as writer: json.dump(self.emoji ,a__ ) return vocab_file, emoji_file class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" def __init__( self : List[Any] ,a__ : Union[str, Any] ,a__ : Optional[int] ,a__ : int ): a__ = vocab # same as swe a__ = ids_to_tokens # same as bpe a__ = emoji a__ = np.max([len(a__ ) for w in self.vocab.keys()] ) a__ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) a__ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) a__ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) a__ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) a__ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) a__ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) a__ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" a__ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" a__ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : List[Any] ): return len(self.ids_to_tokens ) def lowerCAmelCase_ ( self : str ,a__ : Union[str, Any] ): a__ = self.content_repattera.sub("<URL>" ,a__ ) a__ = self.content_repattera.sub("<EMAIL>" ,a__ ) a__ = self.content_repattera.sub("<TEL>" ,a__ ) a__ = self.content_repattera.sub("<DATE>" ,a__ ) a__ = self.content_repattera.sub("<DATE>" ,a__ ) a__ = self.content_repattera.sub("<PRICE>" ,a__ ) a__ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: a__ = content.replace("<BLOCK><BLOCK>" ,"<BLOCK>" ) return content def lowerCAmelCase_ ( self : Tuple ,a__ : List[Any] ,a__ : Tuple=False ): a__ = text.replace(" " ,"<SP>" ) a__ = text.replace(" " ,"<SP>" ) a__ = text.replace("\r\n" ,"<BR>" ) a__ = text.replace("\n" ,"<BR>" ) a__ = text.replace("\r" ,"<BR>" ) a__ = text.replace("\t" ,"<TAB>" ) a__ = text.replace("—" ,"ー" ) a__ = text.replace("−" ,"ー" ) for k, v in self.emoji["emoji"].items(): if k in text: a__ = text.replace(a__ ,a__ ) if clean: a__ = self.clean_text(a__ ) def check_simbol(a__ : List[Any] ): a__ = x.encode() if len(a__ ) == 1 and len(a__ ) == 2: a__ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(a__ : Optional[Any] ): a__ = x.encode() if len(a__ ) == 1 and len(a__ ) == 3: a__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28080 and c <= 0xe2b07f: return True return False a__ = 0 a__ = [] while pos < len(a__ ): a__ = min(len(a__ ) ,pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 a__ = [] # (token_id, token, pos) for e in range(a__ ,a__ ,-1 ): a__ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a__ ) > 2: a__ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(a__ ) > 0: # the smallest token_id is adopted a__ , a__ , a__ = sorted(a__ ,key=lambda a__ : x[0] )[0] result.append(a__ ) a__ = e else: a__ = pos + 1 a__ = text[pos:end] if check_simbol(a__ ): result.append("<KIGOU>" ) elif checkuae(a__ ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) a__ = end return result def lowerCAmelCase_ ( self : List[str] ,a__ : str ,a__ : Any="\n" ): a__ = [] a__ = [] a__ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(a__ ) > 0: words.append(bytearray(a__ ).decode("utf-8" ,errors="replace" ) ) a__ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(a__ ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(a__ ) if len(a__ ) > 0: words.append(bytearray(a__ ).decode("utf-8" ,errors="replace" ) ) a__ = "".join(a__ ) return text
708
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ : Optional[int] = { """configuration_bridgetower""": [ """BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BridgeTowerConfig""", """BridgeTowerTextConfig""", """BridgeTowerVisionConfig""", ], """processing_bridgetower""": ["""BridgeTowerProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Dict = ["""BridgeTowerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Tuple = [ """BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""", """BridgeTowerForContrastiveLearning""", """BridgeTowerForImageAndTextRetrieval""", """BridgeTowerForMaskedLM""", """BridgeTowerModel""", """BridgeTowerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys UpperCamelCase_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
394
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch A__: int = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE_): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self: List[str] , __lowerCamelCase: bool = True , __lowerCamelCase: Dict[str, int] = None , __lowerCamelCase: PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase: bool = True , __lowerCamelCase: Union[int, float] = 1 / 255 , __lowerCamelCase: bool = True , __lowerCamelCase: Dict[str, int] = None , __lowerCamelCase: bool = True , **__lowerCamelCase: int , ): '''simple docstring''' super().__init__(**_a ) UpperCamelCase__: Union[str, Any] = size if size is not None else {'shortest_edge': 224} UpperCamelCase__: int = get_size_dict(_a , default_to_square=_a ) UpperCamelCase__: Optional[int] = crop_size if crop_size is not None else {'height': 256, 'width': 256} UpperCamelCase__: List[str] = get_size_dict(_a , param_name="crop_size" ) UpperCamelCase__: Dict = do_resize UpperCamelCase__: Optional[int] = size UpperCamelCase__: List[Any] = resample UpperCamelCase__: Optional[int] = do_rescale UpperCamelCase__: Dict = rescale_factor UpperCamelCase__: Optional[Any] = do_center_crop UpperCamelCase__: Optional[int] = crop_size UpperCamelCase__: Optional[Any] = do_flip_channel_order def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: np.ndarray , __lowerCamelCase: Dict[str, int] , __lowerCamelCase: PILImageResampling = PIL.Image.BILINEAR , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase: Union[str, Any] , ): '''simple docstring''' UpperCamelCase__: int = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F"The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}" ) UpperCamelCase__: int = get_resize_output_image_size(_a , size=size["shortest_edge"] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def UpperCAmelCase_ ( self: Union[str, Any] , __lowerCamelCase: np.ndarray , __lowerCamelCase: Dict[str, int] , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase: int , ): '''simple docstring''' UpperCamelCase__: int = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(_a , size=(size["height"], size["width"]) , data_format=_a , **_a ) def UpperCAmelCase_ ( self: Optional[Any] , __lowerCamelCase: np.ndarray , __lowerCamelCase: Union[int, float] , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase: Any , ): '''simple docstring''' return rescale(_a , scale=_a , data_format=_a , **_a ) def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: np.ndarray , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' return flip_channel_order(_a , data_format=_a ) def UpperCAmelCase_ ( self: str , __lowerCamelCase: ImageInput , __lowerCamelCase: bool = None , __lowerCamelCase: Dict[str, int] = None , __lowerCamelCase: PILImageResampling = None , __lowerCamelCase: bool = None , __lowerCamelCase: float = None , __lowerCamelCase: bool = None , __lowerCamelCase: Dict[str, int] = None , __lowerCamelCase: bool = None , __lowerCamelCase: Optional[Union[str, TensorType]] = None , __lowerCamelCase: ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase: str , ): '''simple docstring''' UpperCamelCase__: List[str] = do_resize if do_resize is not None else self.do_resize UpperCamelCase__: Tuple = resample if resample is not None else self.resample UpperCamelCase__: List[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__: Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__: Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__: Optional[Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCamelCase__: Dict = size if size is not None else self.size UpperCamelCase__: Optional[Any] = get_size_dict(_a , default_to_square=_a ) UpperCamelCase__: Any = crop_size if crop_size is not None else self.crop_size UpperCamelCase__: Dict = get_size_dict(_a , param_name="crop_size" ) UpperCamelCase__: List[str] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. UpperCamelCase__: str = [to_numpy_array(_a ) for image in images] if do_resize: UpperCamelCase__: str = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: UpperCamelCase__: Optional[int] = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: UpperCamelCase__: List[Any] = [self.rescale(image=_a , scale=_a ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCamelCase__: Optional[int] = [self.flip_channel_order(image=_a ) for image in images] UpperCamelCase__: List[str] = [to_channel_dimension_format(_a , _a ) for image in images] UpperCamelCase__: List[str] = {'pixel_values': images} return BatchFeature(data=_a , tensor_type=_a ) def UpperCAmelCase_ ( self: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: List[Tuple] = None ): '''simple docstring''' UpperCamelCase__: Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_a ) != len(_a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_a ): UpperCamelCase__: Dict = target_sizes.numpy() UpperCamelCase__: Tuple = [] for idx in range(len(_a ) ): UpperCamelCase__: Optional[Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_a ) UpperCamelCase__: Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_a ) else: UpperCamelCase__: Tuple = logits.argmax(dim=1 ) UpperCamelCase__: List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
380
'''simple docstring''' import functools def a_ ( _lowerCAmelCase ,_lowerCAmelCase ) -> int: # Validation if not isinstance(_lowerCAmelCase ,_lowerCAmelCase ) or not all(isinstance(_lowerCAmelCase ,_lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(_lowerCAmelCase ) != 3 or not all(isinstance(_lowerCAmelCase ,_lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(_lowerCAmelCase ) == 0: return 0 if min(_lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(_lowerCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) __lowerCamelCase : int = set(_lowerCAmelCase ) @functools.cache def dynamic_programming(_lowerCAmelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) ,costs[1] + dynamic_programming(index + 7 ) ,costs[2] + dynamic_programming(index + 30 ) ,) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
459
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger() @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = field(default_factory=lowercase_ ) SCREAMING_SNAKE_CASE = field(default_factory=lowercase_ ) def lowerCAmelCase_ ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tensor , UpperCamelCase_ : Tensor ): """simple docstring""" __A = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase_ , nn.Convad ) or isinstance(UpperCamelCase_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase_ ) def __call__( self : Any , UpperCamelCase_ : Tensor ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase_ ) [x.remove() for x in self.handles] return self @property def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return list(filter(lambda UpperCamelCase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = field(default_factory=lowercase_ ) SCREAMING_SNAKE_CASE = field(default_factory=lowercase_ ) SCREAMING_SNAKE_CASE = True def __call__( self : Dict , UpperCamelCase_ : Tensor ): """simple docstring""" __A = Tracker(self.dest )(UpperCamelCase_ ).parametrized __A = Tracker(self.src )(UpperCamelCase_ ).parametrized __A = list(filter(lambda UpperCamelCase_ : type(UpperCamelCase_ ) not in self.src_skip , UpperCamelCase_ ) ) __A = list(filter(lambda UpperCamelCase_ : type(UpperCamelCase_ ) not in self.dest_skip , UpperCamelCase_ ) ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ) and self.raise_if_mismatch: raise Exception( F"Numbers of operations are different. Source module has {len(UpperCamelCase_ )} operations while" F" destination module has {len(UpperCamelCase_ )}." ) for dest_m, src_m in zip(UpperCamelCase_ , UpperCamelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"Transfered from={src_m} to={dest_m}" ) class __lowercase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase_ : nn.Module ): """simple docstring""" super().__init__() __A = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), F"Unexpected layer name {k}" __A = len(UpperCamelCase_ ) + 1 feature_blocks.append((F"res{block_index}", v) ) __A = nn.ModuleDict(UpperCamelCase_ ) def lowerCAmelCase_ ( self : Optional[Any] , UpperCamelCase_ : Tensor ): """simple docstring""" return get_trunk_forward_outputs( UpperCamelCase_ , out_feat_keys=UpperCamelCase_ , feature_blocks=self._feature_blocks , ) class __lowercase ( lowercase_ ): '''simple docstring''' def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : str ): """simple docstring""" __A = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : List[Any] , UpperCamelCase_ : str ): """simple docstring""" if x not in self: __A = self.convert_name_to_timm(UpperCamelCase_ ) __A = partial(lambda: (timm.create_model(UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval(), None) ) else: __A = super().__getitem__(UpperCamelCase_ ) return val class __lowercase ( lowercase_ ): '''simple docstring''' def __getitem__( self : List[Any] , UpperCamelCase_ : str ): """simple docstring""" if "seer" in x and "in1k" not in x: __A = RegNetModel else: __A = RegNetForImageClassification return val def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : List[Any] , __lowercase : List[Tuple[str, str]] ) -> List[str]: """simple docstring""" for from_key, to_key in keys: __A = from_state_dict[from_key].clone() print(f"Copied key={from_key} to={to_key}" ) return to_state_dict def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : Callable[[], nn.Module] , __lowercase : Callable[[], nn.Module] , __lowercase : RegNetConfig , __lowercase : Path , __lowercase : bool = True , ) -> Optional[Any]: """simple docstring""" print(f"Converting {name}..." ) with torch.no_grad(): __A , __A = from_model_func() __A = our_model_func(__lowercase ).eval() __A = ModuleTransfer(src=__lowercase , dest=__lowercase , raise_if_mismatch=__lowercase ) __A = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) if from_state_dict is not None: __A = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __A = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] __A = manually_copy_vissl_head(__lowercase , our_model.state_dict() , __lowercase ) our_model.load_state_dict(__lowercase ) __A = our_model(__lowercase , output_hidden_states=__lowercase ) __A = ( our_outputs.logits if isinstance(__lowercase , __lowercase ) else our_outputs.last_hidden_state ) __A = from_model(__lowercase ) __A = from_output[-1] if type(__lowercase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __A = our_outputs.hidden_states[-1] assert torch.allclose(__lowercase , __lowercase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=__lowercase , ) __A = 2_2_4 if """seer""" not in name else 3_8_4 # we can use the convnext one __A = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=__lowercase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=__lowercase , ) print(f"Pushed {name}" ) def _SCREAMING_SNAKE_CASE ( __lowercase : Path , __lowercase : str = None , __lowercase : bool = True ) -> Optional[int]: """simple docstring""" __A = """imagenet-1k-id2label.json""" __A = 1_0_0_0 __A = (1, num_labels) __A = """huggingface/label-files""" __A = num_labels __A = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type="""dataset""" ) ) , """r""" ) ) __A = {int(__lowercase ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) __A = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } __A = NameToOurModelFuncMap() __A = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowercase : str , __lowercase : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __A = torch.hub.load_state_dict_from_url(__lowercase , model_dir=str(__lowercase ) , map_location="""cpu""" ) __A = model_func() # check if we have a head, if yes add it __A = files["""classy_state_dict"""]["""base_model"""]["""model"""] __A = model_state_dict["""trunk"""] model.load_state_dict(__lowercase ) return model.eval(), model_state_dict["heads"] # pretrained __A = partial( __lowercase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __A = partial( __lowercase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __A = partial( __lowercase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __A = partial( __lowercase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __A = partial( __lowercase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __A = partial( __lowercase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __A = partial( __lowercase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __A = partial( __lowercase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowercase , __lowercase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowercase , __lowercase , __lowercase , ) return config, expected_shape if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) __a = parser.parse_args() __a = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
704
def _SCREAMING_SNAKE_CASE ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __A = set() # Replace all the whitespace in our sentence __A = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__lowercase ) == 2_6 def _SCREAMING_SNAKE_CASE ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" __A = [False] * 2_6 for char in input_str: if char.islower(): __A = True elif char.isupper(): __A = True return all(__lowercase ) def _SCREAMING_SNAKE_CASE ( __lowercase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def _SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit __A = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=__lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=__lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=__lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
199
0
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 _SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/dummy-config.json') class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Dict: _A = 0 def UpperCAmelCase ( self ) -> int: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def UpperCAmelCase ( self ) -> Optional[Any]: _A = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: _A = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: _A = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: _A = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _A = os.path.join(lowerCAmelCase_ , """fake-roberta""" ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , """config.json""" ) , """w""" ) as f: f.write(json.dumps({} ) ) _A = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertEqual(type(lowerCAmelCase_ ) , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: try: AutoConfig.register("""custom""" , lowerCAmelCase_ ) # Wrong model type will raise an error with self.assertRaises(lowerCAmelCase_ ): AutoConfig.register("""model""" , lowerCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase_ ): AutoConfig.register("""bert""" , lowerCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API _A = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase_ ) _A = AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def UpperCAmelCase ( self ) -> Tuple: with self.assertRaisesRegex( lowerCAmelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): _A = AutoConfig.from_pretrained("""bert-base""" ) def UpperCAmelCase ( self ) -> Optional[Any]: with self.assertRaisesRegex( lowerCAmelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _A = AutoConfig.from_pretrained(lowerCAmelCase_ , revision="""aaaaaa""" ) def UpperCAmelCase ( self ) -> Any: with self.assertRaisesRegex( lowerCAmelCase_ , """hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" , ): _A = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def UpperCAmelCase ( self ) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase_ ): _A = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase_ ): _A = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase_ ) _A = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase_ ) _A = AutoConfig.from_pretrained(lowerCAmelCase_ , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(reloaded_config.__class__.__name__ , """NewModelConfig""" ) def UpperCAmelCase ( self ) -> Tuple: class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Tuple = '''new-model''' try: AutoConfig.register("""new-model""" , lowerCAmelCase_ ) # If remote code is not set, the default is to use local _A = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. _A = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub _A = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=lowerCAmelCase_ ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
401
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class a ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Tuple: _A = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) _A = AutoTokenizer.from_pretrained("""google/mt5-small""" ) _A = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids _A = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids _A = shift_tokens_right(lowerCAmelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id ) _A = model(lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ ).logits _A = optax.softmax_cross_entropy(lowerCAmelCase_ , onehot(lowerCAmelCase_ , logits.shape[-1] ) ).mean() _A = -(labels.shape[-1] * loss.item()) _A = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
401
1
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase=13 ,__UpperCamelCase=7 ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=99 ,__UpperCamelCase=32 ,__UpperCamelCase=5 ,__UpperCamelCase=4 ,__UpperCamelCase=37 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=128 ,__UpperCamelCase=32 ,__UpperCamelCase=16 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=3 ,__UpperCamelCase=4 ,__UpperCamelCase=None ,) -> Dict: '''simple docstring''' lowercase_ : List[str] = parent lowercase_ : int = batch_size lowercase_ : List[str] = seq_length lowercase_ : List[Any] = is_training lowercase_ : Optional[int] = use_input_mask lowercase_ : int = use_token_type_ids lowercase_ : List[Any] = use_labels lowercase_ : List[str] = vocab_size lowercase_ : Optional[Any] = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Tuple = num_attention_heads lowercase_ : Union[str, Any] = intermediate_size lowercase_ : List[str] = hidden_act lowercase_ : Any = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : Dict = max_position_embeddings lowercase_ : int = type_vocab_size lowercase_ : Tuple = type_sequence_label_size lowercase_ : Any = initializer_range lowercase_ : List[str] = num_labels lowercase_ : Optional[int] = num_choices lowercase_ : List[str] = scope def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase_ : int = None if self.use_input_mask: lowercase_ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Union[str, Any] = None if self.use_token_type_ids: lowercase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowercase_ : List[Any] = None lowercase_ : Optional[Any] = None lowercase_ : Tuple = None if self.use_labels: lowercase_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase_ : Optional[int] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase_ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_lowercase ,initializer_range=self.initializer_range ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' ( lowercase_ ) : Dict = self.prepare_config_and_inputs() lowercase_ : Any = True lowercase_ : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : List[Any] = NezhaModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Any = model(_lowercase ,attention_mask=_lowercase ,token_type_ids=_lowercase ) lowercase_ : str = model(_lowercase ,token_type_ids=_lowercase ) lowercase_ : int = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> Dict: '''simple docstring''' lowercase_ : Dict = True lowercase_ : Tuple = NezhaModel(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[Any] = model( _lowercase ,attention_mask=_lowercase ,token_type_ids=_lowercase ,encoder_hidden_states=_lowercase ,encoder_attention_mask=_lowercase ,) lowercase_ : Optional[Any] = model( _lowercase ,attention_mask=_lowercase ,token_type_ids=_lowercase ,encoder_hidden_states=_lowercase ,) lowercase_ : List[str] = model(_lowercase ,attention_mask=_lowercase ,token_type_ids=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = NezhaForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Any = model(_lowercase ,attention_mask=_lowercase ,token_type_ids=_lowercase ,labels=_lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Any = NezhaForNextSentencePrediction(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Optional[Any] = model( _lowercase ,attention_mask=_lowercase ,token_type_ids=_lowercase ,labels=_lowercase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Any = NezhaForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : Any = model( _lowercase ,attention_mask=_lowercase ,token_type_ids=_lowercase ,labels=_lowercase ,next_sentence_label=_lowercase ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Any = NezhaForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[Any] = model( _lowercase ,attention_mask=_lowercase ,token_type_ids=_lowercase ,start_positions=_lowercase ,end_positions=_lowercase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : Any = self.num_labels lowercase_ : str = NezhaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : int = model(_lowercase ,attention_mask=_lowercase ,token_type_ids=_lowercase ,labels=_lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : int = self.num_labels lowercase_ : Tuple = NezhaForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : int = model(_lowercase ,attention_mask=_lowercase ,token_type_ids=_lowercase ,labels=_lowercase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Union[str, Any] = self.num_choices lowercase_ : str = NezhaForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase_ : List[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase_ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase_ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowercase_ : List[str] = model( _lowercase ,attention_mask=_lowercase ,token_type_ids=_lowercase ,labels=_lowercase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Dict = self.prepare_config_and_inputs() ( lowercase_ ) : Optional[int] = config_and_inputs lowercase_ : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): lowercase = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=False ) -> Optional[int]: '''simple docstring''' lowercase_ : Dict = super()._prepare_for_class(_lowercase ,_lowercase ,return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): lowercase_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=_lowercase ) lowercase_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_lowercase ) return inputs_dict def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Any = NezhaModelTester(self ) lowercase_ : str = ConfigTester(self ,config_class=_lowercase ,hidden_size=37 ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowercase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' ( lowercase_ ) : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( _lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ,) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_lowercase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowercase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Union[str, Any] = NezhaModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowercase_ : int = True lowercase_ : Dict = model_class(config=_lowercase ) lowercase_ : Any = self._prepare_for_class(_lowercase ,_lowercase ) lowercase_ : Dict = torch.jit.trace( _lowercase ,(inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowercase ,os.path.join(_lowercase ,'bert.pt' ) ) lowercase_ : List[Any] = torch.jit.load(os.path.join(_lowercase ,'bert.pt' ) ,map_location=_lowercase ) loaded(inputs_dict['input_ids'].to(_lowercase ) ,inputs_dict['attention_mask'].to(_lowercase ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) lowercase_ : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : str = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ : List[str] = model(_lowercase ,attention_mask=_lowercase )[0] lowercase_ : str = torch.Size((1, 6, 768) ) self.assertEqual(output.shape ,_lowercase ) lowercase_ : Union[str, Any] = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,_lowercase ,atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> str: '''simple docstring''' lowercase_ : Optional[int] = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) lowercase_ : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : Union[str, Any] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ : Tuple = model(_lowercase ,attention_mask=_lowercase )[0] lowercase_ : Dict = torch.Size((1, 6, 2_1128) ) self.assertEqual(output.shape ,_lowercase ) lowercase_ : Optional[int] = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,_lowercase ,atol=1e-4 ) )
719
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE =get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class UpperCamelCase ( lowercase_ , unittest.TestCase ): lowercase = DebertaVaTokenizer lowercase = DebertaVaTokenizerFast lowercase = True lowercase = True def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Any = DebertaVaTokenizer(__UpperCamelCase ,unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Union[str, Any] = 'this is a test' lowercase_ : str = 'this is a test' return input_text, output_text def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = '<pad>' lowercase_ : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) ,__UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<pad>' ) self.assertEqual(vocab_keys[1] ,'<unk>' ) self.assertEqual(vocab_keys[-1] ,'[PAD]' ) self.assertEqual(len(__UpperCamelCase ) ,3_0001 ) def _UpperCAmelCase ( self ) -> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,3_0000 ) def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : Optional[Any] = ' \tHeLLo!how \n Are yoU? ' lowercase_ : Optional[int] = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on lowercase_ : int = DebertaVaTokenizer(__UpperCamelCase ,do_lower_case=__UpperCamelCase ) lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[Any] = DebertaVaTokenizerFast(__UpperCamelCase ,do_lower_case=__UpperCamelCase ) lowercase_ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' pass def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Any = 'I was born in 92000, and this is falsé.' lowercase_ : Union[str, Any] = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on lowercase_ : List[str] = DebertaVaTokenizer(__UpperCamelCase ,split_by_punct=__UpperCamelCase ) lowercase_ : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Any = DebertaVaTokenizerFast(__UpperCamelCase ,split_by_punct=__UpperCamelCase ) lowercase_ : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' lowercase_ : Any = 'I was born in 92000, and this is falsé.' lowercase_ : Tuple = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on lowercase_ : List[str] = DebertaVaTokenizer(__UpperCamelCase ,do_lower_case=__UpperCamelCase ,split_by_punct=__UpperCamelCase ) lowercase_ : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Tuple = DebertaVaTokenizerFast(__UpperCamelCase ,do_lower_case=__UpperCamelCase ,split_by_punct=__UpperCamelCase ) lowercase_ : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : str = 'I was born in 92000, and this is falsé.' lowercase_ : Optional[Any] = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on lowercase_ : Union[str, Any] = DebertaVaTokenizer(__UpperCamelCase ,do_lower_case=__UpperCamelCase ,split_by_punct=__UpperCamelCase ) lowercase_ : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Tuple = DebertaVaTokenizerFast(__UpperCamelCase ,do_lower_case=__UpperCamelCase ,split_by_punct=__UpperCamelCase ) lowercase_ : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Tuple = 'I was born in 92000, and this is falsé.' lowercase_ : Optional[int] = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on lowercase_ : Optional[int] = DebertaVaTokenizer(__UpperCamelCase ,do_lower_case=__UpperCamelCase ,split_by_punct=__UpperCamelCase ) lowercase_ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Union[str, Any] = DebertaVaTokenizerFast(__UpperCamelCase ,do_lower_case=__UpperCamelCase ,split_by_punct=__UpperCamelCase ) lowercase_ : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ : Tuple = ' \tHeLLo!how \n Are yoU? ' lowercase_ : List[str] = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on lowercase_ : str = DebertaVaTokenizer(__UpperCamelCase ,do_lower_case=__UpperCamelCase ,split_by_punct=__UpperCamelCase ) lowercase_ : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Union[str, Any] = DebertaVaTokenizerFast(__UpperCamelCase ,do_lower_case=__UpperCamelCase ,split_by_punct=__UpperCamelCase ) lowercase_ : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowercase_ : Optional[int] = self.get_tokenizer() lowercase_ : int = self.get_rust_tokenizer() lowercase_ : Dict = 'I was born in 92000, and this is falsé.' lowercase_ : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) lowercase_ : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[int] = tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) lowercase_ : str = rust_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[int] = self.get_rust_tokenizer() lowercase_ : Optional[Any] = tokenizer.encode(__UpperCamelCase ) lowercase_ : Dict = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = 'This is a test' lowercase_ : Any = [13, 1, 4398, 25, 21, 1289] lowercase_ : Union[str, Any] = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] lowercase_ : str = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] lowercase_ : Optional[int] = DebertaVaTokenizer(__UpperCamelCase ,keep_accents=__UpperCamelCase ) lowercase_ : str = DebertaVaTokenizerFast(__UpperCamelCase ,keep_accents=__UpperCamelCase ) lowercase_ : Optional[int] = tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Any = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : str = rust_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[int] = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : str = rust_tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) # fmt: off lowercase_ : List[Any] = 'I was born in 92000, and this is falsé.' lowercase_ : int = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] lowercase_ : List[str] = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] lowercase_ : List[str] = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on lowercase_ : List[str] = tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[str] = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Tuple = rust_tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[int] = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = rust_tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Dict = DebertaVaTokenizer(__UpperCamelCase ) lowercase_ : int = tokenizer.encode('sequence builders' ) lowercase_ : Tuple = tokenizer.encode('multi-sequence build' ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) lowercase_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ,__UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] ,__UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] ,__UpperCamelCase ,) @slow def _UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' lowercase_ : List[Any] = {'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase ,model_name='microsoft/deberta-v2-xlarge' ,revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' ,)
477
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any]) -> Tuple: '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : Any = np.full((len(_lowerCamelCase), sequence_length, 2) , _lowerCamelCase) else: __UpperCamelCase : Union[str, Any] = np.full((len(_lowerCamelCase), sequence_length) , _lowerCamelCase) for i, tensor in enumerate(_lowerCamelCase): if padding_side == "right": if isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : Tuple = tensor[:sequence_length] else: __UpperCamelCase : Union[str, Any] = tensor[:sequence_length] else: if isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : Tuple = tensor[:sequence_length] else: __UpperCamelCase : Dict = tensor[:sequence_length] return out_tensor.tolist() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Any = ord(_lowerCamelCase) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __UpperCamelCase : str = unicodedata.category(_lowerCamelCase) if cat.startswith("P"): return True return False @dataclass class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 42 _A = True _A = None _A = None _A = -1_0_0 _A = "pt" def _lowerCamelCase ( self :int , a :Optional[int] ) -> List[str]: import torch __UpperCamelCase : List[Any] = "label" if "label" in features[0].keys() else "labels" __UpperCamelCase : int = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __UpperCamelCase : Any = self.tokenizer.pad( a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch __UpperCamelCase : str = torch.tensor(batch["entity_ids"] ).shape[1] __UpperCamelCase : str = self.tokenizer.padding_side if padding_side == "right": __UpperCamelCase : Optional[Any] = [ list(a ) + [self.label_pad_token_id] * (sequence_length - len(a )) for label in labels ] else: __UpperCamelCase : str = [ [self.label_pad_token_id] * (sequence_length - len(a )) + list(a ) for label in labels ] __UpperCamelCase : Tuple = [feature["ner_tags"] for feature in features] __UpperCamelCase : Optional[Any] = padding_tensor(a , -1 , a , a ) __UpperCamelCase : Dict = [feature["original_entity_spans"] for feature in features] __UpperCamelCase : Any = padding_tensor(a , (-1, -1) , a , a ) __UpperCamelCase : Dict = {k: torch.tensor(a , dtype=torch.intaa ) for k, v in batch.items()} return batch
557
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowercase : List[Any] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any]=None) -> List[str]: '''simple docstring''' if subparsers is not None: __UpperCamelCase : int = subparsers.add_parser("tpu-config" , description=_description) else: __UpperCamelCase : Dict = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description) # Core arguments __UpperCamelCase : Optional[Any] = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`.") config_args.add_argument( "--config_file" , type=_lowerCamelCase , default=_lowerCamelCase , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=_lowerCamelCase , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=_lowerCamelCase , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) __UpperCamelCase : Tuple = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU.") pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=_lowerCamelCase , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it.") if subparsers is not None: parser.set_defaults(func=_lowerCamelCase) return parser def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any]) -> Dict: '''simple docstring''' __UpperCamelCase : List[str] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_lowerCamelCase): __UpperCamelCase : Dict = load_config_from_file(args.config_file) if not args.command_file and defaults.command_file is not None and not args.command: __UpperCamelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: __UpperCamelCase : int = defaults.commands if not args.tpu_name: __UpperCamelCase : int = defaults.tpu_name if not args.tpu_zone: __UpperCamelCase : Optional[Any] = defaults.tpu_zone if args.accelerate_version == "dev": __UpperCamelCase : List[str] = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": __UpperCamelCase : Optional[int] = "accelerate -U" elif isinstance(parse(args.accelerate_version) , _lowerCamelCase): __UpperCamelCase : Union[str, Any] = F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod.") if args.command_file: with open(args.command_file , "r") as f: __UpperCamelCase : List[Any] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _lowerCamelCase): __UpperCamelCase : Union[str, Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __UpperCamelCase : str = ["cd /usr/share"] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command __UpperCamelCase : str = "; ".join(_lowerCamelCase) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __UpperCamelCase : List[Any] = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(_lowerCamelCase)}') return subprocess.run(_lowerCamelCase) print("Successfully setup pod.") def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Optional[Any] = tpu_command_parser() __UpperCamelCase : Optional[Any] = parser.parse_args() tpu_command_launcher(_lowerCamelCase)
557
1
import unittest from transformers import DonutProcessor UpperCAmelCase_ : Union[str, Any] = "naver-clova-ix/donut-base" class UpperCamelCase ( unittest.TestCase ): def __A ( self ): A__ = DonutProcessor.from_pretrained(UpperCAmelCase__ ) def __A ( self ): A__ = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } A__ = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) A__ = self.processor.tokenajson(UpperCAmelCase__ ) self.assertDictEqual(UpperCAmelCase__ , UpperCAmelCase__ )
232
def UpperCamelCase ( _A : list[list[int]] , _A : int , _A : int , _A : list[int] )-> bool: """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def UpperCamelCase ( _A : list[list[int]] , _A : list[int] , _A : int )-> bool: """simple docstring""" if curr_ind == len(_A ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_A ) ): if valid_connection(_A , _A , _A , _A ): # Insert current vertex into path as next transition A__ = next_ver # Validate created path if util_hamilton_cycle(_A , _A , curr_ind + 1 ): return True # Backtrack A__ = -1 return False def UpperCamelCase ( _A : list[list[int]] , _A : int = 0 )-> list[int]: """simple docstring""" A__ = [-1] * (len(_A ) + 1) # initialize start and end of path with starting index A__ = A__ = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_A , _A , 1 ) else []
232
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL UpperCAmelCase_ : Tuple = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowerCAmelCase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = ['pixel_values'] def __init__( self : Dict,__A : bool = True,__A : Dict[str, int] = None,__A : PILImageResampling = PILImageResampling.BILINEAR,__A : bool = True,__A : Dict[str, int] = None,__A : bool = True,__A : Union[int, float] = 1 / 2_5_5,__A : bool = True,__A : bool = True,__A : Optional[Union[float, List[float]]] = None,__A : Optional[Union[float, List[float]]] = None,**__A : Optional[int],): super().__init__(**__A ) _lowerCamelCase : Optional[int] = size if size is not None else {"shortest_edge": 2_5_6} _lowerCamelCase : int = get_size_dict(__A,default_to_square=__A ) _lowerCamelCase : Optional[int] = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _lowerCamelCase : Tuple = get_size_dict(__A,param_name="crop_size" ) _lowerCamelCase : Tuple = do_resize _lowerCamelCase : List[str] = size _lowerCamelCase : List[str] = do_center_crop _lowerCamelCase : Any = crop_size _lowerCamelCase : int = resample _lowerCamelCase : str = do_rescale _lowerCamelCase : int = rescale_factor _lowerCamelCase : Optional[int] = offset _lowerCamelCase : Tuple = do_normalize _lowerCamelCase : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase_ ( self : Dict,__A : np.ndarray,__A : Dict[str, int],__A : PILImageResampling = PILImageResampling.BILINEAR,__A : Optional[Union[str, ChannelDimension]] = None,**__A : Dict,): _lowerCamelCase : Any = get_size_dict(__A,default_to_square=__A ) if "shortest_edge" in size: _lowerCamelCase : int = get_resize_output_image_size(__A,size["shortest_edge"],default_to_square=__A ) elif "height" in size and "width" in size: _lowerCamelCase : str = (size["height"], size["width"]) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__A,size=__A,resample=__A,data_format=__A,**__A ) def lowerCamelCase_ ( self : Tuple,__A : np.ndarray,__A : Dict[str, int],__A : Optional[Union[str, ChannelDimension]] = None,**__A : List[Any],): _lowerCamelCase : Tuple = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__A,size=(size["height"], size["width"]),data_format=__A,**__A ) def lowerCamelCase_ ( self : List[Any],__A : np.ndarray,__A : Union[int, float],__A : bool = True,__A : Optional[Union[str, ChannelDimension]] = None,**__A : Tuple,): _lowerCamelCase : List[str] = image.astype(np.floataa ) if offset: _lowerCamelCase : Any = image - (scale / 2) return rescale(__A,scale=__A,data_format=__A,**__A ) def lowerCamelCase_ ( self : Optional[Any],__A : np.ndarray,__A : Union[float, List[float]],__A : Union[float, List[float]],__A : Optional[Union[str, ChannelDimension]] = None,**__A : Optional[Any],): return normalize(__A,mean=__A,std=__A,data_format=__A,**__A ) def lowerCamelCase_ ( self : Any,__A : ImageInput,__A : bool = None,__A : Dict[str, int] = None,__A : PILImageResampling = None,__A : bool = None,__A : Dict[str, int] = None,__A : bool = None,__A : float = None,__A : bool = None,__A : bool = None,__A : Optional[Union[float, List[float]]] = None,__A : Optional[Union[float, List[float]]] = None,__A : Optional[ChannelDimension] = ChannelDimension.FIRST,): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. _lowerCamelCase : Optional[int] = to_numpy_array(__A ) if do_resize: _lowerCamelCase : Tuple = self.resize(image=__A,size=__A,resample=__A ) if do_center_crop: _lowerCamelCase : Any = self.center_crop(__A,size=__A ) if do_rescale: _lowerCamelCase : List[str] = self.rescale(image=__A,scale=__A,offset=__A ) if do_normalize: _lowerCamelCase : Optional[Any] = self.normalize(image=__A,mean=__A,std=__A ) _lowerCamelCase : Dict = to_channel_dimension_format(__A,__A ) return image def lowerCamelCase_ ( self : Dict,__A : ImageInput,__A : bool = None,__A : Dict[str, int] = None,__A : PILImageResampling = None,__A : bool = None,__A : Dict[str, int] = None,__A : bool = None,__A : float = None,__A : bool = None,__A : bool = None,__A : Optional[Union[float, List[float]]] = None,__A : Optional[Union[float, List[float]]] = None,__A : Optional[Union[str, TensorType]] = None,__A : ChannelDimension = ChannelDimension.FIRST,**__A : Optional[Any],): _lowerCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize _lowerCamelCase : int = resample if resample is not None else self.resample _lowerCamelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : str = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Union[str, Any] = offset if offset is not None else self.offset _lowerCamelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : Dict = image_mean if image_mean is not None else self.image_mean _lowerCamelCase : Union[str, Any] = image_std if image_std is not None else self.image_std _lowerCamelCase : Any = size if size is not None else self.size _lowerCamelCase : Any = get_size_dict(__A,default_to_square=__A ) _lowerCamelCase : str = crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Optional[Any] = get_size_dict(__A,param_name="crop_size" ) if not valid_images(__A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _lowerCamelCase : str = make_batched(__A ) _lowerCamelCase : int = [ [ self._preprocess_image( image=__A,do_resize=__A,size=__A,resample=__A,do_center_crop=__A,crop_size=__A,do_rescale=__A,rescale_factor=__A,offset=__A,do_normalize=__A,image_mean=__A,image_std=__A,data_format=__A,) for img in video ] for video in videos ] _lowerCamelCase : Any = {"pixel_values": videos} return BatchFeature(data=__A,tensor_type=__A )
44
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Optional[Any] = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : int = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Union[str, Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
142
0
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCamelCase ( a : Any , a : List[str]=() , a : Tuple=None , a : List[str]="no" , a : Dict="29500" ) ->int: snake_case = False snake_case = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): snake_case = True elif "IPython" in sys.modules: snake_case = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: snake_case = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , a ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: snake_case = 8 snake_case = PrepareForLaunch(a , distributed_type='''TPU''' ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(a , args=a , nprocs=a , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*a ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a , master_addr='''127.0.01''' , master_port=a , mixed_precision=a ): snake_case = PrepareForLaunch(a , distributed_type='''MULTI_GPU''' ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(a , args=a , nprocs=a , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): snake_case = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*a ) def __UpperCamelCase ( a : Dict , a : Optional[int]=() , a : Dict=2 ) ->int: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): snake_case = PrepareForLaunch(a , debug=a ) start_processes(a , args=a , nprocs=a , start_method='''fork''' )
705
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _lowercase ( yaml.SafeLoader ): def UpperCamelCase ( self , A__ ) -> List[str]: snake_case = [self.constructed_objects[key_node] for key_node, _ in node.value] snake_case = [tuple(A__ ) if isinstance(A__ , A__ ) else key for key in keys] snake_case = Counter(A__ ) snake_case = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def UpperCamelCase ( self , A__ , A__=False ) -> List[Any]: snake_case = super().construct_mapping(A__ , deep=A__ ) self._check_no_duplicates_on_constructed_node(A__ ) return mapping def __UpperCamelCase ( a : str ) ->Tuple[Optional[str], str]: snake_case = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: snake_case = full_content[1:].index('''---''' ) + 1 snake_case = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(a ) class _lowercase ( __a ): # class attributes _UpperCAmelCase = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def UpperCamelCase ( cls , A__ ) -> "DatasetMetadata": with open(A__ , encoding='''utf-8''' ) as readme_file: snake_case , snake_case = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(A__ ) else: return cls() def UpperCamelCase ( self , A__ ) -> str: if path.exists(): with open(A__ , encoding='''utf-8''' ) as readme_file: snake_case = readme_file.read() else: snake_case = None snake_case = self._to_readme(A__ ) with open(A__ , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(A__ ) def UpperCamelCase ( self , A__ = None ) -> str: if readme_content is not None: snake_case , snake_case = _split_yaml_from_readme(A__ ) snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: snake_case = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def UpperCamelCase ( cls , A__ ) -> "DatasetMetadata": snake_case = yaml.load(A__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields snake_case = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**A__ ) def UpperCamelCase ( self ) -> str: return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=A__ , allow_unicode=A__ , encoding='''utf-8''' , ).decode('''utf-8''' ) _lowercase = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser _lowercase = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') _lowercase = ap.parse_args() _lowercase = Path(args.readme_filepath) _lowercase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
44
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
46
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Any = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(A__, A__ ) def a__ ( A__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = emb.weight.shape SCREAMING_SNAKE_CASE_ : List[Any] = nn.Linear(A__, A__, bias=A__ ) SCREAMING_SNAKE_CASE_ : Dict = emb.weight.data return lin_layer def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : List[Any] = torch.load(A__, map_location='cpu' ) SCREAMING_SNAKE_CASE_ : Tuple = mam_aaa['args'] or mam_aaa['cfg']['model'] SCREAMING_SNAKE_CASE_ : Any = mam_aaa['model'] remove_ignore_keys_(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = state_dict['encoder.embed_tokens.weight'].shape[0] SCREAMING_SNAKE_CASE_ : Dict = MaMaaaConfig( vocab_size=A__, max_position_embeddings=1_0_2_4, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='relu', ) SCREAMING_SNAKE_CASE_ : int = state_dict['decoder.embed_tokens.weight'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = MaMaaaForConditionalGeneration(A__ ) model.model.load_state_dict(A__, strict=A__ ) SCREAMING_SNAKE_CASE_ : int = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase__ : Optional[Any] =parser.parse_args() lowerCAmelCase__ : int =convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
101
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any]=13 , UpperCAmelCase__ : Union[str, Any]=32 , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : Optional[int]=[10, 20, 30, 40] , UpperCAmelCase__ : int=[2, 2, 3, 2] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[Any]=37 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : int=10 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Optional[Any]=["stage2", "stage3", "stage4"] , UpperCAmelCase__ : str=[2, 3, 4] , UpperCAmelCase__ : Optional[Any]=None , ): '''simple docstring''' lowercase : Dict =parent lowercase : List[Any] =batch_size lowercase : str =image_size lowercase : Optional[Any] =num_channels lowercase : Optional[Any] =num_stages lowercase : str =hidden_sizes lowercase : Optional[Any] =depths lowercase : Tuple =is_training lowercase : str =use_labels lowercase : str =intermediate_size lowercase : List[Any] =hidden_act lowercase : Dict =num_labels lowercase : Optional[int] =initializer_range lowercase : Union[str, Any] =out_features lowercase : Any =out_indices lowercase : Dict =scope def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : Any =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Dict =None if self.use_labels: lowercase : Tuple =ids_tensor([self.batch_size] , self.num_labels ) lowercase : Dict =self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int ): '''simple docstring''' lowercase : Union[str, Any] =ConvNextVaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowercase : List[str] =model(_UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] ): '''simple docstring''' lowercase : Dict =ConvNextVaForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowercase : Dict =model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : str ): '''simple docstring''' lowercase : Optional[Any] =ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowercase : Union[str, Any] =model(_UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase : Optional[Any] =None lowercase : List[str] =ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowercase : Optional[Any] =model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() lowercase : Optional[Any] =config_and_inputs lowercase : Optional[int] ={"""pixel_values""": pixel_values} return config, inputs_dict def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowercase : List[str] =self.prepare_config_and_inputs() lowercase : Tuple =config_and_inputs lowercase : Optional[int] ={"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): lowerCamelCase_ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase_ = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : str =ConvNextVaModelTester(self ) lowercase : Optional[Any] =ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def lowerCamelCase_ ( self : str ): '''simple docstring''' pass def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_with_labels() lowercase : int =True if model_class.__name__ in [ *get_values(_UpperCamelCase ), *get_values(_UpperCamelCase ), ]: continue lowercase : Dict =model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() lowercase : int =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) lowercase : List[str] =model(**_UpperCamelCase ).loss loss.backward() def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowercase : Dict =self.model_tester.prepare_config_and_inputs_with_labels() lowercase : Union[str, Any] =False lowercase : int =True if ( model_class.__name__ in [*get_values(_UpperCamelCase ), *get_values(_UpperCamelCase )] or not model_class.supports_gradient_checkpointing ): continue lowercase : List[Any] =model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.gradient_checkpointing_enable() model.train() lowercase : str =self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) lowercase : Optional[Any] =model(**_UpperCamelCase ).loss loss.backward() def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : str =model_class(_UpperCamelCase ) lowercase : Any =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Union[str, Any] =[*signature.parameters.keys()] lowercase : List[Any] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict ): lowercase : Optional[Any] =model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): lowercase : Optional[int] =model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) lowercase : str =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase : List[Any] =self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Dict =True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Optional[int] =True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def lowerCamelCase_ ( self : str ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Tuple =ConvNextVaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _lowerCAmelCase ( ) -> Any: lowercase : str =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Any =ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(_UpperCamelCase ) lowercase : int =self.default_image_processor lowercase : List[Any] =prepare_img() lowercase : Optional[int] =preprocessor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): lowercase : Optional[Any] =model(**_UpperCamelCase ) # verify the logits lowercase : str =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) lowercase : str =torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4 ) )
715
'''simple docstring''' import mpmath # for roots of unity import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[Any]=None ): '''simple docstring''' # Input as list lowercase : Optional[int] =list(poly_a or [0] )[:] lowercase : Optional[Any] =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : Any =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : Dict =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : int =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Union[str, Any] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : Tuple =self.__multiply() def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Tuple ): '''simple docstring''' lowercase : Union[str, Any] =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase__ ) <= 1: return dft[0] # lowercase : Any =self.c_max_length // 2 while next_ncol > 0: lowercase : Optional[int] =[[] for i in range(UpperCAmelCase__ )] lowercase : Tuple =self.root**next_ncol # First half of next step lowercase : str =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : int =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Dict =new_dft lowercase : Tuple =next_ncol // 2 return dft[0] def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Any =self.__dft('''A''' ) lowercase : Any =self.__dft('''B''' ) lowercase : Optional[int] =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Optional[int] =2 while next_ncol <= self.c_max_length: lowercase : Optional[int] =[[] for i in range(UpperCAmelCase__ )] lowercase : List[str] =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : Tuple =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Any ): '''simple docstring''' lowercase : Any ='''A = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : Tuple ='''B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : List[str] ='''A*B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
88
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __magic_name__ : str = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class __snake_case (unittest.TestCase ): def __a ( self: Any , A_: str , A_: bool , A_: str = None , A_: list = None ): __lowerCamelCase = None __lowerCamelCase = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) __lowerCamelCase = os.path.abspath("""examples""" ) for item in os.listdir(A_ ): if item not in EXCLUDE_EXAMPLES: __lowerCamelCase = os.path.join(A_ , A_ ) if os.path.isfile(A_ ) and ".py" in item_path: with self.subTest( tested_script=A_ , feature_script=A_ , tested_section="""main()""" if parser_only else """training_function()""" , ): __lowerCamelCase = compare_against_test( os.path.join(A_ , A_ ) , A_ , A_ , A_ ) __lowerCamelCase = """\n""".join(A_ ) if special_strings is not None: for string in special_strings: __lowerCamelCase = diff.replace(A_ , """""" ) self.assertEqual(A_ , """""" ) def __a ( self: str ): self.one_complete_example("""complete_nlp_example.py""" , A_ ) self.one_complete_example("""complete_nlp_example.py""" , A_ ) def __a ( self: Dict ): __lowerCamelCase = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) __lowerCamelCase = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , A_ , A_ , A_ ) self.one_complete_example("""complete_cv_example.py""" , A_ , A_ , A_ ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class __snake_case (lowerCamelCase ): __a = False @classmethod def __a ( cls: List[str] ): super().setUpClass() __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) __lowerCamelCase = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def __a ( cls: Dict ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __a ( self: List[str] ): __lowerCamelCase = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def __a ( self: Dict ): __lowerCamelCase = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() __lowerCamelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def __a ( self: int ): __lowerCamelCase = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() __lowerCamelCase = run_command(self._launch_args + testargs , return_stdout=A_ ) self.assertNotIn("""epoch 0:""" , A_ ) self.assertIn("""epoch 1:""" , A_ ) def __a ( self: Tuple ): __lowerCamelCase = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() __lowerCamelCase = run_command(self._launch_args + testargs , return_stdout=A_ ) if torch.cuda.is_available(): __lowerCamelCase = torch.cuda.device_count() else: __lowerCamelCase = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , A_ ) self.assertIn("""epoch 1:""" , A_ ) else: self.assertIn("""epoch 0:""" , A_ ) self.assertIn("""epoch 1:""" , A_ ) @slow def __a ( self: Any ): __lowerCamelCase = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): __lowerCamelCase = run_command(self._launch_args + testargs , return_stdout=A_ ) __lowerCamelCase = re.findall("""({.+})""" , A_ ) __lowerCamelCase = [r for r in results if """accuracy""" in r][-1] __lowerCamelCase = ast.literal_eval(A_ ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def __a ( self: Dict ): __lowerCamelCase = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __a ( self: Dict ): with tempfile.TemporaryDirectory() as tmpdir: __lowerCamelCase = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(A_ , """tracking""" ) ) ) def __a ( self: Any ): __lowerCamelCase = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def __a ( self: List[str] ): __lowerCamelCase = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
281
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model') __magic_name__ : int = get_tests_dir('fixtures/test_sentencepiece_bpe.model') __magic_name__ : Any = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class __snake_case (lowerCamelCase , unittest.TestCase ): __a = CamembertTokenizer __a = CamembertTokenizerFast __a = True __a = True def __a ( self: List[Any] ): super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = CamembertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self: Union[str, Any] ): __lowerCamelCase = """<pad>""" __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __a ( self: Any ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(A_ ) , 10_04 ) def __a ( self: Any ): self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def __a ( self: Optional[Any] ): __lowerCamelCase = CamembertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) __lowerCamelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __lowerCamelCase = """I was born in 92000, and this is falsé.""" __lowerCamelCase = tokenizer.encode(A_ ) __lowerCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) __lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) __lowerCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __lowerCamelCase = tokenizer.convert_ids_to_tokens(A_ ) __lowerCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) def __a ( self: List[str] ): if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = """I was born in 92000, and this is falsé.""" __lowerCamelCase = tokenizer.tokenize(A_ ) __lowerCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) __lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) __lowerCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(A_ ) __lowerCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) @slow def __a ( self: Optional[Any] ): # fmt: off __lowerCamelCase = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __lowerCamelCase = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=A_ , )
281
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def __lowercase ( lowerCamelCase_ : Dict ): SCREAMING_SNAKE_CASE__ = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) SCREAMING_SNAKE_CASE__ = DetaConfig( backbone_config=lowerCamelCase_ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=lowerCamelCase_ , with_box_refine=lowerCamelCase_ , two_stage=lowerCamelCase_ , ) # set labels SCREAMING_SNAKE_CASE__ = "huggingface/label-files" if "o365" in model_name: SCREAMING_SNAKE_CASE__ = 366 SCREAMING_SNAKE_CASE__ = "object365-id2label.json" else: SCREAMING_SNAKE_CASE__ = 91 SCREAMING_SNAKE_CASE__ = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type="dataset" ) ) , "r" ) ) SCREAMING_SNAKE_CASE__ = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} return config def __lowercase ( lowerCamelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE__ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def __lowercase ( lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE__ = dct.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = val def __lowercase ( lowerCamelCase_ : Any , lowerCamelCase_ : str ): SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim] SCREAMING_SNAKE_CASE__ = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE__ = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :] # fmt: on def __lowercase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] ): # transformer decoder self-attention layers SCREAMING_SNAKE_CASE__ = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ = in_proj_weight[:hidden_size, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[:hidden_size] SCREAMING_SNAKE_CASE__ = in_proj_weight[ hidden_size : hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size:, :] SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size:] def __lowercase ( ): SCREAMING_SNAKE_CASE__ = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def __lowercase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = get_deta_config(lowerCamelCase_ ) # load original state dict if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE__ = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE__ = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(F'''Model name {model_name} not supported''' ) SCREAMING_SNAKE_CASE__ = torch.load(lowerCamelCase_ , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(lowerCamelCase_ , param.shape ) # rename keys SCREAMING_SNAKE_CASE__ = create_rename_keys(lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_swin_q_k_v(lowerCamelCase_ , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase_ , lowerCamelCase_ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: SCREAMING_SNAKE_CASE__ = state_dict.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = val if "input_proj" in key: SCREAMING_SNAKE_CASE__ = state_dict.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: SCREAMING_SNAKE_CASE__ = state_dict.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE__ = DetaForObjectDetection(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE__ = "cuda" if torch.cuda.is_available() else "cpu" model.to(lowerCamelCase_ ) # load image processor SCREAMING_SNAKE_CASE__ = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = processor(images=lowerCamelCase_ , return_tensors="pt" ) SCREAMING_SNAKE_CASE__ = encoding["pixel_values"] SCREAMING_SNAKE_CASE__ = model(pixel_values.to(lowerCamelCase_ ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": SCREAMING_SNAKE_CASE__ = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": SCREAMING_SNAKE_CASE__ = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(lowerCamelCase_ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(lowerCamelCase_ ) , atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowerCamelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
112
"""simple docstring""" def __lowercase ( lowerCamelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = set({"(", "[", "{"} ) SCREAMING_SNAKE_CASE__ = set({")", "]", "}"} ) SCREAMING_SNAKE_CASE__ = {"{": "}", "[": "]", "(": ")"} for i in range(len(lowerCamelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCamelCase_ ) == 0 or (len(lowerCamelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCamelCase_ ) == 0 def __lowercase ( ): SCREAMING_SNAKE_CASE__ = input("Enter sequence of brackets: " ) if is_balanced(lowerCamelCase_ ): print(lowerCamelCase_ , "is balanced" ) else: print(lowerCamelCase_ , "is not balanced" ) if __name__ == "__main__": main()
112
1
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ): a__ : Tuple = 1 @register_to_config def __init__( self : List[Any] , _lowercase : Any=20_00 , _lowercase : Union[str, Any]=0.1 , _lowercase : Union[str, Any]=20 , _lowercase : Optional[int]=1E-3 ): __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None def a ( self : List[Any] , _lowercase : str , _lowercase : Union[str, torch.device] = None ): __UpperCAmelCase = torch.linspace(1 , self.config.sampling_eps , _lowercase , device=_lowercase ) def a ( self : Optional[int] , _lowercase : Any , _lowercase : Tuple , _lowercase : Dict , _lowercase : Dict=None ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __UpperCAmelCase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __UpperCAmelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __UpperCAmelCase = std.flatten() while len(std.shape ) < len(score.shape ): __UpperCAmelCase = std.unsqueeze(-1 ) __UpperCAmelCase = -score / std # compute __UpperCAmelCase = -1.0 / len(self.timesteps ) __UpperCAmelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __UpperCAmelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __UpperCAmelCase = beta_t.unsqueeze(-1 ) __UpperCAmelCase = -0.5 * beta_t * x __UpperCAmelCase = torch.sqrt(_lowercase ) __UpperCAmelCase = drift - diffusion**2 * score __UpperCAmelCase = x + drift * dt # add noise __UpperCAmelCase = randn_tensor(x.shape , layout=x.layout , generator=_lowercase , device=x.device , dtype=x.dtype ) __UpperCAmelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[int] ): return self.config.num_train_timesteps
49
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __A = logging.getLogger(__name__) def _A ( lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , ): lowercase__ = bnb_quantization_config.load_in_abit lowercase__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) lowercase__ = [] # custom device map if isinstance(lowercase__ , lowercase__ ) and len(device_map.keys() ) > 1: lowercase__ = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowercase__ = get_keys_to_not_convert(lowercase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowercase__ ) lowercase__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowercase__ = [] lowercase__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowercase__ ) # compatibility with peft lowercase__ = load_in_abit lowercase__ = load_in_abit lowercase__ = get_parameter_device(lowercase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) lowercase__ = replace_with_bnb_layers(lowercase__ , lowercase__ , modules_to_not_convert=lowercase__ ) # convert param to the right dtype lowercase__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowercase__ = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) lowercase__ = getattr(lowercase__ , lowercase__ , lowercase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowercase__ ): param.to(lowercase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): lowercase__ = replace_with_bnb_layers( lowercase__ , lowercase__ , modules_to_not_convert=lowercase__ ) lowercase__ = get_quantized_model_device_map( lowercase__ , lowercase__ , lowercase__ , max_memory=lowercase__ , no_split_module_classes=lowercase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowercase__ = True lowercase__ = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( lowercase__ , lowercase__ , lowercase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowercase__ , offload_state_dict=lowercase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowercase__ , device_map=lowercase__ , offload_dir=lowercase__ ) def _A ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None ): if device_map is None: if torch.cuda.is_available(): lowercase__ = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(lowercase__ , lowercase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) lowercase__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowercase__ = {} lowercase__ = special_dtypes lowercase__ = no_split_module_classes lowercase__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowercase__ = get_balanced_memory( lowercase__ , low_zero=(device_map == """balanced_low_0""") , max_memory=lowercase__ , **lowercase__ , ) lowercase__ = max_memory lowercase__ = infer_auto_device_map(lowercase__ , **lowercase__ ) if isinstance(lowercase__ , lowercase__ ): # check if don't have any quantized module on the cpu lowercase__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowercase__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def _A ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if modules_to_not_convert is None: lowercase__ = [] lowercase__ , lowercase__ = _replace_with_bnb_layers( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _A ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , ): lowercase__ = False for name, module in model.named_children(): if current_key_name is None: lowercase__ = [] current_key_name.append(lowercase__ ) if isinstance(lowercase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowercase__ = """.""".join(lowercase__ ) lowercase__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowercase__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowercase__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowercase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowercase__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) lowercase__ = module.weight.data if module.bias is not None: lowercase__ = module.bias.data bnb_module.requires_grad_(lowercase__ ) setattr(lowercase__ , lowercase__ , lowercase__ ) lowercase__ = True if len(list(module.children() ) ) > 0: lowercase__ , lowercase__ = _replace_with_bnb_layers( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) lowercase__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _A ( lowercase__ ): # Create a copy of the model with init_empty_weights(): lowercase__ = deepcopy(lowercase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowercase__ = find_tied_parameters(lowercase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowercase__ , lowercase__ ): lowercase__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase__ = sum(lowercase__ , [] ) lowercase__ = len(lowercase__ ) > 0 # Check if it is a base model lowercase__ = False if hasattr(lowercase__ , """base_model_prefix""" ): lowercase__ = not hasattr(lowercase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase__ = list(model.named_children() ) lowercase__ = [list_modules[-1][0]] # add last module together with tied weights lowercase__ = set(lowercase__ ) - set(lowercase__ ) lowercase__ = list(set(lowercase__ ) ) + list(lowercase__ ) # remove ".weight" from the keys lowercase__ = [""".weight""", """.bias"""] lowercase__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase__ = name.replace(lowercase__ , """""" ) filtered_module_names.append(lowercase__ ) return filtered_module_names def _A ( lowercase__ ): for m in model.modules(): if isinstance(lowercase__ , bnb.nn.Linearabit ): return True return False def _A ( lowercase__ ): return next(parameter.parameters() ).device def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(lowercase__ , lowercase__ , 0 , dtype=lowercase__ , value=lowercase__ ) lowercase__ = param_name lowercase__ = model if "." in tensor_name: lowercase__ = tensor_name.split(""".""" ) for split in splits[:-1]: lowercase__ = getattr(lowercase__ , lowercase__ ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) lowercase__ = new_module lowercase__ = splits[-1] # offload weights lowercase__ = False offload_weight(module._parameters[tensor_name] , lowercase__ , lowercase__ , index=lowercase__ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , lowercase__ , index=lowercase__ , ) else: offload_weight(lowercase__ , lowercase__ , lowercase__ , index=lowercase__ ) offload_weight(lowercase__ , param_name.replace("""weight""" , """SCB""" ) , lowercase__ , index=lowercase__ ) set_module_tensor_to_device(lowercase__ , lowercase__ , """meta""" , dtype=lowercase__ , value=torch.empty(*param.size() ) )
325
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCamelCase__ ( UpperCamelCase__ ): lowerCamelCase_ : List[Any] = 'dpt' def __init__(self : Union[str, Any] , _snake_case : int=768 , _snake_case : Optional[int]=12 , _snake_case : Optional[Any]=12 , _snake_case : Dict=3072 , _snake_case : Optional[Any]="gelu" , _snake_case : Union[str, Any]=0.0 , _snake_case : Optional[Any]=0.0 , _snake_case : int=0.02 , _snake_case : Optional[Any]=1e-12 , _snake_case : Union[str, Any]=384 , _snake_case : int=16 , _snake_case : Tuple=3 , _snake_case : Tuple=False , _snake_case : int=True , _snake_case : Optional[Any]=[2, 5, 8, 11] , _snake_case : Any="project" , _snake_case : Any=[4, 2, 1, 0.5] , _snake_case : str=[96, 192, 384, 768] , _snake_case : int=256 , _snake_case : Union[str, Any]=-1 , _snake_case : List[Any]=False , _snake_case : int=True , _snake_case : List[Any]=0.4 , _snake_case : Any=255 , _snake_case : Any=0.1 , _snake_case : Tuple=[1, 1024, 24, 24] , _snake_case : int=[0, 1] , _snake_case : Union[str, Any]=None , **_snake_case : Dict , ) -> Optional[Any]: """simple docstring""" super().__init__(**__A ) lowerCamelCase_ : Optional[int] = hidden_size lowerCamelCase_ : Tuple = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) lowerCamelCase_ : Tuple = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } lowerCamelCase_ : Any = BitConfig(**__A ) elif isinstance(__A , __A ): logger.info('Initializing the config with a `BiT` backbone.' ) lowerCamelCase_ : Tuple = BitConfig(**__A ) elif isinstance(__A , __A ): lowerCamelCase_ : Optional[int] = backbone_config else: raise ValueError( f'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) lowerCamelCase_ : List[str] = backbone_featmap_shape lowerCamelCase_ : Optional[int] = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: lowerCamelCase_ : Tuple = None lowerCamelCase_ : str = None lowerCamelCase_ : List[Any] = [] lowerCamelCase_ : Union[str, Any] = num_hidden_layers lowerCamelCase_ : Optional[int] = num_attention_heads lowerCamelCase_ : Union[str, Any] = intermediate_size lowerCamelCase_ : Union[str, Any] = hidden_act lowerCamelCase_ : Dict = hidden_dropout_prob lowerCamelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase_ : List[str] = initializer_range lowerCamelCase_ : int = layer_norm_eps lowerCamelCase_ : Optional[Any] = image_size lowerCamelCase_ : Optional[Any] = patch_size lowerCamelCase_ : Optional[Any] = num_channels lowerCamelCase_ : Tuple = qkv_bias lowerCamelCase_ : Tuple = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) lowerCamelCase_ : Union[str, Any] = readout_type lowerCamelCase_ : Union[str, Any] = reassemble_factors lowerCamelCase_ : Any = neck_hidden_sizes lowerCamelCase_ : Union[str, Any] = fusion_hidden_size lowerCamelCase_ : List[Any] = head_in_index lowerCamelCase_ : Optional[int] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCamelCase_ : Tuple = use_auxiliary_head lowerCamelCase_ : Optional[Any] = auxiliary_loss_weight lowerCamelCase_ : List[Any] = semantic_loss_ignore_index lowerCamelCase_ : Optional[Any] = semantic_classifier_dropout def UpperCAmelCase_ (self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ : List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCamelCase_ : Optional[Any] = self.backbone_config.to_dict() lowerCamelCase_ : List[Any] = self.__class__.model_type return output
715
from __future__ import annotations def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> list[int]: lowerCamelCase_ : List[Any] = 0 lowerCamelCase_ : Union[str, Any] = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCamelCase_ : List[Any] = i + 1 else: lowerCamelCase_ : Any = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
144
0
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
11
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _lowerCamelCase : List[str] = """\ """ _lowerCamelCase : Optional[int] = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _lowerCamelCase : List[Any] = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowercase ( datasets.Metric): '''simple docstring''' def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def lowerCamelCase_ ( self : List[Any] , snake_case : Optional[int] , snake_case : int , snake_case : int = 16 , snake_case : bool = True , snake_case : Dict=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": SCREAMING_SNAKE_CASE : Union[str, Any] = 'cuda' else: SCREAMING_SNAKE_CASE : Union[str, Any] = 'cuda' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE : Any = AutoModelForCausalLM.from_pretrained(snake_case ) SCREAMING_SNAKE_CASE : Dict = model.to(snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(snake_case ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: SCREAMING_SNAKE_CASE : str = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(snake_case ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" SCREAMING_SNAKE_CASE : List[str] = model.config.max_length - 1 else: SCREAMING_SNAKE_CASE : Union[str, Any] = model.config.max_length SCREAMING_SNAKE_CASE : Tuple = tokenizer( snake_case , add_special_tokens=snake_case , padding=snake_case , truncation=snake_case , max_length=snake_case , return_tensors='pt' , return_attention_mask=snake_case , ).to(snake_case ) SCREAMING_SNAKE_CASE : List[Any] = encodings['input_ids'] SCREAMING_SNAKE_CASE : Dict = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[Any] = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(snake_case ) , snake_case ) ): SCREAMING_SNAKE_CASE : Dict = min(start_index + batch_size , len(snake_case ) ) SCREAMING_SNAKE_CASE : List[str] = encoded_texts[start_index:end_index] SCREAMING_SNAKE_CASE : Optional[int] = attn_masks[start_index:end_index] if add_start_token: SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) SCREAMING_SNAKE_CASE : int = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(snake_case ), attn_mask] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[Any] = encoded_batch with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(snake_case , attention_mask=snake_case ).logits SCREAMING_SNAKE_CASE : Optional[Any] = out_logits[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE : Optional[int] = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Optional[int] = attn_mask[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Optional[int] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , snake_case ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(snake_case )}
352
0
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowerCAmelCase__ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": lowerCAmelCase__ = '''hopper-medium-v2''' lowerCAmelCase__ = gym.make(env_name) lowerCAmelCase__ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) lowerCAmelCase__ = env.reset() lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 1000 lowerCAmelCase__ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowerCAmelCase__ = pipeline(obs, planning_horizon=32) # execute action in environment lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = env.step(denorm_actions) lowerCAmelCase__ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) lowerCAmelCase__ = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
624
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
624
1
from __future__ import annotations def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(lowerCAmelCase__ ) or left < -len(lowerCAmelCase__ ) or right >= len(lowerCAmelCase__ ) or right < -len(lowerCAmelCase__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] lowercase = (left + right) >> 1 # the middle lowercase = find_max(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # find max in range[left, mid] lowercase = find_max(lowerCAmelCase__ ,mid + 1 ,lowerCAmelCase__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
428
import os from distutils.util import strtobool def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): for e in env_keys: lowercase = int(os.environ.get(lowerCAmelCase__ ,-1 ) ) if val >= 0: return val return default def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__=False ): lowercase = os.environ.get(lowerCAmelCase__ ,str(lowerCAmelCase__ ) ) return strtobool(lowerCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__="no" ): lowercase = os.environ.get(lowerCAmelCase__ ,str(lowerCAmelCase__ ) ) return value
428
1
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _SCREAMING_SNAKE_CASE = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _SCREAMING_SNAKE_CASE = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _SCREAMING_SNAKE_CASE = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def snake_case ( snake_case__ :str , snake_case__ :str) -> List[Any]: _A = len([g for position, g in enumerate(snake_case__) if g == main_target[position]]) return (item, float(snake_case__)) def snake_case ( snake_case__ :str , snake_case__ :str) -> Union[str, Any]: _A = random.randint(0 , len(snake_case__) - 1) _A = parent_a[:random_slice] + parent_a[random_slice:] _A = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case ( snake_case__ :str , snake_case__ :list[str]) -> Tuple: _A = list(snake_case__) if random.uniform(0 , 1) < MUTATION_PROBABILITY: _A = random.choice(snake_case__) return "".join(snake_case__) def snake_case ( snake_case__ :tuple[str, float] , snake_case__ :list[tuple[str, float]] , snake_case__ :list[str] , ) -> Optional[int]: _A = [] # Generate more children proportionally to the fitness score. _A = int(parent_a[1] * 100) + 1 _A = 10 if child_n >= 10 else child_n for _ in range(snake_case__): _A = population_score[random.randint(0 , snake_case__)][0] _A = crossover(parent_a[0] , snake_case__) # Append new string to the population list. pop.append(mutate(snake_case__ , snake_case__)) pop.append(mutate(snake_case__ , snake_case__)) return pop def snake_case ( snake_case__ :str , snake_case__ :list[str] , snake_case__ :bool = True) -> Dict: if N_POPULATION < N_SELECTED: _A = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(snake_case__) # Verify that the target contains no genes besides the ones inside genes variable. _A = sorted({c for c in target if c not in genes}) if not_in_genes_list: _A = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(snake_case__) # Generate random starting population. _A = [] for _ in range(snake_case__): population.append("""""".join([random.choice(snake_case__) for i in range(len(snake_case__))])) # Just some logs to know what the algorithms is doing. _A = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(snake_case__) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _A = [evaluate(snake_case__ , snake_case__) for item in population] # Check if there is a matching evolution. _A = sorted(snake_case__ , key=lambda snake_case__: x[1] , reverse=snake_case__) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''') # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _A = population[: int(N_POPULATION / 3)] population.clear() population.extend(snake_case__) # Normalize population score to be between 0 and 1. _A = [ (item, score / len(snake_case__)) for item, score in population_score ] # This is selection for i in range(snake_case__): population.extend(select(population_score[int(snake_case__)] , snake_case__ , snake_case__)) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(snake_case__) > N_POPULATION: break if __name__ == "__main__": _SCREAMING_SNAKE_CASE = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _SCREAMING_SNAKE_CASE = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) _SCREAMING_SNAKE_CASE = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
717
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def snake_case ( snake_case__ :int) -> Optional[int]: return EnvironmentCommand() def snake_case ( snake_case__ :Tuple) -> List[str]: return EnvironmentCommand(args.accelerate_config_file) class a ( __lowerCAmelCase ): """simple docstring""" @staticmethod def UpperCAmelCase ( lowerCAmelCase_ ) -> Tuple: _A = parser.add_parser("""env""" ) download_parser.set_defaults(func=lowerCAmelCase_ ) download_parser.add_argument( """--accelerate-config_file""" , default=lowerCAmelCase_ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=lowerCAmelCase_ ) def __init__( self , lowerCAmelCase_ , *lowerCAmelCase_ ) -> None: _A = accelerate_config_file def UpperCAmelCase ( self ) -> Dict: _A = """not installed""" if is_safetensors_available(): import safetensors _A = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors _A = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' _A = """not installed""" _A = _A = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _A = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCAmelCase_ ): _A = load_config_from_file(self._accelerate_config_file ).to_dict() _A = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else F'''\t{accelerate_config}''' ) _A = """not installed""" _A = """NA""" if is_torch_available(): import torch _A = torch.__version__ _A = torch.cuda.is_available() _A = """not installed""" _A = """NA""" if is_tf_available(): import tensorflow as tf _A = tf.__version__ try: # deprecated in v2.1 _A = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _A = bool(tf.config.list_physical_devices("""GPU""" ) ) _A = """not installed""" _A = """not installed""" _A = """not installed""" _A = """NA""" if is_flax_available(): import flax import jax import jaxlib _A = flax.__version__ _A = jax.__version__ _A = jaxlib.__version__ _A = jax.lib.xla_bridge.get_backend().platform _A = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F'''{safetensors_version}''', """Accelerate version""": F'''{accelerate_version}''', """Accelerate config""": F'''{accelerate_config_str}''', """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": F'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": F'''{flax_version} ({jax_backend})''', """Jax version""": F'''{jax_version}''', """JaxLib version""": F'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(lowerCAmelCase_ ) ) return info @staticmethod def UpperCAmelCase ( lowerCAmelCase_ ) -> Tuple: return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
83
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowercase_ : Union[str, Any] = logging.get_logger(__name__) class _lowerCamelCase ( UpperCamelCase_ ): __a = "linear" __a = "cosine" __a = "cosine_with_restarts" __a = "polynomial" __a = "constant" __a = "constant_with_warmup" __a = "piecewise_constant" def A__ ( snake_case_ : Optimizer , snake_case_ : int = -1 ): return LambdaLR(snake_case_ , lambda snake_case_ : 1 , last_epoch=snake_case_ ) def A__ ( snake_case_ : Optimizer , snake_case_ : int , snake_case_ : int = -1 ): def lr_lambda(snake_case_ : int ): if current_step < num_warmup_steps: return float(snake_case_ ) / float(max(1.0 , snake_case_ ) ) return 1.0 return LambdaLR(snake_case_ , snake_case_ , last_epoch=snake_case_ ) def A__ ( snake_case_ : Optimizer , snake_case_ : str , snake_case_ : int = -1 ): SCREAMING_SNAKE_CASE__: Optional[int]= {} SCREAMING_SNAKE_CASE__: Tuple= step_rules.split(''',''' ) for rule_str in rule_list[:-1]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Optional[int]= rule_str.split(''':''' ) SCREAMING_SNAKE_CASE__: Dict= int(snake_case_ ) SCREAMING_SNAKE_CASE__: List[Any]= float(snake_case_ ) SCREAMING_SNAKE_CASE__: Any= value SCREAMING_SNAKE_CASE__: Optional[int]= float(rule_list[-1] ) def create_rules_function(snake_case_ : Any , snake_case_ : int ): def rule_func(snake_case_ : int ) -> float: SCREAMING_SNAKE_CASE__: Any= sorted(rules_dict.keys() ) for i, sorted_step in enumerate(snake_case_ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func SCREAMING_SNAKE_CASE__: Union[str, Any]= create_rules_function(snake_case_ , snake_case_ ) return LambdaLR(snake_case_ , snake_case_ , last_epoch=snake_case_ ) def A__ ( snake_case_ : Any , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : Dict=-1 ): def lr_lambda(snake_case_ : int ): if current_step < num_warmup_steps: return float(snake_case_ ) / float(max(1 , snake_case_ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(snake_case_ , snake_case_ , snake_case_ ) def A__ ( snake_case_ : Optimizer , snake_case_ : int , snake_case_ : int , snake_case_ : float = 0.5 , snake_case_ : int = -1 ): def lr_lambda(snake_case_ : Tuple ): if current_step < num_warmup_steps: return float(snake_case_ ) / float(max(1 , snake_case_ ) ) SCREAMING_SNAKE_CASE__: Any= float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(snake_case_ ) * 2.0 * progress )) ) return LambdaLR(snake_case_ , snake_case_ , snake_case_ ) def A__ ( snake_case_ : Optimizer , snake_case_ : int , snake_case_ : int , snake_case_ : int = 1 , snake_case_ : int = -1 ): def lr_lambda(snake_case_ : Optional[int] ): if current_step < num_warmup_steps: return float(snake_case_ ) / float(max(1 , snake_case_ ) ) SCREAMING_SNAKE_CASE__: Dict= float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(snake_case_ ) * progress) % 1.0) )) ) return LambdaLR(snake_case_ , snake_case_ , snake_case_ ) def A__ ( snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Tuple=1E-7 , snake_case_ : Dict=1.0 , snake_case_ : int=-1 ): SCREAMING_SNAKE_CASE__: int= optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(F'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(snake_case_ : int ): if current_step < num_warmup_steps: return float(snake_case_ ) / float(max(1 , snake_case_ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: SCREAMING_SNAKE_CASE__: Optional[int]= lr_init - lr_end SCREAMING_SNAKE_CASE__: Optional[int]= num_training_steps - num_warmup_steps SCREAMING_SNAKE_CASE__: List[Any]= 1 - (current_step - num_warmup_steps) / decay_steps SCREAMING_SNAKE_CASE__: Optional[Any]= lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(snake_case_ , snake_case_ , snake_case_ ) lowercase_ : Tuple = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def A__ ( snake_case_ : Union[str, SchedulerType] , snake_case_ : Optimizer , snake_case_ : Optional[str] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , snake_case_ : int = 1 , snake_case_ : float = 1.0 , snake_case_ : int = -1 , ): SCREAMING_SNAKE_CASE__: List[str]= SchedulerType(snake_case_ ) SCREAMING_SNAKE_CASE__: Optional[int]= TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(snake_case_ , last_epoch=snake_case_ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(snake_case_ , step_rules=snake_case_ , last_epoch=snake_case_ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(snake_case_ , num_warmup_steps=snake_case_ , last_epoch=snake_case_ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( snake_case_ , num_warmup_steps=snake_case_ , num_training_steps=snake_case_ , num_cycles=snake_case_ , last_epoch=snake_case_ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( snake_case_ , num_warmup_steps=snake_case_ , num_training_steps=snake_case_ , power=snake_case_ , last_epoch=snake_case_ , ) return schedule_func( snake_case_ , num_warmup_steps=snake_case_ , num_training_steps=snake_case_ , last_epoch=snake_case_ )
64
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCAmelCase : Union[str, Any] = parser.parse_args() if args.model_type == "roberta": lowerCAmelCase : Optional[Any] = RobertaForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase : Dict = 'roberta' elif args.model_type == "gpt2": lowerCAmelCase : List[Any] = GPTaLMHeadModel.from_pretrained(args.model_name) lowerCAmelCase : Union[str, Any] = 'transformer' lowerCAmelCase : int = model.state_dict() lowerCAmelCase : Tuple = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowerCAmelCase : Union[str, Any] = state_dict[F'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowerCAmelCase : Any = F'{prefix}.embeddings.{w}.weight' lowerCAmelCase : Optional[int] = state_dict[param_name] for w in ["weight", "bias"]: lowerCAmelCase : Optional[Any] = F'{prefix}.embeddings.LayerNorm.{w}' lowerCAmelCase : str = state_dict[param_name] # Transformer Blocks # lowerCAmelCase : List[Any] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowerCAmelCase : List[str] = state_dict[ F'{prefix}.h.{teacher_idx}.{layer}.{w}' ] lowerCAmelCase : Union[str, Any] = state_dict[F'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowerCAmelCase : Union[str, Any] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowerCAmelCase : Union[str, Any] = state_dict[F'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase : Union[str, Any] = state_dict[F'lm_head.dense.{w}'] lowerCAmelCase : List[str] = state_dict[F'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowerCAmelCase : str = state_dict[F'{prefix}.ln_f.{w}'] lowerCAmelCase : int = state_dict['lm_head.weight'] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
511
0
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : Dict ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : int ): __a : Tuple = tmp_path / """cache""" __a : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __a : Dict = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_sql_dataset(_lowerCamelCase , _lowerCamelCase ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] ): __a : Dict = tmp_path / """cache""" __a : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __a : Dict = features.copy() if features else default_expected_features __a : Union[str, Any] = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __a : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_sql_dataset(_lowerCamelCase , _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : List[str] ): with contextlib.closing(sqlitea.connect(_lowerCamelCase ) ) as con: __a : str = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def __magic_name__ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] ): __a : Optional[int] = tmp_path / """cache""" __a : Optional[Any] = os.path.join(_lowerCamelCase , """tmp.sql""" ) __a : int = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=_lowerCamelCase ).read() SqlDatasetWriter(_lowerCamelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() __a : Union[str, Any] = iter_sql_file(_lowerCamelCase ) __a : Optional[int] = iter_sql_file(_lowerCamelCase ) for rowa, rowa in zip(_lowerCamelCase , _lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Tuple ): __a : Any = tmp_path / """cache""" __a : Any = os.path.join(_lowerCamelCase , """tmp.sql""" ) __a : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=_lowerCamelCase ).read() SqlDatasetWriter(_lowerCamelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() __a : Dict = iter_sql_file(_lowerCamelCase ) __a : Optional[Any] = iter_sql_file(_lowerCamelCase ) for rowa, rowa in zip(_lowerCamelCase , _lowerCamelCase ): assert rowa == rowa @require_sqlalchemy def __magic_name__ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Dict ): __a : Dict = tmp_path / """cache""" __a : int = os.path.join(_lowerCamelCase , """tmp.sql""" ) __a : str = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=_lowerCamelCase ).read() with pytest.raises(_lowerCamelCase ): SqlDatasetWriter(_lowerCamelCase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
63
"""simple docstring""" from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = 42 _lowerCAmelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
63
1
'''simple docstring''' import torch def __snake_case (): """simple docstring""" if torch.cuda.is_available(): lowerCamelCase_ : Optional[int] = torch.cuda.device_count() else: lowerCamelCase_ : str = 0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
501
'''simple docstring''' def __snake_case (__UpperCAmelCase ): """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(__UpperCAmelCase ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
501
1
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase : """simple docstring""" def __init__( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = '''''' lowerCamelCase_ = '''''' lowerCamelCase_ = [] lowerCamelCase_ = 0 lowerCamelCase_ = 256 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 0 def _lowerCAmelCase ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' lowerCamelCase_ = cva.imread(UpperCamelCase__ , 0 ) lowerCamelCase_ = copy.deepcopy(self.img ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) lowerCamelCase_ = np.sum(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): lowerCamelCase_ = x[i] / self.k self.sk += prk lowerCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: lowerCamelCase_ = int(last % last ) lowerCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(UpperCamelCase__ ) lowerCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCamelCase_ = self.img[j][i] if num != self.last_list[num]: lowerCamelCase_ = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def _lowerCAmelCase ( self ) -> str: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def _lowerCAmelCase ( self ) -> int: '''simple docstring''' cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": __lowercase : List[Any] = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") __lowercase : List[str] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
66
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowercase : Union[str, Any] = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
66
1
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=__lowercase ): _SCREAMING_SNAKE_CASE : Optional[int] = ["note_seq"] def __init__(self : Optional[int] , *snake_case_ : int , **snake_case_ : Tuple ): requires_backends(self , ['''note_seq'''] ) @classmethod def lowerCAmelCase (cls : Optional[int] , *snake_case_ : int , **snake_case_ : str ): requires_backends(cls , ['''note_seq'''] ) @classmethod def lowerCAmelCase (cls : List[str] , *snake_case_ : List[Any] , **snake_case_ : Any ): requires_backends(cls , ['''note_seq'''] )
521
from manim import * class UpperCamelCase__ ( __lowercase ): def lowerCAmelCase (self : Any ): __a : List[Any] = Rectangle(height=0.5 , width=0.5 ) __a : Tuple = Rectangle(height=0.25 , width=0.25 ) __a : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __a : List[str] = [mem.copy() for i in range(6 )] __a : Tuple = [mem.copy() for i in range(6 )] __a : List[str] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) __a : str = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) __a : int = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) __a : int = Text('''CPU''' , font_size=2_4 ) __a : Tuple = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case_ ) __a : Optional[Any] = [mem.copy() for i in range(4 )] __a : str = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) __a : Tuple = Text('''GPU''' , font_size=2_4 ) __a : List[str] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) gpu.move_to([-1, -1, 0] ) self.add(snake_case_ ) __a : Union[str, Any] = [mem.copy() for i in range(6 )] __a : int = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) __a : List[str] = Text('''Model''' , font_size=2_4 ) __a : Optional[Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) model.move_to([3, -1.0, 0] ) self.add(snake_case_ ) __a : List[Any] = [] __a : str = [] __a : Optional[int] = [] for i, rect in enumerate(snake_case_ ): rect.set_stroke(snake_case_ ) __a : Optional[int] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=snake_case_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=snake_case_ , buff=0.0 ) self.add(snake_case_ ) model_cpu_arr.append(snake_case_ ) self.add(*snake_case_ , *snake_case_ , *snake_case_ ) __a : str = [mem.copy() for i in range(6 )] __a : Optional[int] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) __a : List[str] = Text('''Loaded Checkpoint''' , font_size=2_4 ) __a : Any = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(snake_case_ ) __a : Tuple = [] __a : Union[str, Any] = [] for i, rect in enumerate(snake_case_ ): __a : Optional[int] = fill.copy().set_fill(snake_case_ , opacity=0.7 ) target.move_to(snake_case_ ) ckpt_arr.append(snake_case_ ) __a : Optional[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(snake_case_ ) self.add(*snake_case_ , *snake_case_ ) __a : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __a : List[Any] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(snake_case_ , snake_case_ ) __a : Any = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=1_8 , ) blue_text.next_to(snake_case_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(snake_case_ ) __a : int = MarkupText( f"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) __a : Union[str, Any] = [meta_mem.copy() for i in range(6 )] __a : List[Any] = [meta_mem.copy() for i in range(6 )] __a : Any = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) __a : Union[str, Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 ) __a : Tuple = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 ) __a : List[Any] = Text('''Disk''' , font_size=2_4 ) __a : Union[str, Any] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(snake_case_ , run_time=3 ) , Write(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) ) __a : Union[str, Any] = [] for i, rect in enumerate(snake_case_ ): __a : List[str] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) ) self.play(*snake_case_ ) self.play(FadeOut(snake_case_ ) ) __a : Optional[int] = MarkupText(f"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case_ , run_time=3 ) ) self.play( FadeOut(snake_case_ , snake_case_ , *snake_case_ , *snake_case_ ) , ) self.wait()
521
1
from typing import List import numpy as np def A__ ( snake_case_ : dict ): SCREAMING_SNAKE_CASE__: Tuple= {key: len(snake_case_ ) for key, value in gen_kwargs.items() if isinstance(snake_case_ , snake_case_ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( '''Sharding is ambiguous for this dataset: ''' + '''we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n''' + '''\n'''.join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + '''\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ''' + '''and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.''' ) ) SCREAMING_SNAKE_CASE__: List[Any]= max(lists_lengths.values() , default=0 ) return max(1 , snake_case_ ) def A__ ( snake_case_ : int , snake_case_ : int ): SCREAMING_SNAKE_CASE__: List[Any]= [] for group_idx in range(snake_case_ ): SCREAMING_SNAKE_CASE__: int= num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break SCREAMING_SNAKE_CASE__: str= shards_indices_per_group[-1].stop if shards_indices_per_group else 0 SCREAMING_SNAKE_CASE__: List[Any]= range(snake_case_ , start + num_shards_to_add ) shards_indices_per_group.append(snake_case_ ) return shards_indices_per_group def A__ ( snake_case_ : dict , snake_case_ : int ): SCREAMING_SNAKE_CASE__: Any= _number_of_shards_in_gen_kwargs(snake_case_ ) if num_shards == 1: return [dict(snake_case_ )] else: SCREAMING_SNAKE_CASE__: Optional[Any]= _distribute_shards(num_shards=snake_case_ , max_num_jobs=snake_case_ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(snake_case_ , snake_case_ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(snake_case_ ) ) ] def A__ ( snake_case_ : List[dict] ): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , snake_case_ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def A__ ( snake_case_ : np.random.Generator , snake_case_ : dict ): SCREAMING_SNAKE_CASE__: Tuple= {len(snake_case_ ) for value in gen_kwargs.values() if isinstance(snake_case_ , snake_case_ )} SCREAMING_SNAKE_CASE__: Tuple= {} for size in list_sizes: SCREAMING_SNAKE_CASE__: int= list(range(snake_case_ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes SCREAMING_SNAKE_CASE__: int= dict(snake_case_ ) for key, value in shuffled_kwargs.items(): if isinstance(snake_case_ , snake_case_ ): SCREAMING_SNAKE_CASE__: List[Any]= [value[i] for i in indices_per_size[len(snake_case_ )]] return shuffled_kwargs
107
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowercase_ : Tuple = getLogger(__name__) def A__ ( snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : str , snake_case_ : int = 8 , snake_case_ : int = 1_024 , snake_case_ : Union[str, Any]="val" , snake_case_ : Tuple=None , snake_case_ : int=False , snake_case_ : Optional[Any]="summarization" , snake_case_ : Optional[Any]=None , snake_case_ : List[Any]=1 , snake_case_ : Dict = None , snake_case_ : int="" , **snake_case_ : Any , ): SCREAMING_SNAKE_CASE__: List[str]= str(snake_case_ ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=snake_case_ ) SCREAMING_SNAKE_CASE__: str= Path(snake_case_ ) SCREAMING_SNAKE_CASE__: Tuple= save_dir.joinpath(F'rank_{local_rank}_output.json' ) torch.cuda.set_device(snake_case_ ) SCREAMING_SNAKE_CASE__: Tuple= AutoModelForSeqaSeqLM.from_pretrained(snake_case_ ).cuda() if fpaa: SCREAMING_SNAKE_CASE__: Dict= model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case_ , snake_case_ ) # update config with task specific params SCREAMING_SNAKE_CASE__: List[Any]= generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: SCREAMING_SNAKE_CASE__: str= num_return_sequences SCREAMING_SNAKE_CASE__: Optional[int]= AutoTokenizer.from_pretrained(snake_case_ ) logger.info(F'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: SCREAMING_SNAKE_CASE__: Dict= tokenizer.model_max_length if prefix is None: SCREAMING_SNAKE_CASE__: List[Any]= prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' SCREAMING_SNAKE_CASE__: Optional[int]= SeqaSeqDataset( snake_case_ , snake_case_ , snake_case_ , max_target_length=1_024 , type_path=snake_case_ , n_obs=snake_case_ , prefix=snake_case_ , **snake_case_ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. SCREAMING_SNAKE_CASE__: Union[str, Any]= ds.make_sortish_sampler(snake_case_ , distributed=snake_case_ , add_extra_examples=snake_case_ , shuffle=snake_case_ ) SCREAMING_SNAKE_CASE__: List[Any]= DataLoader(snake_case_ , sampler=snake_case_ , batch_size=snake_case_ , collate_fn=ds.collate_fn ) SCREAMING_SNAKE_CASE__: List[Any]= [] for batch in tqdm(snake_case_ ): SCREAMING_SNAKE_CASE__: List[Any]= model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=snake_case_ , num_beams=snake_case_ , **snake_case_ , ) SCREAMING_SNAKE_CASE__: int= tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) SCREAMING_SNAKE_CASE__: int= batch['''ids'''] if num_return_sequences > 1: SCREAMING_SNAKE_CASE__: List[Any]= chunks(snake_case_ , snake_case_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case_ ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(snake_case_ , snake_case_ ) return results, sampler.num_replicas def A__ ( ): SCREAMING_SNAKE_CASE__: List[Any]= argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=snake_case_ , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=snake_case_ , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=snake_case_ , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=snake_case_ , default=snake_case_ ) parser.add_argument( '''--type_path''' , type=snake_case_ , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=snake_case_ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=snake_case_ , default=8 , required=snake_case_ , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=snake_case_ , default=-1 , required=snake_case_ , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=snake_case_ , default=snake_case_ , required=snake_case_ , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=snake_case_ , default=1 , required=snake_case_ , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=snake_case_ , default=600 , required=snake_case_ , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=snake_case_ , default=snake_case_ , required=snake_case_ ) parser.add_argument('''--tgt_lang''' , type=snake_case_ , default=snake_case_ , required=snake_case_ ) parser.add_argument( '''--prefix''' , type=snake_case_ , required=snake_case_ , default=snake_case_ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) SCREAMING_SNAKE_CASE__: Dict= time.time() SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Dict= parser.parse_known_args() SCREAMING_SNAKE_CASE__: Tuple= parse_numeric_n_bool_cl_kwargs(snake_case_ ) if generate_kwargs and args.local_rank <= 0: print(F'parsed the following generate kwargs: {generate_kwargs}' ) SCREAMING_SNAKE_CASE__: List[Any]= Path(args.save_dir + '''_tmp''' ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) # this handles locking. SCREAMING_SNAKE_CASE__: Dict= list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(F'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. SCREAMING_SNAKE_CASE__: List[str]= {} if args.src_lang is not None: SCREAMING_SNAKE_CASE__: str= args.src_lang if args.tgt_lang is not None: SCREAMING_SNAKE_CASE__: Any= args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case_ ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: str= eval_data_dir( args.data_dir , snake_case_ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=snake_case_ , **snake_case_ , ) if args.local_rank <= 0: SCREAMING_SNAKE_CASE__: str= Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case_ ) SCREAMING_SNAKE_CASE__: Optional[Any]= gather_results_from_each_node(snake_case_ , snake_case_ , args.sync_timeout ) SCREAMING_SNAKE_CASE__: Union[str, Any]= combine_partial_results(snake_case_ ) if args.num_return_sequences > 1: SCREAMING_SNAKE_CASE__: Optional[Any]= save_dir.joinpath('''pseudolabel_results.json''' ) print(F'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(snake_case_ , snake_case_ ) return SCREAMING_SNAKE_CASE__: Union[str, Any]= Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(snake_case_ ) as f: SCREAMING_SNAKE_CASE__: List[str]= [x.rstrip() for x in f.readlines()][: len(snake_case_ )] # Calculate metrics, save metrics, and save _generations.txt SCREAMING_SNAKE_CASE__: Optional[int]= '''translation''' in args.task SCREAMING_SNAKE_CASE__: str= calculate_bleu if calc_bleu else calculate_rouge SCREAMING_SNAKE_CASE__: Dict= '''bleu''' if calc_bleu else '''rouge''' SCREAMING_SNAKE_CASE__: Dict= score_fn(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE__: List[str]= len(snake_case_ ) SCREAMING_SNAKE_CASE__: Dict= time.time() - start_time SCREAMING_SNAKE_CASE__: List[str]= round(runtime / metrics['''n_obs'''] , 4 ) SCREAMING_SNAKE_CASE__: str= num_replicas # TODO(@stas00): add whatever metadata to metrics SCREAMING_SNAKE_CASE__: str= save_dir.joinpath(F'{args.type_path}_{metric_name}.json' ) save_json(snake_case_ , snake_case_ , indent=snake_case_ ) print(snake_case_ ) write_txt_file(snake_case_ , save_dir.joinpath(F'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(snake_case_ , save_dir.joinpath(F'{args.type_path}.target' ) ) else: shutil.rmtree(snake_case_ ) def A__ ( snake_case_ : Optional[int] ): SCREAMING_SNAKE_CASE__: int= [] for partial_result in partial_results: records.extend(snake_case_ ) SCREAMING_SNAKE_CASE__: str= sorted(snake_case_ , key=lambda snake_case_ : x["id"] ) SCREAMING_SNAKE_CASE__: int= [x['''pred'''] for x in records] return preds def A__ ( snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : int ): # WAIT FOR lots of .json files SCREAMING_SNAKE_CASE__: Optional[int]= time.time() logger.info('''waiting for all nodes to finish''' ) SCREAMING_SNAKE_CASE__: Optional[Any]= None while (time.time() - start_wait) < timeout: SCREAMING_SNAKE_CASE__: List[Any]= list(save_dir.glob('''rank_*.json''' ) ) if len(snake_case_ ) < num_replicas: continue try: # make sure all json files are fully saved SCREAMING_SNAKE_CASE__: Optional[int]= lmap(snake_case_ , snake_case_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
107
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __a : int = None __a : str = logging.get_logger(__name__) __a : List[Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __a : Any = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } __a : Tuple = { 'camembert-base': 5_1_2, } __a : List[Any] = '▁' class __UpperCAmelCase ( UpperCAmelCase_ ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['''input_ids''', '''attention_mask'''] lowercase = CamembertTokenizer def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="<mask>" , SCREAMING_SNAKE_CASE=["<s>NOTUSED", "</s>NOTUSED"] , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[str]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
606
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=1_6 , _lowerCamelCase=[3_2, 6_4, 1_2_8] , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=1_0 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2"] , _lowerCamelCase=[1, 2] , ): UpperCamelCase_: Tuple = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: List[str] = image_size UpperCamelCase_: Tuple = patch_size UpperCamelCase_: Tuple = num_channels UpperCamelCase_: Dict = embed_dim UpperCamelCase_: List[Any] = hidden_sizes UpperCamelCase_: List[str] = depths UpperCamelCase_: List[str] = num_heads UpperCamelCase_: Optional[int] = window_size UpperCamelCase_: Tuple = mlp_ratio UpperCamelCase_: Dict = qkv_bias UpperCamelCase_: str = hidden_dropout_prob UpperCamelCase_: Optional[Any] = attention_probs_dropout_prob UpperCamelCase_: int = drop_path_rate UpperCamelCase_: Dict = hidden_act UpperCamelCase_: List[str] = use_absolute_embeddings UpperCamelCase_: Dict = patch_norm UpperCamelCase_: Optional[Any] = layer_norm_eps UpperCamelCase_: List[str] = initializer_range UpperCamelCase_: List[Any] = is_training UpperCamelCase_: Optional[int] = scope UpperCamelCase_: str = use_labels UpperCamelCase_: List[str] = type_sequence_label_size UpperCamelCase_: Union[str, Any] = encoder_stride UpperCamelCase_: Dict = out_features UpperCamelCase_: str = out_indices def _a ( self ): UpperCamelCase_: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: List[Any] = None if self.use_labels: UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Optional[Any] = self.get_config() return config, pixel_values, labels def _a ( self ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[int] = FocalNetModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: int = model(_lowerCamelCase ) UpperCamelCase_: int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase_: int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCamelCase_: int = None UpperCamelCase_: List[Any] = FocalNetBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Any = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = FocalNetForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Any = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase_: List[Any] = 1 UpperCamelCase_: Dict = FocalNetForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = self.type_sequence_label_size UpperCamelCase_: List[Any] = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: str = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase_: Union[str, Any] = 1 UpperCamelCase_: Dict = FocalNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ): UpperCamelCase_: Dict = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[str] = config_and_inputs UpperCamelCase_: int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[int] =( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) a : Any =( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) a : Dict =False a : Union[str, Any] =False a : Tuple =False a : Optional[int] =False a : Union[str, Any] =False def _a ( self ): UpperCamelCase_: str = FocalNetModelTester(self ) UpperCamelCase_: Tuple = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=3_7 , has_text_modality=_lowerCamelCase ) def _a ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ): return def _a ( self ): UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def _a ( self ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def _a ( self ): pass def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_: List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase_: List[Any] = model_class(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: Any = [*signature.parameters.keys()] UpperCamelCase_: List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Tuple = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_: Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCamelCase_: Union[str, Any] = outputs.hidden_states UpperCamelCase_: Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # FocalNet has a different seq_length UpperCamelCase_: Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_: int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase_: Dict = outputs.reshaped_hidden_states self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: int = reshaped_hidden_states[0].shape UpperCamelCase_: List[str] = ( reshaped_hidden_states[0].view(_lowerCamelCase , _lowerCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCamelCase_: int = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: str = 3 UpperCamelCase_: Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase_: int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase_: List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase_: str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCamelCase_: Dict = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_: Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @slow def _a ( self ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: List[Any] = FocalNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: Dict = _config_zero_init(_lowerCamelCase ) for model_class in self.all_model_classes: UpperCamelCase_: List[str] = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def _a ( self ): UpperCamelCase_: Optional[int] = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = self.default_image_processor UpperCamelCase_: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCamelCase_: str = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_: List[str] = model(**_lowerCamelCase ) # verify the logits UpperCamelCase_: Optional[int] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCamelCase_: Optional[int] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_8_1 ) @require_torch class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =(FocalNetBackbone,) if is_torch_available() else () a : List[str] =FocalNetConfig a : List[str] =False def _a ( self ): UpperCamelCase_: Any = FocalNetModelTester(self )
57
0
from scipy.stats import spearmanr import datasets lowercase : Any = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" lowercase : Optional[int] = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" lowercase : int = r"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): """simple docstring""" def snake_case ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Tuple: A : Union[str, Any] = spearmanr(__UpperCAmelCase , __UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
718
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Optional[int] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Dict = '''segformer''' def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[2, 2, 2, 2] , __UpperCAmelCase=[8, 4, 2, 1] , __UpperCAmelCase=[32, 64, 1_60, 2_56] , __UpperCAmelCase=[7, 3, 3, 3] , __UpperCAmelCase=[4, 2, 2, 2] , __UpperCAmelCase=[1, 2, 5, 8] , __UpperCAmelCase=[4, 4, 4, 4] , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-6 , __UpperCAmelCase=2_56 , __UpperCAmelCase=2_55 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( '''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be''' ''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , __UpperCAmelCase , ) A : Optional[int] = num_channels A : int = num_encoder_blocks A : Optional[Any] = depths A : List[str] = sr_ratios A : List[Any] = hidden_sizes A : Optional[Any] = patch_sizes A : Any = strides A : Dict = mlp_ratios A : Optional[Any] = num_attention_heads A : int = hidden_act A : Optional[int] = hidden_dropout_prob A : Any = attention_probs_dropout_prob A : Optional[int] = classifier_dropout_prob A : List[Any] = initializer_range A : int = drop_path_rate A : Union[str, Any] = layer_norm_eps A : Union[str, Any] = decoder_hidden_size A : int = kwargs.get('''reshape_last_stage''' , __UpperCAmelCase ) A : str = semantic_loss_ignore_index class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : List[Any] = version.parse('''1.11''' ) @property def snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case ( self ) -> float: return 1E-4 @property def snake_case ( self ) -> int: return 12
423
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
631
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": A = pd.read_csv("""sample_data.csv""", header=None) A = df.shape[:1][0] # If you're using some other dataset input the target column A = df.iloc[:, 1:2] A = actual_data.values.reshape(len_data, 1) A = MinMaxScaler().fit_transform(actual_data) A = 10 A = 5 A = 20 A = len_data - periods * look_back A = actual_data[:division] A = actual_data[division - look_back :] A , A = [], [] A , A = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) A = np.array(train_x) A = np.array(test_x) A = np.array([list(i.ravel()) for i in train_y]) A = np.array([list(i.ravel()) for i in test_y]) A = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") A = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) A = model.predict(x_test)
77
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _A = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] _A = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] _A = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) _A = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) _A = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowercase_ ( A__ , A__ ) -> Optional[int]: """simple docstring""" for tf_name, hf_name in patterns: snake_case = k.replace(A__ , A__ ) return k def lowercase_ ( A__ , A__ ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" snake_case = BigBirdPegasusConfig(**A__ ) snake_case = BigBirdPegasusForConditionalGeneration(A__ ) snake_case = torch_model.state_dict() snake_case = {} # separating decoder weights snake_case = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} snake_case = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): snake_case = [k.endswith(A__ ) for ending in KEYS_TO_IGNORE] if any(A__ ): continue snake_case = DECODER_PATTERNS snake_case = rename_state_dict_key(A__ , A__ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): snake_case = v.T snake_case = torch.from_numpy(A__ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): snake_case = [k.endswith(A__ ) for ending in KEYS_TO_IGNORE] if any(A__ ): continue snake_case = REMAINING_PATTERNS snake_case = rename_state_dict_key(A__ , A__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): snake_case = v.T snake_case = torch.from_numpy(A__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' snake_case = mapping["model.embed_positions.weight"] snake_case = mapping.pop("model.embed_positions.weight" ) snake_case , snake_case = torch_model.load_state_dict(A__ , strict=A__ ) snake_case = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def lowercase_ ( A__ ) -> Dict: """simple docstring""" snake_case = tf.train.list_variables(A__ ) snake_case = {} snake_case = ["global_step"] for name, shape in tqdm(A__ , desc="converting tf checkpoint to dict" ): snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case = tf.train.load_variable(A__ , A__ ) snake_case = array return tf_weights def lowercase_ ( A__ , A__ , A__ ) -> List[Any]: """simple docstring""" snake_case = get_tf_weights_as_numpy(A__ ) snake_case = convert_bigbird_pegasus(A__ , A__ ) torch_model.save_pretrained(A__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") _A = parser.parse_args() _A = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
704
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCamelCase ( A_ , unittest.TestCase ): UpperCAmelCase__ : Any = CpmAntTokenizer UpperCAmelCase__ : Optional[Any] = False def UpperCAmelCase(self : Optional[Any] ) -> Dict: super().setUp() snake_case = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def UpperCAmelCase(self : Optional[Any] ) -> Optional[int]: snake_case = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) snake_case = "今天天气真好!" snake_case = ["今天", "天气", "真", "好", "!"] snake_case = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) snake_case = "今天天气真好!" snake_case = [tokenizer.bos_token] + tokens snake_case = [6, 9_8_0_2, 1_4_9_6_2, 2_0_8_2, 8_3_1, 2_4_4] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A ) snake_case = tokenizer.decode(_A ) self.assertEqual(_A , _A )
294
0