code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations import typing from collections import Counter def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1): for perpendicular in range(_a , max_perimeter + 1): SCREAMING_SNAKE_CASE : List[Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(_a): SCREAMING_SNAKE_CASE : int = int(base + perpendicular + hypotenuse) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCamelCase__ ( _a = 1000): SCREAMING_SNAKE_CASE : List[str] = pythagorean_triple(_a) return triplets.most_common(1)[0][0] if __name__ == "__main__": print(F'''Perimeter {solution()} has maximum solutions''')
25
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ : str = TOKENIZER_CLASSES else: a__ : int = {tokenizer_name: getattr(__UpperCamelCase , tokenizer_name + "Fast" )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ : Any = TOKENIZER_CLASSES[tokenizer_name] a__ : Dict = True if checkpoint_name is None: a__ : Tuple = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ : List[str] = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ : List[str] = tokenizer_class.from_pretrained(__UpperCamelCase , force_download=__UpperCamelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ : Dict = checkpoint.split("/" ) a__ : Any = os.path.join(__UpperCamelCase , __UpperCamelCase ) elif add_prefix: a__ : int = checkpoint a__ : Optional[Any] = dump_path else: a__ : Dict = None a__ : Optional[Any] = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ : Dict = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ : Optional[Any] = file_path.split(__UpperCamelCase )[-1][0] if next_char == "/": a__ : Union[str, Any] = os.path.join(__UpperCamelCase , __UpperCamelCase ) a__ : Any = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ : Any = tokenizer.save_pretrained( __UpperCamelCase , legacy_format=__UpperCamelCase , filename_prefix=__UpperCamelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(__UpperCamelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F'Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ' """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCamelCase = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
191
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : int = torch.load(__a , map_location='cpu' ) if "model" in sd.keys(): snake_case_ : List[Any] = torch.load(__a , map_location='cpu' )['model'] # pop unnecessary weights snake_case_ : int = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(__a ) snake_case_ : Optional[Any] = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case_ : int = sd.pop(__a ) snake_case_ : int = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case_ : Dict = sd[key] # We split QKV in separate Q,K,V snake_case_ : List[Any] = key.replace('.qkv_proj.' , '.q_proj.' ) snake_case_ : int = key.replace('.qkv_proj.' , '.k_proj.' ) snake_case_ : List[Any] = key.replace('.qkv_proj.' , '.v_proj.' ) snake_case_ : Union[str, Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case_ ,snake_case_ ,snake_case_ : List[str] = torch.split(__a , depth // 3 , dim=0 ) snake_case_ : Any = q snake_case_ : Union[str, Any] = k snake_case_ : Optional[Any] = v del sd[key] return sd @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __a , __a , __a=None ): snake_case_ : Dict = load_checkpoint(__a ) if config is not None: snake_case_ : Dict = OPTConfig.from_pretrained(__a ) else: snake_case_ : str = OPTConfig() snake_case_ : Dict = OPTModel(__a ).half().eval() model.load_state_dict(__a ) # Check results Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
534
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __a , __a ): if "xprophetnet" in prophetnet_checkpoint_path: snake_case_ : int = XLMProphetNetForConditionalGenerationOld.from_pretrained(__a ) snake_case_ ,snake_case_ : List[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __a , output_loading_info=__a ) else: snake_case_ : List[str] = ProphetNetForConditionalGenerationOld.from_pretrained(__a ) snake_case_ ,snake_case_ : Dict = ProphetNetForConditionalGeneration.from_pretrained( __a , output_loading_info=__a ) snake_case_ : str = ['key_proj', 'value_proj', 'query_proj'] snake_case_ : List[str] = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: snake_case_ : Union[str, Any] = key.split('.' ) if attributes[0] == "lm_head": snake_case_ : Optional[Any] = prophet snake_case_ : Any = prophet_old else: snake_case_ : Optional[int] = prophet.prophetnet snake_case_ : str = prophet_old.model snake_case_ : Union[str, Any] = False for attribute in attributes: if attribute in mapping: snake_case_ : Optional[Any] = mapping[attribute] if not hasattr(__a , __a ) and len(__a ) > 0: snake_case_ : List[Any] = attribute elif hasattr(__a , __a ): snake_case_ : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" snake_case_ : int = old_model.weight logger.info(f"""{attribute} is initialized.""" ) snake_case_ : Optional[int] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" snake_case_ : List[str] = old_model.bias logger.info(f"""{attribute} is initialized""" ) snake_case_ : int = True break elif attribute in special_keys and hasattr(__a , 'in_proj_weight' ): snake_case_ : Optional[Any] = old_model.in_proj_weight.shape[0] // 3 snake_case_ : List[Any] = getattr(__a , __a ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": snake_case_ : Tuple = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) snake_case_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": snake_case_ : int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) snake_case_ : Any = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": snake_case_ : List[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) snake_case_ : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) snake_case_ : Any = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." snake_case_ : Any = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) snake_case_ : List[Any] = True break if attribute.isdigit(): snake_case_ : Any = model[int(__a )] snake_case_ : Any = old_model[int(__a )] else: snake_case_ : str = getattr(__a , __a ) if old_attribute == "": snake_case_ : Tuple = old_model else: if not hasattr(__a , __a ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) snake_case_ : List[str] = getattr(__a , __a ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
534
1
"""simple docstring""" def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : int ): '''simple docstring''' if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(UpperCAmelCase_ ) * abs(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
599
'''simple docstring''' from __future__ import annotations import math def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , ) ) def __lowerCamelCase ( ) ->None: snake_case__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ = math.log(len(UpperCAmelCase_ ) , 2 ) print(f'''Optimal value : {minimax(0 , 0 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
368
0
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __lowerCamelCase : List[Any] = """\ Text data. Second line of data.""" __lowerCamelCase : Tuple = """file""" @pytest.fixture(scope="session" ) def A_ ( _lowerCAmelCase ) -> List[str]: UpperCamelCase : Dict = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") UpperCamelCase : List[Any] = bytes(lowerCAmelCase__ , "utf-8" ) with zstd.open(lowerCAmelCase__ , "wb" ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture def A_ ( _lowerCAmelCase ) -> Optional[int]: with open(os.path.join(tmpfs.local_root_dir , lowerCAmelCase__ ) , "w" ) as f: f.write(lowerCAmelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: UpperCamelCase : int = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} UpperCamelCase : Union[str, Any] = input_paths[compression_format] UpperCamelCase : List[Any] = tmp_path / "cache" UpperCamelCase : Union[str, Any] = DownloadConfig(cache_dir=lowerCAmelCase__ , extract_compressed_file=lowerCAmelCase__ ) UpperCamelCase : str = cached_path(lowerCAmelCase__ , download_config=lowerCAmelCase__ ) with open(lowerCAmelCase__ ) as f: UpperCamelCase : Optional[int] = f.read() with open(lowerCAmelCase__ ) as f: UpperCamelCase : List[str] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: UpperCamelCase : Dict = "custom_cache" UpperCamelCase : Dict = "custom_extracted_dir" UpperCamelCase : List[str] = tmp_path / "custom_extracted_path" if default_extracted: UpperCamelCase : Optional[int] = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , lowerCAmelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(lowerCAmelCase__ ) ) UpperCamelCase : List[str] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCamelCase : Optional[int] = xz_file UpperCamelCase : Tuple = ( DownloadConfig(extract_compressed_file=lowerCAmelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowerCAmelCase__ ) ) UpperCamelCase : Dict = cached_path(lowerCAmelCase__ , download_config=lowerCAmelCase__ ) assert Path(lowerCAmelCase__ ).parent.parts[-2:] == expected def A_ ( _lowerCAmelCase ) -> Any: # absolute path UpperCamelCase : str = str(Path(lowerCAmelCase__ ).resolve() ) assert cached_path(lowerCAmelCase__ ) == text_file # relative path UpperCamelCase : Dict = str(Path(lowerCAmelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCAmelCase__ ) == text_file def A_ ( _lowerCAmelCase ) -> int: # absolute path UpperCamelCase : List[Any] = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCAmelCase__ ): cached_path(lowerCAmelCase__ ) # relative path UpperCamelCase : Tuple = "./__missing_file__.txt" with pytest.raises(lowerCAmelCase__ ): cached_path(lowerCAmelCase__ ) def A_ ( _lowerCAmelCase ) -> Optional[Any]: UpperCamelCase : Union[str, Any] = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(lowerCAmelCase__ ) as f: UpperCamelCase : str = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase__ ) def A_ ( ) -> Optional[Any]: with pytest.raises(lowerCAmelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase__ ) def A_ ( _lowerCAmelCase ) -> Optional[int]: UpperCamelCase : str = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCAmelCase__ ): http_get("https://huggingface.co" , temp_file=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase__ ) def A_ ( _lowerCAmelCase ) -> Union[str, Any]: UpperCamelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCAmelCase__ ): ftp_get("ftp://huggingface.co" , temp_file=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , lowerCAmelCase__ ) def A_ ( _lowerCAmelCase ) -> Optional[int]: UpperCamelCase : str = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCAmelCase__ ): fsspec_get("s3://huggingface.co" , temp_file=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): fsspec_head("s3://huggingface.co" )
714
from math import loga def A_ ( _lowerCAmelCase ) -> int: if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
38
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class UpperCAmelCase_ : __lowerCamelCase = BlenderbotConfig __lowerCamelCase = {} __lowerCamelCase = 'gelu' def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=20 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , ): UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Optional[int] = seq_length UpperCAmelCase__ : Dict = is_training UpperCAmelCase__ : List[Any] = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Optional[int] = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Any = intermediate_size UpperCAmelCase__ : Dict = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Dict = eos_token_id UpperCAmelCase__ : List[Any] = pad_token_id UpperCAmelCase__ : Optional[int] = bos_token_id def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase__ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase__ : Any = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase__ : Tuple = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = TFBlenderbotModel(config=_lowerCAmelCase ).get_decoder() UpperCAmelCase__ : Dict = inputs_dict["""input_ids"""] UpperCAmelCase__ : Union[str, Any] = input_ids[:1, :] UpperCAmelCase__ : Dict = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase__ : List[Any] = inputs_dict["""head_mask"""] UpperCAmelCase__ : Optional[Any] = 1 # first forward pass UpperCAmelCase__ : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase__ : str = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase__ : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase__ : List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] UpperCAmelCase__ : Optional[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase__ : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase__ : Any = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase__ : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-3 ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: UpperCAmelCase__ : Tuple = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase__ : Tuple = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase__ : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase__ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase__ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = TFBlenderbotModelTester(self ) UpperCAmelCase__ : int = ConfigTester(self , config_class=_lowerCAmelCase ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) @require_tokenizers @require_tf class UpperCAmelCase_ ( unittest.TestCase ): __lowerCamelCase = ['My friends are cool but they eat too many carbs.'] __lowerCamelCase = 'facebook/blenderbot-400M-distill' @cached_property def __UpperCAmelCase ( self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = self.tokenizer(self.src_text , return_tensors="""tf""" ) UpperCAmelCase__ : Union[str, Any] = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase__ : List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCAmelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
79
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class _snake_case ( lowerCamelCase ): """simple docstring""" def __init__( self , a , a ) -> List[str]: """simple docstring""" super().__init__() self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self , a = 1 , a = None , a = 5_0 , a = "pil" , a = True , **a , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" _A = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=a , ) _A = image.to(self.device ) # set step values self.scheduler.set_timesteps(a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _A = self.unet(a , a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _A = self.scheduler.step(a , a , a ).prev_sample _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(a ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=a ), "This is a local test"
317
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCAmelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCAmelCase = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] UpperCAmelCase = 0 for log in Path().glob('''*.log'''): UpperCAmelCase = 0 with open(log, '''r''') as f: for line in f: UpperCAmelCase = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCAmelCase = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCAmelCase = F"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCAmelCase = [] log.unlink() UpperCAmelCase = '''''' UpperCAmelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCAmelCase = [] UpperCAmelCase = {} for test in failed_tests: UpperCAmelCase = test[0].split('''::''') UpperCAmelCase = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCAmelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCAmelCase = [test[0] for test in failed_table] UpperCAmelCase = list(set(files)) # Count number of instances in failed_tests UpperCAmelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCAmelCase = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: UpperCAmelCase = '''Too many failed tests, please see the full report in the Action results.''' UpperCAmelCase = len(err) + 10 UpperCAmelCase = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCAmelCase = '''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCAmelCase = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCAmelCase = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCAmelCase = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCAmelCase = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCAmelCase = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCAmelCase = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCAmelCase = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCAmelCase = row[0] else: UpperCAmelCase = '''''' UpperCAmelCase = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
565
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' UpperCAmelCase = '''======= >>>>>>> ''' UpperCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] UpperCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class A_ ( __lowerCamelCase ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case ): lowercase = parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=snake_case , required=snake_case , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=snake_case , required=snake_case , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=snake_case ) def __init__( self , snake_case , snake_case , *snake_case ): lowercase = get_logger('datasets-cli/converting' ) lowercase = tfds_path lowercase = datasets_directory def SCREAMING_SNAKE_CASE__ ( self ): if os.path.isdir(self._tfds_path ): lowercase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) lowercase = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) lowercase = [] lowercase = [] lowercase = {} if os.path.isdir(self._tfds_path ): lowercase = os.listdir(snake_case ) else: lowercase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) lowercase = os.path.join(snake_case , snake_case ) lowercase = os.path.join(snake_case , snake_case ) if not os.path.isfile(snake_case ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(snake_case , encoding='utf-8' ) as f: lowercase = f.readlines() lowercase = [] lowercase = False lowercase = False lowercase = [] for line in lines: lowercase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here lowercase = '' continue elif "from absl import logging" in out_line: lowercase = 'from datasets import logging\n' elif "getLogger" in out_line: lowercase = out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase = True lowercase = list(filter(lambda snake_case : e in out_line , snake_case ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case ) + '\n' ) out_lines.append(snake_case ) out_lines.append(snake_case ) continue else: for pattern, replacement in TO_CONVERT: lowercase = re.sub(snake_case , snake_case , snake_case ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase = re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , snake_case ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) lowercase = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase = True out_lines.append(snake_case ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase = f_name.replace('.py' , '' ) lowercase = os.path.join(snake_case , snake_case ) lowercase = os.path.join(snake_case , snake_case ) os.makedirs(snake_case , exist_ok=snake_case ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(snake_case ) if needs_manual_update: with_manual_update.append(snake_case ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.writelines(snake_case ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: lowercase = os.path.basename(snake_case ) lowercase = imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(snake_case , snake_case ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
565
1
"""simple docstring""" import os from datetime import datetime as dt from github import Github A : int = [ 'good first issue', 'feature request', 'wip', ] def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = Github(os.environ["GITHUB_TOKEN"] ) UpperCamelCase__ = g.get_repo("huggingface/accelerate" ) UpperCamelCase__ = repo.get_issues(state="open" ) for issue in open_issues: UpperCamelCase__ = sorted([comment for comment in issue.get_comments()] , key=lambda _snake_case : i.created_at , reverse=_snake_case ) UpperCamelCase__ = comments[0] if len(_snake_case ) > 0 else None UpperCamelCase__ = dt.utcnow() UpperCamelCase__ = (current_time - issue.updated_at).days UpperCamelCase__ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
516
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
516
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A__( enum.Enum ): lowerCAmelCase = 0 lowerCAmelCase = 1 lowerCAmelCase = 2 @add_end_docstrings(__magic_name__ ) class A__( __magic_name__ ): lowerCAmelCase = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __SCREAMING_SNAKE_CASE = None if self.model.config.prefix is not None: __SCREAMING_SNAKE_CASE = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __SCREAMING_SNAKE_CASE = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._sanitize_parameters(prefix=__SCREAMING_SNAKE_CASE , **self._forward_params ) __SCREAMING_SNAKE_CASE = {**self._preprocess_params, **preprocess_params} __SCREAMING_SNAKE_CASE = {**self._forward_params, **forward_params} def _a ( self : Any , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Any=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if prefix is not None: __SCREAMING_SNAKE_CASE = prefix if prefix: __SCREAMING_SNAKE_CASE = self.tokenizer( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) __SCREAMING_SNAKE_CASE = handle_long_generation preprocess_params.update(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = generate_kwargs __SCREAMING_SNAKE_CASE = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) __SCREAMING_SNAKE_CASE = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) __SCREAMING_SNAKE_CASE = ReturnType.TENSORS if return_type is not None: __SCREAMING_SNAKE_CASE = return_type if clean_up_tokenization_spaces is not None: __SCREAMING_SNAKE_CASE = clean_up_tokenization_spaces if stop_sequence is not None: __SCREAMING_SNAKE_CASE = self.tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) __SCREAMING_SNAKE_CASE = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _a ( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __call__( self : Dict , __SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]="" , __SCREAMING_SNAKE_CASE : Optional[int]=None , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer( prefix + prompt_text , padding=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = prompt_text if handle_long_generation == "hole": __SCREAMING_SNAKE_CASE = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: __SCREAMING_SNAKE_CASE = generate_kwargs['''max_new_tokens'''] else: __SCREAMING_SNAKE_CASE = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) __SCREAMING_SNAKE_CASE = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: __SCREAMING_SNAKE_CASE = inputs['''attention_mask'''][:, -keep_length:] return inputs def _a ( self : int , __SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = model_inputs['''input_ids'''] __SCREAMING_SNAKE_CASE = model_inputs.get('''attention_mask''' , __SCREAMING_SNAKE_CASE ) # Allow empty prompts if input_ids.shape[1] == 0: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 else: __SCREAMING_SNAKE_CASE = input_ids.shape[0] __SCREAMING_SNAKE_CASE = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __SCREAMING_SNAKE_CASE = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: __SCREAMING_SNAKE_CASE = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: __SCREAMING_SNAKE_CASE = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __SCREAMING_SNAKE_CASE = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __SCREAMING_SNAKE_CASE = self.model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = generated_sequence.shape[0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = generated_sequence.reshape(__SCREAMING_SNAKE_CASE , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.reshape(__SCREAMING_SNAKE_CASE , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=ReturnType.FULL_TEXT , __SCREAMING_SNAKE_CASE : List[str]=True ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = model_outputs['''generated_sequence'''][0] __SCREAMING_SNAKE_CASE = model_outputs['''input_ids'''] __SCREAMING_SNAKE_CASE = model_outputs['''prompt_text'''] __SCREAMING_SNAKE_CASE = generated_sequence.numpy().tolist() __SCREAMING_SNAKE_CASE = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __SCREAMING_SNAKE_CASE = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __SCREAMING_SNAKE_CASE = self.tokenizer.decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __SCREAMING_SNAKE_CASE = 0 else: __SCREAMING_SNAKE_CASE = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE , ) ) if return_type == ReturnType.FULL_TEXT: __SCREAMING_SNAKE_CASE = prompt_text + text[prompt_length:] else: __SCREAMING_SNAKE_CASE = text[prompt_length:] __SCREAMING_SNAKE_CASE = {'''generated_text''': all_text} records.append(__SCREAMING_SNAKE_CASE ) return records
690
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase__ =logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class A__( __magic_name__ ): def __init__( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : int , **__SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _a ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = model_inputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def _a ( self : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = model_outputs.pop('''candidate_labels''' ) __SCREAMING_SNAKE_CASE = model_outputs['''logits'''][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] ) ] return result
690
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[Any] = '''albert''' def __init__( self : str , _UpperCAmelCase : Optional[int]=30_000 , _UpperCAmelCase : int=128 , _UpperCAmelCase : Dict=4_096 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : str=16_384 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Any="gelu_new" , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Optional[Any]=512 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : List[str]=1E-1_2 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : List[Any]="absolute" , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : int=3 , **_UpperCAmelCase : int , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = embedding_size _A = hidden_size _A = num_hidden_layers _A = num_hidden_groups _A = num_attention_heads _A = inner_group_num _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = classifier_dropout_prob _A = position_embedding_type class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : str ): if self.task == "multiple-choice": _A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
7
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: str = "gpt_bigcode" SCREAMING_SNAKE_CASE_: str = ["past_key_values"] SCREAMING_SNAKE_CASE_: str = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[str] , UpperCAmelCase_ : Dict=50_257 , UpperCAmelCase_ : Optional[int]=1_024 , UpperCAmelCase_ : int=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple="gelu_pytorch_tanh" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=50_256 , UpperCAmelCase_ : Tuple=50_256 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[str]=True , **UpperCAmelCase_ : Optional[int] , ) -> int: """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = attention_softmax_in_fpaa _lowerCAmelCase = scale_attention_softmax_in_fpaa _lowerCAmelCase = multi_query _lowerCAmelCase = bos_token_id _lowerCAmelCase = eos_token_id super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
580
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A = get_tests_dir('fixtures') class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = mock.Mock() snake_case_ = 5_00 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__UpperCamelCase ) as mock_head: snake_case_ = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @classmethod def __lowerCAmelCase ( cls ): """simple docstring""" snake_case_ = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def __lowerCAmelCase ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = WavaVecaFeatureExtractor.from_pretrained(__UpperCamelCase ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) snake_case_ = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __UpperCamelCase , repo_id='test-feature-extractor' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) snake_case_ = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = WavaVecaFeatureExtractor.from_pretrained(__UpperCamelCase ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) snake_case_ = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __UpperCamelCase , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) snake_case_ = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCAmelCase ( self ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() snake_case_ = CustomFeatureExtractor.from_pretrained(__UpperCamelCase ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) snake_case_ = AutoFeatureExtractor.from_pretrained( f"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
717
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput A = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): """simple docstring""" @register_to_config def __init__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None ): """simple docstring""" super().__init__() snake_case_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" snake_case_ = torch.zeros(__UpperCamelCase , __UpperCamelCase ) else: snake_case_ = None snake_case_ = torch.nn.Parameter(__UpperCamelCase ) class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = 42 __A = 42 __A = 42 __A = 42 __A = 42 __A = 42 def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): """simple docstring""" super().__init__() self.register_modules( vqvae=__UpperCamelCase , transformer=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , scheduler=__UpperCamelCase , learned_classifier_free_sampling_embeddings=__UpperCamelCase , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = len(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else 1 # get prompt text embeddings snake_case_ = self.tokenizer( __UpperCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) snake_case_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) snake_case_ = text_input_ids[:, : self.tokenizer.model_max_length] snake_case_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 snake_case_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate text embeddings for each generation per prompt snake_case_ = prompt_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: snake_case_ = self.learned_classifier_free_sampling_embeddings.embeddings snake_case_ = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCamelCase , 1 , 1 ) else: snake_case_ = [''] * batch_size snake_case_ = text_input_ids.shape[-1] snake_case_ = self.tokenizer( __UpperCamelCase , padding='max_length' , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors='pt' , ) snake_case_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings snake_case_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ = negative_prompt_embeds.shape[1] snake_case_ = negative_prompt_embeds.repeat(1 , __UpperCamelCase , 1 ) snake_case_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , __UpperCamelCase , __UpperCamelCase = 1_00 , __UpperCamelCase = 5.0 , __UpperCamelCase = 1.0 , __UpperCamelCase = 1 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = 1 , ): """simple docstring""" if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ = len(__UpperCamelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}""" ) snake_case_ = batch_size * num_images_per_prompt snake_case_ = guidance_scale > 1.0 snake_case_ = self._encode_prompt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__UpperCamelCase )}.""" ) # get the initial completely masked latents unless the user supplied it snake_case_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: snake_case_ = self.transformer.num_vector_embeds - 1 snake_case_ = torch.full(__UpperCamelCase , __UpperCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) snake_case_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCamelCase , device=self.device ) snake_case_ = self.scheduler.timesteps.to(self.device ) snake_case_ = latents for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the sample if we are doing classifier free guidance snake_case_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` snake_case_ = self.transformer(__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase ).sample if do_classifier_free_guidance: snake_case_ , snake_case_ = model_output.chunk(2 ) snake_case_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCamelCase , dim=1 , keepdim=__UpperCamelCase ) snake_case_ = self.truncate(__UpperCamelCase , __UpperCamelCase ) # remove `log(0)`'s (`-inf`s) snake_case_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step(__UpperCamelCase , timestep=__UpperCamelCase , sample=__UpperCamelCase , generator=__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ = self.vqvae.config.vq_embed_dim snake_case_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) snake_case_ = self.vqvae.quantize.get_codebook_entry(__UpperCamelCase , shape=__UpperCamelCase ) snake_case_ = self.vqvae.decode(__UpperCamelCase , force_not_quantize=__UpperCamelCase ).sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ , snake_case_ = torch.sort(__UpperCamelCase , 1 , descending=__UpperCamelCase ) snake_case_ = torch.exp(__UpperCamelCase ) snake_case_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out snake_case_ = torch.full_like(keep_mask[:, 0:1, :] , __UpperCamelCase ) snake_case_ = torch.cat((all_true, keep_mask) , dim=1 ) snake_case_ = keep_mask[:, :-1, :] snake_case_ = keep_mask.gather(1 , indices.argsort(1 ) ) snake_case_ = log_p_x_0.clone() snake_case_ = -torch.inf # -inf = log(0) return rv
46
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowercase__( UpperCAmelCase ): """simple docstring""" a :Any = 'unispeech-sat' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Any=3_2 , SCREAMING_SNAKE_CASE_ : Any=7_6_8 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_2 , SCREAMING_SNAKE_CASE_ : int=1_2 , SCREAMING_SNAKE_CASE_ : str=3_0_7_2 , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Tuple=0.1 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1e-5 , SCREAMING_SNAKE_CASE_ : Union[str, Any]="group" , SCREAMING_SNAKE_CASE_ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE_ : List[str]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , SCREAMING_SNAKE_CASE_ : Tuple=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE_ : List[str]=(1_0, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : Any=1_2_8 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_6 , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=0.05 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_0 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_0 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : Tuple=3_2_0 , SCREAMING_SNAKE_CASE_ : Dict=2 , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=1_0_0 , SCREAMING_SNAKE_CASE_ : str=2_5_6 , SCREAMING_SNAKE_CASE_ : List[str]=2_5_6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Dict="mean" , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : Tuple=2_5_6 , SCREAMING_SNAKE_CASE_ : Optional[int]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , SCREAMING_SNAKE_CASE_ : List[Any]=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE_ : Dict=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE_ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE_ : List[Any]=0 , SCREAMING_SNAKE_CASE_ : List[Any]=1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=5_0_4 , **SCREAMING_SNAKE_CASE_ : Dict , ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE_ , pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) lowercase_ = hidden_size lowercase_ = feat_extract_norm lowercase_ = feat_extract_activation lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = conv_bias lowercase_ = num_conv_pos_embeddings lowercase_ = num_conv_pos_embedding_groups lowercase_ = len(self.conv_dim ) lowercase_ = num_hidden_layers lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = num_attention_heads lowercase_ = hidden_dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = feat_proj_dropout lowercase_ = final_dropout lowercase_ = layerdrop lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = vocab_size lowercase_ = num_clusters lowercase_ = do_stable_layer_norm lowercase_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase_ = apply_spec_augment lowercase_ = mask_time_prob lowercase_ = mask_time_length lowercase_ = mask_time_min_masks lowercase_ = mask_feature_prob lowercase_ = mask_feature_length lowercase_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase_ = num_codevectors_per_group lowercase_ = num_codevector_groups lowercase_ = contrastive_logits_temperature lowercase_ = feat_quantizer_dropout lowercase_ = num_negatives lowercase_ = codevector_dim lowercase_ = proj_codevector_dim lowercase_ = diversity_loss_weight # ctc loss lowercase_ = ctc_loss_reduction lowercase_ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = xvector_output_dim @property def _lowercase ( self : Optional[Any] ) -> Any: return functools.reduce(operator.mul , self.conv_stride , 1 )
97
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> Optional[int]: assert isinstance(UpperCamelCase , UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[Any]: lowerCAmelCase__ : List[str] = tmp_path / '''cache''' lowerCAmelCase__ : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase__ : List[Any] = ParquetDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase ).read() _check_parquet_dataset(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[Any]: lowerCAmelCase__ : str = tmp_path / '''cache''' lowerCAmelCase__ : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase__ : str = features.copy() if features else default_expected_features lowerCAmelCase__ : List[Any] = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase__ : Union[str, Any] = ParquetDatasetReader(UpperCamelCase , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_parquet_dataset(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: lowerCAmelCase__ : str = tmp_path / '''cache''' lowerCAmelCase__ : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase__ : Union[str, Any] = ParquetDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase , split=UpperCamelCase ).read() _check_parquet_dataset(UpperCamelCase , UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> str: if issubclass(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : Any = parquet_path elif issubclass(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : Any = [parquet_path] lowerCAmelCase__ : int = tmp_path / '''cache''' lowerCAmelCase__ : str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase__ : Union[str, Any] = ParquetDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_parquet_dataset(UpperCamelCase , UpperCamelCase ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase=("train",) ) -> str: assert isinstance(UpperCamelCase , UpperCamelCase ) for split in splits: lowerCAmelCase__ : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[int]: lowerCAmelCase__ : Any = tmp_path / '''cache''' lowerCAmelCase__ : Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase__ : Optional[Any] = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase ).read() _check_parquet_datasetdict(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: lowerCAmelCase__ : Any = tmp_path / '''cache''' lowerCAmelCase__ : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase__ : Tuple = features.copy() if features else default_expected_features lowerCAmelCase__ : Optional[int] = ( Features({feature: Value(UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase__ : List[str] = ParquetDatasetReader({'''train''': parquet_path} , features=UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_parquet_datasetdict(UpperCamelCase , UpperCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: if split: lowerCAmelCase__ : Tuple = {split: parquet_path} else: lowerCAmelCase__ : int = '''train''' lowerCAmelCase__ : List[Any] = {'''train''': parquet_path, '''test''': parquet_path} lowerCAmelCase__ : Optional[int] = tmp_path / '''cache''' lowerCAmelCase__ : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowerCAmelCase__ : List[str] = ParquetDatasetReader(UpperCamelCase , cache_dir=UpperCamelCase ).read() _check_parquet_datasetdict(UpperCamelCase , UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCAmelCase__ : Optional[Any] = ParquetDatasetWriter(UpperCamelCase , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 lowerCAmelCase__ : Union[str, Any] = pq.ParquetFile(tmp_path / '''foo.parquet''' ) lowerCAmelCase__ : int = pf.read() assert dataset.data.table == output_table def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCAmelCase__ : List[str] = str(shared_datadir / '''test_image_rgb.jpg''' ) lowerCAmelCase__ : Dict = {'''image''': [image_path]} lowerCAmelCase__ : int = Features({'''image''': Image()} ) lowerCAmelCase__ : Dict = Dataset.from_dict(UpperCamelCase , features=UpperCamelCase ) lowerCAmelCase__ : List[str] = ParquetDatasetWriter(UpperCamelCase , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 lowerCAmelCase__ : Dict = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features lowerCAmelCase__ : int = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=UpperCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> Any: assert get_writer_batch_size(UpperCamelCase ) == expected
678
0
"""simple docstring""" import argparse import os import re import packaging.version lowerCAmelCase__ = '''examples/''' lowerCAmelCase__ = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } lowerCAmelCase__ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } lowerCAmelCase__ = '''README.md''' def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase = f.read() UpperCamelCase , UpperCamelCase = REPLACE_PATTERNS[pattern] UpperCamelCase = replace.replace("VERSION" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = re_pattern.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" for folder, directories, fnames in os.walk(_SCREAMING_SNAKE_CASE ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , pattern="examples" ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not patch: update_version_in_examples(_SCREAMING_SNAKE_CASE ) def a__ ( ): """simple docstring""" UpperCamelCase = "🤗 Transformers currently provides the following architectures" UpperCamelCase = "1. Want to contribute a new model?" with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase = f.readlines() # Find the start of the list. UpperCamelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCamelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): UpperCamelCase = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_SCREAMING_SNAKE_CASE ) def a__ ( ): """simple docstring""" with open(REPLACE_FILES["init"] , "r" ) as f: UpperCamelCase = f.read() UpperCamelCase = REPLACE_PATTERNS["init"][0].search(_SCREAMING_SNAKE_CASE ).groups()[0] return packaging.version.parse(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE=False ): """simple docstring""" UpperCamelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: UpperCamelCase = default_version.base_version elif patch: UpperCamelCase = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: UpperCamelCase = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. UpperCamelCase = input(F"Which version are you releasing? [{default_version}]" ) if len(_SCREAMING_SNAKE_CASE ) == 0: UpperCamelCase = default_version print(F"Updating version to {version}." ) global_version_update(_SCREAMING_SNAKE_CASE , patch=_SCREAMING_SNAKE_CASE ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def a__ ( ): """simple docstring""" UpperCamelCase = get_version() UpperCamelCase = F"{current_version.major}.{current_version.minor + 1}.0.dev0" UpperCamelCase = current_version.base_version # Check with the user we got that right. UpperCamelCase = input(F"Which version are we developing now? [{dev_version}]" ) if len(_SCREAMING_SNAKE_CASE ) == 0: UpperCamelCase = dev_version print(F"Updating version to {version}." ) global_version_update(_SCREAMING_SNAKE_CASE ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') lowerCAmelCase__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
544
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _lowerCamelCase : pass
544
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule snake_case : Optional[Any] = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
566
'''simple docstring''' from collections import namedtuple snake_case : Optional[int] = namedtuple('from_to', 'from_ to') snake_case : Any = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0454, 264.172), 'cubicyard': from_to(0.7_6455, 1.3_0795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.0_0023_6588, 4226.75), } def lowercase__ ( __UpperCamelCase : float , __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + """, """.join(__UpperCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + """, """.join(__UpperCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
566
1
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = value_function lowercase_ = unet lowercase_ = scheduler lowercase_ = env lowercase_ = env.get_dataset() lowercase_ = {} for key in self.data.keys(): try: lowercase_ = self.data[key].mean() except: # noqa: E722 pass lowercase_ = {} for key in self.data.keys(): try: lowercase_ = self.data[key].std() except: # noqa: E722 pass lowercase_ = env.observation_space.shape[0] lowercase_ = env.action_space.shape[0] def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if type(UpperCAmelCase__ ) is dict: return {k: self.to_torch(UpperCAmelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(UpperCAmelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(UpperCAmelCase__ , device=self.unet.device ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' for key, val in cond.items(): lowercase_ = val.clone() return x_in def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = x.shape[0] lowercase_ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase_ = torch.full((batch_size,) , UpperCAmelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(UpperCAmelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase_ = self.value_function(x.permute(0 , 2 , 1 ) , UpperCAmelCase__ ).sample lowercase_ = torch.autograd.grad([y.sum()] , [x] )[0] lowercase_ = self.scheduler._get_variance(UpperCAmelCase__ ) lowercase_ = torch.exp(0.5 * posterior_variance ) lowercase_ = model_std * grad lowercase_ = 0 lowercase_ = x.detach() lowercase_ = x + scale * grad lowercase_ = self.reset_xa(UpperCAmelCase__ , UpperCAmelCase__ , self.action_dim ) lowercase_ = self.unet(x.permute(0 , 2 , 1 ) , UpperCAmelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowercase_ = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , predict_epsilon=UpperCAmelCase__ )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) lowercase_ = self.reset_xa(UpperCAmelCase__ , UpperCAmelCase__ , self.action_dim ) lowercase_ = self.to_torch(UpperCAmelCase__ ) return x, y def __call__( self , UpperCAmelCase , UpperCAmelCase=64 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=0.1 ) -> int: '''simple docstring''' lowercase_ = self.normalize(UpperCAmelCase__ , "observations" ) lowercase_ = obs[None].repeat(UpperCAmelCase__ , axis=0 ) lowercase_ = {0: self.to_torch(UpperCAmelCase__ )} lowercase_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase_ = randn_tensor(UpperCAmelCase__ , device=self.unet.device ) lowercase_ = self.reset_xa(UpperCAmelCase__ , UpperCAmelCase__ , self.action_dim ) lowercase_ = self.to_torch(UpperCAmelCase__ ) # run the diffusion process lowercase_ = self.run_diffusion(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # sort output trajectories by value lowercase_ = y.argsort(0 , descending=UpperCAmelCase__ ).squeeze() lowercase_ = x[sorted_idx] lowercase_ = sorted_values[:, :, : self.action_dim] lowercase_ = actions.detach().cpu().numpy() lowercase_ = self.de_normalize(UpperCAmelCase__ , key="actions" ) # select the action with the highest value if y is not None: lowercase_ = 0 else: # if we didn't run value guiding, select a random action lowercase_ = np.random.randint(0 , UpperCAmelCase__ ) lowercase_ = denorm_actions[selected_index, 0] return denorm_actions
718
from math import sqrt def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 0 for i in range(1 , int(sqrt(__lowerCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__lowerCamelCase ): total += i + n // i elif i == sqrt(__lowerCamelCase ): total += i return total - n def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 1_0000 ): '''simple docstring''' lowercase_ = sum( i for i in range(1 , __lowerCamelCase ) if sum_of_divisors(sum_of_divisors(__lowerCamelCase ) ) == i and sum_of_divisors(__lowerCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
601
0
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A_ ( A__ ) -> int: a__ : Any = [] for line in lines: a__ : Optional[int] = re.sub(R'#.*' , '' , __lowerCamelCase ) # remove comments if line: filtered_lines.append(__lowerCamelCase ) a__ : List[str] = '\n'.join(__lowerCamelCase ) # Make a hash from all this code a__ : Tuple = full_str.encode('utf-8' ) return shaaaa(__lowerCamelCase ).hexdigest() # get importable module names and hash for caching lowercase : int = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowercase : List[Any] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowercase : int = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name lowercase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
302
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) class a__ ( __snake_case ): def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
559
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration snake_case__ = HfArgumentParser(InitializationArguments) snake_case__ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization snake_case__ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks snake_case__ = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) snake_case__ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config snake_case__ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
373
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class lowerCAmelCase_ ( _a): lowerCamelCase_ = 'pegasus' lowerCamelCase_ = ['past_key_values'] lowerCamelCase_ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Any , __A : Dict=50265 , __A : List[Any]=1024 , __A : int=12 , __A : Optional[Any]=4096 , __A : Optional[int]=16 , __A : Dict=12 , __A : List[Any]=4096 , __A : List[str]=16 , __A : Optional[int]=0.0 , __A : List[Any]=0.0 , __A : List[str]=True , __A : Optional[int]=True , __A : str="gelu" , __A : Tuple=1024 , __A : Any=0.1 , __A : List[Any]=0.0 , __A : List[str]=0.0 , __A : Tuple=0.02 , __A : Union[str, Any]=0 , __A : Union[str, Any]=False , __A : Optional[Any]=0 , __A : Tuple=1 , __A : str=1 , **__A : Any , ) ->Union[str, Any]: """simple docstring""" a__ :Any = vocab_size a__ :List[str] = max_position_embeddings a__ :int = d_model a__ :Union[str, Any] = encoder_ffn_dim a__ :List[Any] = encoder_layers a__ :Union[str, Any] = encoder_attention_heads a__ :Tuple = decoder_ffn_dim a__ :List[Any] = decoder_layers a__ :Tuple = decoder_attention_heads a__ :Optional[int] = dropout a__ :str = attention_dropout a__ :Optional[int] = activation_dropout a__ :str = activation_function a__ :Dict = init_std a__ :Any = encoder_layerdrop a__ :int = decoder_layerdrop a__ :Union[str, Any] = use_cache a__ :List[Any] = encoder_layers a__ :Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , **__A , ) @property def _snake_case ( self : Optional[Any] ) ->int: """simple docstring""" return self.encoder_attention_heads @property def _snake_case ( self : Union[str, Any] ) ->int: """simple docstring""" return self.d_model
373
1
import argparse import os import re import packaging.version __UpperCAmelCase = '''examples/''' __UpperCAmelCase = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCAmelCase = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCAmelCase = '''README.md''' def UpperCamelCase ( snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Tuple ) -> Dict: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase : List[str] = f.read() UpperCamelCase , UpperCamelCase : List[Any] = REPLACE_PATTERNS[pattern] UpperCamelCase : Any = replace.replace('VERSION' , snake_case__ ) UpperCamelCase : str = re_pattern.sub(snake_case__ , snake_case__ ) with open(snake_case__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(snake_case__ ) def UpperCamelCase ( snake_case__ : Any ) -> int: for folder, directories, fnames in os.walk(snake_case__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(snake_case__ , snake_case__ ) , snake_case__ , pattern='examples' ) def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : int=False ) -> Dict: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(snake_case__ , snake_case__ , snake_case__ ) if not patch: update_version_in_examples(snake_case__ ) def UpperCamelCase ( ) -> Union[str, Any]: UpperCamelCase : Optional[int] = '🤗 Transformers currently provides the following architectures' UpperCamelCase : Dict = '1. Want to contribute a new model?' with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase : Tuple = f.readlines() # Find the start of the list. UpperCamelCase : Any = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCamelCase : Dict = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): UpperCamelCase : Union[str, Any] = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(snake_case__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(snake_case__ ) def UpperCamelCase ( ) -> Dict: with open(REPLACE_FILES['init'] , 'r' ) as f: UpperCamelCase : Any = f.read() UpperCamelCase : Optional[int] = REPLACE_PATTERNS['init'][0].search(snake_case__ ).groups()[0] return packaging.version.parse(snake_case__ ) def UpperCamelCase ( snake_case__ : Any=False ) -> Tuple: UpperCamelCase : Dict = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: UpperCamelCase : List[str] = default_version.base_version elif patch: UpperCamelCase : Union[str, Any] = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCamelCase : str = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCamelCase : Optional[int] = input(F"""Which version are you releasing? [{default_version}]""" ) if len(snake_case__ ) == 0: UpperCamelCase : Optional[int] = default_version print(F"""Updating version to {version}.""" ) global_version_update(snake_case__ , patch=snake_case__ ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def UpperCamelCase ( ) -> Optional[Any]: UpperCamelCase : Optional[Any] = get_version() UpperCamelCase : Optional[Any] = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCamelCase : Union[str, Any] = current_version.base_version # Check with the user we got that right. UpperCamelCase : Dict = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(snake_case__ ) == 0: UpperCamelCase : Any = dev_version print(F"""Updating version to {version}.""" ) global_version_update(snake_case__ ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCAmelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
40
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCAmelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCAmelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __UpperCAmelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCAmelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCAmelCase = np.expand_dims(test_image, axis=0) __UpperCAmelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCAmelCase = '''Normal''' if result[0][0] == 1: __UpperCAmelCase = '''Abnormality detected'''
40
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = """▁""" _lowercase = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
707
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Union[str, Any] = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class __A( a ): snake_case_ = '''markuplm''' def __init__( self , _snake_case=30_522 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=2 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=0 , _snake_case=0 , _snake_case=2 , _snake_case=256 , _snake_case=1_024 , _snake_case=216 , _snake_case=1_001 , _snake_case=32 , _snake_case=50 , _snake_case="absolute" , _snake_case=True , _snake_case=None , **_snake_case , ) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case , ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = classifier_dropout # additional properties __a = max_depth __a = max_xpath_tag_unit_embeddings __a = max_xpath_subs_unit_embeddings __a = tag_pad_id __a = subs_pad_id __a = xpath_unit_hidden_size
219
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig A : Any = logging.get_logger(__name__) class __A: def __init__( self , _snake_case , _snake_case ) -> int: '''simple docstring''' __a = question_encoder __a = generator __a = self.question_encoder def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' if os.path.isfile(_snake_case ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_snake_case , exist_ok=_snake_case ) __a = os.path.join(_snake_case , '''question_encoder_tokenizer''' ) __a = os.path.join(_snake_case , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(_snake_case ) self.generator.save_pretrained(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case , **_snake_case ) -> List[Any]: '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer __a = kwargs.pop('''config''' , _snake_case ) if config is None: __a = RagConfig.from_pretrained(_snake_case ) __a = AutoTokenizer.from_pretrained( _snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) __a = AutoTokenizer.from_pretrained( _snake_case , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=_snake_case , generator=_snake_case ) def __call__( self , *_snake_case , **_snake_case ) -> int: '''simple docstring''' return self.current_tokenizer(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> str: '''simple docstring''' return self.generator.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Any: '''simple docstring''' return self.generator.decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = self.question_encoder def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.generator def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = "longest" , _snake_case = None , _snake_case = True , **_snake_case , ) -> BatchEncoding: '''simple docstring''' warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _snake_case , ) if max_length is None: __a = self.current_tokenizer.model_max_length __a = self( _snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , max_length=_snake_case , padding=_snake_case , truncation=_snake_case , **_snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __a = self.current_tokenizer.model_max_length __a = self( text_target=_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case , **_snake_case , ) __a = labels['''input_ids'''] return model_inputs
219
1
def _snake_case ( __snake_case = 1_0_0 ) -> int: '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = set() UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : List[str] = n + 1 # maximum limit for a in range(2 , _snake_case ): for b in range(2 , _snake_case ): UpperCAmelCase_ : Optional[int] = a**b # calculates the current power collect_powers.add(_snake_case ) # adds the result to the set return len(_snake_case ) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
711
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class snake_case_ (lowercase__ ): """simple docstring""" def __init__( self ,lowercase = None ,lowercase = None ,lowercase = None ,lowercase = None ,lowercase = False ,lowercase = False ,lowercase = None ,**lowercase ,): """simple docstring""" UpperCAmelCase_ : Optional[Any] = path_or_paths UpperCAmelCase_ : Optional[int] = split if split or isinstance(lowercase ,lowercase) else "train" UpperCAmelCase_ : Optional[int] = features UpperCAmelCase_ : Dict = cache_dir UpperCAmelCase_ : int = keep_in_memory UpperCAmelCase_ : Tuple = streaming UpperCAmelCase_ : Union[str, Any] = num_proc UpperCAmelCase_ : Union[str, Any] = kwargs @abstractmethod def A_ ( self): """simple docstring""" pass class snake_case_ (lowercase__ ): """simple docstring""" def __init__( self ,lowercase = None ,lowercase = None ,lowercase = False ,lowercase = False ,lowercase = None ,**lowercase ,): """simple docstring""" UpperCAmelCase_ : List[Any] = features UpperCAmelCase_ : List[Any] = cache_dir UpperCAmelCase_ : List[str] = keep_in_memory UpperCAmelCase_ : Optional[int] = streaming UpperCAmelCase_ : Dict = num_proc UpperCAmelCase_ : str = kwargs @abstractmethod def A_ ( self): """simple docstring""" pass
455
0
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> np.array: lowerCamelCase_ = f'''{sampling_rate}''' lowerCamelCase_ = '1' lowerCamelCase_ = 'f32le' lowerCamelCase_ = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(__UpperCamelCase ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: lowerCamelCase_ = ffmpeg_process.communicate(__UpperCamelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowerCamelCase_ = output_stream[0] lowerCamelCase_ = np.frombuffer(__UpperCamelCase ,np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = "f32le" ,) -> Union[str, Any]: lowerCamelCase_ = f'''{sampling_rate}''' lowerCamelCase_ = '1' if format_for_conversion == "s16le": lowerCamelCase_ = 2 elif format_for_conversion == "f32le": lowerCamelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowerCamelCase_ = platform.system() if system == "Linux": lowerCamelCase_ = 'alsa' lowerCamelCase_ = 'default' elif system == "Darwin": lowerCamelCase_ = 'avfoundation' lowerCamelCase_ = ':0' elif system == "Windows": lowerCamelCase_ = 'dshow' lowerCamelCase_ = 'default' lowerCamelCase_ = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowerCamelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCamelCase_ = _ffmpeg_stream(__UpperCamelCase ,__UpperCamelCase ) for item in iterator: yield item def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = "f32le" ,) -> Any: if stream_chunk_s is not None: lowerCamelCase_ = stream_chunk_s else: lowerCamelCase_ = chunk_length_s lowerCamelCase_ = ffmpeg_microphone(__UpperCamelCase ,__UpperCamelCase ,format_for_conversion=__UpperCamelCase ) if format_for_conversion == "s16le": lowerCamelCase_ = np.intaa lowerCamelCase_ = 2 elif format_for_conversion == "f32le": lowerCamelCase_ = np.floataa lowerCamelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowerCamelCase_ = chunk_length_s / 6 lowerCamelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__UpperCamelCase ,(int, float) ): lowerCamelCase_ = [stride_length_s, stride_length_s] lowerCamelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCamelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCamelCase_ = datetime.datetime.now() lowerCamelCase_ = datetime.timedelta(seconds=__UpperCamelCase ) for item in chunk_bytes_iter(__UpperCamelCase ,__UpperCamelCase ,stride=(stride_left, stride_right) ,stream=__UpperCamelCase ): # Put everything back in numpy scale lowerCamelCase_ = np.frombuffer(item['raw'] ,dtype=__UpperCamelCase ) lowerCamelCase_ = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowerCamelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = False ) -> Optional[Any]: lowerCamelCase_ = b'' lowerCamelCase_ ,lowerCamelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowerCamelCase_ = 0 for raw in iterator: acc += raw if stream and len(__UpperCamelCase ) < chunk_len: lowerCamelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__UpperCamelCase ) >= chunk_len: # We are flushing the accumulator lowerCamelCase_ = (_stride_left, stride_right) lowerCamelCase_ = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowerCamelCase_ = False yield item lowerCamelCase_ = stride_left lowerCamelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__UpperCamelCase ) > stride_left: lowerCamelCase_ = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowerCamelCase_ = False yield item def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: lowerCamelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__UpperCamelCase ,stdout=subprocess.PIPE ,bufsize=__UpperCamelCase ) as ffmpeg_process: while True: lowerCamelCase_ = ffmpeg_process.stdout.read(__UpperCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
42
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = inspect.getfile(accelerate.test_utils ) lowerCamelCase_ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCamelCase_ = test_metrics @require_cpu def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def UpperCamelCase( self ) -> Tuple: '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' self.test_metrics.main() @require_multi_gpu def UpperCamelCase( self ) -> Any: '''simple docstring''' print(f'''Found {torch.cuda.device_count()} devices.''' ) lowerCamelCase_ = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
42
1
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __UpperCAmelCase = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ __UpperCAmelCase = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ __UpperCAmelCase = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ __UpperCAmelCase = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ __UpperCAmelCase = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any]=[1, 10, 1_00] , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : List[Any]=3.0 ) -> Tuple: """simple docstring""" if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=lowerCAmelCase ) as executor: __lowerCAmelCase : str = [] __lowerCAmelCase : Any = Counter() __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : int = defaultdict(lowerCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(lowerCAmelCase , lowerCAmelCase ) ): for candidate in candidates: __lowerCAmelCase : Any = candidate + """\n""" + test_case __lowerCAmelCase : Dict = (test_program, timeout, task_id, completion_id[task_id]) __lowerCAmelCase : int = executor.submit(lowerCAmelCase , *lowerCAmelCase ) futures.append(lowerCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCAmelCase ): __lowerCAmelCase : Tuple = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) __lowerCAmelCase ,__lowerCAmelCase : Optional[Any] = [], [] for result in results.values(): result.sort() __lowerCAmelCase : Optional[Any] = [r[1]["""passed"""] for r in result] total.append(len(lowerCAmelCase ) ) correct.append(sum(lowerCAmelCase ) ) __lowerCAmelCase : Dict = np.array(lowerCAmelCase ) __lowerCAmelCase : int = np.array(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = k __lowerCAmelCase : Dict = {f'''pass@{k}''': estimate_pass_at_k(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def snake_case_ (__A : Any , __A : Optional[Any] , __A : Optional[Any] ) -> int: def estimator(__A : int , __A : int , __A : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(__A , __A ): __lowerCAmelCase : List[Any] = itertools.repeat(__A , len(__A ) ) else: assert len(__A ) == len(__A ) __lowerCAmelCase : str = iter(__A ) return np.array([estimator(int(__A ) , int(__A ) , __A ) for n, c in zip(__A , __A )] )
218
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(a_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase ) self.check_model_type(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowerCAmelCase ,__lowerCAmelCase : List[Any] = {}, {} if padding is not None: __lowerCAmelCase : List[Any] = padding if truncation is not None: __lowerCAmelCase : int = truncation if top_k is not None: __lowerCAmelCase : int = top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[int] , lowerCAmelCase : Union["Image.Image", str] , lowerCAmelCase : str = None , **lowerCAmelCase : List[str] ) -> Any: """simple docstring""" if isinstance(lowerCAmelCase , (Image.Image, str) ) and isinstance(lowerCAmelCase , lowerCAmelCase ): __lowerCAmelCase : Any = {"""image""": image, """question""": question} else: __lowerCAmelCase : List[str] = image __lowerCAmelCase : str = super().__call__(lowerCAmelCase , **lowerCAmelCase ) return results def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Union[str, Any]=False ) -> Any: """simple docstring""" __lowerCAmelCase : int = load_image(inputs["""image"""] ) __lowerCAmelCase : Optional[Any] = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=lowerCAmelCase , truncation=lowerCAmelCase ) __lowerCAmelCase : List[Any] = self.image_processor(images=lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase ) return model_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.model(**lowerCAmelCase ) return model_outputs def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]=5 ) -> Union[str, Any]: """simple docstring""" if top_k > self.model.config.num_labels: __lowerCAmelCase : Any = self.model.config.num_labels if self.framework == "pt": __lowerCAmelCase : Optional[Any] = model_outputs.logits.sigmoid()[0] __lowerCAmelCase ,__lowerCAmelCase : Tuple = probs.topk(lowerCAmelCase ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) __lowerCAmelCase : Any = scores.tolist() __lowerCAmelCase : int = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase , lowerCAmelCase )]
218
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __snake_case ( __snake_case ): _a : Optional[Any]= 42 class __snake_case ( __snake_case , __snake_case ): @register_to_config def __init__( self ,snake_case = 65536 ,snake_case = None ,snake_case = 2 ,snake_case = 2 ,snake_case = 0 ,snake_case = "fourier" ,snake_case = True ,snake_case = False ,snake_case = 0.0 ,snake_case = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") ,snake_case = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") ,snake_case = "UNetMidBlock1D" ,snake_case = None ,snake_case = (32, 32, 64) ,snake_case = None ,snake_case = 8 ,snake_case = 1 ,snake_case = False ,): '''simple docstring''' super().__init__() lowercase : List[str] = sample_size # time if time_embedding_type == "fourier": lowercase : Optional[int] = GaussianFourierProjection( embedding_size=8 ,set_W_to_weight=snake_case_ ,log=snake_case_ ,flip_sin_to_cos=snake_case_ ) lowercase : List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowercase : Union[str, Any] = Timesteps( block_out_channels[0] ,flip_sin_to_cos=snake_case_ ,downscale_freq_shift=snake_case_ ) lowercase : Tuple = block_out_channels[0] if use_timestep_embedding: lowercase : List[Any] = block_out_channels[0] * 4 lowercase : Optional[Any] = TimestepEmbedding( in_channels=snake_case_ ,time_embed_dim=snake_case_ ,act_fn=snake_case_ ,out_dim=block_out_channels[0] ,) lowercase : int = nn.ModuleList([] ) lowercase : Union[str, Any] = None lowercase : str = nn.ModuleList([] ) lowercase : Tuple = None # down lowercase : Dict = in_channels for i, down_block_type in enumerate(snake_case_ ): lowercase : Dict = output_channel lowercase : Optional[int] = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowercase : int = i == len(snake_case_ ) - 1 lowercase : int = get_down_block( snake_case_ ,num_layers=snake_case_ ,in_channels=snake_case_ ,out_channels=snake_case_ ,temb_channels=block_out_channels[0] ,add_downsample=not is_final_block or downsample_each_block ,) self.down_blocks.append(snake_case_ ) # mid lowercase : Union[str, Any] = get_mid_block( snake_case_ ,in_channels=block_out_channels[-1] ,mid_channels=block_out_channels[-1] ,out_channels=block_out_channels[-1] ,embed_dim=block_out_channels[0] ,num_layers=snake_case_ ,add_downsample=snake_case_ ,) # up lowercase : str = list(reversed(snake_case_ ) ) lowercase : Any = reversed_block_out_channels[0] if out_block_type is None: lowercase : Optional[int] = out_channels else: lowercase : Any = block_out_channels[0] for i, up_block_type in enumerate(snake_case_ ): lowercase : List[Any] = output_channel lowercase : Tuple = ( reversed_block_out_channels[i + 1] if i < len(snake_case_ ) - 1 else final_upsample_channels ) lowercase : Dict = i == len(snake_case_ ) - 1 lowercase : Any = get_up_block( snake_case_ ,num_layers=snake_case_ ,in_channels=snake_case_ ,out_channels=snake_case_ ,temb_channels=block_out_channels[0] ,add_upsample=not is_final_block ,) self.up_blocks.append(snake_case_ ) lowercase : List[str] = output_channel # out lowercase : Optional[int] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 ,32 ) lowercase : Optional[int] = get_out_block( out_block_type=snake_case_ ,num_groups_out=snake_case_ ,embed_dim=block_out_channels[0] ,out_channels=snake_case_ ,act_fn=snake_case_ ,fc_dim=block_out_channels[-1] // 4 ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = True ,): '''simple docstring''' lowercase : str = timestep if not torch.is_tensor(snake_case_ ): lowercase : List[Any] = torch.tensor([timesteps] ,dtype=torch.long ,device=sample.device ) elif torch.is_tensor(snake_case_ ) and len(timesteps.shape ) == 0: lowercase : Optional[int] = timesteps[None].to(sample.device ) lowercase : List[str] = self.time_proj(snake_case_ ) if self.config.use_timestep_embedding: lowercase : Optional[int] = self.time_mlp(snake_case_ ) else: lowercase : Optional[int] = timestep_embed[..., None] lowercase : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowercase : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowercase : Optional[Any] = () for downsample_block in self.down_blocks: lowercase , lowercase : Union[str, Any] = downsample_block(hidden_states=snake_case_ ,temb=snake_case_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowercase : List[str] = self.mid_block(snake_case_ ,snake_case_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowercase : Tuple = down_block_res_samples[-1:] lowercase : List[str] = down_block_res_samples[:-1] lowercase : Dict = upsample_block(snake_case_ ,res_hidden_states_tuple=snake_case_ ,temb=snake_case_ ) # 5. post-process if self.out_block: lowercase : str = self.out_block(snake_case_ ,snake_case_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=snake_case_ )
336
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = filter(lambda _SCREAMING_SNAKE_CASE : p.requires_grad , model.parameters() ) _A = sum([np.prod(p.size() ) for p in model_parameters] ) return params __A : Union[str, Any] = logging.getLogger(__name__) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if metric == "rouge2": _A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ' function.' ) _A = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=F"val_{metric}" , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCamelCase( pl.Callback ): '''simple docstring''' def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = {F"lr_group_{i}": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=True ): logger.info(F"***** {type_path} results at step {trainer.global_step:05d} *****" ) _A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _A = Path(pl_module.hparams.output_dir ) if type_path == "test": _A = od / 'test_results.txt' _A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A = od / F"{type_path}_results/{trainer.global_step:05d}.txt" _A = od / F"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , 'a+' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue _A = metrics[key] if isinstance(snake_case_ , torch.Tensor ): _A = val.item() _A = F"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: _A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): try: _A = pl_module.model.model.num_parameters() except AttributeError: _A = pl_module.model.num_parameters() _A = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , 'test' ) @rank_zero_only def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
27
0
from math import factorial, pi def _lowercase ( a_ : Union[str, Any] ,a_ : Tuple = 3_0 ) -> Any: if not isinstance(SCREAMING_SNAKE_CASE_ ,(int, float) ): raise ValueError('maclaurin_sin() requires either an int or float for theta' ) if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) or accuracy <= 0: raise ValueError('maclaurin_sin() requires a positive int for accuracy' ) __magic_name__ = float(SCREAMING_SNAKE_CASE_ ) __magic_name__ = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( a_ : List[Any] ,a_ : Tuple = 3_0 ) -> str: if not isinstance(SCREAMING_SNAKE_CASE_ ,(int, float) ): raise ValueError('maclaurin_cos() requires either an int or float for theta' ) if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) or accuracy <= 0: raise ValueError('maclaurin_cos() requires a positive int for accuracy' ) __magic_name__ = float(SCREAMING_SNAKE_CASE_ ) __magic_name__ = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
715
import requests from bsa import BeautifulSoup def _lowercase ( a_ : str = "https://www.worldometers.info/coronavirus" ) -> dict: '''simple docstring''' __magic_name__ = BeautifulSoup(requests.get(a_ ).text ,'html.parser' ) __magic_name__ = soup.findAll('h1' ) __magic_name__ = soup.findAll('div' ,{'class': 'maincounter-number'} ) keys += soup.findAll('span' ,{'class': 'panel-title'} ) values += soup.findAll('div' ,{'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(a_ ,a_ )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
184
0
def lowerCamelCase__ ( snake_case_ : list ) -> int: if any(not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(UpperCAmelCase_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(UpperCAmelCase_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
592
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCAmelCase ( __lowerCamelCase ): def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any] ): warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
583
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class a__ ( __lowerCamelCase ): def __init__( self , _a , _a , _a ): lowercase : Dict = dataset lowercase : Any = process lowercase : List[Any] = params def __len__( self ): return len(self.dataset ) def __getitem__( self , _a ): lowercase : Optional[Any] = self.dataset[i] lowercase : List[str] = self.process(a_ , **self.params ) return processed class a__ ( __lowerCamelCase ): def __init__( self , _a , _a , _a , _a=None ): lowercase : int = loader lowercase : Optional[int] = infer lowercase : Union[str, Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether lowercase : Optional[int] = None lowercase : List[Any] = loader_batch_size # Internal bookkeeping lowercase : str = None lowercase : List[Any] = None def __len__( self ): return len(self.loader ) def __iter__( self ): lowercase : Any = iter(self.loader ) return self def __magic_name__ ( self ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice lowercase : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) lowercase : Optional[int] = {} for k, element in self._loader_batch_data.items(): if isinstance(a_ , a_ ): # Convert ModelOutput to tuple first lowercase : Union[str, Any] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): lowercase : Optional[int] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowercase : Optional[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(a_ , a_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): lowercase : Optional[Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): lowercase : Tuple = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around lowercase : Dict = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowercase : Union[str, Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowercase : Any = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. lowercase : Optional[Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 lowercase : List[Any] = self._loader_batch_data.__class__(a_ ) self._loader_batch_index += 1 return result def __magic_name__ ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch lowercase : str = next(self.iterator ) lowercase : Optional[Any] = self.infer(a_ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(a_ , torch.Tensor ): lowercase : Union[str, Any] = processed else: lowercase : str = list(processed.keys() )[0] lowercase : Any = processed[key] if isinstance(a_ , a_ ): lowercase : Tuple = len(a_ ) else: lowercase : Optional[Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowercase : List[str] = observed_batch_size # Setting internal index to unwrap the batch lowercase : Any = processed lowercase : Dict = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class a__ ( __lowerCamelCase ): def __init__( self , _a , _a , _a , _a=None ): super().__init__(a_ , a_ , a_ ) def __iter__( self ): lowercase : Optional[int] = iter(self.loader ) lowercase : List[str] = None return self def __magic_name__ ( self ): if self.subiterator is None: lowercase : Any = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item lowercase : str = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators lowercase : Tuple = self.infer(next(self.iterator ) , **self.params ) lowercase : Dict = next(self.subiterator ) return processed class a__ ( __lowerCamelCase ): def __iter__( self ): lowercase : Dict = iter(self.loader ) return self def __magic_name__ ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. lowercase : Tuple = False lowercase : Union[str, Any] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: lowercase : Tuple = self.loader_batch_item() lowercase : Tuple = item.pop("is_last" ) accumulator.append(a_ ) if is_last: return accumulator while not is_last: lowercase : List[str] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(a_ , torch.Tensor ): lowercase : List[str] = processed else: lowercase : Union[str, Any] = list(processed.keys() )[0] lowercase : Any = processed[key] if isinstance(a_ , a_ ): lowercase : List[str] = len(a_ ) else: lowercase : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowercase : str = observed_batch_size lowercase : Optional[int] = processed lowercase : List[str] = 0 while self._loader_batch_index < self.loader_batch_size: lowercase : Union[str, Any] = self.loader_batch_item() lowercase : Tuple = item.pop("is_last" ) accumulator.append(a_ ) if is_last: return accumulator else: lowercase : Any = processed lowercase : Dict = item.pop("is_last" ) accumulator.append(a_ ) return accumulator class a__ ( __lowerCamelCase ): def __init__( self , _a , _a ): lowercase : int = dataset lowercase : Dict = key def __len__( self ): return len(self.dataset ) def __getitem__( self , _a ): return self.dataset[i][self.key] class a__ ( __lowerCamelCase ): def __init__( self , _a , _a , _a ): lowercase : Optional[Any] = dataset lowercase : Optional[int] = keya lowercase : str = keya def __len__( self ): return len(self.dataset ) def __getitem__( self , _a ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
707
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer _A : Dict = logging.get_logger(__name__) _A : Union[str, Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } _A : str = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } _A : Optional[int] = { """facebook/blenderbot_small-90M""": 5_12, } class a__ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = BlenderbotSmallTokenizer def __init__( self , _a=None , _a=None , _a="<|endoftext|>" , _a="<|endoftext|>" , _a="<|endoftext|>" , _a=False , _a=True , **_a , ): super().__init__( ByteLevelBPETokenizer( vocab=_a , merges=_a , add_prefix_space=_a , trim_offsets=_a , ) , bos_token=_a , eos_token=_a , unk_token=_a , **_a , ) lowercase : Dict = add_prefix_space def __magic_name__ ( self , _a , _a=None ): lowercase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __magic_name__ ( self , _a , _a = None ): lowercase : List[str] = [self.sep_token_id] lowercase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
518
0
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or number < 0: raise ValueError('Input must be a non-negative integer' ) _lowerCAmelCase = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
580
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple=13 , UpperCAmelCase_ : Union[str, Any]=7 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[int]=99 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Tuple=37 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Dict=0 , ) -> int: """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope _lowerCAmelCase = projection_dim def __lowerCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) _lowerCAmelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] ) -> int: """simple docstring""" _lowerCAmelCase = TFDPRContextEncoder(config=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] ) -> int: """simple docstring""" _lowerCAmelCase = TFDPRQuestionEncoder(config=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = TFDPRReader(config=UpperCAmelCase_ ) _lowerCAmelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def __lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: int = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_: List[str] = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} SCREAMING_SNAKE_CASE_: str = False SCREAMING_SNAKE_CASE_: Optional[Any] = False SCREAMING_SNAKE_CASE_: Union[str, Any] = False SCREAMING_SNAKE_CASE_: List[str] = False SCREAMING_SNAKE_CASE_: List[str] = False def __lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" _lowerCAmelCase = TFDPRModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def __lowerCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def __lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCAmelCase_ ) def __lowerCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCAmelCase_ ) def __lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCAmelCase_ ) @slow def __lowerCamelCase ( self : str ) -> str: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFDPRContextEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFDPRQuestionEncoder.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFDPRReader.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCamelCase ( self : str ) -> int: """simple docstring""" _lowerCAmelCase = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) _lowerCAmelCase = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _lowerCAmelCase = model(UpperCAmelCase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _lowerCAmelCase = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
580
1
from __future__ import annotations class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __lowercase : str , __lowercase : str ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = text, pattern UpperCAmelCase_ , UpperCAmelCase_ = len(__lowercase ), len(__lowercase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowercase : str ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowercase : int ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' UpperCAmelCase_ = [] for i in range(self.textLen - self.patLen + 1 ): UpperCAmelCase_ = self.mismatch_in_text(__lowercase ) if mismatch_index == -1: positions.append(__lowercase ) else: UpperCAmelCase_ = self.match_in_pattern(self.text[mismatch_index] ) UpperCAmelCase_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions UpperCamelCase__ = """ABAABA""" UpperCamelCase__ = """AB""" UpperCamelCase__ = BoyerMooreSearch(text, pattern) UpperCamelCase__ = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : List[Any] = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
486
0
"""simple docstring""" from statistics import mean, stdev def _snake_case ( snake_case__ : list , snake_case__ : int = 3 ): A = min(snake_case__ ) A = max(snake_case__ ) # normalize data return [round((x - x_min) / (x_max - x_min) , snake_case__ ) for x in data] def _snake_case ( snake_case__ : list , snake_case__ : int = 3 ): A = mean(snake_case__ ) A = stdev(snake_case__ ) # standardize data return [round((x - mu) / (sigma) , snake_case__ ) for x in data]
91
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowercase = get_logger(__name__) def _snake_case ( snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : str=0 ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' A = os.path.join(snake_case__ , snake_case__ ) if accelerator.process_index == 0: logger.info(F'Saving model to {output_model_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Saving model to {output_model_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A = os.path.join(snake_case__ , F'{MODEL_NAME}_{model_index}' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'Saving model to {ckpt_dir}' ) A = {'model': state_dict} dist_cp.save_state_dict( state_dict=snake_case__ , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Model saved to {ckpt_dir}' ) def _snake_case ( snake_case__ : int , snake_case__ : List[str] , snake_case__ : str , snake_case__ : str , snake_case__ : Any=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return A = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading model from {input_model_file}' ) A = torch.load(snake_case__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: A = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading model from {input_model_file}' ) A = torch.load(snake_case__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: A = ( os.path.join(snake_case__ , F'{MODEL_NAME}_{model_index}' ) if F'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(F'Loading model from {ckpt_dir}' ) A = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case__ , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , planner=DefaultLoadPlanner() , ) A = state_dict['model'] logger.info(F'Model loaded from {ckpt_dir}' ) model.load_state_dict(snake_case__ ) def _snake_case ( snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Any=0 ): os.makedirs(snake_case__ , exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): A = FSDP.optim_state_dict(snake_case__ , snake_case__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: A = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Saving Optimizer state to {output_optimizer_file}' ) torch.save(snake_case__ , snake_case__ ) logger.info(F'Optimizer state saved in {output_optimizer_file}' ) else: A = os.path.join(snake_case__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) logger.info(F'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Optimizer state saved in {ckpt_dir}' ) def _snake_case ( snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : Optional[int]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: A = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: A = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) A = os.path.join(snake_case__ , snake_case__ ) logger.info(F'Loading Optimizer state from {input_optimizer_file}' ) A = torch.load(snake_case__ ) logger.info(F'Optimizer state loaded from {input_optimizer_file}' ) else: A = ( os.path.join(snake_case__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) if F'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(F'Loading Optimizer from {ckpt_dir}' ) A = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(snake_case__ ) , ) A = optim_state['optimizer'] logger.info(F'Optimizer loaded from {ckpt_dir}' ) A = FSDP.optim_state_dict_to_load(snake_case__ , snake_case__ , snake_case__ ) optimizer.load_state_dict(snake_case__ )
91
1
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(SCREAMING_SNAKE_CASE_ ) ) def __a(SCREAMING_SNAKE_CASE_ : list[list[int]] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if index == len(SCREAMING_SNAKE_CASE_ ): return True # Recursive Step for i in range(SCREAMING_SNAKE_CASE_ ): if valid_coloring(graph[index] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # Color current vertex _lowerCAmelCase = i # Validate coloring if util_color(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index + 1 ): return True # Backtrack _lowerCAmelCase = -1 return False def __a(SCREAMING_SNAKE_CASE_ : list[list[int]] , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = [-1] * len(SCREAMING_SNAKE_CASE_ ) if util_color(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 0 ): return colored_vertices return []
489
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCAmelCase_ : def _snake_case ( self , _lowerCAmelCase ) -> Tuple: raise NotImplementedError() def _snake_case ( self ) -> Optional[int]: raise NotImplementedError() class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = False , **_lowerCAmelCase ) -> str: _lowerCAmelCase = tokenizer _lowerCAmelCase = skip_prompt _lowerCAmelCase = decode_kwargs # variables used in the streaming process _lowerCAmelCase = [] _lowerCAmelCase = 0 _lowerCAmelCase = True def _snake_case ( self , _lowerCAmelCase ) -> List[Any]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: _lowerCAmelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _lowerCAmelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _lowerCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): _lowerCAmelCase = text[self.print_len :] _lowerCAmelCase = [] _lowerCAmelCase = 0 # If the last token is a CJK character, we print the characters. elif len(_lowerCAmelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _lowerCAmelCase = text[self.print_len :] self.print_len += len(_lowerCAmelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _lowerCAmelCase = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(_lowerCAmelCase ) self.on_finalized_text(_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: # Flush the cache, if it exists if len(self.token_cache ) > 0: _lowerCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _lowerCAmelCase = text[self.print_len :] _lowerCAmelCase = [] _lowerCAmelCase = 0 else: _lowerCAmelCase = "" _lowerCAmelCase = True self.on_finalized_text(_lowerCAmelCase , stream_end=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = False ) -> List[Any]: print(_lowerCAmelCase , flush=_lowerCAmelCase , end="" if not stream_end else None ) def _snake_case ( self , _lowerCAmelCase ) -> Tuple: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False class lowerCAmelCase_ ( __magic_name__ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = None , **_lowerCAmelCase ) -> Dict: super().__init__(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = Queue() _lowerCAmelCase = None _lowerCAmelCase = timeout def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = False ) -> Any: self.text_queue.put(_lowerCAmelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> int: return self def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
489
1
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): @register_to_config def __init__( self , *, _lowerCamelCase = 4 , _lowerCamelCase = 768 , _lowerCamelCase , _lowerCamelCase , ): super().__init__() lowerCAmelCase_ = nn.Parameter(torch.zeros(_lowerCamelCase ) ) # parameters for additional clip time embeddings lowerCAmelCase_ = nn.Linear(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = nn.Linear(_lowerCamelCase , _lowerCamelCase ) # parameters for encoder hidden states lowerCAmelCase_ = clip_extra_context_tokens lowerCAmelCase_ = nn.Linear( _lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) lowerCAmelCase_ = nn.Linear(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = nn.LayerNorm(_lowerCamelCase ) def UpperCAmelCase_ ( self , *, _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings lowerCAmelCase_ = image_embeddings.shape[0] lowerCAmelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) lowerCAmelCase_ = classifier_free_guidance_embeddings.expand( _lowerCamelCase , -1 ) lowerCAmelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] lowerCAmelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... lowerCAmelCase_ = self.embedding_proj(_lowerCamelCase ) lowerCAmelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_lowerCamelCase ) lowerCAmelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" lowerCAmelCase_ = self.clip_extra_context_tokens_proj(_lowerCamelCase ) lowerCAmelCase_ = clip_extra_context_tokens.reshape(_lowerCamelCase , -1 , self.clip_extra_context_tokens ) lowerCAmelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) lowerCAmelCase_ = self.encoder_hidden_states_proj(_lowerCamelCase ) lowerCAmelCase_ = self.text_encoder_hidden_states_norm(_lowerCamelCase ) lowerCAmelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
274
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase_ = 'Usage of script: script_name <size_of_canvas:int>' lowercase_ = [0] * 1_0_0 + [1] * 1_0 random.shuffle(choice) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : int = [[False for i in range(SCREAMING_SNAKE_CASE__ )] for j in range(SCREAMING_SNAKE_CASE__ )] return canvas def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): for i, row in enumerate(SCREAMING_SNAKE_CASE__ ): for j, _ in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = bool(random.getrandbits(1 ) ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = np.array(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(SCREAMING_SNAKE_CASE__ ): for c, pt in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : int = __judge_point( SCREAMING_SNAKE_CASE__ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __lowerCamelCase : Any = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __lowerCamelCase : list[list[bool]] = current_canvas.tolist() return return_canvas def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Optional[Any] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __lowerCamelCase : Tuple = pt if pt: if alive < 2: __lowerCamelCase : Optional[Any] = False elif alive == 2 or alive == 3: __lowerCamelCase : Any = True elif alive > 3: __lowerCamelCase : Dict = False else: if alive == 3: __lowerCamelCase : Tuple = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase_ = int(sys.argv[1]) # main working structure of this module. lowercase_ = create_canvas(canvas_size) seed(c) lowercase_ ,lowercase_ = plt.subplots() fig.show() lowercase_ = ListedColormap(['w', 'k']) try: while True: lowercase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
669
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ : Optional[int] = 16 lowercase_ : Tuple = 32 def SCREAMING_SNAKE_CASE ( lowercase_ : Accelerator , lowercase_ : int = 16 ): lowercase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase_ : int ): # max_length=None => use the model max length (it's actually the default) lowercase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase_ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase = 16 elif accelerator.mixed_precision != "no": lowercase = 8 else: lowercase = None return tokenizer.pad( lowercase_ , padding="""longest""" , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) lowercase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase_ : Any = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Dict ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowercase_ ) == "1": lowercase = 2 # Initialize accelerator lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase = config["""lr"""] lowercase = int(config["""num_epochs"""] ) lowercase = int(config["""seed"""] ) lowercase = int(config["""batch_size"""] ) lowercase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowercase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase = batch_size // MAX_GPU_BATCH_SIZE lowercase = MAX_GPU_BATCH_SIZE set_seed(lowercase_ ) lowercase , lowercase = get_dataloaders(lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase = model.to(accelerator.device ) # Instantiate optimizer lowercase = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler lowercase = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase = model(**lowercase_ ) lowercase = outputs.loss lowercase = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowercase = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase = model(**lowercase_ ) lowercase = outputs.logits.argmax(dim=-1 ) lowercase , lowercase = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowercase_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowercase_ ) def SCREAMING_SNAKE_CASE ( ): lowercase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowercase_ , default=lowercase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase = parser.parse_args() lowercase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
711
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
0
'''simple docstring''' import math def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(lowerCAmelCase__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
75
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase__ =logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class A__: lowerCAmelCase = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''The column name of the images in the files.'''} ) lowerCAmelCase = field(default=__magic_name__ , metadata={'''help''': '''A folder containing the training data.'''} ) lowerCAmelCase = field(default=__magic_name__ , metadata={'''help''': '''A folder containing the validation data.'''} ) lowerCAmelCase = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) lowerCAmelCase = field( default=__magic_name__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase = field( default=__magic_name__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _a ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if self.train_dir is not None: __SCREAMING_SNAKE_CASE = self.train_dir if self.validation_dir is not None: __SCREAMING_SNAKE_CASE = self.validation_dir __SCREAMING_SNAKE_CASE = data_files if data_files else None @dataclass class A__: lowerCAmelCase = field( default=__magic_name__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) lowerCAmelCase = field( default=__magic_name__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) lowerCAmelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCAmelCase = field(default=__magic_name__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) lowerCAmelCase = field( default=__magic_name__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCAmelCase = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) lowerCAmelCase = field( default=__magic_name__ , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class A__( __magic_name__ ): lowerCAmelCase = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _a ( UpperCAmelCase__ ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def _a ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , UpperCAmelCase__ , UpperCAmelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. __SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __SCREAMING_SNAKE_CASE = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCAmelCase__ ) and data_args.train_val_split > 0.0: __SCREAMING_SNAKE_CASE = ds['''train'''].train_test_split(data_args.train_val_split ) __SCREAMING_SNAKE_CASE = split['''train'''] __SCREAMING_SNAKE_CASE = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: __SCREAMING_SNAKE_CASE = ViTMAEConfig.from_pretrained(model_args.config_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: __SCREAMING_SNAKE_CASE = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __SCREAMING_SNAKE_CASE = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCAmelCase__ ) elif model_args.model_name_or_path: __SCREAMING_SNAKE_CASE = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = ViTImageProcessor() # create model if model_args.model_name_or_path: __SCREAMING_SNAKE_CASE = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) __SCREAMING_SNAKE_CASE = ViTMAEForPreTraining(UpperCAmelCase__ ) if training_args.do_train: __SCREAMING_SNAKE_CASE = ds['''train'''].column_names else: __SCREAMING_SNAKE_CASE = ds['''validation'''].column_names if data_args.image_column_name is not None: __SCREAMING_SNAKE_CASE = data_args.image_column_name elif "image" in column_names: __SCREAMING_SNAKE_CASE = '''image''' elif "img" in column_names: __SCREAMING_SNAKE_CASE = '''img''' else: __SCREAMING_SNAKE_CASE = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __SCREAMING_SNAKE_CASE = image_processor.size['''shortest_edge'''] else: __SCREAMING_SNAKE_CASE = (image_processor.size['''height'''], image_processor.size['''width''']) __SCREAMING_SNAKE_CASE = Compose( [ Lambda(lambda UpperCAmelCase__ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(UpperCAmelCase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = [transforms(UpperCAmelCase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: __SCREAMING_SNAKE_CASE = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCAmelCase__ ) # Compute absolute learning rate __SCREAMING_SNAKE_CASE = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __SCREAMING_SNAKE_CASE = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer __SCREAMING_SNAKE_CASE = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: __SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: __SCREAMING_SNAKE_CASE = last_checkpoint __SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __SCREAMING_SNAKE_CASE = trainer.evaluate() trainer.log_metrics('''eval''' , UpperCAmelCase__ ) trainer.save_metrics('''eval''' , UpperCAmelCase__ ) # Write model card and (optionally) push to hub __SCREAMING_SNAKE_CASE = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) def _a ( UpperCAmelCase__ ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
482
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class snake_case_ ( lowercase__ ): def __init__( self , a_ , a_ ): a_ : List[str] = params a_ : List[Any] = np.array(__lowercase ) a_ : Dict = np.array([len(__lowercase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , a_ ): return (self.token_ids[index], self.lengths[index]) def __len__( self ): return len(self.lengths ) def snake_case_ ( self ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def snake_case_ ( self ): a_ : Optional[Any] = self.params.max_model_input_size a_ : Any = self.lengths > max_len logger.info(F"""Splitting {sum(__lowercase )} too long sequences.""" ) def divide_chunks(a_ , a_ ): return [l[i : i + n] for i in range(0 , len(__lowercase ) , __lowercase )] a_ : Union[str, Any] = [] a_ : int = [] if self.params.mlm: a_ , a_ : Tuple = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: a_ , a_ : Optional[int] = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: a_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: a_ : int = np.insert(__lowercase , 0 , __lowercase ) if sub_s[-1] != sep_id: a_ : Optional[int] = np.insert(__lowercase , len(__lowercase ) , __lowercase ) assert len(__lowercase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__lowercase ) new_tok_ids.extend(__lowercase ) new_lengths.extend([len(__lowercase ) for l in sub_seqs] ) a_ : Optional[Any] = np.array(__lowercase ) a_ : Union[str, Any] = np.array(__lowercase ) def snake_case_ ( self ): a_ : int = len(self ) a_ : Optional[Any] = self.lengths > 1_1 a_ : Tuple = self.token_ids[indices] a_ : Optional[Any] = self.lengths[indices] a_ : Any = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def snake_case_ ( self ): if "unk_token" not in self.params.special_tok_ids: return else: a_ : Tuple = self.params.special_tok_ids["unk_token"] a_ : Union[str, Any] = len(self ) a_ : Dict = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) a_ : Dict = (unk_occs / self.lengths) < 0.5 a_ : str = self.token_ids[indices] a_ : str = self.lengths[indices] a_ : List[str] = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def snake_case_ ( self ): if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def snake_case_ ( self , a_ ): a_ : Optional[Any] = [t[0] for t in batch] a_ : int = [t[1] for t in batch] assert len(__lowercase ) == len(__lowercase ) # Max for paddings a_ : Union[str, Any] = max(__lowercase ) # Pad token ids if self.params.mlm: a_ : List[Any] = self.params.special_tok_ids["pad_token"] else: a_ : Dict = self.params.special_tok_ids["unk_token"] a_ : Optional[int] = [list(t.astype(__lowercase ) ) + [pad_idx] * (max_seq_len_ - len(__lowercase )) for t in token_ids] assert len(tk_ ) == len(__lowercase ) assert all(len(__lowercase ) == max_seq_len_ for t in tk_ ) a_ : Union[str, Any] = torch.tensor(tk_ ) # (bs, max_seq_len_) a_ : Any = torch.tensor(__lowercase ) # (bs) return tk_t, lg_t
715
"""simple docstring""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Tuple: a_ : List[Any] = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] ) a_ : List[str] = MaskFormerConfig(backbone_config=SCREAMING_SNAKE_CASE__ ) a_ : Dict = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok a_ : List[str] = 847 a_ : Optional[Any] = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok a_ : List[str] = 150 a_ : Tuple = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok a_ : Union[str, Any] = 171 a_ : Union[str, Any] = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO a_ : Optional[Any] = 133 a_ : List[str] = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok a_ : Union[str, Any] = 19 a_ : Any = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok a_ : int = 65 a_ : Any = "mapillary-vistas-id2label.json" a_ : List[str] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, repo_type="dataset" ), "r" ) ) a_ : Optional[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} return config def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> List[Any]: a_ : str = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> int: a_ : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = val def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> List[Any]: a_ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a_ : Optional[int] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a_ : List[str] = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) a_ : str = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a_ : Tuple = in_proj_weight[:dim, :] a_ : Union[str, Any] = in_proj_bias[: dim] a_ : Dict = in_proj_weight[ dim : dim * 2, : ] a_ : Tuple = in_proj_bias[ dim : dim * 2 ] a_ : Optional[int] = in_proj_weight[ -dim :, : ] a_ : str = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Dict: # fmt: off a_ : List[str] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) a_ : Optional[int] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) a_ : int = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a_ : int = in_proj_weight[: hidden_size, :] a_ : Tuple = in_proj_bias[:config.hidden_size] a_ : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] a_ : Dict = in_proj_bias[hidden_size : hidden_size * 2] a_ : Optional[int] = in_proj_weight[-hidden_size :, :] a_ : List[str] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) a_ : Union[str, Any] = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) a_ : str = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict a_ : Dict = in_proj_weight[: hidden_size, :] a_ : Optional[Any] = in_proj_bias[:config.hidden_size] a_ : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] a_ : str = in_proj_bias[hidden_size : hidden_size * 2] a_ : List[Any] = in_proj_weight[-hidden_size :, :] a_ : Dict = in_proj_bias[-hidden_size :] # fmt: on def lowerCAmelCase_ ( ) -> torch.Tensor: a_ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = False ) -> Optional[int]: a_ : List[Any] = get_maskformer_config(SCREAMING_SNAKE_CASE__ ) # load original state_dict with open(SCREAMING_SNAKE_CASE__, "rb" ) as f: a_ : int = pickle.load(SCREAMING_SNAKE_CASE__ ) a_ : Optional[int] = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys a_ : List[Any] = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) read_in_swin_q_k_v(SCREAMING_SNAKE_CASE__, config.backbone_config ) read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # update to torch tensors for key, value in state_dict.items(): a_ : Tuple = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # load 🤗 model a_ : Tuple = MaskFormerForInstanceSegmentation(SCREAMING_SNAKE_CASE__ ) model.eval() for name, param in model.named_parameters(): print(SCREAMING_SNAKE_CASE__, param.shape ) a_ , a_ : int = model.load_state_dict(SCREAMING_SNAKE_CASE__, strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(SCREAMING_SNAKE_CASE__ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results a_ : List[Any] = prepare_img() if "vistas" in model_name: a_ : int = 65 elif "cityscapes" in model_name: a_ : str = 65_535 else: a_ : int = 255 a_ : List[str] = True if "ade" in model_name else False a_ : Any = MaskFormerImageProcessor(ignore_index=SCREAMING_SNAKE_CASE__, reduce_labels=SCREAMING_SNAKE_CASE__ ) a_ : int = image_processor(SCREAMING_SNAKE_CASE__, return_tensors="pt" ) a_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) print("Logits:", outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": a_ : Union[str, Any] = torch.tensor( [[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], SCREAMING_SNAKE_CASE__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
370
0
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCAmelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCAmelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCAmelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) __UpperCAmelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions __UpperCAmelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) __UpperCAmelCase = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCAmelCase = np.expand_dims(test_image, axis=0) __UpperCAmelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCAmelCase = '''Normal''' if result[0][0] == 1: __UpperCAmelCase = '''Abnormality detected'''
40
import os import pytest from attr import dataclass __UpperCAmelCase = '''us-east-1''' # defaults region @dataclass class lowerCAmelCase_ : UpperCAmelCase__ : str UpperCAmelCase__ : Tuple = "arn:aws:iam::558105141721:role/sagemaker_execution_role" UpperCAmelCase__ : Union[str, Any] = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } UpperCAmelCase__ : Dict = {**hyperparameters, "max_steps": 1000} @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def snake_case_ ( self ) -> str: return F"""{self.framework}-transfromers-test""" @property def snake_case_ ( self ) -> str: return F"""./tests/sagemaker/scripts/{self.framework}""" @property def snake_case_ ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def UpperCamelCase ( snake_case__ : Any ) -> Union[str, Any]: UpperCamelCase : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
40
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase_ = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase_ = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } UpperCAmelCase_ = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ElectraTokenizer def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_="[UNK]" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="[PAD]" , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[MASK]" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> List[Any]: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _snake_case = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) _snake_case = do_lower_case _snake_case = strip_accents _snake_case = tokenize_chinese_chars _snake_case = normalizer_class(**lowerCAmelCase_ ) _snake_case = do_lower_case def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> str: _snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
541
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=32 , lowerCAmelCase_=2 , lowerCAmelCase_=3 , lowerCAmelCase_=16 , lowerCAmelCase_=[1, 2, 1] , lowerCAmelCase_=[2, 2, 4] , lowerCAmelCase_=2 , lowerCAmelCase_=2.0 , lowerCAmelCase_=True , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_="gelu" , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=10 , lowerCAmelCase_=8 , ) -> Tuple: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = patch_norm _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = is_training _snake_case = scope _snake_case = use_labels _snake_case = type_sequence_label_size _snake_case = encoder_stride def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> Optional[Any]: return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = SwinvaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) _snake_case = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _snake_case = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _snake_case = SwinvaForMaskedImageModeling(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _snake_case = 1 _snake_case = SwinvaForMaskedImageModeling(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _snake_case = self.type_sequence_label_size _snake_case = SwinvaForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) lowerCAmelCase_ = ( {'''feature-extraction''': SwinvaModel, '''image-classification''': SwinvaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> Any: _snake_case = SwinvaModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , embed_dim=37 ) def lowerCAmelCase ( self ) -> Union[str, Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def lowerCAmelCase ( self ) -> Union[str, Any]: pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> Optional[Any]: pass def lowerCAmelCase ( self ) -> Dict: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear ) ) def lowerCAmelCase ( self ) -> Optional[int]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Dict: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.attentions _snake_case = len(self.model_tester.depths ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = config.window_size**2 _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _snake_case = len(lowerCAmelCase_ ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): _snake_case = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _snake_case = 2 self.assertEqual(out_len + added_hidden_states , len(lowerCAmelCase_ ) ) _snake_case = outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.hidden_states _snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) # Swinv2 has a different seq_length _snake_case = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _snake_case = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _snake_case = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _snake_case , _snake_case , _snake_case , _snake_case = reshaped_hidden_states[0].shape _snake_case = ( reshaped_hidden_states[0].view(lowerCAmelCase_ , lowerCAmelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase ( self ) -> Tuple: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _snake_case = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Tuple: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = 3 _snake_case = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _snake_case = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _snake_case = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _snake_case = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _snake_case = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True self.check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , (padded_height, padded_width) ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> int: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = SwinvaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> str: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(lowerCAmelCase_ ) for model_class in self.all_model_classes: _snake_case = model_class(config=lowerCAmelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Dict: return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self ) -> List[str]: _snake_case = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( lowerCAmelCase_ ) _snake_case = self.default_image_processor _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _snake_case = model(**lowerCAmelCase_ ) # verify the logits _snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
541
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __A : Union[str, Any] = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1_000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __A : Tuple = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1_000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __A : Tuple = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __A : int = { "num_train_timesteps": 40, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } __A : Dict = { "num_train_timesteps": 201, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } __A : Dict = { "num_train_timesteps": 151, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: """simple docstring""" _A = checkpoint[F"{old_prefix}.in_layers.0.weight"] _A = checkpoint[F"{old_prefix}.in_layers.0.bias"] _A = checkpoint[F"{old_prefix}.in_layers.2.weight"] _A = checkpoint[F"{old_prefix}.in_layers.2.bias"] _A = checkpoint[F"{old_prefix}.emb_layers.1.weight"] _A = checkpoint[F"{old_prefix}.emb_layers.1.bias"] _A = checkpoint[F"{old_prefix}.out_layers.0.weight"] _A = checkpoint[F"{old_prefix}.out_layers.0.bias"] _A = checkpoint[F"{old_prefix}.out_layers.3.weight"] _A = checkpoint[F"{old_prefix}.out_layers.3.bias"] if has_skip: _A = checkpoint[F"{old_prefix}.skip_connection.weight"] _A = checkpoint[F"{old_prefix}.skip_connection.bias"] return new_checkpoint def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Any: """simple docstring""" _A, _A, _A = checkpoint[F"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) _A, _A, _A = checkpoint[F"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) _A = checkpoint[F"{old_prefix}.norm.weight"] _A = checkpoint[F"{old_prefix}.norm.bias"] _A = weight_q.squeeze(-1 ).squeeze(-1 ) _A = bias_q.squeeze(-1 ).squeeze(-1 ) _A = weight_k.squeeze(-1 ).squeeze(-1 ) _A = bias_k.squeeze(-1 ).squeeze(-1 ) _A = weight_v.squeeze(-1 ).squeeze(-1 ) _A = bias_v.squeeze(-1 ).squeeze(-1 ) _A = ( checkpoint[F"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) _A = checkpoint[F"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _A = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) _A = {} _A = checkpoint['time_embed.0.weight'] _A = checkpoint['time_embed.0.bias'] _A = checkpoint['time_embed.2.weight'] _A = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _A = checkpoint['label_emb.weight'] _A = checkpoint['input_blocks.0.0.weight'] _A = checkpoint['input_blocks.0.0.bias'] _A = unet_config['down_block_types'] _A = unet_config['layers_per_block'] _A = unet_config['attention_head_dim'] _A = unet_config['block_out_channels'] _A = 1 _A = channels_list[0] for i, layer_type in enumerate(_SCREAMING_SNAKE_CASE ): _A = channels_list[i] _A = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_SCREAMING_SNAKE_CASE ): _A = F"down_blocks.{i}.resnets.{j}" _A = F"input_blocks.{current_layer}.0" _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_SCREAMING_SNAKE_CASE ): _A = F"down_blocks.{i}.resnets.{j}" _A = F"input_blocks.{current_layer}.0" _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) _A = F"down_blocks.{i}.attentions.{j}" _A = F"input_blocks.{current_layer}.1" _A = convert_attention( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(_SCREAMING_SNAKE_CASE ) - 1: _A = F"down_blocks.{i}.downsamplers.0" _A = F"input_blocks.{current_layer}.0" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) current_layer += 1 _A = current_channels # hardcoded the mid-block for now _A = 'mid_block.resnets.0' _A = 'middle_block.0' _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = 'mid_block.attentions.0' _A = 'middle_block.1' _A = convert_attention(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = 'mid_block.resnets.1' _A = 'middle_block.2' _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = 0 _A = unet_config['up_block_types'] for i, layer_type in enumerate(_SCREAMING_SNAKE_CASE ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _A = F"up_blocks.{i}.resnets.{j}" _A = F"output_blocks.{current_layer}.0" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(_SCREAMING_SNAKE_CASE ) - 1: _A = F"up_blocks.{i}.upsamplers.0" _A = F"output_blocks.{current_layer-1}.1" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _A = F"up_blocks.{i}.resnets.{j}" _A = F"output_blocks.{current_layer}.0" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , has_skip=_SCREAMING_SNAKE_CASE ) _A = F"up_blocks.{i}.attentions.{j}" _A = F"output_blocks.{current_layer}.1" _A = convert_attention( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) current_layer += 1 if i != len(_SCREAMING_SNAKE_CASE ) - 1: _A = F"up_blocks.{i}.upsamplers.0" _A = F"output_blocks.{current_layer-1}.2" _A = convert_resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _A = checkpoint['out.0.weight'] _A = checkpoint['out.0.bias'] _A = checkpoint['out.2.weight'] _A = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __A : Optional[Any] = parser.parse_args() __A : List[str] = strabool(args.class_cond) __A : List[str] = os.path.basename(args.unet_path) print(f"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: __A : str = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __A : Any = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __A : List[Any] = TEST_UNET_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: __A : Optional[int] = None __A : str = con_pt_to_diffuser(args.unet_path, unet_config) __A : Tuple = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __A : Union[str, Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __A : Any = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __A : Optional[int] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") __A : Dict = CMStochasticIterativeScheduler(**scheduler_config) __A : List[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
27
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
478
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "levit" def __init__( self , __UpperCamelCase=224 , __UpperCamelCase=3 , __UpperCamelCase=3 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=16 , __UpperCamelCase=[128, 256, 384] , __UpperCamelCase=[4, 8, 12] , __UpperCamelCase=[4, 4, 4] , __UpperCamelCase=[16, 16, 16] , __UpperCamelCase=0 , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=0.0_2 , **__UpperCamelCase , ): '''simple docstring''' super().__init__(**__UpperCamelCase ) __a : int = image_size __a : str = num_channels __a : str = kernel_size __a : Tuple = stride __a : List[Any] = padding __a : Optional[Any] = hidden_sizes __a : str = num_attention_heads __a : Optional[Any] = depths __a : Union[str, Any] = key_dim __a : List[str] = drop_path_rate __a : Union[str, Any] = patch_size __a : Optional[Any] = attention_ratio __a : List[str] = mlp_ratio __a : Union[str, Any] = initializer_range __a : Optional[int] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = version.parse("1.11" ) @property def __lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __lowerCamelCase ( self ): '''simple docstring''' return 1E-4
697
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "" lowercase__ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ): '''simple docstring''' super().__init__(self , **__UpperCamelCase ) __a : int = repo_info __a : int = token __a : Any = None def __lowerCamelCase ( self ): '''simple docstring''' if self.dir_cache is None: __a : Union[str, Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __a : List[str] = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , ): '''simple docstring''' if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) __a : Any = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def __lowerCamelCase ( self , __UpperCamelCase , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : str = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase ): '''simple docstring''' self._get_dirs() __a : int = PurePosixPath(path.strip("""/""" ) ) __a : List[str] = {} for p, f in self.dir_cache.items(): __a : str = PurePosixPath(p.strip("""/""" ) ) __a : Optional[int] = p.parent if root == path: __a : List[str] = f __a : str = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
697
1
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowercase : List[str] = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s lowercase : Any = 3E8 # unit of c : m * s^-1 def __a ( A__ , A__ , A__ ) -> dict[str, float]: if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: lowerCAmelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCAmelCase = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCAmelCase = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
649
'''simple docstring''' import argparse import os import re import packaging.version lowercase : int = 'examples/' lowercase : int = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowercase : Union[str, Any] = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowercase : Union[str, Any] = 'README.md' def __a ( A__ , A__ , A__ ) -> Dict: with open(A__ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase = f.read() lowerCAmelCase , lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace("VERSION" , A__ ) lowerCAmelCase = re_pattern.sub(A__ , A__ ) with open(A__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(A__ ) def __a ( A__ ) -> List[Any]: for folder, directories, fnames in os.walk(A__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(A__ , A__ ) , A__ , pattern="examples" ) def __a ( A__ , A__=False ) -> Tuple: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A__ , A__ , A__ ) if not patch: update_version_in_examples(A__ ) def __a ( ) -> List[str]: lowerCAmelCase = "🤗 Transformers currently provides the following architectures" lowerCAmelCase = "1. Want to contribute a new model?" with open(A__ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): lowerCAmelCase = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(A__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(A__ ) def __a ( ) -> Optional[Any]: with open(REPLACE_FILES["init"] , "r" ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS["init"][0].search(A__ ).groups()[0] return packaging.version.parse(A__ ) def __a ( A__=False ) -> Optional[int]: lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: lowerCAmelCase = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. lowerCAmelCase = input(f"Which version are you releasing? [{default_version}]" ) if len(A__ ) == 0: lowerCAmelCase = default_version print(f"Updating version to {version}." ) global_version_update(A__ , patch=A__ ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def __a ( ) -> Tuple: lowerCAmelCase = get_version() lowerCAmelCase = f"{current_version.major}.{current_version.minor + 1}.0.dev0" lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(f"Which version are we developing now? [{dev_version}]" ) if len(A__ ) == 0: lowerCAmelCase = dev_version print(f"Updating version to {version}." ) global_version_update(A__ ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowercase : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
649
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
198
import sys a__ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowercase ( SCREAMING_SNAKE_CASE__ : str = N ) -> int: _snake_case : int = -sys.maxsize - 1 for i in range(len(SCREAMING_SNAKE_CASE__ ) - 12 ): _snake_case : Optional[int] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _snake_case : List[str] = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
198
1
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowercase__ : Tuple = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowercase__ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") lowercase__ : Optional[Any] = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") lowercase__ : Optional[Any] = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") lowercase__ : Any = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") lowercase__ : str = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
390
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : Optional[int] = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''vit_msn''' def __init__( self : List[str] , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : Optional[int]=12 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : int=3072 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : Union[str, Any]=0.02 , UpperCAmelCase__ : List[Any]=1e-06 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Any=16 , UpperCAmelCase__ : Optional[Any]=3 , UpperCAmelCase__ : Optional[int]=True , **UpperCAmelCase__ : List[Any] , ) ->int: super().__init__(**UpperCAmelCase__ ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = qkv_bias
390
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'conditional_detr' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Tuple =backbone_config.get("""model_type""" ) A__ : List[str] =CONFIG_MAPPING[backbone_model_type] A__ : Dict =config_class.from_dict(lowerCAmelCase_ ) A__ : int =use_timm_backbone A__ : List[Any] =backbone_config A__ : Optional[int] =num_channels A__ : Optional[int] =num_queries A__ : Union[str, Any] =d_model A__ : Optional[int] =encoder_ffn_dim A__ : Optional[Any] =encoder_layers A__ : int =encoder_attention_heads A__ : Optional[Any] =decoder_ffn_dim A__ : Tuple =decoder_layers A__ : Optional[Any] =decoder_attention_heads A__ : Tuple =dropout A__ : int =attention_dropout A__ : Dict =activation_dropout A__ : Union[str, Any] =activation_function A__ : List[str] =init_std A__ : str =init_xavier_std A__ : int =encoder_layerdrop A__ : List[Any] =decoder_layerdrop A__ : Tuple =encoder_layers A__ : Tuple =auxiliary_loss A__ : List[Any] =position_embedding_type A__ : int =backbone A__ : Optional[int] =use_pretrained_backbone A__ : str =dilation # Hungarian matcher A__ : Any =class_cost A__ : str =bbox_cost A__ : str =giou_cost # Loss coefficients A__ : Union[str, Any] =mask_loss_coefficient A__ : int =dice_loss_coefficient A__ : Union[str, Any] =cls_loss_coefficient A__ : List[str] =bbox_loss_coefficient A__ : str =giou_loss_coefficient A__ : Optional[Any] =focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : int =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : str =self.backbone_config.to_dict() A__ : int =self.__class__.model_type return output class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return 12
687
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
687
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase_ (lowercase__ ): snake_case =42 snake_case =42 def __init__( self , lowercase_ , lowercase_) -> List[Any]: super().__init__() self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__) @torch.no_grad() def __call__( self , lowercase_ = 1 , lowercase_ = 2000 , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , **lowercase_ , ) -> Union[ImagePipelineOutput, Tuple]: a__ =self.unet.config.sample_size a__ =(batch_size, 3, img_size, img_size) a__ =self.unet a__ =randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__) * self.scheduler.init_noise_sigma a__ =sample.to(self.device) self.scheduler.set_timesteps(UpperCAmelCase__) self.scheduler.set_sigmas(UpperCAmelCase__) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): a__ =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device) # correction step for _ in range(self.scheduler.config.correct_steps): a__ =self.unet(UpperCAmelCase__ , UpperCAmelCase__).sample a__ =self.scheduler.step_correct(UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__).prev_sample # prediction step a__ =model(UpperCAmelCase__ , UpperCAmelCase__).sample a__ =self.scheduler.step_pred(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__) a__ , a__ =output.prev_sample, output.prev_sample_mean a__ =sample_mean.clamp(0 , 1) a__ =sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": a__ =self.numpy_to_pil(UpperCAmelCase__) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCAmelCase__)
20
"""simple docstring""" import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = r''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : List[str] , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : List[Any] ) -> bool: raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] = None ) -> Optional[int]: __SCREAMING_SNAKE_CASE = max_length __SCREAMING_SNAKE_CASE = max_position_embeddings @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : List[str] , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : Optional[int] ) -> bool: __SCREAMING_SNAKE_CASE = input_ids.shape[-1] __SCREAMING_SNAKE_CASE = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ "exceptions, performance degradation, or nothing at all." ) return is_done class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ "with `max_length = start_length + max_new_tokens` instead." , UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = start_length __SCREAMING_SNAKE_CASE = max_new_tokens __SCREAMING_SNAKE_CASE = start_length + max_new_tokens @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : Union[str, Any] , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : Tuple ) -> bool: return input_ids.shape[-1] >= self.max_length class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[float] = None ) -> Dict: __SCREAMING_SNAKE_CASE = max_time __SCREAMING_SNAKE_CASE = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : Tuple , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : str ) -> bool: return time.time() - self.initial_timestamp > self.max_time class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" @add_start_docstrings(UpperCAmelCase__ ) def __call__( self : Dict , UpperCAmelCase__ : torch.LongTensor , UpperCAmelCase__ : torch.FloatTensor , **UpperCAmelCase__ : List[str] ) -> bool: return any(criteria(UpperCAmelCase__ , UpperCAmelCase__ ) for criteria in self ) @property def UpperCAmelCase_ ( self : Any ) -> Optional[int]: for stopping_criterium in self: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return stopping_criterium.max_length elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return stopping_criterium.max_length return None def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = stopping_criteria.max_length __SCREAMING_SNAKE_CASE = deepcopy(lowerCAmelCase_ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , lowerCAmelCase_ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=lowerCAmelCase_ ) ) return new_stopping_criteria
682
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = DiTPipeline snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS snake_case = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS snake_case = False def _snake_case ( self )->Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ : str = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) A_ : Union[str, Any] = AutoencoderKL() A_ : Optional[Any] = DDIMScheduler() A_ : str = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )->Union[str, Any]: '''simple docstring''' if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ : Any = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Optional[int] = '''cpu''' A_ : Any = self.get_dummy_components() A_ : Optional[Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : str = pipe(**_SCREAMING_SNAKE_CASE ).images A_ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) A_ : Tuple = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) A_ : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self )->int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Optional[int] = torch.manual_seed(0 ) A_ : int = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) A_ : Any = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] A_ : Any = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) A_ : List[str] = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : List[Any] = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _snake_case ( self )->str: '''simple docstring''' A_ : Tuple = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) A_ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) A_ : List[str] = ['''vase''', '''umbrella'''] A_ : List[Any] = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = torch.manual_seed(0 ) A_ : Tuple = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
152
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _a ( SCREAMING_SNAKE_CASE_ ): a_ : Optional[Any] = 'unispeech' def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_68 , SCREAMING_SNAKE_CASE__ : str=12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=30_72 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-5 , SCREAMING_SNAKE_CASE__ : int="group" , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : str=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , SCREAMING_SNAKE_CASE__ : Tuple=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE__ : Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : List[str]=1_28 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : str=0.05 , SCREAMING_SNAKE_CASE__ : Any=10 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=10 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Dict=3_20 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : int=1_00 , SCREAMING_SNAKE_CASE__ : Optional[int]=2_56 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_56 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Tuple="mean" , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : Any=2_56 , SCREAMING_SNAKE_CASE__ : Tuple=80 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : int=0.5 , **SCREAMING_SNAKE_CASE__ : Dict , ): super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = hidden_size lowerCamelCase__ = feat_extract_norm lowerCamelCase__ = feat_extract_activation lowerCamelCase__ = list(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = list(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = list(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = conv_bias lowerCamelCase__ = num_conv_pos_embeddings lowerCamelCase__ = num_conv_pos_embedding_groups lowerCamelCase__ = len(self.conv_dim ) lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = activation_dropout lowerCamelCase__ = feat_proj_dropout lowerCamelCase__ = final_dropout lowerCamelCase__ = layerdrop lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range lowerCamelCase__ = num_ctc_classes lowerCamelCase__ = vocab_size lowerCamelCase__ = do_stable_layer_norm lowerCamelCase__ = use_weighted_layer_sum lowerCamelCase__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__ = apply_spec_augment lowerCamelCase__ = mask_time_prob lowerCamelCase__ = mask_time_length lowerCamelCase__ = mask_time_min_masks lowerCamelCase__ = mask_feature_prob lowerCamelCase__ = mask_feature_length lowerCamelCase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase__ = num_codevectors_per_group lowerCamelCase__ = num_codevector_groups lowerCamelCase__ = contrastive_logits_temperature lowerCamelCase__ = feat_quantizer_dropout lowerCamelCase__ = num_negatives lowerCamelCase__ = codevector_dim lowerCamelCase__ = proj_codevector_dim lowerCamelCase__ = diversity_loss_weight # ctc loss lowerCamelCase__ = ctc_loss_reduction lowerCamelCase__ = ctc_zero_infinity # pretraining loss lowerCamelCase__ = replace_prob @property def _UpperCamelCase ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
510
"""simple docstring""" def snake_case ( _a: float , _a: float )-> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.25) = }""") print(f"""{price_plus_tax(1_25.50, 0.05) = }""")
510
1
import random from typing import Any def UpperCAmelCase ( lowercase ): """simple docstring""" for _ in range(len(lowercase ) ): __lowercase = random.randint(0 , len(lowercase ) - 1 ) __lowercase = random.randint(0 , len(lowercase ) - 1 ) __lowercase , __lowercase = data[b], data[a] return data if __name__ == "__main__": __a : List[str] = [0, 1, 2, 3, 4, 5, 6, 7] __a : Any = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
522
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __a : str = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCAmelCase ( lowercase ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if args.student_type == "roberta": __lowercase = False elif args.student_type == "gpt2": __lowercase = False def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if args.student_type == "roberta": __lowercase = False def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=lowercase , required=lowercase , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=lowercase , required=lowercase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=lowercase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=lowercase , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=lowercase , required=lowercase , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=lowercase , type=lowercase , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=lowercase , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=lowercase , required=lowercase , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=lowercase , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=lowercase , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=lowercase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=lowercase , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=lowercase , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=lowercase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=lowercase , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=lowercase , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=lowercase , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=lowercase , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=lowercase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=lowercase , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=lowercase , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=lowercase , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=lowercase , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=lowercase , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=lowercase , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=lowercase , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowercase , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=lowercase , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=lowercase , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=lowercase , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=lowercase , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=lowercase , default=4000 , help='''Checkpoint interval.''' ) __lowercase = parser.parse_args() sanity_checks(lowercase ) # ARGS # init_gpu_params(lowercase ) set_seed(lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(F"Param: {args}" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(lowercase ) , lowercase , indent=4 ) git_log(args.dump_path ) __lowercase , __lowercase , __lowercase = MODEL_CLASSES[args.student_type] __lowercase , __lowercase , __lowercase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __lowercase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __lowercase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __lowercase = tokenizer.all_special_tokens.index(lowercase ) __lowercase = tokenizer.all_special_ids[idx] logger.info(F"Special tokens {special_tok_ids}" ) __lowercase = special_tok_ids __lowercase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"Loading data from {args.data_file}" ) with open(args.data_file , '''rb''' ) as fp: __lowercase = pickle.load(lowercase ) if args.mlm: logger.info(F"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , '''rb''' ) as fp: __lowercase = pickle.load(lowercase ) __lowercase = np.maximum(lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __lowercase = 0.0 # do not predict special tokens __lowercase = torch.from_numpy(lowercase ) else: __lowercase = None __lowercase = LmSeqsDataset(params=lowercase , data=lowercase ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F"Loading student config from {args.student_config}" ) __lowercase = student_config_class.from_pretrained(args.student_config ) __lowercase = True if args.student_pretrained_weights is not None: logger.info(F"Loading pretrained weights from {args.student_pretrained_weights}" ) __lowercase = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowercase ) else: __lowercase = student_model_class(lowercase ) if args.n_gpu > 0: student.to(F"cuda:{args.local_rank}" ) logger.info('''Student loaded.''' ) # TEACHER # __lowercase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowercase ) if args.n_gpu > 0: teacher.to(F"cuda:{args.local_rank}" ) logger.info(F"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowercase , lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowercase , lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __lowercase = Distiller( params=lowercase , dataset=lowercase , token_probs=lowercase , student=lowercase , teacher=lowercase ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
522
1
def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if height >= 1: move_tower(height - 1 , lowerCamelCase , lowerCamelCase , lowerCamelCase ) move_disk(lowerCamelCase , lowerCamelCase ) move_tower(height - 1 , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' print("""moving disk from""" , lowerCamelCase , """to""" , lowerCamelCase ) def snake_case ( ): '''simple docstring''' __lowercase = int(input("""Height of hanoi: """ ).strip() ) move_tower(lowerCamelCase , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
80
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :List[Any] = 1 @register_to_config def __init__( self : str , _lowerCAmelCase : int = 1000 , _lowerCAmelCase : Optional[Union[np.ndarray, List[float]]] = None ) -> Optional[int]: """simple docstring""" self.set_timesteps(_lowerCAmelCase ) # standard deviation of the initial noise distribution __lowercase = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __lowercase = 4 # running values __lowercase = [] def _a ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, torch.device] = None ) -> int: """simple docstring""" __lowercase = num_inference_steps __lowercase = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __lowercase = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __lowercase = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __lowercase = torch.sin(steps * math.pi / 2 ) ** 2 __lowercase = (1.0 - self.betas**2) ** 0.5 __lowercase = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __lowercase = timesteps.to(_lowerCAmelCase ) __lowercase = [] def _a ( self : List[str] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : int , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) __lowercase = (self.timesteps == timestep).nonzero().item() __lowercase = timestep_index + 1 __lowercase = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(_lowerCAmelCase ) if len(self.ets ) == 1: __lowercase = self.ets[-1] elif len(self.ets ) == 2: __lowercase = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __lowercase = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __lowercase = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __lowercase = self._get_prev_sample(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase ) def _a ( self : Union[str, Any] , _lowerCAmelCase : torch.FloatTensor , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : str ) -> torch.FloatTensor: """simple docstring""" return sample def _a ( self : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Dict: """simple docstring""" __lowercase = self.alphas[timestep_index] __lowercase = self.betas[timestep_index] __lowercase = self.alphas[prev_timestep_index] __lowercase = self.betas[prev_timestep_index] __lowercase = (sample - sigma * ets) / max(_lowerCAmelCase , 1e-8 ) __lowercase = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Optional[Any] ) -> Dict: """simple docstring""" return self.config.num_train_timesteps
80
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def snake_case_ ( ): __lowercase = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) __lowercase = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) DownloadCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) EnvironmentCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) RunCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) ServeCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) UserCommands.register_subcommand(_SCREAMING_SNAKE_CASE ) AddNewModelCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) AddNewModelLikeCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) LfsCommands.register_subcommand(_SCREAMING_SNAKE_CASE ) PTtoTFCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE , "func" ): parser.print_help() exit(1 ) # Run __lowercase = args.func(_SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
655
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Any = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class __A (__magic_name__ ): snake_case :List[str] = "glpn" def __init__( self , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=[2, 2, 2, 2] , UpperCamelCase_=[8, 4, 2, 1] , UpperCamelCase_=[32, 64, 1_60, 2_56] , UpperCamelCase_=[7, 3, 3, 3] , UpperCamelCase_=[4, 2, 2, 2] , UpperCamelCase_=[1, 2, 5, 8] , UpperCamelCase_=[4, 4, 4, 4] , UpperCamelCase_="gelu" , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=0.1 , UpperCamelCase_=1E-6 , UpperCamelCase_=64 , UpperCamelCase_=10 , UpperCamelCase_=-1 , **UpperCamelCase_ , ): super().__init__(**UpperCamelCase_ ) __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : int = num_encoder_blocks __UpperCAmelCase : Optional[Any] = depths __UpperCAmelCase : List[Any] = sr_ratios __UpperCAmelCase : Tuple = hidden_sizes __UpperCAmelCase : int = patch_sizes __UpperCAmelCase : str = strides __UpperCAmelCase : Dict = mlp_ratios __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : str = drop_path_rate __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : str = decoder_hidden_size __UpperCAmelCase : Any = max_depth __UpperCAmelCase : Union[str, Any] = head_in_index
168
'''simple docstring''' import functools def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> int: """simple docstring""" __UpperCAmelCase : List[str] = len(lowerCamelCase__ ) __UpperCAmelCase : Union[str, Any] = len(lowerCamelCase__ ) @functools.cache def min_distance(lowerCamelCase__ , lowerCamelCase__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __UpperCAmelCase : Union[str, Any] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowerCamelCase__ ) , 1 + min_distance(lowerCamelCase__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
168
1
'''simple docstring''' import random class SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def snake_case__ ( lowercase__ : str ) ->tuple[list[int], list[int]]: '''simple docstring''' _UpperCamelCase : List[str] = [ord(lowercase__ ) for i in text] _UpperCamelCase : Dict = [] _UpperCamelCase : Optional[int] = [] for i in plain: _UpperCamelCase : Tuple = random.randint(1 , 300 ) _UpperCamelCase : Any = (i + k) * k cipher.append(lowercase__ ) key.append(lowercase__ ) return cipher, key @staticmethod def snake_case__ ( lowercase__ : list[int] , lowercase__ : list[int] ) ->str: '''simple docstring''' _UpperCamelCase : int = [] for i in range(len(lowercase__ ) ): _UpperCamelCase : List[Any] = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowercase__ ) ) return "".join(lowercase__ ) if __name__ == "__main__": lowerCAmelCase_ : Optional[int] = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
705
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCAmelCase_ : Tuple = """true""" def __A ( UpperCAmelCase ,UpperCAmelCase=8_2 ,UpperCAmelCase=1_6 ) -> Union[str, Any]: '''simple docstring''' set_seed(4_2 ) _UpperCamelCase : List[Any] = RegressionModel() _UpperCamelCase : Any = deepcopy(UpperCAmelCase ) _UpperCamelCase : Tuple = RegressionDataset(length=UpperCAmelCase ) _UpperCamelCase : Union[str, Any] = DataLoader(UpperCAmelCase ,batch_size=UpperCAmelCase ) model.to(accelerator.device ) _UpperCamelCase , _UpperCamelCase : Dict = accelerator.prepare(UpperCAmelCase ,UpperCAmelCase ) return model, ddp_model, dataloader def __A ( UpperCAmelCase ,UpperCAmelCase=False ) -> List[str]: '''simple docstring''' _UpperCamelCase : str = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) _UpperCamelCase : Optional[Any] = load_dataset("glue" ,"mrpc" ,split="validation" ) def tokenize_function(UpperCAmelCase ): _UpperCamelCase : Tuple = tokenizer(examples["sentence1"] ,examples["sentence2"] ,truncation=UpperCAmelCase ,max_length=UpperCAmelCase ) return outputs with accelerator.main_process_first(): _UpperCamelCase : str = dataset.map( UpperCAmelCase ,batched=UpperCAmelCase ,remove_columns=["idx", "sentence1", "sentence2"] ,) _UpperCamelCase : Optional[int] = tokenized_datasets.rename_column("label" ,"labels" ) def collate_fn(UpperCAmelCase ): if use_longest: return tokenizer.pad(UpperCAmelCase ,padding="longest" ,return_tensors="pt" ) return tokenizer.pad(UpperCAmelCase ,padding="max_length" ,max_length=1_2_8 ,return_tensors="pt" ) return DataLoader(UpperCAmelCase ,shuffle=UpperCAmelCase ,collate_fn=UpperCAmelCase ,batch_size=1_6 ) def __A ( UpperCAmelCase ,UpperCAmelCase ) -> Dict: '''simple docstring''' _UpperCamelCase : str = Accelerator(dispatch_batches=UpperCAmelCase ,split_batches=UpperCAmelCase ) _UpperCamelCase : Union[str, Any] = get_dataloader(UpperCAmelCase ,not dispatch_batches ) _UpperCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" ,return_dict=UpperCAmelCase ) _UpperCamelCase , _UpperCamelCase : Union[str, Any] = accelerator.prepare(UpperCAmelCase ,UpperCAmelCase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) -> int: '''simple docstring''' _UpperCamelCase : List[str] = [] for batch in dataloader: _UpperCamelCase , _UpperCamelCase : int = batch.values() with torch.no_grad(): _UpperCamelCase : Tuple = model(UpperCAmelCase ) _UpperCamelCase , _UpperCamelCase : List[Any] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = [], [] for logit, targ in logits_and_targets: logits.append(UpperCAmelCase ) targs.append(UpperCAmelCase ) _UpperCamelCase , _UpperCamelCase : int = torch.cat(UpperCAmelCase ), torch.cat(UpperCAmelCase ) return logits, targs def __A ( UpperCAmelCase ,UpperCAmelCase=8_2 ,UpperCAmelCase=False ,UpperCAmelCase=False ,UpperCAmelCase=1_6 ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Union[str, Any] = get_basic_setup(UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) _UpperCamelCase , _UpperCamelCase : Tuple = generate_predictions(UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) assert ( len(UpperCAmelCase ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(UpperCAmelCase )}''' def __A ( UpperCAmelCase = False ,UpperCAmelCase = False ) -> Tuple: '''simple docstring''' _UpperCamelCase : int = evaluate.load("glue" ,"mrpc" ) _UpperCamelCase , _UpperCamelCase : Any = get_mrpc_setup(UpperCAmelCase ,UpperCAmelCase ) # First do baseline _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Tuple = setup["no"] model.to(UpperCAmelCase ) model.eval() for batch in dataloader: batch.to(UpperCAmelCase ) with torch.inference_mode(): _UpperCamelCase : Optional[Any] = model(**UpperCAmelCase ) _UpperCamelCase : Any = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=UpperCAmelCase ,references=batch["labels"] ) _UpperCamelCase : List[str] = metric.compute() # Then do distributed _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): _UpperCamelCase : int = model(**UpperCAmelCase ) _UpperCamelCase : Tuple = outputs.logits.argmax(dim=-1 ) _UpperCamelCase : List[str] = batch["labels"] _UpperCamelCase , _UpperCamelCase : List[str] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=UpperCAmelCase ,references=UpperCAmelCase ) _UpperCamelCase : int = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __A ( ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Dict = Accelerator(split_batches=UpperCAmelCase ,dispatch_batches=UpperCAmelCase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(UpperCAmelCase ,UpperCAmelCase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _UpperCamelCase : int = Accelerator(split_batches=UpperCAmelCase ,dispatch_batches=UpperCAmelCase ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(UpperCAmelCase ,9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) _UpperCamelCase : int = Accelerator() test_torch_metrics(UpperCAmelCase ,5_1_2 ) accelerator.state._reset_state() def __A ( UpperCAmelCase ) -> List[str]: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
204
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
178
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : List[str] = mock.Mock() snake_case : Any = 500 snake_case : int = {} snake_case : int = HTTPError snake_case : Dict = {} # Download this model to make sure it's in the cache. snake_case : Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCamelCase__ ) as mock_head: snake_case : str = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : Union[str, Any] = mock.Mock() snake_case : int = 500 snake_case : Optional[int] = {} snake_case : int = HTTPError snake_case : int = {} # Download this model to make sure it's in the cache. snake_case : Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCamelCase__ ) as mock_head: snake_case : Tuple = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' try: snake_case : Tuple = tempfile.mktemp() with open(UpperCamelCase__ , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , UpperCamelCase__ ) snake_case : List[str] = AlbertTokenizer.from_pretrained(UpperCamelCase__ ) finally: os.remove(UpperCamelCase__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , UpperCamelCase__ ) snake_case : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : int = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): __UpperCAmelCase : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def lowerCamelCase ( cls ) -> Optional[int]: '''simple docstring''' snake_case : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def lowerCamelCase ( cls ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCamelCase ( self ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Any = os.path.join(UpperCamelCase__ , "vocab.txt" ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case : List[str] = BertTokenizer(UpperCamelCase__ ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) snake_case : Dict = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ , repo_id="test-tokenizer" , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) snake_case : Dict = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Dict = os.path.join(UpperCamelCase__ , "vocab.txt" ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case : Optional[int] = BertTokenizer(UpperCamelCase__ ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) snake_case : Dict = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase__ , repo_id="valid_org/test-tokenizer-org" , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) snake_case : Optional[int] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Tuple = os.path.join(UpperCamelCase__ , "vocab.txt" ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case : Any = CustomTokenizer(UpperCamelCase__ ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case : int = os.path.join(UpperCamelCase__ , "vocab.txt" ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case : Optional[Any] = BertTokenizerFast.from_pretrained(UpperCamelCase__ ) bert_tokenizer.save_pretrained(UpperCamelCase__ ) snake_case : List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase__ ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) snake_case : Optional[Any] = AutoTokenizer.from_pretrained( F'{USER}/test-dynamic-tokenizer' , use_fast=UpperCamelCase__ , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Any = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Tuple = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : str = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : Union[str, Any] = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Optional[int] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : List[Any] = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : str = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[int] = Trie() snake_case : Union[str, Any] = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase__ , ["AB", "C"] )
178
1
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = LayoutLMTokenizer a_ = LayoutLMTokenizerFast a_ = True a_ = True def A ( self : Tuple ) -> Tuple: super().setUp() UpperCAmelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def A ( self : Tuple , **_A : Union[str, Any] ) -> Tuple: return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def A ( self : Tuple , _A : str ) -> Optional[int]: UpperCAmelCase_ : Any = '''UNwant\u00E9d,running''' UpperCAmelCase_ : Any = '''unwanted, running''' return input_text, output_text def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ : Dict = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [7, 4, 5, 10, 8, 9] ) def A ( self : Optional[int] ) -> Union[str, Any]: pass
713
'''simple docstring''' def __UpperCAmelCase ( A : List[str] , A : Tuple , A : Union[str, Any]=False ) -> Tuple: if isinstance(A , A ) and isinstance(A , A ): UpperCAmelCase_ : Any = len(set_a.intersection(A ) ) if alternative_union: UpperCAmelCase_ : Optional[Any] = len(A ) + len(A ) else: UpperCAmelCase_ : Dict = len(set_a.union(A ) ) return intersection / union if isinstance(A , (list, tuple) ) and isinstance(A , (list, tuple) ): UpperCAmelCase_ : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: UpperCAmelCase_ : Tuple = len(A ) + len(A ) return len(A ) / union else: UpperCAmelCase_ : Optional[Any] = set_a + [element for element in set_b if element not in set_a] return len(A ) / len(A ) return len(A ) / len(A ) return None if __name__ == "__main__": _UpperCamelCase : Any = {'a', 'b', 'c', 'd', 'e'} _UpperCamelCase : Optional[int] = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
216
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( __snake_case ): _UpperCAmelCase :List[str] = ['image_processor', 'tokenizer'] _UpperCAmelCase :List[str] = 'BlipImageProcessor' _UpperCAmelCase :Optional[Any] = 'AutoTokenizer' def __init__( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = False super().__init__(A_ , A_ ) UpperCamelCase : str = self.image_processor def __call__( self , A_ = None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 0 , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: UpperCamelCase : Union[str, Any] = self.tokenizer UpperCamelCase : str = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) return text_encoding # add pixel_values UpperCamelCase : int = self.image_processor(A_ , return_tensors=A_ ) if text is not None: UpperCamelCase : Union[str, Any] = self.tokenizer( text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , ) else: UpperCamelCase : List[Any] = None if text_encoding is not None: encoding_image_processor.update(A_ ) return encoding_image_processor def __UpperCamelCase( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def __UpperCamelCase( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.tokenizer.model_input_names UpperCamelCase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
629
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: UpperCamelCase : Union[str, Any] = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase : List[str] = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } UpperCamelCase : str = F"""{src_lang}-{tgt_lang}""" UpperCamelCase : Dict = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , "README.md" ) print(F"""Generating {path}""" ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(_lowerCAmelCase ) # make sure we are under the root of the project __lowerCamelCase : str = Path(__file__).resolve().parent.parent.parent __lowerCamelCase : Optional[Any] = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = model_name.split("""-""") __lowerCamelCase : str = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
629
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case = """gptsan-japanese""" snake_case = [ """past_key_values""", ] snake_case = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , UpperCAmelCase_=3_60_00 , UpperCAmelCase_=12_80 , UpperCAmelCase_=10_24 , UpperCAmelCase_=81_92 , UpperCAmelCase_=40_96 , UpperCAmelCase_=1_28 , UpperCAmelCase_=10 , UpperCAmelCase_=0 , UpperCAmelCase_=16 , UpperCAmelCase_=16 , UpperCAmelCase_=1_28 , UpperCAmelCase_=0.0 , UpperCAmelCase_=1e-5 , UpperCAmelCase_=False , UpperCAmelCase_=0.0 , UpperCAmelCase_="float32" , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=0.002 , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=3_59_98 , UpperCAmelCase_=3_59_95 , UpperCAmelCase_=3_59_99 , **UpperCAmelCase_ , ): snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = d_model snake_case_ = d_ff snake_case_ = d_ext snake_case_ = d_spout snake_case_ = num_switch_layers snake_case_ = num_ext_layers snake_case_ = num_switch_layers + num_ext_layers snake_case_ = num_heads snake_case_ = num_experts snake_case_ = expert_capacity snake_case_ = dropout_rate snake_case_ = layer_norm_epsilon snake_case_ = router_bias snake_case_ = router_jitter_noise snake_case_ = router_dtype snake_case_ = router_ignore_padding_tokens snake_case_ = output_hidden_states snake_case_ = output_attentions snake_case_ = initializer_factor snake_case_ = output_router_logits snake_case_ = use_cache super().__init__( separator_token_id=UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , )
420
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __snake_case ( lowercase : float , lowercase : float , lowercase : bool = False ): if radian_mode: return [magnitude * cos(lowercase ), magnitude * sin(lowercase )] return [magnitude * cos(radians(lowercase ) ), magnitude * sin(radians(lowercase ) )] def __snake_case ( lowercase : NDArray[floataa] , lowercase : NDArray[floataa] , lowercase : float = 10**-1 ): snake_case_ = cross(lowercase , lowercase ) snake_case_ = sum(lowercase ) return abs(lowercase ) < eps if __name__ == "__main__": # Test to check if it works lowercase__ = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) lowercase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowercase__ = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) lowercase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowercase__ = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) lowercase__ = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
420
1
"""simple docstring""" # Lint as: python3 import itertools import os import re A = re.compile(R'([A-Z]+)([A-Z][a-z])') A = re.compile(R'([a-z\d])([A-Z])') A = re.compile(R'(?<!_)_(?!_)') A = re.compile(R'(_{2,})') A = R'^\w+(\.\w+)*$' A = R'<>:/\|?*' def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: List[Any] ): """simple docstring""" snake_case : str = _uppercase_uppercase_re.sub(r"\1_\2" , lowerCamelCase_ ) snake_case : Union[str, Any] = _lowercase_uppercase_re.sub(r"\1_\2" , lowerCamelCase_ ) return name.lower() def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any ): """simple docstring""" snake_case : List[Any] = _single_underscore_re.split(lowerCamelCase_ ) snake_case : int = [_multiple_underscores_re.split(lowerCamelCase_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowerCamelCase_ ) if n != "" ) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: List[str] ): """simple docstring""" if os.path.basename(lowerCamelCase_ ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any , lowerCamelCase_: Optional[int] ): """simple docstring""" if os.path.basename(lowerCamelCase_ ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , lowerCamelCase_ ): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return f'''{filename_prefix_for_name(lowerCamelCase_ )}-{split}''' def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Any , lowerCamelCase_: str , lowerCamelCase_: List[str] , lowerCamelCase_: Tuple=None ): """simple docstring""" snake_case : Tuple = filename_prefix_for_split(lowerCamelCase_ , lowerCamelCase_ ) if filetype_suffix: prefix += f'''.{filetype_suffix}''' snake_case : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) return f'''{filepath}*''' def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Tuple , lowerCamelCase_: Any , lowerCamelCase_: List[Any] , lowerCamelCase_: Optional[int]=None , lowerCamelCase_: List[Any]=None ): """simple docstring""" snake_case : int = filename_prefix_for_split(lowerCamelCase_ , lowerCamelCase_ ) snake_case : Dict = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if shard_lengths: snake_case : Dict = len(lowerCamelCase_ ) snake_case : int = [f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(lowerCamelCase_ )] if filetype_suffix: snake_case : List[str] = [filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: snake_case : Any = prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
449
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
449
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
396
"""simple docstring""" # Algorithm for the pigeonhole sorting def A_ ( __UpperCamelCase : str ): lowercase = min(__UpperCamelCase ) # min() finds the minimum value lowercase = max(__UpperCamelCase ) # max() finds the maximum value lowercase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size lowercase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(__UpperCamelCase , __UpperCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. lowercase = 0 for count in range(__UpperCamelCase ): while holes[count] > 0: holes[count] -= 1 lowercase = count + min_val i += 1 def A_ ( ): lowercase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(__UpperCamelCase ) print('''Sorted order is:''' , ''' '''.join(__UpperCamelCase ) ) if __name__ == "__main__": main()
396
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 # [batch_size x 3] __UpperCAmelCase = 42 # [batch_size x 3] __UpperCAmelCase = 42 # [batch_size x 3] __UpperCAmelCase = 42 # [batch_size x 3] __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 def lowercase_ ( self ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowercase_ ( self ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowercase_ ( self ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowercase_ ( self ): __snake_case : List[Any] = torch.arange(self.height * self.width ) __snake_case : str = torch.stack( [ pixel_indices % self.width, torch.div(_UpperCAmelCase , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def lowercase_ ( self ): __snake_case , *__snake_case : Dict = self.shape __snake_case : Tuple = int(np.prod(_UpperCAmelCase ) ) __snake_case : List[Any] = self.get_image_coords() __snake_case : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __snake_case : Optional[int] = self.get_camera_rays(_UpperCAmelCase ) __snake_case : Dict = rays.view(_UpperCAmelCase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowercase_ ( self , _UpperCAmelCase ): __snake_case , *__snake_case , __snake_case : str = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __snake_case : Any = coords.view(_UpperCAmelCase , -1 , 2 ) __snake_case : Optional[Any] = self.resolution() __snake_case : int = self.fov() __snake_case : Dict = (flat.float() / (res - 1)) * 2 - 1 __snake_case : str = fracs * torch.tan(fov / 2 ) __snake_case : Any = fracs.view(_UpperCAmelCase , -1 , 2 ) __snake_case : Dict = ( self.z.view(_UpperCAmelCase , 1 , 3 ) + self.x.view(_UpperCAmelCase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_UpperCAmelCase , 1 , 3 ) * fracs[:, :, 1:] ) __snake_case : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=_UpperCAmelCase ) __snake_case : List[str] = torch.stack( [ torch.broadcast_to(self.origin.view(_UpperCAmelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_UpperCAmelCase , *_UpperCAmelCase , 2 , 3 ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_UpperCAmelCase , height=_UpperCAmelCase , x_fov=self.x_fov , y_fov=self.y_fov , ) def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : Tuple = [] __snake_case : int = [] __snake_case : Optional[Any] = [] __snake_case : List[Any] = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): __snake_case : Optional[int] = np.array([np.sin(__UpperCAmelCase ), np.cos(__UpperCAmelCase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __snake_case : List[Any] = -z * 4 __snake_case : List[str] = np.array([np.cos(__UpperCAmelCase ), -np.sin(__UpperCAmelCase ), 0.0] ) __snake_case : Optional[Any] = np.cross(__UpperCAmelCase , __UpperCAmelCase ) origins.append(__UpperCAmelCase ) xs.append(__UpperCAmelCase ) ys.append(__UpperCAmelCase ) zs.append(__UpperCAmelCase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__UpperCAmelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__UpperCAmelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__UpperCAmelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__UpperCAmelCase , axis=0 ) ).float() , width=__UpperCAmelCase , height=__UpperCAmelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__UpperCAmelCase )) , )
576
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : Tuple = filter(lambda __UpperCAmelCase : p.requires_grad , model.parameters() ) __snake_case : List[str] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __magic_name__ = logging.getLogger(__name__) def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] ): if metric == "rouge2": __snake_case : Dict = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __snake_case : Any = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __snake_case : Dict = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ' function.' ) __snake_case : List[Any] = ModelCheckpoint( dirpath=__UpperCAmelCase , filename=__UpperCAmelCase , monitor=F"""val_{metric}""" , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict ): return EarlyStopping( monitor=F"""val_{metric}""" , mode='min' if 'loss' in metric else 'max' , patience=__UpperCAmelCase , verbose=__UpperCAmelCase , ) class __SCREAMING_SNAKE_CASE ( pl.Callback): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[str] = {F"""lr_group_{i}""": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_UpperCAmelCase ) @rank_zero_only def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=True ): logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __snake_case : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __snake_case : Dict = Path(pl_module.hparams.output_dir ) if type_path == "test": __snake_case : Union[str, Any] = od / 'test_results.txt' __snake_case : Union[str, Any] = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __snake_case : Tuple = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" __snake_case : List[str] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_UpperCAmelCase ) generations_file.parent.mkdir(exist_ok=_UpperCAmelCase ) with open(_UpperCAmelCase , 'a+' ) as writer: for key in sorted(_UpperCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue __snake_case : Tuple = metrics[key] if isinstance(_UpperCAmelCase , torch.Tensor ): __snake_case : List[Any] = val.item() __snake_case : Dict = F"""{key}: {val:.6f}\n""" writer.write(_UpperCAmelCase ) if not save_generations: return if "preds" in metrics: __snake_case : Optional[int] = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_UpperCAmelCase ) @rank_zero_only def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): try: __snake_case : Any = pl_module.model.model.num_parameters() except AttributeError: __snake_case : List[Any] = pl_module.model.num_parameters() __snake_case : List[str] = count_trainable_parameters(_UpperCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_UpperCAmelCase , _UpperCAmelCase , 'test' ) @rank_zero_only def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
576
1
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel A_ = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } A_ = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str: A__ , A__ : Union[str, Any] = create_model( """HTSAT-tiny""", """roberta""", UpperCAmelCase__, precision="""fp32""", device="""cuda:0""" if torch.cuda.is_available() else """cpu""", enable_fusion=UpperCAmelCase__, fusion_type="""aff_2d""" if enable_fusion else None, ) return model, model_cfg def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->List[Any]: A__ : Optional[Any] = {} A__ : int = R""".*sequential.(\d+).*""" A__ : int = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: A__ : Optional[Any] = key.replace(UpperCAmelCase__, UpperCAmelCase__ ) if re.match(UpperCAmelCase__, UpperCAmelCase__ ): # replace sequential layers with list A__ : int = re.match(UpperCAmelCase__, UpperCAmelCase__ ).group(1 ) A__ : Dict = key.replace(f'sequential.{sequential_layer}.', f'layers.{int(UpperCAmelCase__ )//3}.linear.' ) elif re.match(UpperCAmelCase__, UpperCAmelCase__ ): A__ : Dict = int(re.match(UpperCAmelCase__, UpperCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... A__ : Dict = 1 if projecton_layer == 0 else 2 A__ : Union[str, Any] = key.replace(f'_projection.{projecton_layer}.', f'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value A__ : Tuple = value A__ : Optional[int] = mixed_qkv.size(0 ) // 3 A__ : Optional[int] = mixed_qkv[:qkv_dim] A__ : List[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] A__ : Tuple = mixed_qkv[qkv_dim * 2 :] A__ : Optional[Any] = query_layer A__ : int = key_layer A__ : Union[str, Any] = value_layer else: A__ : List[str] = value return model_state_dict def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : Any, UpperCAmelCase__ : List[Any]=False ) ->Union[str, Any]: A__ , A__ : List[Any] = init_clap(UpperCAmelCase__, enable_fusion=UpperCAmelCase__ ) clap_model.eval() A__ : Dict = clap_model.state_dict() A__ : str = rename_state_dict(UpperCAmelCase__ ) A__ : Dict = ClapConfig() A__ : str = enable_fusion A__ : int = ClapModel(UpperCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) transformers_config.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') A_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
498
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Union[str, Any]=None ) ->Tuple: A__ : Dict = None if token is not None: A__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} A__ : Dict = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' A__ : Any = requests.get(UpperCAmelCase__, headers=UpperCAmelCase__ ).json() A__ : Tuple = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) A__ : Optional[Any] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(UpperCAmelCase__ ): A__ : str = requests.get(url + f'&page={i + 2}', headers=UpperCAmelCase__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : str=None ) ->List[str]: A__ : Optional[Any] = None if token is not None: A__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} A__ : str = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' A__ : Dict = requests.get(UpperCAmelCase__, headers=UpperCAmelCase__ ).json() A__ : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) A__ : Union[str, Any] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(UpperCAmelCase__ ): A__ : Union[str, Any] = requests.get(url + f'&page={i + 2}', headers=UpperCAmelCase__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any ) ->Tuple: A__ : Tuple = None if token is not None: A__ : List[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} A__ : Tuple = requests.get(UpperCAmelCase__, headers=UpperCAmelCase__, allow_redirects=UpperCAmelCase__ ) A__ : Dict = result.headers["""Location"""] A__ : Union[str, Any] = requests.get(UpperCAmelCase__, allow_redirects=UpperCAmelCase__ ) A__ : int = os.path.join(UpperCAmelCase__, f'{artifact_name}.zip' ) with open(UpperCAmelCase__, """wb""" ) as fp: fp.write(response.content ) def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple=None ) ->Tuple: A__ : int = [] A__ : Union[str, Any] = [] A__ : Optional[Any] = None with zipfile.ZipFile(UpperCAmelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCAmelCase__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(UpperCAmelCase__ ) as f: for line in f: A__ : int = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs A__ : List[str] = line[: line.index(""": """ )] A__ : str = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed A__ : Any = line[len("""FAILED """ ) :] failed_tests.append(UpperCAmelCase__ ) elif filename == "job_name.txt": A__ : Any = line if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( f'`errors` and `failed_tests` should have the same number of elements. Got {len(UpperCAmelCase__ )} for `errors` ' f'and {len(UpperCAmelCase__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' """ problem.""" ) A__ : List[str] = None if job_name and job_links: A__ : Any = job_links.get(UpperCAmelCase__, UpperCAmelCase__ ) # A list with elements of the form (line of error, error, failed test) A__ : str = [x + [y] + [job_link] for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ )] return result def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int=None ) ->str: A__ : List[Any] = [] A__ : Dict = [os.path.join(UpperCAmelCase__, UpperCAmelCase__ ) for p in os.listdir(UpperCAmelCase__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(UpperCAmelCase__, job_links=UpperCAmelCase__ ) ) return errors def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Dict=None ) ->List[Any]: A__ : Dict = Counter() counter.update([x[1] for x in logs] ) A__ : str = counter.most_common() A__ : Dict = {} for error, count in counts: if error_filter is None or error not in error_filter: A__ : Optional[int] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} A__ : List[str] = dict(sorted(r.items(), key=lambda UpperCAmelCase__ : item[1]["count"], reverse=UpperCAmelCase__ ) ) return r def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->str: A__ : List[str] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): A__ : Union[str, Any] = test.split("""/""" )[2] else: A__ : int = None return test def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : str=None ) ->Optional[Any]: A__ : Any = [(x[0], x[1], get_model(x[2] )) for x in logs] A__ : List[Any] = [x for x in logs if x[2] is not None] A__ : Union[str, Any] = {x[2] for x in logs} A__ : int = {} for test in tests: A__ : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) A__ : Any = counter.most_common() A__ : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} A__ : List[str] = sum(error_counts.values() ) if n_errors > 0: A__ : str = {"""count""": n_errors, """errors""": error_counts} A__ : Dict = dict(sorted(r.items(), key=lambda UpperCAmelCase__ : item[1]["count"], reverse=UpperCAmelCase__ ) ) return r def _lowerCAmelCase ( UpperCAmelCase__ : Dict ) ->List[Any]: A__ : List[Any] = """| no. | error | status |""" A__ : Union[str, Any] = """|-:|:-|:-|""" A__ : Dict = [header, sep] for error in reduced_by_error: A__ : List[Any] = reduced_by_error[error]["""count"""] A__ : List[Any] = f'| {count} | {error[:1_0_0]} | |' lines.append(UpperCAmelCase__ ) return "\n".join(UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->int: A__ : str = """| model | no. of errors | major error | count |""" A__ : Optional[int] = """|-:|-:|-:|-:|""" A__ : Tuple = [header, sep] for model in reduced_by_model: A__ : Optional[Any] = reduced_by_model[model]["""count"""] A__ , A__ : Optional[Any] = list(reduced_by_model[model]["""errors"""].items() )[0] A__ : Optional[int] = f'| {model} | {count} | {error[:6_0]} | {_count} |' lines.append(UpperCAmelCase__ ) return "\n".join(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') A_ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ = get_job_links(args.workflow_run_id, token=args.token) A_ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ = k.find(''' / ''') A_ = k[index + len(''' / ''') :] A_ = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ = reduce_by_error(errors) A_ = reduce_by_model(errors) A_ = make_github_table(reduced_by_error) A_ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
498
1
"""simple docstring""" snake_case = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } snake_case = {value: key for key, value in encode_dict.items()} def snake_case ( lowerCAmelCase_ ) -> str: _snake_case = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def snake_case ( lowerCAmelCase_ ) -> str: if set(lowerCAmelCase_ ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) _snake_case = '''''' for word in coded.split(): while len(lowerCAmelCase_ ) != 0: decoded += decode_dict[word[:5]] _snake_case = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
103
def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__ , UpperCAmelCase__: int = [], [] while len(SCREAMING_SNAKE_CASE ) > 1: UpperCAmelCase__ , UpperCAmelCase__: str = min(SCREAMING_SNAKE_CASE ), max(SCREAMING_SNAKE_CASE ) start.append(SCREAMING_SNAKE_CASE ) end.append(SCREAMING_SNAKE_CASE ) collection.remove(SCREAMING_SNAKE_CASE ) collection.remove(SCREAMING_SNAKE_CASE ) end.reverse() return start + collection + end if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] =input("""Enter numbers separated by a comma:\n""").strip() _lowerCAmelCase : Dict =[int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
113
0
"""simple docstring""" def _lowerCAmelCase(a : int = 1000 ) -> int: _SCREAMING_SNAKE_CASE =2**power _SCREAMING_SNAKE_CASE =0 while n: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
165
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets UpperCAmelCase_ : Union[str, Any] = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' UpperCAmelCase_ : Union[str, Any] = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' UpperCAmelCase_ : Any = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def _lowerCAmelCase(a : Optional[int] , a : Union[str, Any] , a : Optional[int] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> Any: if label_map is not None: for old_id, new_id in label_map.items(): _SCREAMING_SNAKE_CASE =new_id # turn into Numpy arrays _SCREAMING_SNAKE_CASE =np.array(a ) _SCREAMING_SNAKE_CASE =np.array(a ) if reduce_labels: _SCREAMING_SNAKE_CASE =255 _SCREAMING_SNAKE_CASE =label - 1 _SCREAMING_SNAKE_CASE =255 _SCREAMING_SNAKE_CASE =label != ignore_index _SCREAMING_SNAKE_CASE =np.not_equal(a , a ) _SCREAMING_SNAKE_CASE =pred_label[mask] _SCREAMING_SNAKE_CASE =np.array(a )[mask] _SCREAMING_SNAKE_CASE =pred_label[pred_label == label] _SCREAMING_SNAKE_CASE =np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] _SCREAMING_SNAKE_CASE =np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] _SCREAMING_SNAKE_CASE =np.histogram(a , bins=a , range=(0, num_labels - 1) )[0] _SCREAMING_SNAKE_CASE =area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _lowerCAmelCase(a : int , a : Any , a : List[str] , a : bool , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> List[Any]: _SCREAMING_SNAKE_CASE =np.zeros((num_labels,) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =np.zeros((num_labels,) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =np.zeros((num_labels,) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(a , a ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =intersect_and_union( a , a , a , a , a , a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _lowerCAmelCase(a : int , a : str , a : Tuple , a : bool , a : Optional[int] = None , a : Optional[Dict[int, int]] = None , a : bool = False , ) -> List[str]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =total_intersect_and_union( a , a , a , a , a , a ) # compute metrics _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =total_area_intersect.sum() / total_area_label.sum() _SCREAMING_SNAKE_CASE =total_area_intersect / total_area_union _SCREAMING_SNAKE_CASE =total_area_intersect / total_area_label _SCREAMING_SNAKE_CASE =np.nanmean(a ) _SCREAMING_SNAKE_CASE =np.nanmean(a ) _SCREAMING_SNAKE_CASE =all_acc _SCREAMING_SNAKE_CASE =iou _SCREAMING_SNAKE_CASE =acc if nan_to_num is not None: _SCREAMING_SNAKE_CASE ={metric: np.nan_to_num(a , nan=a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def UpperCamelCase_ ( self , _A , _A , _A , _A , _A = None , _A = None , _A = False , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =mean_iou( results=_A , gt_seg_maps=_A , num_labels=_A , ignore_index=_A , nan_to_num=_A , label_map=_A , reduce_labels=_A , ) return iou_result
165
1
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm __a = 2048 __a = 4096 __a = 42 __a = os.environ.pop("PROCESS_TRAIN", "false") __a = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4} def __snake_case( _lowerCAmelCase ) -> Any: def choose_first(_lowerCAmelCase , _lowerCAmelCase=False ): assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) == 1: snake_case__ : Dict = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: snake_case__ : Any = {k: [a[k]] for k in a} if len(a["""start_token"""] ) > 0: break return a snake_case__ : Union[str, Any] = {"""id""": example["""id"""]} snake_case__ : int = example["""annotations"""] snake_case__ : Tuple = annotation["""yes_no_answer"""] if 0 in yes_no_answer or 1 in yes_no_answer: snake_case__ : Optional[int] = ["""yes"""] if 1 in yes_no_answer else ["""no"""] snake_case__ : int = [] snake_case__ : Union[str, Any] = [] snake_case__ : Union[str, Any] = ["""<cls>"""] else: snake_case__ : str = ["""short"""] snake_case__ : str = choose_first(annotation["""short_answers"""] ) if len(out["""start_token"""] ) == 0: # answer will be long if short is not available snake_case__ : Optional[int] = ["""long"""] snake_case__ : Union[str, Any] = choose_first(annotation["""long_answer"""] , is_long_answer=_lowerCAmelCase ) snake_case__ : Optional[Any] = [] answer.update(_lowerCAmelCase ) # disregard some samples if len(answer["""start_token"""] ) > 1 or answer["start_token"] == answer["end_token"]: snake_case__ : Dict = True else: snake_case__ : List[str] = False snake_case__ : Dict = ["""start_token""", """end_token""", """start_byte""", """end_byte""", """text"""] if not all(isinstance(answer[k] , _lowerCAmelCase ) for k in cols ): raise ValueError("""Issue in ID""" , example["""id"""] ) return answer def __snake_case( _lowerCAmelCase , _lowerCAmelCase=False ) -> Union[str, Any]: snake_case__ : Optional[Any] = _get_single_answer(_lowerCAmelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case__ : Dict = example["""document"""]["""tokens"""] snake_case__ : List[str] = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) return { "context": " ".join(_lowerCAmelCase ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples snake_case__ : List[str] = ["""start_token""", """end_token"""] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 snake_case__ : List[Any] = example["""document"""]["""tokens"""] snake_case__ : str = answer["""start_token"""] snake_case__ : str = answer["""end_token"""] snake_case__ : Optional[Any] = [] for i in range(len(doc["""token"""] ) ): if not doc["is_html"][i]: context.append(doc["""token"""][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 snake_case__ : List[str] = """ """.join(context[start_token:end_token] ) # checking above code if assertion: snake_case__ : Optional[Any] = doc["""is_html"""][answer["""start_token"""] : answer["""end_token"""]] snake_case__ : str = doc["""token"""][answer["""start_token"""] : answer["""end_token"""]] snake_case__ : Any = """ """.join([old[i] for i in range(len(_lowerCAmelCase ) ) if not is_html[i]] ) if new != old: print("""ID:""" , example["""id"""] ) print("""New:""" , _lowerCAmelCase , end="""\n""" ) print("""Old:""" , _lowerCAmelCase , end="""\n\n""" ) return { "context": " ".join(_lowerCAmelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=2_048 , _lowerCAmelCase=4_096 , _lowerCAmelCase=True ) -> int: # overlap will be of doc_stride - q_len snake_case__ : str = get_context_and_ans(_lowerCAmelCase , assertion=_lowerCAmelCase ) snake_case__ : Tuple = out["""answer"""] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } snake_case__ : str = tokenizer(example["""question"""]["""text"""] , out["""context"""] ).input_ids snake_case__ : Optional[Any] = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element snake_case__ : int = [] snake_case__ : List[str] = [] snake_case__ : Optional[int] = input_ids[:q_len] snake_case__ : List[Any] = range(_lowerCAmelCase , len(_lowerCAmelCase ) , max_length - doc_stride ) for i in doc_start_indices: snake_case__ : str = i + max_length - q_len snake_case__ : Any = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["""category"""][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(_lowerCAmelCase ), "end_token": [-100] * len(_lowerCAmelCase ), "category": category, }, } snake_case__ : Union[str, Any] = out["""context"""].split() snake_case__ : List[Any] = splitted_context[answer["""end_token"""]] snake_case__ : Optional[int] = len( tokenizer( """ """.join(splitted_context[: answer["""start_token"""]] ) , add_special_tokens=_lowerCAmelCase , ).input_ids ) snake_case__ : Union[str, Any] = len( tokenizer(""" """.join(splitted_context[: answer["""end_token"""]] ) , add_special_tokens=_lowerCAmelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token snake_case__ : str = len(tokenizer(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 snake_case__ : List[str] = input_ids[answer["""start_token"""] : answer["""end_token"""] + 1] # right & left are inclusive snake_case__ : Dict = answer["""start_token"""] snake_case__ : str = answer["""end_token"""] if assertion: snake_case__ : List[str] = tokenizer.decode(_lowerCAmelCase ) if answer["span"] != new: print("""ISSUE IN TOKENIZATION""" ) print("""OLD:""" , answer["""span"""] ) print("""NEW:""" , _lowerCAmelCase , end="""\n\n""" ) if len(_lowerCAmelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } snake_case__ : str = input_ids[:q_len] snake_case__ : List[Any] = range(_lowerCAmelCase , len(_lowerCAmelCase ) , max_length - doc_stride ) snake_case__ : Union[str, Any] = [] snake_case__ : Dict = [] snake_case__ : Tuple = [] snake_case__ : Any = [] # null, yes, no, long, short for i in doc_start_indices: snake_case__ : Optional[int] = i + max_length - q_len snake_case__ : Any = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: snake_case__ : int = start_token - i + q_len snake_case__ : Optional[Any] = end_token - i + q_len answers_category.append(answer["""category"""][0] ) # ["short"] -> "short" else: snake_case__ : List[Any] = -100 snake_case__ : Optional[Any] = -100 answers_category.append("""null""" ) snake_case__ : Any = inputs[-1][start_token : end_token + 1] answers_start_token.append(_lowerCAmelCase ) answers_end_token.append(_lowerCAmelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("""ISSUE in strided for ID:""" , example["""id"""] ) print("""New:""" , tokenizer.decode(_lowerCAmelCase ) ) print("""Old:""" , tokenizer.decode(_lowerCAmelCase ) , end="""\n\n""" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=2_048 , _lowerCAmelCase=4_096 , _lowerCAmelCase=False ) -> Optional[int]: snake_case__ : Optional[Any] = get_strided_contexts_and_ans( _lowerCAmelCase , _lowerCAmelCase , doc_stride=_lowerCAmelCase , max_length=_lowerCAmelCase , assertion=_lowerCAmelCase , ) return example def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: with jsonlines.open(_lowerCAmelCase , """a""" ) as writer: for example in tqdm(_lowerCAmelCase , total=len(_lowerCAmelCase ) , desc="""Saving samples ... """ ): snake_case__ : Tuple = example["""labels"""] for ids, start, end, cat in zip( example["""input_ids"""] , labels["""start_token"""] , labels["""end_token"""] , labels["""category"""] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { """input_ids""": ids, """start_token""": start, """end_token""": end, """category""": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __a = load_dataset("natural_questions") __a = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base") __a = data["train" if PROCESS_TRAIN == "true" else "validation"] __a = { "tokenizer": tokenizer, "doc_stride": DOC_STRIDE, "max_length": MAX_LENGTH, "assertion": False, } __a = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __a = data.remove_columns(["annotations", "document", "id", "question"]) print(data) np.random.seed(SEED) __a = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl" save_to_disk(data, file_name=cache_file_name)
374
'''simple docstring''' # flake8: noqa # Lint as: python3 __a = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
374
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = """backbone.""" if is_semantic else """""" _SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_hidden_layers ): _SCREAMING_SNAKE_CASE = """backbone.""" if is_semantic else """""" # queries, keys and values _SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) _SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) _SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) _SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] _SCREAMING_SNAKE_CASE = q_bias _SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] _SCREAMING_SNAKE_CASE = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained _SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) _SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) _SCREAMING_SNAKE_CASE = gamma_a _SCREAMING_SNAKE_CASE = gamma_a def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = dct.pop(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = val def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = False if """rvlcdip""" in checkpoint_url else True _SCREAMING_SNAKE_CASE = BeitConfig(use_absolute_position_embeddings=SCREAMING_SNAKE_CASE_ , use_mask_token=SCREAMING_SNAKE_CASE_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 16 # labels if "rvlcdip" in checkpoint_url: _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = """rvlcdip-id2label.json""" _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""model"""] _SCREAMING_SNAKE_CASE = create_rename_keys(SCREAMING_SNAKE_CASE_ , has_lm_head=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , has_lm_head=SCREAMING_SNAKE_CASE_ ) # load HuggingFace model _SCREAMING_SNAKE_CASE = BeitForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) if has_lm_head else BeitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image _SCREAMING_SNAKE_CASE = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = encoding["""pixel_values"""] _SCREAMING_SNAKE_CASE = model(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = outputs.logits # verify logits _SCREAMING_SNAKE_CASE = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(SCREAMING_SNAKE_CASE_ ), "Shape of logits not as expected" Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: if has_lm_head: _SCREAMING_SNAKE_CASE = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: _SCREAMING_SNAKE_CASE = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) UpperCamelCase__ : Any = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
0
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = XCLIPTextConfig() # derive patch size from model name _SCREAMING_SNAKE_CASE = model_name.find("""patch""" ) _SCREAMING_SNAKE_CASE = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) _SCREAMING_SNAKE_CASE = XCLIPVisionConfig(patch_size=SCREAMING_SNAKE_CASE_ , num_frames=SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 if model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = 3_36 _SCREAMING_SNAKE_CASE = XCLIPConfig.from_text_vision_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 return config def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" # text encoder if name == "token_embedding.weight": _SCREAMING_SNAKE_CASE = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: _SCREAMING_SNAKE_CASE = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: _SCREAMING_SNAKE_CASE = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): _SCREAMING_SNAKE_CASE = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "attn.in_proj" in key: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if key.startswith("""visual""" ): _SCREAMING_SNAKE_CASE = key_split[3] _SCREAMING_SNAKE_CASE = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[ :dim ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[ -dim: ] else: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] elif key.startswith("""mit""" ): _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.vision_config.mit_hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[dim : dim * 2] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.text_config.hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = rename_key(SCREAMING_SNAKE_CASE_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: _SCREAMING_SNAKE_CASE = val.T _SCREAMING_SNAKE_CASE = val return orig_state_dict def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if num_frames == 8: _SCREAMING_SNAKE_CASE = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: _SCREAMING_SNAKE_CASE = """eating_spaghetti.npy""" elif num_frames == 32: _SCREAMING_SNAKE_CASE = """eating_spaghetti_32_frames.npy""" _SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" , ) _SCREAMING_SNAKE_CASE = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } _SCREAMING_SNAKE_CASE = model_to_url[model_name] _SCREAMING_SNAKE_CASE = 8 if "16-frames" in model_name: _SCREAMING_SNAKE_CASE = 16 elif "shot" in model_name: _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = get_xclip_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) model.eval() if "drive" in checkpoint_url: _SCREAMING_SNAKE_CASE = """pytorch_model.bin""" gdown.cached_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , quiet=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""model"""] else: _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ )["""model"""] _SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() _SCREAMING_SNAKE_CASE = 3_36 if model_name == """xclip-large-patch14-16-frames""" else 2_24 _SCREAMING_SNAKE_CASE = VideoMAEImageProcessor(size=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = XCLIPProcessor(image_processor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = prepare_video(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE_ ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify outputs _SCREAMING_SNAKE_CASE = outputs.logits_per_video _SCREAMING_SNAKE_CASE = logits_per_video.softmax(dim=1 ) print("""Probs:""" , SCREAMING_SNAKE_CASE_ ) # kinetics-400 if model_name == "xclip-base-patch32": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) slow_tokenizer.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase__ : str = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
1
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __lowerCAmelCase = True except ImportError: __lowerCAmelCase = False __lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCamelCase ( lowercase_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __SCREAMING_SNAKE_CASE (__A ): """simple docstring""" @staticmethod def _a ( UpperCamelCase__ ): """simple docstring""" a_ = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' , type=UpperCamelCase__ , help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' , type=UpperCamelCase__ , help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , *UpperCamelCase__ ): """simple docstring""" a_ = testing a_ = testing_file a_ = path def _a ( self ): """simple docstring""" warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory a_ = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(UpperCamelCase__ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) a_ = ( Path(UpperCamelCase__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) a_ = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase__ ) ) else: with open(self._testing_file , 'r' ) as configuration_file: a_ = json.load(UpperCamelCase__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=UpperCamelCase__ , extra_context=UpperCamelCase__ , ) a_ = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r' ) as configuration_file: a_ = json.load(UpperCamelCase__ ) a_ = configuration['lowercase_modelname'] a_ = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f'{directory}/configuration.json' ) a_ = 'PyTorch' in generate_tensorflow_pytorch_and_flax a_ = 'TensorFlow' in generate_tensorflow_pytorch_and_flax a_ = 'Flax' in generate_tensorflow_pytorch_and_flax a_ = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=UpperCamelCase__ ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , 'w' ): pass shutil.move( f'{directory}/__init__.py' , f'{model_dir}/__init__.py' , ) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' , f'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(UpperCamelCase__ ): with open(UpperCamelCase__ , 'r' ) as f: a_ = f.readlines() with open(UpperCamelCase__ , 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase__ ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' , f'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' , f'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' , f'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' , f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # Create temp file a_ , a_ = mkstemp() a_ = False with fdopen(UpperCamelCase__ , 'w' ) as new_file: with open(UpperCamelCase__ ) as old_file: for line in old_file: new_file.write(UpperCamelCase__ ) if line_to_copy_below in line: a_ = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase__ ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase__ , UpperCamelCase__ ) # Remove original file remove(UpperCamelCase__ ) # Move new file move(UpperCamelCase__ , UpperCamelCase__ ) def skip_units(UpperCamelCase__ ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase__ ): with open(UpperCamelCase__ ) as datafile: a_ = [] a_ = False a_ = False for line in datafile: if "# To replace in: " in line and "##" not in line: a_ = line.split('"' )[1] a_ = skip_units(UpperCamelCase__ ) elif "# Below: " in line and "##" not in line: a_ = line.split('"' )[1] a_ = skip_units(UpperCamelCase__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) a_ = [] elif "# Replace with" in line and "##" not in line: a_ = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase__ ) remove(UpperCamelCase__ ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase__ )
536
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __SCREAMING_SNAKE_CASE (enum.Enum ): """simple docstring""" _a : Tuple = 0 _a : List[str] = 1 _a : int = 2 @add_end_docstrings(__A ) class __SCREAMING_SNAKE_CASE (__A ): """simple docstring""" _a : str = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. a_ = None if self.model.config.prefix is not None: a_ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. a_ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. a_ , a_ , a_ = self._sanitize_parameters(prefix=UpperCamelCase__ , **self._forward_params ) a_ = {**self._preprocess_params, **preprocess_params} a_ = {**self._forward_params, **forward_params} def _a ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): """simple docstring""" a_ = {} if prefix is not None: a_ = prefix if prefix: a_ = self.tokenizer( UpperCamelCase__ , padding=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=self.framework ) a_ = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected' ' [None, \'hole\']' ) a_ = handle_long_generation preprocess_params.update(UpperCamelCase__ ) a_ = generate_kwargs a_ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) a_ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) a_ = ReturnType.TENSORS if return_type is not None: a_ = return_type if clean_up_tokenization_spaces is not None: a_ = clean_up_tokenization_spaces if stop_sequence is not None: a_ = self.tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) a_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*UpperCamelCase__ , **UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def _a ( self , UpperCamelCase__ , UpperCamelCase__="" , UpperCamelCase__=None , **UpperCamelCase__ ): """simple docstring""" a_ = self.tokenizer( prefix + prompt_text , padding=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors=self.framework ) a_ = prompt_text if handle_long_generation == "hole": a_ = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: a_ = generate_kwargs['max_new_tokens'] else: a_ = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: a_ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) a_ = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: a_ = inputs['attention_mask'][:, -keep_length:] return inputs def _a ( self , UpperCamelCase__ , **UpperCamelCase__ ): """simple docstring""" a_ = model_inputs['input_ids'] a_ = model_inputs.get('attention_mask' , UpperCamelCase__ ) # Allow empty prompts if input_ids.shape[1] == 0: a_ = None a_ = None a_ = 1 else: a_ = input_ids.shape[0] a_ = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. a_ = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: a_ = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: a_ = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length a_ = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL a_ = self.model.generate(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ ) a_ = generated_sequence.shape[0] if self.framework == "pt": a_ = generated_sequence.reshape(UpperCamelCase__ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": a_ = tf.reshape(UpperCamelCase__ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _a ( self , UpperCamelCase__ , UpperCamelCase__=ReturnType.FULL_TEXT , UpperCamelCase__=True ): """simple docstring""" a_ = model_outputs['generated_sequence'][0] a_ = model_outputs['input_ids'] a_ = model_outputs['prompt_text'] a_ = generated_sequence.numpy().tolist() a_ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: a_ = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text a_ = self.tokenizer.decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: a_ = 0 else: a_ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , ) ) if return_type == ReturnType.FULL_TEXT: a_ = prompt_text + text[prompt_length:] else: a_ = text[prompt_length:] a_ = {'generated_text': all_text} records.append(UpperCamelCase__ ) return records
536
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case__ : Tuple = logging.getLogger(__name__) @dataclass class snake_case_: __UpperCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __UpperCamelCase = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __UpperCamelCase = field(default=a__ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class snake_case_: __UpperCamelCase = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) __UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) lowerCAmelCase : int = import_module('''tasks''' ) try: lowerCAmelCase : Optional[Any] = getattr(_snake_case , model_args.task_type ) lowerCAmelCase : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _snake_case ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowerCAmelCase : str = token_classification_task.get_labels(data_args.labels ) lowerCAmelCase : Dict[int, str] = dict(enumerate(_snake_case ) ) lowerCAmelCase : str = len(_snake_case ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , idalabel=_snake_case , labelaid={label: i for i, label in enumerate(_snake_case )} , cache_dir=model_args.cache_dir , ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowerCAmelCase : int = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase : Any = ( TokenClassificationDataset( token_classification_task=_snake_case , data_dir=data_args.data_dir , tokenizer=_snake_case , labels=_snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase : Dict = ( TokenClassificationDataset( token_classification_task=_snake_case , data_dir=data_args.data_dir , tokenizer=_snake_case , labels=_snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_snake_case : np.ndarray , _snake_case : np.ndarray ) -> Tuple[List[int], List[int]]: lowerCAmelCase : List[str] = np.argmax(_snake_case , axis=2 ) lowerCAmelCase, lowerCAmelCase : str = preds.shape lowerCAmelCase : Union[str, Any] = [[] for _ in range(_snake_case )] lowerCAmelCase : Optional[Any] = [[] for _ in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_snake_case : EvalPrediction ) -> Dict: lowerCAmelCase, lowerCAmelCase : Any = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_snake_case , _snake_case ), "precision": precision_score(_snake_case , _snake_case ), "recall": recall_score(_snake_case , _snake_case ), "f1": fa_score(_snake_case , _snake_case ), } # Data collator lowerCAmelCase : str = DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase : Any = Trainer( model=_snake_case , args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , compute_metrics=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCAmelCase : Union[str, Any] = trainer.evaluate() lowerCAmelCase : List[Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(_snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _snake_case , _snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_snake_case ) # Predict if training_args.do_predict: lowerCAmelCase : List[Any] = TokenClassificationDataset( token_classification_task=_snake_case , data_dir=data_args.data_dir , tokenizer=_snake_case , labels=_snake_case , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : int = trainer.predict(_snake_case ) lowerCAmelCase, lowerCAmelCase : Optional[Any] = align_predictions(_snake_case , _snake_case ) lowerCAmelCase : List[Any] = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(_snake_case , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , _snake_case , _snake_case ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions lowerCAmelCase : Any = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(_snake_case , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(_snake_case , _snake_case , _snake_case ) return results def _snake_case ( _snake_case : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
637
"""simple docstring""" def _snake_case ( _snake_case : float , _snake_case : list[float] ): if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) lowerCAmelCase : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_snake_case ) ) return round(_snake_case , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
637
1
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : int ): UpperCAmelCase = inspect.getfile(accelerate.test_utils ) UpperCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) UpperCAmelCase = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __snake_case ( self : int ): UpperCAmelCase = f"\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n ".split() UpperCAmelCase = [sys.executable] + distributed_args execute_subprocess_async(a__ , env=os.environ.copy() )
51
import os def __UpperCAmelCase( ): with open(os.path.dirname(lowercase_ ) + '''/p022_names.txt''' ) as file: _lowerCamelCase : Optional[int] = str(file.readlines()[0] ) _lowerCamelCase : List[Any] = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Tuple = 0 for i, name in enumerate(lowercase_ ): for letter in name: name_score += ord(lowercase_ ) - 64 total_score += (i + 1) * name_score _lowerCamelCase : Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
114
0
'''simple docstring''' from bisect import bisect from itertools import accumulate def _lowerCAmelCase( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: snake_case__ : Dict = sorted(zip(_lowerCAmelCase , _lowerCAmelCase ) , key=lambda _lowerCAmelCase : x[0] / x[1] , reverse=_lowerCAmelCase ) snake_case__ : Optional[Any] = [i[0] for i in r], [i[1] for i in r] snake_case__ : int = list(accumulate(_lowerCAmelCase ) ) snake_case__ : List[str] = bisect(_lowerCAmelCase , _lowerCAmelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[int] = tmp_path / """cache""" snake_case__ : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ : Tuple = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: snake_case__ : Optional[Any] = tmp_path / """cache""" snake_case__ : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case__ : int = features.copy() if features else default_expected_features snake_case__ : int = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ : Union[str, Any] = ParquetDatasetReader(_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[Any] = tmp_path / """cache""" snake_case__ : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case__ : List[str] = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase , split=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: if issubclass(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Union[str, Any] = parquet_path elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Dict = [parquet_path] snake_case__ : int = tmp_path / """cache""" snake_case__ : Union[str, Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case__ : int = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_dataset(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=("train",) ) -> List[Any]: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) for split in splits: snake_case__ : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: snake_case__ : List[str] = tmp_path / """cache""" snake_case__ : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ : Union[str, Any] = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : List[Any] = tmp_path / """cache""" snake_case__ : List[str] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case__ : Optional[Any] = features.copy() if features else default_expected_features snake_case__ : Any = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ : List[str] = ParquetDatasetReader({"""train""": parquet_path} , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: if split: snake_case__ : List[str] = {split: parquet_path} else: snake_case__ : Optional[int] = """train""" snake_case__ : Tuple = {"""train""": parquet_path, """test""": parquet_path} snake_case__ : Optional[Any] = tmp_path / """cache""" snake_case__ : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} snake_case__ : Tuple = ParquetDatasetReader(_lowerCAmelCase , cache_dir=_lowerCAmelCase ).read() _check_parquet_datasetdict(_lowerCAmelCase , _lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: snake_case__ : Any = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 snake_case__ : Optional[Any] = pq.ParquetFile(tmp_path / """foo.parquet""" ) snake_case__ : Optional[int] = pf.read() assert dataset.data.table == output_table def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : int = str(shared_datadir / """test_image_rgb.jpg""" ) snake_case__ : List[Any] = {"""image""": [image_path]} snake_case__ : Dict = Features({"""image""": Image()} ) snake_case__ : Optional[int] = Dataset.from_dict(_lowerCAmelCase , features=_lowerCAmelCase ) snake_case__ : str = ParquetDatasetWriter(_lowerCAmelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 snake_case__ : Dict = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features snake_case__ : List[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=_lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: assert get_writer_batch_size(_lowerCAmelCase ) == expected
301
0
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = VideoToVideoSDPipeline lowerCamelCase__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} lowerCamelCase__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} lowerCamelCase__ : List[str] = PipelineTesterMixin.required_optional_params - {"""latents"""} lowerCamelCase__ : int = False # No `output_type`. lowerCamelCase__ : List[Any] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def lowercase_ ( self ): '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(A_ ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowercase_ ( self , A_ , A_=0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(A_ ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=A_ ).manual_seed(A_ ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''video''': video, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = VideoToVideoSDPipeline(**A_ ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(A_ ) SCREAMING_SNAKE_CASE__ = '''np''' SCREAMING_SNAKE_CASE__ = sd_pipe(**A_ ).frames SCREAMING_SNAKE_CASE__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) SCREAMING_SNAKE_CASE__ = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowercase_ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_ , expected_max_diff=5E-3 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowercase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowercase_ ( self ): '''simple docstring''' pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __snake_case ( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = VideoToVideoSDPipeline.from_pretrained('''cerspense/zeroscope_v2_XL''' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames SCREAMING_SNAKE_CASE__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = torch.randn((1, 10, 3, 10_24, 5_76) , generator=A_ ) SCREAMING_SNAKE_CASE__ = video.to('''cuda''' ) SCREAMING_SNAKE_CASE__ = '''Spiderman is surfing''' SCREAMING_SNAKE_CASE__ = pipe(A_ , video=A_ , generator=A_ , num_inference_steps=3 , output_type='''pt''' ).frames SCREAMING_SNAKE_CASE__ = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
100
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _lowerCamelCase ( a_ : List[Any]): lowerCamelCase :Dict = tmp_path / '''file.csv''' lowerCamelCase :str = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''') with open(a_ , '''w''') as f: f.write(a_) return str(a_) @pytest.fixture def _lowerCamelCase ( a_ : int): lowerCamelCase :Dict = tmp_path / '''malformed_file.csv''' lowerCamelCase :Optional[int] = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''') with open(a_ , '''w''') as f: f.write(a_) return str(a_) @pytest.fixture def _lowerCamelCase ( a_ : int , a_ : Union[str, Any]): lowerCamelCase :Tuple = tmp_path / '''csv_with_image.csv''' lowerCamelCase :int = textwrap.dedent( F"\\n image\n {image_file}\n ") with open(a_ , '''w''') as f: f.write(a_) return str(a_) @pytest.fixture def _lowerCamelCase ( a_ : Union[str, Any]): lowerCamelCase :int = tmp_path / '''csv_with_label.csv''' lowerCamelCase :Optional[int] = textwrap.dedent( '''\ label good bad good ''') with open(a_ , '''w''') as f: f.write(a_) return str(a_) @pytest.fixture def _lowerCamelCase ( a_ : int): lowerCamelCase :List[Any] = tmp_path / '''csv_with_int_list.csv''' lowerCamelCase :Dict = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''') with open(a_ , '''w''') as f: f.write(a_) return str(a_) def _lowerCamelCase ( a_ : int , a_ : Optional[int] , a_ : str): lowerCamelCase :Any = Csv() lowerCamelCase :str = csv._generate_tables([[csv_file, malformed_csv_file]]) with pytest.raises(a_ , match='''Error tokenizing data'''): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(a_) in record.message for record in caplog.records) @require_pil def _lowerCamelCase ( a_ : str): with open(a_ , encoding='''utf-8''') as f: lowerCamelCase :str = f.read().splitlines()[1] lowerCamelCase :Optional[Any] = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()})) lowerCamelCase :List[Any] = csv._generate_tables([[csv_file_with_image]]) lowerCamelCase :int = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field('''image''').type == Image()() lowerCamelCase :int = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _lowerCamelCase ( a_ : Any): with open(a_ , encoding='''utf-8''') as f: lowerCamelCase :Union[str, Any] = f.read().splitlines()[1:] lowerCamelCase :List[str] = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''])})) lowerCamelCase :str = csv._generate_tables([[csv_file_with_label]]) lowerCamelCase :Any = pa.concat_tables([table for _, table in generator]) assert pa_table.schema.field('''label''').type == ClassLabel(names=['''good''', '''bad'''])() lowerCamelCase :Tuple = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad''']).straint(a_) for label in labels] def _lowerCamelCase ( a_ : List[Any]): lowerCamelCase :Optional[Any] = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda a_: [int(a_) for i in x.split()]}) lowerCamelCase :Optional[int] = csv._generate_tables([[csv_file_with_int_list]]) lowerCamelCase :List[str] = pa.concat_tables([table for _, table in generator]) assert pa.types.is_list(pa_table.schema.field('''int_list''').type) lowerCamelCase :int = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
166
0
from math import ceil, sqrt def UpperCamelCase ( lowerCAmelCase_ = 1_00_00_00 ) -> int: '''simple docstring''' _A= 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _A= max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _A= 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F"{solution() = }")
476
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : List[str] ="""convbert""" def __init__( self , lowerCAmelCase__=30522 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=768 , lowerCAmelCase__=2 , lowerCAmelCase__=9 , lowerCAmelCase__=1 , lowerCAmelCase__=None , **lowerCAmelCase__ , ): super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) _A= vocab_size _A= hidden_size _A= num_hidden_layers _A= num_attention_heads _A= intermediate_size _A= hidden_act _A= hidden_dropout_prob _A= attention_probs_dropout_prob _A= max_position_embeddings _A= type_vocab_size _A= initializer_range _A= layer_norm_eps _A= embedding_size _A= head_ratio _A= conv_kernel_size _A= num_groups _A= classifier_dropout class lowerCAmelCase ( _a ): @property def a__ ( self ): if self.task == "multiple-choice": _A= {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
476
1
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: return round(float(moles / volume ) * nfactor ) def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: return round(float((moles * 0.0821 * temperature) / (volume) ) ) def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
69
"""simple docstring""" import functools from typing import Any def lowerCamelCase__ ( _lowerCamelCase : str , _lowerCamelCase : list[str] ) -> bool: # Validation if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not all( isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie lowerCamelCase_ = {} lowerCamelCase_ = 'WORD_KEEPER' for word in words: lowerCamelCase_ = trie for c in word: if c not in trie_node: lowerCamelCase_ = {} lowerCamelCase_ = trie_node[c] lowerCamelCase_ = True lowerCamelCase_ = len(_lowerCamelCase ) # Dynamic programming method @functools.cache def is_breakable(_lowerCamelCase : int ) -> bool: if index == len_string: return True lowerCamelCase_ = trie for i in range(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ = trie_node.get(string[i] , _lowerCamelCase ) if trie_node is None: return False if trie_node.get(_lowerCamelCase , _lowerCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
549
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __lowercase ): UpperCAmelCase__ = (DDIMParallelScheduler,) UpperCAmelCase__ = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def _lowercase (self , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def _lowercase (self , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = 10, 0.0 SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample return sample def _lowercase (self ): """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def _lowercase (self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE_ , prediction_type=SCREAMING_SNAKE_CASE_ , sample_max_value=SCREAMING_SNAKE_CASE_ , ) def _lowercase (self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = 10, 0.0 scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE_ = samplea.shape[0] SCREAMING_SNAKE_CASE_ = torch.stack([samplea, samplea, samplea] , dim=0 ) SCREAMING_SNAKE_CASE_ = torch.arange(SCREAMING_SNAKE_CASE_ )[0:3, None].repeat(1 , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) SCREAMING_SNAKE_CASE_ = scheduler.batch_step_no_noise(SCREAMING_SNAKE_CASE_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.full_loop() SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.full_loop(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE_ , beta_start=0.01 ) SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE_ , beta_start=0.01 ) SCREAMING_SNAKE_CASE_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
628
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> int: __A : Union[str, Any] = SwinConfig(image_size=1_92 ) if "base" in model_name: __A : Any = 6 __A : Tuple = 1_28 __A : str = (2, 2, 18, 2) __A : Dict = (4, 8, 16, 32) elif "large" in model_name: __A : str = 12 __A : Tuple = 1_92 __A : str = (2, 2, 18, 2) __A : List[Any] = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) __A : int = window_size __A : Optional[int] = embed_dim __A : List[Any] = depths __A : Dict = num_heads return config def _lowerCAmelCase ( __snake_case : str ) -> Dict: if "encoder.mask_token" in name: __A : str = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: __A : Optional[int] = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: __A : str = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: __A : Optional[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __A : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: __A : Any = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __A : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __A : str = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __A : Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __A : str = 'layernorm.weight' if name == "encoder.norm.bias": __A : List[Any] = 'layernorm.bias' if "decoder" in name: pass else: __A : List[str] = 'swin.' + name return name def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Any ) -> List[str]: for key in orig_state_dict.copy().keys(): __A : List[str] = orig_state_dict.pop(__snake_case ) if "attn_mask" in key: pass elif "qkv" in key: __A : Tuple = key.split('.' ) __A : List[str] = int(key_split[2] ) __A : Dict = int(key_split[4] ) __A : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __A : str = val[:dim, :] __A : Dict = val[ dim : dim * 2, : ] __A : Any = val[-dim:, :] else: __A : Tuple = val[ :dim ] __A : Any = val[ dim : dim * 2 ] __A : Union[str, Any] = val[ -dim: ] else: __A : Tuple = val return orig_state_dict def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : Optional[int] = torch.load(__snake_case , map_location='cpu' )['model'] __A : str = get_swin_config(__snake_case ) __A : str = SwinForMaskedImageModeling(__snake_case ) model.eval() __A : Tuple = convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) __A : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __A : Optional[int] = ViTImageProcessor(size={'height': 1_92, 'width': 1_92} ) __A : Tuple = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) __A : List[Any] = image_processor(images=__snake_case , return_tensors='pt' ) with torch.no_grad(): __A : List[str] = model(**__snake_case ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__snake_case ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase__ : List[Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
8
from __future__ import annotations from scipy.special import comb # type: ignore class lowerCAmelCase_ : def __init__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. SCREAMING_SNAKE_CASE_ : Tuple = len(snake_case__ ) - 1 def snake_case ( self ,snake_case__ ): assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE_ : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree ,snake_case__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(snake_case__ ) ,5 ) == 1 return output_values def snake_case ( self ,snake_case__ ): assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE_ : int = self.basis_function(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = 0.0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def snake_case ( self ,snake_case__ = 0.01 ): from matplotlib import pyplot as plt # type: ignore SCREAMING_SNAKE_CASE_ : list[float] = [] # x coordinates of points to plot SCREAMING_SNAKE_CASE_ : list[float] = [] # y coordinates of points to plot SCREAMING_SNAKE_CASE_ : List[str] = 0.0 while t <= 1: SCREAMING_SNAKE_CASE_ : int = self.bezier_curve_function(snake_case__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size SCREAMING_SNAKE_CASE_ : Dict = [i[0] for i in self.list_of_points] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( snake_case__ ,snake_case__ ,color='blue' ,label='Curve of Degree ' + str(self.degree ) ,) plt.scatter(snake_case__ ,snake_case__ ,color='red' ,label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
105
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { '''configuration_blenderbot_small''': [ '''BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotSmallConfig''', '''BlenderbotSmallOnnxConfig''', ], '''tokenization_blenderbot_small''': ['''BlenderbotSmallTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['''BlenderbotSmallTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotSmallForCausalLM''', '''BlenderbotSmallForConditionalGeneration''', '''BlenderbotSmallModel''', '''BlenderbotSmallPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''TFBlenderbotSmallForConditionalGeneration''', '''TFBlenderbotSmallModel''', '''TFBlenderbotSmallPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''FlaxBlenderbotSmallForConditionalGeneration''', '''FlaxBlenderbotSmallModel''', '''FlaxBlenderbotSmallPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __a = { "169M": 12, "430M": 24, "1B5": 24, "3B": 32, "7B": 32, "14B": 40, } __a = { "169M": 7_68, "430M": 10_24, "1B5": 20_48, "3B": 25_60, "7B": 40_96, "14B": 51_20, } def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Any = list(state_dict.keys() ) for name in state_dict_keys: snake_case_ :List[str] = state_dict.pop(_lowercase ) # emb -> embedding if name.startswith("""emb.""" ): snake_case_ :Any = name.replace("""emb.""", """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): snake_case_ :Dict = name.replace("""blocks.0.ln0""", """blocks.0.pre_ln""" ) # att -> attention snake_case_ :List[str] = re.sub(r"""blocks\.(\d+)\.att""", r"""blocks.\1.attention""", _lowercase ) # ffn -> feed_forward snake_case_ :Dict = re.sub(r"""blocks\.(\d+)\.ffn""", r"""blocks.\1.feed_forward""", _lowercase ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): snake_case_ :str = name.replace(""".time_mix_k""", """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): snake_case_ :List[Any] = name.replace(""".time_mix_v""", """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): snake_case_ :Dict = name.replace(""".time_mix_r""", """.time_mix_receptance""" ) if name != "head.weight": snake_case_ :Optional[Any] = """rwkv.""" + name snake_case_ :int = weight return state_dict def A_ ( _lowercase, _lowercase, _lowercase, _lowercase=None, _lowercase=None, _lowercase=False, _lowercase=None ): '''simple docstring''' if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) snake_case_ :Dict = 50277 snake_case_ :Optional[Any] = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: snake_case_ :List[Any] = PreTrainedTokenizerFast(tokenizer_file=_lowercase ) snake_case_ :int = len(_lowercase ) tokenizer.save_pretrained(_lowercase ) # 2. Build the config snake_case_ :Tuple = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: snake_case_ :str = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) snake_case_ :Union[str, Any] = RwkvConfig( vocab_size=_lowercase, num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size], hidden_size=HIDEN_SIZE_MAPPING[size], ) config.save_pretrained(_lowercase ) # 3. Download model file then convert state_dict snake_case_ :List[str] = hf_hub_download(_lowercase, _lowercase ) snake_case_ :int = torch.load(_lowercase, map_location="""cpu""" ) snake_case_ :Any = convert_state_dict(_lowercase ) # 4. Split in shards and save snake_case_, snake_case_ :Union[str, Any] = shard_checkpoint(_lowercase ) for shard_file, shard in shards.items(): torch.save(_lowercase, os.path.join(_lowercase, _lowercase ) ) if index is not None: snake_case_ :List[str] = os.path.join(_lowercase, _lowercase ) # Save the index as well with open(_lowercase, """w""", encoding="""utf-8""" ) as f: snake_case_ :List[str] = json.dumps(_lowercase, indent=2, sort_keys=_lowercase ) + """\n""" f.write(_lowercase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) snake_case_ :int = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: snake_case_ :List[Any] = torch.load(os.path.join(_lowercase, _lowercase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()}, os.path.join(_lowercase, _lowercase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) snake_case_ :List[str] = AutoModelForCausalLM.from_pretrained(_lowercase ) model.push_to_hub(_lowercase, max_shard_size="""2GB""" ) tokenizer.push_to_hub(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) __a = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
310
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : str = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
import math def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> str: '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = 0 while num > 0: UpperCAmelCase = num % 8 UpperCAmelCase = octal + (remainder * math.floor(math.pow(10 , UpperCamelCase__ ) )) counter += 1 UpperCAmelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F"""0o{int(UpperCamelCase__ )}""" def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' print('''\n2 in octal is:''' ) print(decimal_to_octal(2 ) ) # = 2 print('''\n8 in octal is:''' ) print(decimal_to_octal(8 ) ) # = 10 print('''\n65 in octal is:''' ) print(decimal_to_octal(65 ) ) # = 101 print('''\n216 in octal is:''' ) print(decimal_to_octal(216 ) ) # = 330 print('''\n512 in octal is:''' ) print(decimal_to_octal(512 ) ) # = 1000 print('''\n''' ) if __name__ == "__main__": main()
130
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : List[str] = 16 a__ : Dict = 32 def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ = 16 ): lowercase__ = AutoTokenizer.from_pretrained('bert-base-cased' ) lowercase__ = DatasetDict( { 'train': dataset['train'].select(A__ ), 'validation': dataset['train'].select(A__ ), 'test': dataset['validation'], } ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( A__ , padding='longest' , max_length=A__ , pad_to_multiple_of=A__ , return_tensors='pt' , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) lowercase__ = DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) lowercase__ = DataLoader( tokenized_datasets['test'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader, test_dataloader def _lowerCAmelCase ( A__ , A__ ): # New Code # lowercase__ = [] # Download the dataset lowercase__ = load_dataset('glue' , 'mrpc' ) # Create our splits lowercase__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowercase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config['lr'] lowercase__ = int(config['num_epochs'] ) lowercase__ = int(config['seed'] ) lowercase__ = int(config['batch_size'] ) lowercase__ = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowercase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase__ = batch_size // MAX_GPU_BATCH_SIZE lowercase__ = MAX_GPU_BATCH_SIZE set_seed(A__ ) # New Code # # Create our folds: lowercase__ = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) lowercase__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A__ ): lowercase__, lowercase__, lowercase__ = get_fold_dataloaders( A__ , A__ , A__ , A__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=A__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=100 , num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # Now we train the model for epoch in range(A__ ): model.train() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ = model(**A__ ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__, lowercase__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=A__ , references=A__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , A__ ) # New Code # # We also run predictions on the test set at the very end lowercase__ = [] for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A__ ) lowercase__ = outputs.logits lowercase__, lowercase__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowercase__ = torch.cat(A__ , dim=0 ) lowercase__ = torch.stack(A__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowercase__ = metric.compute(predictions=A__ , references=A__ ) accelerator.print('Average test metrics from all folds:' , A__ ) def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=A__ , default=A__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=A__ , default=3 , help='The number of splits to perform across the dataset' ) lowercase__ = parser.parse_args() lowercase__ = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
642
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase) }
642
1
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def UpperCamelCase ( _A : Features )-> Optional[int]: """simple docstring""" A__ = np.inf def set_batch_size(_A : FeatureType ) -> None: nonlocal batch_size if isinstance(_A , _A ): A__ = min(_A , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_A , _A ): A__ = min(_A , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_A , _A ) and feature.dtype == "binary": A__ = min(_A , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_A , _A ) return None if batch_size is np.inf else batch_size class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): super().__init__( UpperCAmelCase__ , split=UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = path_or_paths if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else {self.split: path_or_paths} A__ = _PACKAGED_DATASETS_MODULES["parquet"][1] A__ = Parquet( cache_dir=UpperCAmelCase__ , data_files=UpperCAmelCase__ , features=UpperCAmelCase__ , hash=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __A ( self ): # Build iterable dataset if self.streaming: A__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) A__ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): A__ = dataset A__ = path_or_buf A__ = batch_size or get_writer_batch_size(dataset.features ) A__ = parquet_writer_kwargs def __A ( self ): A__ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: A__ = self._write(file_obj=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , **self.parquet_writer_kwargs ) else: A__ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase__ , **self.parquet_writer_kwargs ) return written def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): A__ = 0 A__ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase__ ) A__ = self.dataset.features.arrow_schema A__ = pq.ParquetWriter(UpperCAmelCase__ , schema=UpperCAmelCase__ , **UpperCAmelCase__ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCAmelCase__ ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): A__ = query_table( table=self.dataset._data , key=slice(UpperCAmelCase__ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCAmelCase__ ) written += batch.nbytes writer.close() return written
491
from math import log from scipy.constants import Boltzmann, physical_constants UpperCAmelCase_ : Optional[int] = 300 # TEMPERATURE (unit = K) def UpperCamelCase ( _A : float , _A : float , _A : float , )-> float: """simple docstring""" if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
491
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class a__ ( unittest.TestCase ): def __init__( self , _A , _A=7 , _A=3 , _A=3_0 , _A=4_0_0 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , _A=True , _A=1 / 2_5_5 , _A=True , ): """simple docstring""" __lowerCAmelCase = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_pad def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __SCREAMING_SNAKE_CASE( self , _A , _A=False ): """simple docstring""" if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(UpperCAmelCase_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["shortest_edge"] * h / w ) __lowerCAmelCase = self.size["shortest_edge"] elif w > h: __lowerCAmelCase = self.size["shortest_edge"] __lowerCAmelCase = int(self.size["shortest_edge"] * w / h ) else: __lowerCAmelCase = self.size["shortest_edge"] __lowerCAmelCase = self.size["shortest_edge"] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(UpperCAmelCase_ , key=lambda _A : item[0] )[0] __lowerCAmelCase = max(UpperCAmelCase_ , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __UpperCAmelCase , unittest.TestCase ): _a : Union[str, Any] = ConditionalDetrImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ConditionalDetrImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) __lowerCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=UpperCAmelCase_ ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase_ ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) __lowerCAmelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(UpperCAmelCase_ , batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __lowerCAmelCase = json.loads(f.read() ) __lowerCAmelCase = {"image_id": 3_9_7_6_9, "annotations": target} # encode them __lowerCAmelCase = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) __lowerCAmelCase = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , return_tensors="pt" ) # verify pixel values __lowerCAmelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase_ ) __lowerCAmelCase = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area __lowerCAmelCase = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase_ ) ) # verify boxes __lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase_ ) __lowerCAmelCase = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id __lowerCAmelCase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase_ ) ) # verify is_crowd __lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase_ ) ) # verify class_labels __lowerCAmelCase = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase_ ) ) # verify orig_size __lowerCAmelCase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase_ ) ) # verify size __lowerCAmelCase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase_ ) ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __lowerCAmelCase = json.loads(f.read() ) __lowerCAmelCase = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} __lowerCAmelCase = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __lowerCAmelCase = ConditionalDetrImageProcessor(format="coco_panoptic" ) __lowerCAmelCase = image_processing(images=UpperCAmelCase_ , annotations=UpperCAmelCase_ , masks_path=UpperCAmelCase_ , return_tensors="pt" ) # verify pixel values __lowerCAmelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase_ ) __lowerCAmelCase = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) # verify area __lowerCAmelCase = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase_ ) ) # verify boxes __lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase_ ) __lowerCAmelCase = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase_ , atol=1E-3 ) ) # verify image_id __lowerCAmelCase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase_ ) ) # verify is_crowd __lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase_ ) ) # verify class_labels __lowerCAmelCase = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase_ ) ) # verify masks __lowerCAmelCase = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCAmelCase_ ) # verify orig_size __lowerCAmelCase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase_ ) ) # verify size __lowerCAmelCase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase_ ) )
711
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class a__ : def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=False , _A=True , _A="None" , _A=3 , _A=4 , _A=None , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = relative_attention __lowerCAmelCase = position_biased_input __lowerCAmelCase = pos_att_type __lowerCAmelCase = scope def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDebertaVaModel(config=_A ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = [input_ids, input_mask] __lowerCAmelCase = model(_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDebertaVaForMaskedLM(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFDebertaVaForSequenceClassification(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFDebertaVaForTokenClassification(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFDebertaVaForQuestionAnswering(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[Any] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _a : Union[str, Any] = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _a : str = False _a : List[str] = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDebertaVaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(_A ) @require_tf class a__ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) __lowerCAmelCase = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase = model(_A , attention_mask=_A )[0] __lowerCAmelCase = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , _A , atol=1E-4 )
552
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : Optional[Any] = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
505
0
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : List[Any] = tmp_path / '''cache''' __lowercase : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase : int = ParquetDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ ).read() _check_parquet_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Union[str, Any] = tmp_path / '''cache''' __lowercase : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowercase : Dict = features.copy() if features else default_expected_features __lowercase : Dict = ( Features({feature: Value(UpperCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase : List[Any] = ParquetDatasetReader(UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_parquet_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : int = tmp_path / '''cache''' __lowercase : Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowercase : Tuple = ParquetDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , split=UpperCAmelCase__ ).read() _check_parquet_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): __lowercase : Optional[int] = parquet_path elif issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): __lowercase : Tuple = [parquet_path] __lowercase : List[Any] = tmp_path / '''cache''' __lowercase : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowercase : int = ParquetDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_parquet_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=("train",) ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for split in splits: __lowercase : Optional[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Any = tmp_path / '''cache''' __lowercase : Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase : Dict = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ ).read() _check_parquet_datasetdict(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : List[str] = tmp_path / '''cache''' __lowercase : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowercase : Tuple = features.copy() if features else default_expected_features __lowercase : List[Any] = ( Features({feature: Value(UpperCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase : List[str] = ParquetDatasetReader({'''train''': parquet_path} , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_parquet_datasetdict(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if split: __lowercase : List[str] = {split: parquet_path} else: __lowercase : List[Any] = '''train''' __lowercase : Tuple = {'''train''': parquet_path, '''test''': parquet_path} __lowercase : str = tmp_path / '''cache''' __lowercase : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowercase : List[Any] = ParquetDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_parquet_datasetdict(UpperCAmelCase__ , UpperCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : str = ParquetDatasetWriter(UpperCAmelCase__ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __lowercase : int = pq.ParquetFile(tmp_path / '''foo.parquet''' ) __lowercase : Optional[Any] = pf.read() assert dataset.data.table == output_table def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): __lowercase : int = str(shared_datadir / '''test_image_rgb.jpg''' ) __lowercase : List[Any] = {'''image''': [image_path]} __lowercase : int = Features({'''image''': Image()} ) __lowercase : Dict = Dataset.from_dict(UpperCAmelCase__ , features=UpperCAmelCase__ ) __lowercase : List[str] = ParquetDatasetWriter(UpperCAmelCase__ , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 __lowercase : Union[str, Any] = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features __lowercase : Optional[Any] = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=UpperCAmelCase__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): assert get_writer_batch_size(UpperCAmelCase__ ) == expected
714
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : List[Any] = len(__UpperCamelCase ) for i in range(length - 1 ): __lowercase : Optional[Any] = i for k in range(i + 1 , __UpperCamelCase ): if collection[k] < collection[least]: __lowercase : int = k if least != i: __lowercase ,__lowercase : Any = (collection[i], collection[least]) return collection if __name__ == "__main__": a_ = input('Enter numbers separated by a comma:\n').strip() a_ = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
523
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowercase_ : """simple docstring""" def __init__( self : str, UpperCamelCase__ : Optional[int], UpperCamelCase__ : int=13, UpperCamelCase__ : int=7, UpperCamelCase__ : List[str]=True, UpperCamelCase__ : Union[str, Any]=True, UpperCamelCase__ : str=True, UpperCamelCase__ : Optional[Any]=True, UpperCamelCase__ : Dict=99, UpperCamelCase__ : Any=32, UpperCamelCase__ : str=2, UpperCamelCase__ : Union[str, Any]=4, UpperCamelCase__ : Any=37, UpperCamelCase__ : List[str]="gelu", UpperCamelCase__ : Any=0.1, UpperCamelCase__ : int=0.1, UpperCamelCase__ : List[Any]=5_12, UpperCamelCase__ : List[str]=16, UpperCamelCase__ : int=2, UpperCamelCase__ : Union[str, Any]=0.02, UpperCamelCase__ : Optional[int]=False, UpperCamelCase__ : List[Any]=True, UpperCamelCase__ : List[str]="None", UpperCamelCase__ : List[Any]=3, UpperCamelCase__ : Tuple=4, UpperCamelCase__ : Dict=None, ) -> Tuple: _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = relative_attention _A = position_biased_input _A = pos_att_type _A = scope def __UpperCAmelCase ( self : int ) -> int: _A = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size], self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _A = DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, initializer_range=self.initializer_range, return_dict=UpperCamelCase__, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : Any, UpperCamelCase__ : Dict, UpperCamelCase__ : Tuple, UpperCamelCase__ : Any, UpperCamelCase__ : Optional[int], UpperCamelCase__ : int, UpperCamelCase__ : Optional[int] ) -> str: _A = TFDebertaVaModel(config=UpperCamelCase__ ) _A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _A = [input_ids, input_mask] _A = model(UpperCamelCase__ ) _A = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Any, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : List[Any], UpperCamelCase__ : Any, UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : int, UpperCamelCase__ : List[str] ) -> Union[str, Any]: _A = TFDebertaVaForMaskedLM(config=UpperCamelCase__ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _A = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : int, UpperCamelCase__ : str, UpperCamelCase__ : Any, UpperCamelCase__ : Dict, UpperCamelCase__ : List[str], UpperCamelCase__ : Tuple, UpperCamelCase__ : str ) -> List[Any]: _A = self.num_labels _A = TFDebertaVaForSequenceClassification(config=UpperCamelCase__ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _A = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : Tuple, UpperCamelCase__ : List[str], UpperCamelCase__ : int, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : List[Any], UpperCamelCase__ : int, UpperCamelCase__ : List[str] ) -> Optional[Any]: _A = self.num_labels _A = TFDebertaVaForTokenClassification(config=UpperCamelCase__ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _A = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : int, UpperCamelCase__ : Tuple, UpperCamelCase__ : str, UpperCamelCase__ : Any, UpperCamelCase__ : Union[str, Any] ) -> Any: _A = TFDebertaVaForQuestionAnswering(config=UpperCamelCase__ ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _A = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : Tuple ) -> str: _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __lowerCAmelCase = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False def __UpperCAmelCase ( self : Dict ) -> Dict: _A = TFDebertaVaModelTester(self ) _A = ConfigTester(self, config_class=UpperCamelCase__, hidden_size=37 ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Dict ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Any: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def __UpperCAmelCase ( self : Dict ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: _A = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class lowercase_ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def __UpperCAmelCase ( self : int ) -> str: pass @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> int: _A = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) _A = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _A = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _A = model(UpperCamelCase__, attention_mask=UpperCamelCase__ )[0] _A = tf.constant( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4], UpperCamelCase__, atol=1e-4 )
107
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _SCREAMING_SNAKE_CASE ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__snake_case ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def _SCREAMING_SNAKE_CASE ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def _SCREAMING_SNAKE_CASE ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__snake_case ): http_head('https://huggingface.co' )
107
1
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase__ =Lock() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Union[str, Any]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCAmelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __SCREAMING_SNAKE_CASE = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __SCREAMING_SNAKE_CASE = min(UpperCAmelCase__ , UpperCAmelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCAmelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __SCREAMING_SNAKE_CASE = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __SCREAMING_SNAKE_CASE = max(UpperCAmelCase__ , UpperCAmelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCAmelCase__ ) def _a ( UpperCAmelCase__ ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __SCREAMING_SNAKE_CASE = Pipe() __SCREAMING_SNAKE_CASE = Pipe() process_array_.append( Process( target=UpperCAmelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __SCREAMING_SNAKE_CASE = temp_rs __SCREAMING_SNAKE_CASE = temp_rr for i in range(1 , len(UpperCAmelCase__ ) - 1 ): __SCREAMING_SNAKE_CASE = Pipe() __SCREAMING_SNAKE_CASE = Pipe() process_array_.append( Process( target=UpperCAmelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __SCREAMING_SNAKE_CASE = temp_rs __SCREAMING_SNAKE_CASE = temp_rr process_array_.append( Process( target=UpperCAmelCase__ , args=( len(UpperCAmelCase__ ) - 1, arr[len(UpperCAmelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCAmelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCAmelCase__ ) ): __SCREAMING_SNAKE_CASE = result_pipe[p][0].recv() process_array_[p].join() return arr def _a ( ) -> List[str]: __SCREAMING_SNAKE_CASE = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = odd_even_transposition(UpperCAmelCase__ ) print('''Sorted List\n''' ) print(*UpperCAmelCase__ ) if __name__ == "__main__": main()
713
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class A__( __magic_name__ ): lowerCAmelCase = '''van''' def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=2_24 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Optional[int]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : str=[64, 1_28, 3_20, 5_12] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE : Dict=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-6 , __SCREAMING_SNAKE_CASE : Any=1E-2 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_sizes __SCREAMING_SNAKE_CASE = strides __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = mlp_ratios __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = layer_scale_init_value __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = dropout_rate
690
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __a : int = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Dict = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : int = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : int = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __a : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
637
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def lowerCAmelCase__ ( UpperCamelCase_ : str )-> int: A__ = '''huggingface/label-files''' A__ = '''imagenet-1k-id2label.json''' A__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) A__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} A__ = {v: k for k, v in idalabel.items()} A__ = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" A__ = BitConfig( conv_layer=UpperCamelCase_ , num_labels=1_0_0_0 , idalabel=UpperCamelCase_ , labelaid=UpperCamelCase_ , ) return config def lowerCAmelCase__ ( UpperCamelCase_ : List[Any] )-> Optional[int]: if "stem.conv" in name: A__ = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: A__ = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: A__ = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): A__ = '''bit.''' + name if "bit" not in name and "classifier" not in name: A__ = '''bit.encoder.''' + name return name def lowerCAmelCase__ ( )-> str: A__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=False )-> Optional[int]: A__ = get_config(UpperCamelCase_ ) # load original model from timm A__ = create_model(UpperCamelCase_ , pretrained=UpperCamelCase_ ) timm_model.eval() # load state_dict of original model A__ = timm_model.state_dict() for key in state_dict.copy().keys(): A__ = state_dict.pop(UpperCamelCase_ ) A__ = val.squeeze() if '''head''' in key else val # load HuggingFace model A__ = BitForImageClassification(UpperCamelCase_ ) model.eval() model.load_state_dict(UpperCamelCase_ ) # create image processor A__ = create_transform(**resolve_data_config({} , model=UpperCamelCase_ ) ) A__ = transform.transforms A__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } A__ = BitImageProcessor( do_resize=UpperCamelCase_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=UpperCamelCase_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=UpperCamelCase_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A__ = prepare_img() A__ = transform(UpperCamelCase_ ).unsqueeze(0 ) A__ = processor(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ ) # verify logits with torch.no_grad(): A__ = model(UpperCamelCase_ ) A__ = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) A__ = timm_model(UpperCamelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCamelCase_ , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(f"Saving model {model_name} and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase_ ) processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: print(f"Pushing model {model_name} and processor to the hub" ) model.push_to_hub(f"ybelkada/{model_name}" ) processor.push_to_hub(f"ybelkada/{model_name}" ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) _lowercase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
632
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( __a ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE__ (__a) -> Dict: """simple docstring""" raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE__ (self) -> List[str]: """simple docstring""" raise NotImplementedError()
700
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class a_ ( unittest.TestCase ): def __init__(self , __a , __a=7 , __a=3 , __a=1_8 , __a=3_0 , __a=4_0_0 , __a=True , __a=None , __a=True , __a=None , __a=True , __a=[0.48_145_466, 0.4_578_275, 0.40_821_073] , __a=[0.26_862_954, 0.26_130_258, 0.27_577_711] , __a=True , ) -> List[Any]: """simple docstring""" __snake_case : Tuple = size if size is not None else {'height': 2_2_4, 'width': 2_2_4} __snake_case : Any = crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} __snake_case : Optional[int] = parent __snake_case : Dict = batch_size __snake_case : str = num_channels __snake_case : Optional[Any] = image_size __snake_case : Optional[int] = min_resolution __snake_case : Tuple = max_resolution __snake_case : Optional[int] = do_resize __snake_case : Optional[int] = size __snake_case : Union[str, Any] = do_center_crop __snake_case : List[Any] = crop_size __snake_case : int = do_normalize __snake_case : Optional[Any] = image_mean __snake_case : str = image_std __snake_case : Optional[Any] = do_convert_rgb def SCREAMING_SNAKE_CASE__ (self) -> Optional[int]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def SCREAMING_SNAKE_CASE__ (self , __a=False , __a=False , __a=False) -> List[str]: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __snake_case : Optional[int] = [] for i in range(self.batch_size): image_inputs.append( np.random.randint( 2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta)) else: __snake_case : Dict = [] for i in range(self.batch_size): __snake_case ,__snake_case : Optional[Any] = np.random.choice(np.arange(self.min_resolution , self.max_resolution) , 2) image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta)) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __snake_case : int = [Image.fromarray(np.moveaxis(__a , 0 , -1)) for x in image_inputs] if torchify: __snake_case : List[Any] = [torch.from_numpy(__a) for x in image_inputs] return image_inputs @require_torch @require_vision class a_ ( UpperCamelCase_ , unittest.TestCase ): _snake_case = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ (self) -> int: """simple docstring""" __snake_case : Union[str, Any] = ChineseCLIPImageProcessingTester(self , do_center_crop=__a) @property def SCREAMING_SNAKE_CASE__ (self) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" __snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a , 'do_resize')) self.assertTrue(hasattr(__a , 'size')) self.assertTrue(hasattr(__a , 'do_center_crop')) self.assertTrue(hasattr(__a , 'center_crop')) self.assertTrue(hasattr(__a , 'do_normalize')) self.assertTrue(hasattr(__a , 'image_mean')) self.assertTrue(hasattr(__a , 'image_std')) self.assertTrue(hasattr(__a , 'do_convert_rgb')) def SCREAMING_SNAKE_CASE__ (self) -> int: """simple docstring""" __snake_case : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 2_2_4, 'width': 2_2_4}) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8}) __snake_case : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4) self.assertEqual(image_processor.size , {'shortest_edge': 4_2}) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4}) def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __snake_case : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a , Image.Image) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : List[Any] = image_processing(__a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __snake_case : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=__a , numpify=__a) for image in image_inputs: self.assertIsInstance(__a , np.ndarray) # Test not batched input __snake_case : List[Any] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : int = image_processing(__a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" __snake_case : Any = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __snake_case : Tuple = self.image_processor_tester.prepare_inputs(equal_resolution=__a , torchify=__a) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(__a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class a_ ( UpperCamelCase_ , unittest.TestCase ): _snake_case = ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ (self) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__a) __snake_case : List[Any] = 3 @property def SCREAMING_SNAKE_CASE__ (self) -> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" __snake_case : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a , 'do_resize')) self.assertTrue(hasattr(__a , 'size')) self.assertTrue(hasattr(__a , 'do_center_crop')) self.assertTrue(hasattr(__a , 'center_crop')) self.assertTrue(hasattr(__a , 'do_normalize')) self.assertTrue(hasattr(__a , 'image_mean')) self.assertTrue(hasattr(__a , 'image_std')) self.assertTrue(hasattr(__a , 'do_convert_rgb')) def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ (self) -> int: """simple docstring""" __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __snake_case : Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a , Image.Image) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : Optional[int] = image_processing(__a , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
61
0
def _snake_case (__lowercase): UpperCamelCase_ = 0 for ch in input_str: UpperCamelCase_ = ord(__lowercase) UpperCamelCase_ = pow(2 , __lowercase) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
23
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case__ : Dict = TypeVar("""T""") class _a ( Generic[T] ): """simple docstring""" A_ = 42 # Cache store of keys A_ = 42 # References of the keys in cache A_ = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ) -> None: UpperCamelCase_ = deque() UpperCamelCase_ = set() if not n: UpperCamelCase_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: UpperCamelCase_ = n def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase_ = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
23
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Union[str, Any] = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
457
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __lowerCamelCase : Optional[int] = None __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Any = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __lowerCamelCase : List[str] = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 __lowerCamelCase : List[str] = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } class __magic_name__ ( A__ ): lowercase : List[str] =VOCAB_FILES_NAMES lowercase : int =PRETRAINED_VOCAB_FILES_MAP lowercase : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Union[str, Any] =['''input_ids''', '''attention_mask'''] lowercase : Any =TaTokenizer lowercase : List[int] =[] def __init__( self : Optional[Any] , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Any="</s>" , UpperCamelCase__ : Dict="<unk>" , UpperCamelCase__ : Tuple="<pad>" , UpperCamelCase__ : Tuple=1_00 , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : int , ) -> Optional[Any]: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase = [F'<extra_id_{i}>' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase = len(set(filter(lambda UpperCamelCase__ : bool("extra_id_" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True UpperCAmelCase = extra_ids @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , UpperCamelCase__ , ) return max_model_length def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(F'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"<extra_id_\d+>" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Dict: '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
457
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = """efficientnet""" def __init__( self , snake_case = 3 , snake_case = 600 , snake_case = 2.0 , snake_case = 3.1 , snake_case = 8 , snake_case = [3, 3, 5, 3, 5, 5, 3] , snake_case = [32, 16, 24, 40, 80, 112, 192] , snake_case = [16, 24, 40, 80, 112, 192, 320] , snake_case = [] , snake_case = [1, 2, 2, 2, 1, 2, 1] , snake_case = [1, 2, 2, 3, 3, 4, 1] , snake_case = [1, 6, 6, 6, 6, 6, 6] , snake_case = 0.25 , snake_case = "swish" , snake_case = 2560 , snake_case = "mean" , snake_case = 0.02 , snake_case = 0.001 , snake_case = 0.99 , snake_case = 0.5 , snake_case = 0.2 , **snake_case , ): super().__init__(**snake_case ) lowercase = num_channels lowercase = image_size lowercase = width_coefficient lowercase = depth_coefficient lowercase = depth_divisor lowercase = kernel_sizes lowercase = in_channels lowercase = out_channels lowercase = depthwise_padding lowercase = strides lowercase = num_block_repeats lowercase = expand_ratios lowercase = squeeze_expansion_ratio lowercase = hidden_act lowercase = hidden_dim lowercase = pooling_type lowercase = initializer_range lowercase = batch_norm_eps lowercase = batch_norm_momentum lowercase = dropout_rate lowercase = drop_connect_rate lowercase = sum(snake_case ) * 4 class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 1E-5
84
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ : List[str] = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } lowerCamelCase__ : Optional[Any] = { 'google/fnet-base': 512, 'google/fnet-large': 512, } lowerCamelCase__ : List[Any] = '▁' class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "token_type_ids"] lowercase_ = FNetTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Optional[Any]="[SEP]" , _lowerCAmelCase : Optional[Any]="<pad>" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : Optional[Any]="[MASK]" , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
31
0
class __magic_name__ : '''simple docstring''' def __init__( self:Union[str, Any] ): snake_case__ = 0 snake_case__ = 0 snake_case__ = {} def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:str ): if vertex not in self.adjacency: snake_case__ = {} self.num_vertices += 1 def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:Union[str, Any] , _a:Tuple , _a:Dict ): self.add_vertex(_a ) self.add_vertex(_a ) if head == tail: return snake_case__ = weight snake_case__ = weight def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.get_edges() for edge in edges: snake_case__ , snake_case__ , snake_case__ = edge edges.remove((tail, head, weight) ) for i in range(len(_a ) ): snake_case__ = list(edges[i] ) edges.sort(key=lambda _a : e[2] ) for i in range(len(_a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: snake_case__ = edges[i][2] + 1 for edge in edges: snake_case__ , snake_case__ , snake_case__ = edge snake_case__ = weight snake_case__ = weight def __str__( self:List[Any] ): snake_case__ = '''''' for tail in self.adjacency: for head in self.adjacency[tail]: snake_case__ = self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip('''\n''' ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def SCREAMING_SNAKE_CASE__ ( self:Any ): return self.adjacency.keys() @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:Dict=None , _a:List[Any]=None ): snake_case__ = Graph() if vertices is None: snake_case__ = [] if edges is None: snake_case__ = [] for vertex in vertices: g.add_vertex(_a ) for edge in edges: g.add_edge(*_a ) return g class __magic_name__ : '''simple docstring''' def __init__( self:Union[str, Any] ): snake_case__ = {} snake_case__ = {} def __len__( self:List[str] ): return len(self.parent ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:Any ): if item in self.parent: return self.find(_a ) snake_case__ = item snake_case__ = 0 return item def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Any ): if item not in self.parent: return self.make_set(_a ) if item != self.parent[item]: snake_case__ = self.find(self.parent[item] ) return self.parent[item] def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Optional[Any] , _a:int ): snake_case__ = self.find(_a ) snake_case__ = self.find(_a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: snake_case__ = roota return roota if self.rank[roota] < self.rank[roota]: snake_case__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 snake_case__ = roota return roota return None @staticmethod def SCREAMING_SNAKE_CASE__ ( _a:Optional[int] ): snake_case__ = graph.num_vertices snake_case__ = Graph.UnionFind() snake_case__ = [] while num_components > 1: snake_case__ = {} for vertex in graph.get_vertices(): snake_case__ = -1 snake_case__ = graph.get_edges() for edge in edges: snake_case__ , snake_case__ , snake_case__ = edge edges.remove((tail, head, weight) ) for edge in edges: snake_case__ , snake_case__ , snake_case__ = edge snake_case__ = union_find.find(_a ) snake_case__ = union_find.find(_a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: snake_case__ , snake_case__ , snake_case__ = cheap_edge[vertex] if union_find.find(_a ) != union_find.find(_a ): union_find.union(_a , _a ) mst_edges.append(cheap_edge[vertex] ) snake_case__ = num_components - 1 snake_case__ = Graph.build(edges=_a ) return mst
706
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase__ : int = 1_6 lowerCamelCase__ : Union[str, Any] = 3_2 def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = 16 ) -> Optional[int]: snake_case__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) snake_case__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ = 16 elif accelerator.mixed_precision != "no": snake_case__ = 8 else: snake_case__ = None return tokenizer.pad( __lowerCAmelCase , padding='''longest''' , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case__ = DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) snake_case__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase__ : Tuple = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCAmelCase ) == "1": snake_case__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: snake_case__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: snake_case__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ = config['''lr'''] snake_case__ = int(config['''num_epochs'''] ) snake_case__ = int(config['''seed'''] ) snake_case__ = int(config['''batch_size'''] ) set_seed(__lowerCAmelCase ) snake_case__ , snake_case__ = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation snake_case__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case__ = batch_size // MAX_GPU_BATCH_SIZE snake_case__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ = model.to(accelerator.device ) # Instantiate optimizer snake_case__ = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler snake_case__ = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: snake_case__ = os.path.split(__lowerCAmelCase )[-1].split('''.''' )[0] accelerator.init_trackers(__lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: snake_case__ = 0 for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case__ = model(**__lowerCAmelCase ) snake_case__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() snake_case__ = loss / gradient_accumulation_steps accelerator.backward(__lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): snake_case__ = model(**__lowerCAmelCase ) snake_case__ = outputs.logits.argmax(dim=-1 ) snake_case__ , snake_case__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) snake_case__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , __lowerCAmelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(__lowerCAmelCase ), '''epoch''': epoch, } , step=__lowerCAmelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def SCREAMING_SNAKE_CASE ( ) -> Dict: snake_case__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=__lowerCAmelCase , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) snake_case__ = parser.parse_args() snake_case__ = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
208
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCamelCase__ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Optional[Any] = BarthezTokenizer _UpperCamelCase : Optional[int] = BarthezTokenizerFast _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = True def snake_case__ ( self ): '''simple docstring''' super().setUp() UpperCamelCase__ = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=snake_case ) UpperCamelCase__ = tokenizer def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = "<pad>" UpperCamelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case ) , snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case ) , snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(snake_case ) , 101122 ) def snake_case__ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCamelCase__ = [0, 57, 3018, 70307, 91, 2] UpperCamelCase__ = self.tokenizer( snake_case , max_length=len(snake_case ) , padding=snake_case , truncation=snake_case , return_tensors="pt" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) def snake_case__ ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = "I was born in 92000, and this is falsé." UpperCamelCase__ = tokenizer.tokenize(snake_case ) UpperCamelCase__ = rust_tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCamelCase__ = tokenizer.encode(snake_case , add_special_tokens=snake_case ) UpperCamelCase__ = rust_tokenizer.encode(snake_case , add_special_tokens=snake_case ) self.assertListEqual(snake_case , snake_case ) UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = tokenizer.encode(snake_case ) UpperCamelCase__ = rust_tokenizer.encode(snake_case ) self.assertListEqual(snake_case , snake_case ) @slow def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase__ = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=snake_case , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=snake_case , )
551
import requests from bsa import BeautifulSoup def UpperCamelCase_( _A :str = "AAPL" )-> str: UpperCamelCase__ = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' UpperCamelCase__ = BeautifulSoup(requests.get(_A ).text , "html.parser" ) UpperCamelCase__ = "My(6px) Pos(r) smartphone_Mt(6px)" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
551
1
from math import sqrt def _UpperCamelCase (a__ :int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCamelCase (a__ :int = 1_0001 ): """simple docstring""" UpperCamelCase__ = 0 UpperCamelCase__ = 1 while count != nth and number < 3: number += 1 if is_prime(a__ ): count += 1 while count != nth: number += 2 if is_prime(a__ ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
548
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _UpperCamelCase (a__ :str , a__ :complex , a__ :str = "x" , a__ :float = 10**-10 , a__ :int = 1 , ): """simple docstring""" UpperCamelCase__ = symbols(a__ ) UpperCamelCase__ = lambdify(a__ , a__ ) UpperCamelCase__ = lambdify(a__ , diff(a__ , a__ ) ) UpperCamelCase__ = starting_point while True: if diff_function(a__ ) != 0: UpperCamelCase__ = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( "The root of log(y) - 1 = 0 is ", f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f"""{newton_raphson('exp(x) - 1', 10, precision=0.0_05)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
548
1
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : str = """Hello world! cécé herlolip""" def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = FairseqRobertaModel.from_pretrained(lowerCamelCase ) roberta.eval() # disable dropout __lowercase = roberta.model.encoder.sentence_encoder __lowercase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: __lowercase = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , lowerCamelCase ) __lowercase = XLMRobertaXLForSequenceClassification(lowerCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(lowerCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = roberta_sent_encoder.embed_tokens.weight __lowercase = roberta_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __lowercase = roberta_sent_encoder.layer_norm.weight __lowercase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = roberta_sent_encoder.layers[i] __lowercase = layer.attention __lowercase = roberta_layer.self_attn_layer_norm.weight __lowercase = roberta_layer.self_attn_layer_norm.bias # self attention __lowercase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __lowercase = roberta_layer.self_attn.q_proj.weight __lowercase = roberta_layer.self_attn.q_proj.bias __lowercase = roberta_layer.self_attn.k_proj.weight __lowercase = roberta_layer.self_attn.k_proj.bias __lowercase = roberta_layer.self_attn.v_proj.weight __lowercase = roberta_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __lowercase = roberta_layer.self_attn.out_proj.weight __lowercase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __lowercase = roberta_layer.final_layer_norm.weight __lowercase = roberta_layer.final_layer_norm.bias # intermediate __lowercase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __lowercase = roberta_layer.fca.weight __lowercase = roberta_layer.fca.bias # output __lowercase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __lowercase = roberta_layer.fca.weight __lowercase = roberta_layer.fca.bias # end of layer if classification_head: __lowercase = roberta.model.classification_heads["""mnli"""].dense.weight __lowercase = roberta.model.classification_heads["""mnli"""].dense.bias __lowercase = roberta.model.classification_heads["""mnli"""].out_proj.weight __lowercase = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __lowercase = roberta.model.encoder.lm_head.dense.weight __lowercase = roberta.model.encoder.lm_head.dense.bias __lowercase = roberta.model.encoder.lm_head.layer_norm.weight __lowercase = roberta.model.encoder.lm_head.layer_norm.bias __lowercase = roberta.model.encoder.lm_head.weight __lowercase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = roberta.encode(lowerCamelCase ).unsqueeze(0 ) # batch of size 1 __lowercase = model(lowerCamelCase )[0] if classification_head: __lowercase = roberta.model.classification_heads["""mnli"""](roberta.extract_features(lowerCamelCase ) ) else: __lowercase = roberta.model(lowerCamelCase )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 __lowercase = torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(lowerCamelCase ).mkdir(parents=lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
80
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if height >= 1: move_tower(height - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) move_disk(UpperCamelCase__ , UpperCamelCase__ ) move_tower(height - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): print("""moving disk from""" , UpperCamelCase__ , """to""" , UpperCamelCase__ ) def _UpperCamelCase ( ): UpperCAmelCase__ : List[str] = int(input("""Height of hanoi: """ ).strip() ) move_tower(UpperCamelCase__ , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
113
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class _snake_case ( unittest.TestCase ): @slow def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""") UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained("""xlm-roberta-base""") UpperCAmelCase__ : Dict = """The dog is cute and lives in the garden house""" UpperCAmelCase__ : Dict = jnp.array([tokenizer.encode(_lowerCamelCase)]) UpperCAmelCase__ : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ : Any = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]]) UpperCAmelCase__ : Any = model(_lowerCamelCase)["""last_hidden_state"""] self.assertEqual(output.shape , _lowerCamelCase) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _lowerCamelCase , atol=1e-3))
113
1
"""simple docstring""" def lowerCamelCase (a_ :int) -> bool: lowercase :Optional[int] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowerCamelCase (a_ :int = 5000) -> int: lowercase :List[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , a_)] for i, pentagonal_i in enumerate(a_): for j in range(a_ , len(a_)): lowercase :Dict = pentagonal_nums[j] lowercase :Dict = pentagonal_i + pentagonal_j lowercase :Optional[int] = pentagonal_j - pentagonal_i if is_pentagonal(a_) and is_pentagonal(a_): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
677
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger() @dataclass class __magic_name__ : __A : nn.Module __A : List[nn.Module] = field(default_factory=__UpperCAmelCase ) __A : list = field(default_factory=__UpperCAmelCase ) def __snake_case ( self : List[str] , snake_case__ : List[str] , snake_case__ : Tensor , snake_case__ : Tensor ): '''simple docstring''' lowercase :List[str] = len(list(m.modules() ) ) == 1 or isinstance(snake_case__ , nn.Convad ) or isinstance(snake_case__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case__ ) def __call__( self : int , snake_case__ : Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case__ ) [x.remove() for x in self.handles] return self @property def __snake_case ( self : int ): '''simple docstring''' return list(filter(lambda snake_case__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __magic_name__ : __A : nn.Module __A : nn.Module __A : int = 0 __A : List = field(default_factory=__UpperCAmelCase ) __A : List = field(default_factory=__UpperCAmelCase ) def __call__( self : Dict , snake_case__ : Tensor ): '''simple docstring''' lowercase :Dict = Tracker(self.dest )(snake_case__ ).parametrized lowercase :Optional[Any] = Tracker(self.src )(snake_case__ ).parametrized lowercase :List[str] = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.src_skip , snake_case__ ) ) lowercase :Tuple = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.dest_skip , snake_case__ ) ) if len(snake_case__ ) != len(snake_case__ ): raise Exception( f"""Numbers of operations are different. Source module has {len(snake_case__ )} operations while""" f""" destination module has {len(snake_case__ )}.""" ) for dest_m, src_m in zip(snake_case__ , snake_case__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCamelCase (a_ :str , a_ :ResNetConfig , a_ :Path , a_ :bool = True) -> Optional[Any]: print(F"""Converting {name}...""") with torch.no_grad(): lowercase :Union[str, Any] = timm.create_model(a_ , pretrained=a_).eval() lowercase :Tuple = ResNetForImageClassification(a_).eval() lowercase :int = ModuleTransfer(src=a_ , dest=a_) lowercase :List[Any] = torch.randn((1, 3, 224, 224)) module_transfer(a_) assert torch.allclose(from_model(a_) , our_model(a_).logits), "The model logits don't match the original one." lowercase :List[Any] = F"""resnet{'-'.join(name.split('resnet'))}""" print(a_) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=a_ , ) # we can use the convnext one lowercase :Any = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''') image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=a_ , ) print(F"""Pushed {checkpoint_name}""") def lowerCamelCase (a_ :Path , a_ :str = None , a_ :bool = True) -> int: lowercase :Optional[Any] = '''imagenet-1k-id2label.json''' lowercase :Union[str, Any] = 1000 lowercase :Any = (1, num_labels) lowercase :Tuple = '''huggingface/label-files''' lowercase :List[str] = num_labels lowercase :Union[str, Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowercase :Any = {int(a_): v for k, v in idalabel.items()} lowercase :str = idalabel lowercase :Any = {v: k for k, v in idalabel.items()} lowercase :Union[str, Any] = partial(a_ , num_labels=a_ , idalabel=a_ , labelaid=a_) lowercase :Optional[int] = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic'''), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck'''), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic'''), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck'''), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck'''), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck'''), } if model_name: convert_weight_and_push(a_ , names_to_config[model_name] , a_ , a_) else: for model_name, config in names_to_config.items(): convert_weight_and_push(a_ , a_ , a_ , a_) return config, expected_shape if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
677
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __magic_name__ = logging.getLogger(__name__) def _lowerCAmelCase ( A__: List[Any] , A__: List[Any] ): '''simple docstring''' UpperCAmelCase = np.argmax(A__ , axis=1 ) return np.sum(outputs == labels ) def _lowerCAmelCase ( A__: Tuple ): '''simple docstring''' with open(A__ , encoding='''utf_8''' ) as f: UpperCAmelCase = csv.reader(A__ ) UpperCAmelCase = [] next(A__ ) # skip the first line for line in tqdm(A__ ): output.append((''' '''.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _lowerCAmelCase ( A__: Dict , A__: List[Any] , A__: Tuple , A__: List[str] , A__: Optional[int] , A__: Union[str, Any] ): '''simple docstring''' UpperCAmelCase = [] for dataset in encoded_datasets: UpperCAmelCase = len(A__ ) UpperCAmelCase = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) UpperCAmelCase = np.zeros((n_batch, 2) , dtype=np.intaa ) UpperCAmelCase = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) UpperCAmelCase = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(A__ ): UpperCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCAmelCase = with_conta UpperCAmelCase = with_conta UpperCAmelCase = len(A__ ) - 1 UpperCAmelCase = len(A__ ) - 1 UpperCAmelCase = with_conta UpperCAmelCase = with_conta UpperCAmelCase = mc_label UpperCAmelCase = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(A__ ) for t in all_inputs ) ) return tensor_datasets def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=A__ , default='''openai-gpt''' , help='''pretrained model name''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_eval''' , action='''store_true''' , help='''Whether to run eval on the dev set.''' ) parser.add_argument( '''--output_dir''' , default=A__ , type=A__ , required=A__ , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument('''--train_dataset''' , type=A__ , default='''''' ) parser.add_argument('''--eval_dataset''' , type=A__ , default='''''' ) parser.add_argument('''--seed''' , type=A__ , default=42 ) parser.add_argument('''--num_train_epochs''' , type=A__ , default=3 ) parser.add_argument('''--train_batch_size''' , type=A__ , default=8 ) parser.add_argument('''--eval_batch_size''' , type=A__ , default=16 ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=A__ , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , type=A__ , default=1 ) parser.add_argument( '''--max_steps''' , default=-1 , type=A__ , help=( '''If > 0: set total number of training steps to perform. Override num_train_epochs.''' ) , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A__ , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--learning_rate''' , type=A__ , default=6.2_5E-5 ) parser.add_argument('''--warmup_steps''' , default=0 , type=A__ , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--lr_schedule''' , type=A__ , default='''warmup_linear''' ) parser.add_argument('''--weight_decay''' , type=A__ , default=0.01 ) parser.add_argument('''--lm_coef''' , type=A__ , default=0.9 ) parser.add_argument('''--n_valid''' , type=A__ , default=374 ) parser.add_argument('''--server_ip''' , type=A__ , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=A__ , default='''''' , help='''Can be used for distant debugging.''' ) UpperCAmelCase = parser.parse_args() print(A__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) UpperCAmelCase = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) UpperCAmelCase = torch.cuda.device_count() logger.info('''device: {}, n_gpu {}'''.format(A__ , A__ ) ) if not args.do_train and not args.do_eval: raise ValueError('''At least one of `do_train` or `do_eval` must be True.''' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset UpperCAmelCase = ['''_start_''', '''_delimiter_''', '''_classify_'''] UpperCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(A__ ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(A__ ) UpperCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(A__ ) ) model.to(A__ ) # Load and encode the datasets def tokenize_and_encode(A__: Optional[int] ): if isinstance(A__ , A__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(A__ ) ) elif isinstance(A__ , A__ ): return obj return [tokenize_and_encode(A__ ) for o in obj] logger.info('''Encoding dataset...''' ) UpperCAmelCase = load_rocstories_dataset(args.train_dataset ) UpperCAmelCase = load_rocstories_dataset(args.eval_dataset ) UpperCAmelCase = (train_dataset, eval_dataset) UpperCAmelCase = tokenize_and_encode(A__ ) # Compute the max input length for the Transformer UpperCAmelCase = model.config.n_positions // 2 - 2 UpperCAmelCase = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) UpperCAmelCase = min(A__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders UpperCAmelCase = pre_process_datasets(A__ , A__ , A__ , *A__ ) UpperCAmelCase , UpperCAmelCase = tensor_datasets[0], tensor_datasets[1] UpperCAmelCase = TensorDataset(*A__ ) UpperCAmelCase = RandomSampler(A__ ) UpperCAmelCase = DataLoader(A__ , sampler=A__ , batch_size=args.train_batch_size ) UpperCAmelCase = TensorDataset(*A__ ) UpperCAmelCase = SequentialSampler(A__ ) UpperCAmelCase = DataLoader(A__ , sampler=A__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: UpperCAmelCase = args.max_steps UpperCAmelCase = args.max_steps // (len(A__ ) // args.gradient_accumulation_steps) + 1 else: UpperCAmelCase = len(A__ ) // args.gradient_accumulation_steps * args.num_train_epochs UpperCAmelCase = list(model.named_parameters() ) UpperCAmelCase = ['''bias''', '''LayerNorm.bias''', '''LayerNorm.weight'''] UpperCAmelCase = [ { '''params''': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], '''weight_decay''': args.weight_decay, }, {'''params''': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0}, ] UpperCAmelCase = AdamW(A__ , lr=args.learning_rate , eps=args.adam_epsilon ) UpperCAmelCase = get_linear_schedule_with_warmup( A__ , num_warmup_steps=args.warmup_steps , num_training_steps=A__ ) if args.do_train: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='''Epoch''' ): UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = tqdm(A__ , desc='''Training''' ) for step, batch in enumerate(A__ ): UpperCAmelCase = tuple(t.to(A__ ) for t in batch ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = batch UpperCAmelCase = model(A__ , mc_token_ids=A__ , lm_labels=A__ , mc_labels=A__ ) UpperCAmelCase = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() UpperCAmelCase = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 UpperCAmelCase = '''Training loss: {:.2e} lr: {:.2e}'''.format(A__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer UpperCAmelCase = model.module if hasattr(A__ , '''module''' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` UpperCAmelCase = os.path.join(args.output_dir , A__ ) UpperCAmelCase = os.path.join(args.output_dir , A__ ) torch.save(model_to_save.state_dict() , A__ ) model_to_save.config.to_json_file(A__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned UpperCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) UpperCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(A__ ) if args.do_eval: model.eval() UpperCAmelCase , UpperCAmelCase = 0, 0 UpperCAmelCase , UpperCAmelCase = 0, 0 for batch in tqdm(A__ , desc='''Evaluating''' ): UpperCAmelCase = tuple(t.to(A__ ) for t in batch ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = batch with torch.no_grad(): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = model( A__ , mc_token_ids=A__ , lm_labels=A__ , mc_labels=A__ ) UpperCAmelCase = mc_logits.detach().cpu().numpy() UpperCAmelCase = mc_labels.to('''cpu''' ).numpy() UpperCAmelCase = accuracy(A__ , A__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 UpperCAmelCase = eval_loss / nb_eval_steps UpperCAmelCase = eval_accuracy / nb_eval_examples UpperCAmelCase = tr_loss / nb_tr_steps if args.do_train else None UpperCAmelCase = {'''eval_loss''': eval_loss, '''eval_accuracy''': eval_accuracy, '''train_loss''': train_loss} UpperCAmelCase = os.path.join(args.output_dir , '''eval_results.txt''' ) with open(A__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , A__ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) if __name__ == "__main__": main()
704
import re import string import numpy as np import datasets __magic_name__ = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" __magic_name__ = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" __magic_name__ = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): '''simple docstring''' def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=False , _snake_case=False , _snake_case=False , ) -> Optional[Any]: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCAmelCase = np.array([re.sub(_snake_case , '''''' , _snake_case ) for x in predictions] ) UpperCAmelCase = np.array([re.sub(_snake_case , '''''' , _snake_case ) for x in references] ) else: UpperCAmelCase = np.asarray(_snake_case ) UpperCAmelCase = np.asarray(_snake_case ) if ignore_case: UpperCAmelCase = np.char.lower(_snake_case ) UpperCAmelCase = np.char.lower(_snake_case ) if ignore_punctuation: UpperCAmelCase = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) UpperCAmelCase = np.char.translate(_snake_case , table=_snake_case ) UpperCAmelCase = np.char.translate(_snake_case , table=_snake_case ) if ignore_numbers: UpperCAmelCase = string.digits.maketrans('''''' , '''''' , string.digits ) UpperCAmelCase = np.char.translate(_snake_case , table=_snake_case ) UpperCAmelCase = np.char.translate(_snake_case , table=_snake_case ) UpperCAmelCase = predictions == references return {"exact_match": np.mean(_snake_case ) * 100}
391
0
import argparse import collections import json import os import re import string import sys import numpy as np lowerCamelCase : List[str] = re.compile(r"\b(a|an|the)\b", re.UNICODE) lowerCamelCase : List[str] = None def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=lowerCamelCase__ , default=1.0 , help='Predict \"\" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=lowerCamelCase__ , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCamelCase_ = bool(qa['answers']['text'] ) return qid_to_has_ans def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' def remove_articles(lowercase : Dict ): return ARTICLES_REGEX.sub(' ' , lowerCamelCase__ ) def white_space_fix(lowercase : List[Any] ): return " ".join(text.split() ) def remove_punc(lowercase : Union[str, Any] ): lowerCamelCase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) ) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple ): '''simple docstring''' if not s: return [] return normalize_answer(lowerCamelCase__ ).split() def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Dict ): '''simple docstring''' return int(normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ ) ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = get_tokens(lowerCamelCase__ ) lowerCamelCase_ = get_tokens(lowerCamelCase__ ) lowerCamelCase_ = collections.Counter(lowerCamelCase__ ) & collections.Counter(lowerCamelCase__ ) lowerCamelCase_ = sum(common.values() ) if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowerCamelCase_ = 1.0 * num_same / len(lowerCamelCase__ ) lowerCamelCase_ = 1.0 * num_same / len(lowerCamelCase__ ) lowerCamelCase_ = (2 * precision * recall) / (precision + recall) return fa def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = {} lowerCamelCase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCamelCase_ = qa["id"] lowerCamelCase_ = [t for t in qa["answers"]["text"] if normalize_answer(lowerCamelCase__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCamelCase_ = [""] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue lowerCamelCase_ = preds[qid] # Take max over all gold answers lowerCamelCase_ = max(compute_exact(lowerCamelCase__ , lowerCamelCase__ ) for a in gold_answers ) lowerCamelCase_ = max(compute_fa(lowerCamelCase__ , lowerCamelCase__ ) for a in gold_answers ) return exact_scores, fa_scores def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Any , lowercase : Optional[int] , lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = {} for qid, s in scores.items(): lowerCamelCase_ = na_probs[qid] > na_prob_thresh if pred_na: lowerCamelCase_ = float(not qid_to_has_ans[qid] ) else: lowerCamelCase_ = s return new_scores def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Optional[Any] , lowercase : Optional[Any]=None ): '''simple docstring''' if not qid_list: lowerCamelCase_ = len(lowerCamelCase__ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: lowerCamelCase_ = len(lowerCamelCase__ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Optional[Any] , lowercase : Optional[Any] ): '''simple docstring''' for k in new_eval: lowerCamelCase_ = new_eval[k] def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : int , lowercase : Dict , lowercase : Any ): '''simple docstring''' plt.step(lowerCamelCase__ , lowerCamelCase__ , color='b' , alpha=0.2 , where='post' ) plt.fill_between(lowerCamelCase__ , lowerCamelCase__ , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowerCamelCase__ ) plt.savefig(lowerCamelCase__ ) plt.clf() def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Optional[int]=None , lowercase : List[Any]=None ): '''simple docstring''' lowerCamelCase_ = sorted(lowerCamelCase__ , key=lambda lowercase : na_probs[k] ) lowerCamelCase_ = 0.0 lowerCamelCase_ = 1.0 lowerCamelCase_ = 0.0 lowerCamelCase_ = [1.0] lowerCamelCase_ = [0.0] lowerCamelCase_ = 0.0 for i, qid in enumerate(lowerCamelCase__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCamelCase_ = true_pos / float(i + 1 ) lowerCamelCase_ = true_pos / float(lowerCamelCase__ ) if i == len(lowerCamelCase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowerCamelCase__ ) recalls.append(lowerCamelCase__ ) if out_image: plot_pr_curve(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return {"ap": 100.0 * avg_prec} def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : str , lowercase : Union[str, Any] , lowercase : Dict , lowercase : Union[str, Any] , lowercase : int ): '''simple docstring''' if out_image_dir and not os.path.exists(lowerCamelCase__ ): os.makedirs(lowerCamelCase__ ) lowerCamelCase_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowerCamelCase_ = make_precision_recall_eval( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , out_image=os.path.join(lowerCamelCase__ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) lowerCamelCase_ = make_precision_recall_eval( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , out_image=os.path.join(lowerCamelCase__ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) lowerCamelCase_ = {k: float(lowerCamelCase__ ) for k, v in qid_to_has_ans.items()} lowerCamelCase_ = make_precision_recall_eval( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , out_image=os.path.join(lowerCamelCase__ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , 'pr_exact' ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , 'pr_f1' ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , 'pr_oracle' ) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[Any] , lowercase : int ): '''simple docstring''' if not qid_list: return lowerCamelCase_ = [na_probs[k] for k in qid_list] lowerCamelCase_ = np.ones_like(lowerCamelCase__ ) / float(len(lowerCamelCase__ ) ) plt.hist(lowerCamelCase__ , weights=lowerCamelCase__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(lowerCamelCase__ , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : List[Any] , lowercase : Optional[Any] , lowercase : str ): '''simple docstring''' lowerCamelCase_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowerCamelCase_ = num_no_ans lowerCamelCase_ = cur_score lowerCamelCase_ = 0.0 lowerCamelCase_ = sorted(lowerCamelCase__ , key=lambda lowercase : na_probs[k] ) for i, qid in enumerate(lowerCamelCase__ ): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCamelCase_ = scores[qid] else: if preds[qid]: lowerCamelCase_ = -1 else: lowerCamelCase_ = 0 cur_score += diff if cur_score > best_score: lowerCamelCase_ = cur_score lowerCamelCase_ = na_probs[qid] return 100.0 * best_score / len(lowerCamelCase__ ), best_thresh def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : str , lowercase : Dict , lowercase : List[str] , lowercase : Dict , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = find_best_thresh(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = find_best_thresh(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = best_exact lowerCamelCase_ = exact_thresh lowerCamelCase_ = best_fa lowerCamelCase_ = fa_thresh def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with open(OPTS.data_file ) as f: lowerCamelCase_ = json.load(lowerCamelCase__ ) lowerCamelCase_ = dataset_json["data"] with open(OPTS.pred_file ) as f: lowerCamelCase_ = json.load(lowerCamelCase__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowerCamelCase_ = json.load(lowerCamelCase__ ) else: lowerCamelCase_ = {k: 0.0 for k in preds} lowerCamelCase_ = make_qid_to_has_ans(lowerCamelCase__ ) # maps qid to True/False lowerCamelCase_ = [k for k, v in qid_to_has_ans.items() if v] lowerCamelCase_ = [k for k, v in qid_to_has_ans.items() if not v] lowerCamelCase_ = get_raw_scores(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = apply_no_ans_threshold(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , OPTS.na_prob_thresh ) lowerCamelCase_ = apply_no_ans_threshold(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , OPTS.na_prob_thresh ) lowerCamelCase_ = make_eval_dict(lowerCamelCase__ , lowerCamelCase__ ) if has_ans_qids: lowerCamelCase_ = make_eval_dict(lowerCamelCase__ , lowerCamelCase__ , qid_list=lowerCamelCase__ ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , 'HasAns' ) if no_ans_qids: lowerCamelCase_ = make_eval_dict(lowerCamelCase__ , lowerCamelCase__ , qid_list=lowerCamelCase__ ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , OPTS.out_image_dir ) histogram_na_prob(lowerCamelCase__ , lowerCamelCase__ , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(lowerCamelCase__ , lowerCamelCase__ , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) else: print(json.dumps(lowerCamelCase__ , indent=2 ) ) if __name__ == "__main__": lowerCamelCase : str = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
70
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
496
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __magic_name__ = get_logger(__name__) class _SCREAMING_SNAKE_CASE ( enum.Enum ): _A : Tuple = 'all_checks' _A : Any = 'basic_checks' _A : str = 'no_checks' class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): pass class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): pass class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): pass class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): pass def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) snake_case__ = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] snake_case__ = " for " + verification_name if verification_name is not None else "" if len(__lowerCAmelCase ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): pass class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): pass class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): pass class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): pass def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) snake_case__ = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCAmelCase ) ) logger.info("All the splits matched successfully." ) def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase = True ): if record_checksum: snake_case__ = shaaaa() with open(__lowerCAmelCase , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"" ): m.update(__lowerCAmelCase ) snake_case__ = m.hexdigest() else: snake_case__ = None return {"num_bytes": os.path.getsize(__lowerCAmelCase ), "checksum": checksum} def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
530
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __magic_name__ = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''CLIPFeatureExtractor'''] __magic_name__ = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
530
1
import math import sys def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ='' try: with open(_snake_case , 'rb' ) as binary_file: __a =binary_file.read() for dat in data: __a =F'{dat:08b}' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={'0': '0', '1': '1'} __a , __a ='', '' __a =len(_snake_case ) for i in range(len(_snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __a =lexicon[curr_string] result += last_match_id __a =last_match_id + '0' if math.loga(_snake_case ).is_integer(): __a ={} for curr_key in list(_snake_case ): __a =lexicon.pop(_snake_case ) __a =new_lex __a =last_match_id + '1' index += 1 __a ='' return result def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" __a =8 try: with open(_snake_case , 'wb' ) as opened_file: __a =[ to_write[i : i + byte_length] for i in range(0 , len(_snake_case ) , _snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_snake_case , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =0 for letter in data_bits: if letter == "1": break counter += 1 __a =data_bits[counter:] __a =data_bits[counter + 1 :] return data_bits def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" __a =read_file_binary(_snake_case ) __a =remove_prefix(_snake_case ) __a =decompress_data(_snake_case ) write_file_binary(_snake_case , _snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
242
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules( vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , ) def __magic_name__ ( self , __snake_case = "auto" ) -> int: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.enable_attention_slicing(__snake_case ) @torch.no_grad() def __call__( self , __snake_case , __snake_case = 512 , __snake_case = 512 , __snake_case = 50 , __snake_case = 7.5 , __snake_case = None , __snake_case = 1 , __snake_case = 0.0 , __snake_case = None , __snake_case = None , __snake_case = "pil" , __snake_case = True , __snake_case = None , __snake_case = 1 , __snake_case = None , **__snake_case , ) -> Tuple: '''simple docstring''' if isinstance(__snake_case , __snake_case ): __a =1 elif isinstance(__snake_case , __snake_case ): __a =len(__snake_case ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(__snake_case )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(__snake_case )}.' ) # get prompt text embeddings __a =self.tokenizer( __snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __a =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __a =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __a =text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __a =self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __a , __a , __a =text_embeddings.shape __a =text_embeddings.repeat(1 , __snake_case , 1 ) __a =text_embeddings.view(bs_embed * num_images_per_prompt , __snake_case , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __a =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __a =42 if negative_prompt is None: __a =[''] elif type(__snake_case ) is not type(__snake_case ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(__snake_case )} !=' f' {type(__snake_case )}.' ) elif isinstance(__snake_case , __snake_case ): __a =[negative_prompt] elif batch_size != len(__snake_case ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(__snake_case )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: __a =negative_prompt __a =text_input_ids.shape[-1] __a =self.tokenizer( __snake_case , padding='max_length' , max_length=__snake_case , truncation=__snake_case , return_tensors='pt' , ) __a =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __a =uncond_embeddings.shape[1] __a =uncond_embeddings.repeat(__snake_case , __snake_case , 1 ) __a =uncond_embeddings.view(batch_size * num_images_per_prompt , __snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __a =(batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __a =(batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __a =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __a =torch.randn( __snake_case , generator=__snake_case , device='cpu' , dtype=__snake_case ).to(self.device ) __a =torch.randn(__snake_case , generator=__snake_case , device='cpu' , dtype=__snake_case ).to( self.device ) else: __a =torch.randn( __snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) __a =torch.randn(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __a =latents_reference.to(self.device ) __a =latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __a =(latents_shape[3] - latents_shape_reference[3]) // 2 __a =(latents_shape[2] - latents_shape_reference[2]) // 2 __a =latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __a =latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __a =0 if dx < 0 else dx __a =0 if dy < 0 else dy __a =max(-dx , 0 ) __a =max(-dy , 0 ) # import pdb # pdb.set_trace() __a =latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __a =self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __a =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __a ='eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __a ={} if accepts_eta: __a =eta for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance __a =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a =self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual __a =self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample # perform guidance if do_classifier_free_guidance: __a , __a =noise_pred.chunk(2 ) __a =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __a =self.scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case , __snake_case ) __a =1 / 0.1_8215 * latents __a =self.vae.decode(__snake_case ).sample __a =(image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __a =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __a =self.feature_extractor(self.numpy_to_pil(__snake_case ) , return_tensors='pt' ).to( self.device ) __a , __a =self.safety_checker( images=__snake_case , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __a =None if output_type == "pil": __a =self.numpy_to_pil(__snake_case ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__snake_case , nsfw_content_detected=__snake_case )
242
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCamelCase : __UpperCamelCase =42 # setable values __UpperCamelCase =42 __UpperCamelCase =42 __UpperCamelCase =None @classmethod def UpperCamelCase ( cls : Any , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =42 class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase =[e.name for e in FlaxKarrasDiffusionSchedulers] __UpperCamelCase =42 @property def UpperCamelCase ( self : Tuple ): """simple docstring""" return True @register_to_config def __init__( self : List[Any] , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0_001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): """simple docstring""" SCREAMING_SNAKE_CASE = dtype def UpperCamelCase ( self : List[Any] , snake_case__ : Optional[CommonSchedulerState] = None ): """simple docstring""" if common is None: SCREAMING_SNAKE_CASE = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE = jnp.array(1.0 , dtype=self.dtype ) SCREAMING_SNAKE_CASE = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def UpperCamelCase ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): """simple docstring""" return sample def UpperCamelCase ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): """simple docstring""" SCREAMING_SNAKE_CASE = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def UpperCamelCase ( self : str , snake_case__ : DDPMSchedulerState , snake_case__ : List[Any] , snake_case__ : Dict=None , snake_case__ : int=None ): """simple docstring""" SCREAMING_SNAKE_CASE = state.common.alphas_cumprod[t] SCREAMING_SNAKE_CASE = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample SCREAMING_SNAKE_CASE = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: SCREAMING_SNAKE_CASE = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": SCREAMING_SNAKE_CASE = jnp.clip(snake_case__ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": SCREAMING_SNAKE_CASE = jnp.log(jnp.clip(snake_case__ , a_min=1E-20 ) ) elif variance_type == "fixed_large": SCREAMING_SNAKE_CASE = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log SCREAMING_SNAKE_CASE = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": SCREAMING_SNAKE_CASE = variance SCREAMING_SNAKE_CASE = state.common.betas[t] SCREAMING_SNAKE_CASE = (predicted_variance + 1) / 2 SCREAMING_SNAKE_CASE = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): """simple docstring""" SCREAMING_SNAKE_CASE = timestep if key is None: SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: SCREAMING_SNAKE_CASE = None # 1. compute alphas, betas SCREAMING_SNAKE_CASE = state.common.alphas_cumprod[t] SCREAMING_SNAKE_CASE = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) SCREAMING_SNAKE_CASE = 1 - alpha_prod_t SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE = model_output elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: SCREAMING_SNAKE_CASE = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf SCREAMING_SNAKE_CASE = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t SCREAMING_SNAKE_CASE = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf SCREAMING_SNAKE_CASE = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): SCREAMING_SNAKE_CASE = jax.random.split(snake_case__ , num=1 ) SCREAMING_SNAKE_CASE = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise SCREAMING_SNAKE_CASE = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) SCREAMING_SNAKE_CASE = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def UpperCamelCase ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Union[str, Any] ): """simple docstring""" return self.config.num_train_timesteps
673
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ : Any = logging.get_logger(__name__) a_ : Dict = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="van" def __init__( self : Optional[Any] , snake_case__ : Tuple=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Union[str, Any]=[7, 3, 3, 3] , snake_case__ : str=[4, 2, 2, 2] , snake_case__ : Optional[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , snake_case__ : Optional[Any]=[3, 3, 1_2, 3] , snake_case__ : Tuple=[8, 8, 4, 4] , snake_case__ : Any="gelu" , snake_case__ : Dict=0.02 , snake_case__ : List[str]=1E-6 , snake_case__ : int=1E-2 , snake_case__ : Any=0.0 , snake_case__ : Tuple=0.0 , **snake_case__ : Any , ): """simple docstring""" super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = strides SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_ratios SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = dropout_rate
673
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a__ ( A_ = True, *A_, **A_ ): '''simple docstring''' if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) __magic_name__ = False if main_process_only: __magic_name__ = PartialState().local_process_index == 0 return _tqdm(*A_, **A_, disable=A_ )
529
'''simple docstring''' from typing import List import numpy as np def _A ( snake_case ) -> int: _lowercase : Optional[int] = {key: len(snake_case ) for key, value in gen_kwargs.items() if isinstance(snake_case , snake_case )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) _lowercase : int = max(lists_lengths.values() , default=0 ) return max(1 , snake_case ) def _A ( snake_case , snake_case ) -> List[range]: _lowercase : int = [] for group_idx in range(snake_case ): _lowercase : Optional[Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _lowercase : str = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _lowercase : Optional[Any] = range(snake_case , start + num_shards_to_add ) shards_indices_per_group.append(snake_case ) return shards_indices_per_group def _A ( snake_case , snake_case ) -> List[dict]: _lowercase : Optional[Any] = _number_of_shards_in_gen_kwargs(snake_case ) if num_shards == 1: return [dict(snake_case )] else: _lowercase : Any = _distribute_shards(num_shards=snake_case , max_num_jobs=snake_case ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(snake_case , snake_case ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(snake_case ) ) ] def _A ( snake_case ) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , snake_case ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _A ( snake_case , snake_case ) -> dict: _lowercase : Any = {len(snake_case ) for value in gen_kwargs.values() if isinstance(snake_case , snake_case )} _lowercase : Optional[int] = {} for size in list_sizes: _lowercase : Optional[Any] = list(range(snake_case ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _lowercase : Dict = dict(snake_case ) for key, value in shuffled_kwargs.items(): if isinstance(snake_case , snake_case ): _lowercase : Tuple = [value[i] for i in indices_per_size[len(snake_case )]] return shuffled_kwargs
245
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _a : def __init__( self : str , lowercase : Any , lowercase : Optional[int]=3 , lowercase : List[Any]=7 , lowercase : List[str]=True , lowercase : List[str]=True , lowercase : Union[str, Any]=False , lowercase : Optional[int]=True , lowercase : str=99 , lowercase : int=32 , lowercase : Optional[int]=5 , lowercase : Tuple=4 , lowercase : Optional[Any]=37 , lowercase : Any="gelu" , lowercase : Optional[int]=0.1 , lowercase : Any=0.1 , lowercase : str=512 , lowercase : str=16 , lowercase : str=2 , lowercase : str=0.02 , lowercase : List[str]=3 , lowercase : Union[str, Any]=4 , lowercase : Optional[int]=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Tuple ): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowercase , ) def A ( self : List[str] , lowercase : Dict , lowercase : List[Any] , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : Tuple , lowercase : List[str] , lowercase : str ): '''simple docstring''' UpperCAmelCase = FalconModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase ) UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : str , lowercase : List[str] , lowercase : Dict , lowercase : int , lowercase : Dict , lowercase : List[Any] , lowercase : Any , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Dict , ): '''simple docstring''' UpperCAmelCase = True UpperCAmelCase = FalconModel(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model( lowercase , attention_mask=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , ) UpperCAmelCase = model( lowercase , attention_mask=lowercase , encoder_hidden_states=lowercase , ) UpperCAmelCase = model(lowercase , attention_mask=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : int , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : List[Any] , lowercase : Any , lowercase : List[Any] , lowercase : List[Any] , lowercase : Optional[int] , lowercase : Tuple , ): '''simple docstring''' UpperCAmelCase = FalconForCausalLM(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[str] , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : str , lowercase : Tuple , lowercase : List[str] , lowercase : List[str] , lowercase : Optional[int] , lowercase : int , lowercase : Tuple , ): '''simple docstring''' UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = FalconForCausalLM(config=lowercase ) model.to(lowercase ) model.eval() # first forward pass UpperCAmelCase = model( lowercase , attention_mask=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , use_cache=lowercase , ) UpperCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase = model( lowercase , attention_mask=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , output_hidden_states=lowercase , )['''hidden_states'''][0] UpperCAmelCase = model( lowercase , attention_mask=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , past_key_values=lowercase , output_hidden_states=lowercase , )['''hidden_states'''][0] # select random slice UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1E-3 ) ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( __a , __a , __a , unittest.TestCase ): __a : List[str] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) __a : Optional[int] = (FalconForCausalLM,) if is_torch_available() else () __a : int = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) __a : str = False __a : int = False def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = FalconModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase , *UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCAmelCase = alibi self.model_tester.create_and_check_model(lowercase , *lowercase ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = input_dict['''input_ids'''] UpperCAmelCase = input_ids.ne(1 ).to(lowercase ) UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase = FalconForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = '''single_label_classification''' UpperCAmelCase = input_dict['''input_ids'''] UpperCAmelCase = input_ids.ne(1 ).to(lowercase ) UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase = FalconForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = input_dict['''input_ids'''] UpperCAmelCase = FalconForCausalLM(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , use_cache=lowercase ) UpperCAmelCase = input_ids.shape[0] UpperCAmelCase = model._convert_to_rw_cache(result.past_key_values ) UpperCAmelCase = model._convert_cache_to_standard_format(lowercase , lowercase ) for layer in range(len(lowercase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = '''multi_label_classification''' UpperCAmelCase = input_dict['''input_ids'''] UpperCAmelCase = input_ids.ne(1 ).to(lowercase ) UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase = FalconForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : str ): '''simple docstring''' for model_class in self.all_generative_model_classes: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowercase , '''use_cache''' ): return UpperCAmelCase = model_class(lowercase ).to(lowercase ) if "use_cache" not in inputs: UpperCAmelCase = True UpperCAmelCase = model(**lowercase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCAmelCase = ( getattr(lowercase , '''decoder_layers''' , lowercase ) or getattr(lowercase , '''num_decoder_layers''' , lowercase ) or config.num_hidden_layers ) UpperCAmelCase = getattr(lowercase , '''num_kv_heads''' , config.num_attention_heads ) UpperCAmelCase = getattr(lowercase , '''d_model''' , config.hidden_size ) UpperCAmelCase = embed_dim // num_attention_heads UpperCAmelCase = outputs['''past_key_values'''] self.assertEqual(len(lowercase ) , lowercase ) UpperCAmelCase , UpperCAmelCase = inputs['''input_ids'''].shape for i in range(lowercase ): if config.new_decoder_architecture: UpperCAmelCase = config.num_attention_heads elif config.multi_query: UpperCAmelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _a ( unittest.TestCase ): @slow def A ( self : str ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) UpperCAmelCase = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(lowercase ) UpperCAmelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(lowercase ) UpperCAmelCase = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) UpperCAmelCase = model.generate(**lowercase , do_sample=lowercase , max_new_tokens=19 ) UpperCAmelCase = tokenizer.batch_decode(lowercase )[0] self.assertEqual(lowercase , lowercase ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCAmelCase = AutoTokenizer.from_pretrained(lowercase ) UpperCAmelCase = FalconForCausalLM.from_pretrained(lowercase ) model.eval() model.to(lowercase ) UpperCAmelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(lowercase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowercase , do_sample=lowercase , max_new_tokens=4 ) model.generate(**lowercase , do_sample=lowercase , max_new_tokens=4 ) model.generate(**lowercase , num_beams=2 , max_new_tokens=4 ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCAmelCase = AutoTokenizer.from_pretrained(lowercase ) UpperCAmelCase = FalconForCausalLM.from_pretrained(lowercase ) model.eval() model.to(device=lowercase ) UpperCAmelCase = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(lowercase ) # Test results are the same with and without cache UpperCAmelCase = model.generate(**lowercase , do_sample=lowercase , max_new_tokens=20 , use_cache=lowercase ) UpperCAmelCase = model.generate(**lowercase , do_sample=lowercase , max_new_tokens=20 , use_cache=lowercase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
358
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A =logging.get_logger(__name__) @add_end_docstrings(__a ) class _a ( __a ): def __init__( self : Optional[int] , *lowercase : Any , **lowercase : Optional[int] ): '''simple docstring''' super().__init__(*lowercase , **lowercase ) self.check_model_type(lowercase ) def A ( self : List[str] , lowercase : str=None , lowercase : List[str]=None , lowercase : List[str]=None , **lowercase : List[str] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = {}, {} if padding is not None: UpperCAmelCase = padding if truncation is not None: UpperCAmelCase = truncation if top_k is not None: UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[Any] , lowercase : Union["Image.Image", str] , lowercase : str = None , **lowercase : Optional[int] ): '''simple docstring''' if isinstance(lowercase , (Image.Image, str) ) and isinstance(lowercase , lowercase ): UpperCAmelCase = {'''image''': image, '''question''': question} else: UpperCAmelCase = image UpperCAmelCase = super().__call__(lowercase , **lowercase ) return results def A ( self : List[Any] , lowercase : List[str] , lowercase : Any=False , lowercase : Any=False ): '''simple docstring''' UpperCAmelCase = load_image(inputs['''image'''] ) UpperCAmelCase = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=lowercase , truncation=lowercase ) UpperCAmelCase = self.image_processor(images=lowercase , return_tensors=self.framework ) model_inputs.update(lowercase ) return model_inputs def A ( self : Dict , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.model(**lowercase ) return model_outputs def A ( self : Union[str, Any] , lowercase : int , lowercase : Optional[Any]=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase = model_outputs.logits.sigmoid()[0] UpperCAmelCase , UpperCAmelCase = probs.topk(lowercase ) else: raise ValueError(f"Unsupported framework: {self.framework}" ) UpperCAmelCase = scores.tolist() UpperCAmelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase , lowercase )]
358
1
def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : list[int] ) -> None: UpperCamelCase : int = len(snake_case__ ) print('The following activities are selected:' ) # The first activity is always selected UpperCamelCase : List[Any] = 0 print(snake_case__ , end=',' ) # Consider rest of the activities for j in range(snake_case__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case__ , end=',' ) UpperCamelCase : Tuple = j if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = [1, 3, 0, 5, 8, 5] __UpperCAmelCase = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
40
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int: """simple docstring""" return int(input_a == input_a == 0 ) def a ( ) -> None: """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
0
"""simple docstring""" import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) UpperCamelCase = logging.getLogger() def lowerCAmelCase ( ) -> Tuple: '''simple docstring''' _a = argparse.ArgumentParser() parser.add_argument("-f" ) _a = parser.parse_args() return args.f def lowerCAmelCase ( UpperCamelCase_: int ) -> List[str]: '''simple docstring''' _a = {} _a = os.path.join(UpperCamelCase_ , "all_results.json" ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: _a = json.load(UpperCamelCase_ ) else: raise ValueError(f'''can\'t find {path}''' ) return results def lowerCAmelCase ( ) -> Optional[Any]: '''simple docstring''' _a = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() UpperCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase_ (_UpperCAmelCase ): @classmethod def lowerCamelCase__ ( cls ) ->Union[str, Any]: '''simple docstring''' _a = tempfile.mkdtemp() _a = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) _a = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def lowerCamelCase__ ( cls ) ->int: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCamelCase__ ( self ) ->Tuple: '''simple docstring''' _a = self.get_auto_remove_tmp_dir() _a = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) _a = get_results(a_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCamelCase__ ( self ) ->Tuple: '''simple docstring''' _a = self.get_auto_remove_tmp_dir() _a = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _a = get_results(a_ ) self.assertLess(result["perplexity"] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCamelCase__ ( self ) ->Tuple: '''simple docstring''' _a = self.get_auto_remove_tmp_dir() _a = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _a = get_results(a_ ) self.assertLess(result["perplexity"] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCamelCase__ ( self ) ->int: '''simple docstring''' _a = 7 if get_gpu_count() > 1 else 2 _a = self.get_auto_remove_tmp_dir() _a = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _a = get_results(a_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCamelCase__ ( self ) ->Tuple: '''simple docstring''' _a = self.get_auto_remove_tmp_dir() _a = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _a = get_results(a_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 2_8 ) self.assertGreaterEqual(result["eval_exact"] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCamelCase__ ( self ) ->Tuple: '''simple docstring''' _a = self.get_auto_remove_tmp_dir() _a = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) _a = get_results(a_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(a_ , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' _a = self.get_auto_remove_tmp_dir() _a = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _a = get_results(a_ ) self.assertGreaterEqual(result["eval_rouge1"] , 1_0 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCamelCase__ ( self ) ->int: '''simple docstring''' _a = self.get_auto_remove_tmp_dir() _a = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _a = get_results(a_ ) self.assertGreaterEqual(result["eval_bleu"] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(a_ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "translation_no_trainer" ) ) ) @slow def lowerCamelCase__ ( self ) ->Dict: '''simple docstring''' _a = logging.StreamHandler(sys.stdout ) logger.addHandler(a_ ) _a = self.get_auto_remove_tmp_dir() _a = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) _a = get_results(a_ ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowerCamelCase__ ( self ) ->str: '''simple docstring''' _a = self.get_auto_remove_tmp_dir() _a = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) _a = get_results(a_ ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(a_ , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_ , "image_classification_no_trainer" ) ) )
612
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCAmelCase ( UpperCamelCase_: str ) -> Union[str, Any]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _a = model_type_to_module_name(UpperCamelCase_ ) _a = importlib.import_module(f'''.{module_name}''' , "transformers.models" ) try: return getattr(UpperCamelCase_ , UpperCamelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(UpperCamelCase_ , "__name__" , UpperCamelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _a = importlib.import_module("transformers" ) if hasattr(UpperCamelCase_ , UpperCamelCase_ ): return getattr(UpperCamelCase_ , UpperCamelCase_ ) return None def lowerCAmelCase ( UpperCamelCase_: Union[str, os.PathLike] , UpperCamelCase_: Optional[Union[str, os.PathLike]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[Dict[str, str]] = None , UpperCamelCase_: Optional[Union[bool, str]] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , **UpperCamelCase_: Dict , ) -> Optional[int]: '''simple docstring''' _a = get_file_from_repo( UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(UpperCamelCase_ , encoding="utf-8" ) as reader: return json.load(UpperCamelCase_ ) class lowercase_ : def __init__( self ) ->List[Any]: '''simple docstring''' raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(a_ ) def lowerCamelCase__ ( cls , a_ , **a_ ) ->Dict: '''simple docstring''' _a = kwargs.pop("config" , a_ ) _a = kwargs.pop("trust_remote_code" , a_ ) _a = True _a , _a = ImageProcessingMixin.get_image_processor_dict(a_ , **a_ ) _a = config_dict.get("image_processor_type" , a_ ) _a = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): _a = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _a = config_dict.pop("feature_extractor_type" , a_ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) _a = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _a = config_dict["auto_map"]["AutoFeatureExtractor"] _a = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(a_ , a_ ): _a = AutoConfig.from_pretrained(a_ , **a_ ) # It could be in `config.image_processor_type`` _a = getattr(a_ , "image_processor_type" , a_ ) if hasattr(a_ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: _a = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: _a = image_processor_class_from_name(a_ ) _a = image_processor_auto_map is not None _a = image_processor_class is not None or type(a_ ) in IMAGE_PROCESSOR_MAPPING _a = resolve_trust_remote_code( a_ , a_ , a_ , a_ ) if has_remote_code and trust_remote_code: _a = get_class_from_dynamic_module( a_ , a_ , **a_ ) _a = kwargs.pop("code_revision" , a_ ) if os.path.isdir(a_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(a_ , **a_ ) elif image_processor_class is not None: return image_processor_class.from_dict(a_ , **a_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(a_ ) in IMAGE_PROCESSOR_MAPPING: _a = IMAGE_PROCESSOR_MAPPING[type(a_ )] return image_processor_class.from_dict(a_ , **a_ ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCamelCase__ ( a_ , a_ ) ->Optional[int]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(a_ , a_ )
612
1