code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # Load configuration defined in the metadata file with open(__A ) as metadata_file: __SCREAMING_SNAKE_CASE : Any = json.load(__A ) __SCREAMING_SNAKE_CASE : Optional[int] = LukeConfig(use_entity_aware_attention=__A , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path __SCREAMING_SNAKE_CASE : List[str] = torch.load(__A , map_location='''cpu''' ) # Load the entity vocab file __SCREAMING_SNAKE_CASE : List[Any] = load_entity_vocab(__A ) __SCREAMING_SNAKE_CASE : int = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks __SCREAMING_SNAKE_CASE : str = AddedToken('''<ent>''' , lstrip=__A , rstrip=__A ) __SCREAMING_SNAKE_CASE : List[str] = AddedToken('''<ent2>''' , lstrip=__A , rstrip=__A ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(__A ) with open(os.path.join(__A , LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(__A , __A ) __SCREAMING_SNAKE_CASE : Optional[Any] = LukeTokenizer.from_pretrained(__A ) # Initialize the embeddings of the special tokens __SCREAMING_SNAKE_CASE : int = state_dict['''embeddings.word_embeddings.weight'''] __SCREAMING_SNAKE_CASE : Dict = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) __SCREAMING_SNAKE_CASE : Tuple = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) __SCREAMING_SNAKE_CASE : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __SCREAMING_SNAKE_CASE : List[str] = F'''encoder.layer.{layer_index}.attention.self.''' __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict[prefix + matrix_name] __SCREAMING_SNAKE_CASE : List[Any] = state_dict[prefix + matrix_name] __SCREAMING_SNAKE_CASE : List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __SCREAMING_SNAKE_CASE : Tuple = state_dict['''entity_embeddings.entity_embeddings.weight'''] __SCREAMING_SNAKE_CASE : List[str] = entity_emb[entity_vocab['''[MASK]''']] __SCREAMING_SNAKE_CASE : Optional[Any] = LukeModel(config=__A ).eval() __SCREAMING_SNAKE_CASE : Tuple = model.load_state_dict(__A , strict=__A ) if not (len(__A ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {', '.join(__A )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' F''' {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}''' ) # Check outputs __SCREAMING_SNAKE_CASE : Optional[int] = LukeTokenizer.from_pretrained(__A , task='''entity_classification''' ) __SCREAMING_SNAKE_CASE : Any = ( '''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the''' ''' new world number one avoid a humiliating second- round exit at Wimbledon .''' ) __SCREAMING_SNAKE_CASE : List[str] = (39, 42) __SCREAMING_SNAKE_CASE : Dict = tokenizer(__A , entity_spans=[span] , add_prefix_space=__A , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Dict = model(**__A ) # Verify word hidden states if model_size == "large": __SCREAMING_SNAKE_CASE : int = torch.Size((1, 42, 1024) ) __SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base __SCREAMING_SNAKE_CASE : List[Any] = torch.Size((1, 42, 768) ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __A , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": __SCREAMING_SNAKE_CASE : str = torch.Size((1, 1, 1024) ) __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base __SCREAMING_SNAKE_CASE : str = torch.Size((1, 1, 768) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __A , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__A ) ) model.save_pretrained(__A ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : int = {} with open(__A , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__A ): __SCREAMING_SNAKE_CASE : Optional[Any] = line.rstrip().split('''\t''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = index return entity_vocab if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) __lowerCAmelCase : List[Any] =parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
696
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __lowerCAmelCase = object() # For specifying empty leaf dict `{}` __lowerCAmelCase = object() def _UpperCAmelCase ( __A : List[str] , __A : Tuple ): a_ : List[Any] = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(__A ) - len(__A ) + 1 ): a_ : Union[str, Any] = [x.match(__A ) for x, y in zip(__A , ks[i:] )] if matches and all(__A ): return True return False def _UpperCAmelCase ( __A : List[str] ): def replace(__A : int , __A : Union[str, Any] ): for rule, replacement in rules: if _match(__A , __A ): return replacement return val return replace def _UpperCAmelCase ( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , __A )), (("transformer", "wte", "embedding"), P('''mp''' , __A )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__A , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , __A )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__A , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , __A )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _UpperCAmelCase ( __A : Union[str, Any] ): a_ : Tuple = _get_partition_rules() a_ : Tuple = _replacement_rules(__A ) a_ : Optional[Any] = {k: _unmatched for k in flatten_dict(__A )} a_ : Optional[Any] = {k: replace(__A , __A ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__A ) )
466
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
41
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( lowercase__ , lowercase__ ): '''simple docstring''' print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(lowercase__ ): print(F"""{i}\t\t{d}""" ) def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' for j in range(lowercase__ ): a_ , a_ , a_ =(graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' a_ =[float("inf" )] * vertex_count a_ =0.0 for _ in range(vertex_count - 1 ): for j in range(lowercase__ ): a_ , a_ , a_ =(graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: a_ =distance[u] + w a_ =check_negative_cycle(lowercase__ , lowercase__ , lowercase__ ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowercase = int(input('''Enter number of vertices: ''').strip()) lowercase = int(input('''Enter number of edges: ''').strip()) lowercase = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowercase , lowercase , lowercase = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowercase = {'''src''': src, '''dst''': dest, '''weight''': weight} lowercase = int(input('''\nEnter shortest path source:''').strip()) lowercase = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
41
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Optional[int] = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
635
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore A = """ Human: <<task>> Assistant: """ A = """huggingface-tools/default-prompts""" A = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase="run" ) -> List[str]: """simple docstring""" if prompt_or_repo_id is None: __UpperCAmelCase : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , UpperCamelCase ) is not None: return prompt_or_repo_id __UpperCAmelCase : str = cached_file( UpperCamelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(UpperCamelCase , "r" , encoding="utf-8" ) as f: return f.read()
77
0
"""simple docstring""" import heapq import sys import numpy as np a : Dict = tuple[int, int] class _UpperCamelCase : '''simple docstring''' def __init__( self ): UpperCAmelCase__ = [] UpperCAmelCase__ = set() def A__ ( self ): if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def A__ ( self ): return len(self.elements ) == 0 def A__ ( self , __lowercase , __lowercase ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__lowercase ) else: # update # print("update", item) UpperCAmelCase__ = [] ((UpperCAmelCase__) , (UpperCAmelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((UpperCAmelCase__) , (UpperCAmelCase__)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def A__ ( self , __lowercase ): if item in self.set: self.set.remove(__lowercase ) UpperCAmelCase__ = [] ((UpperCAmelCase__) , (UpperCAmelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((UpperCAmelCase__) , (UpperCAmelCase__)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def A__ ( self ): return self.elements[0][1] def A__ ( self ): ((UpperCAmelCase__) , (UpperCAmelCase__)) = heapq.heappop(self.elements ) self.set.remove(__lowercase ) return (priority, item) def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: # euclidean distance UpperCAmelCase__ = np.array(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = np.array(_SCREAMING_SNAKE_CASE ) return np.linalg.norm(a - b ) def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: # integer division by time variable return consistent_heuristic(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) // t def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: UpperCAmelCase__ = g_function[start] + Wa * heuristics[i](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return ans def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: UpperCAmelCase__ = np.chararray((n, n) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = """*""" for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if (j, (n - 1) - i) in blocks: UpperCAmelCase__ = """#""" UpperCAmelCase__ = """-""" UpperCAmelCase__ = back_pointer[goal] while x != start: ((UpperCAmelCase__) , (UpperCAmelCase__)) = x # print(x) UpperCAmelCase__ = """-""" UpperCAmelCase__ = back_pointer[x] UpperCAmelCase__ = """-""" for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) UpperCAmelCase__ = back_pointer[goal] while x != start: print(_SCREAMING_SNAKE_CASE , end=""" """ ) UpperCAmelCase__ = back_pointer[x] print(_SCREAMING_SNAKE_CASE ) sys.exit() def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->Dict: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) ->str: for itera in range(_SCREAMING_SNAKE_CASE ): open_list[itera].remove_element(_SCREAMING_SNAKE_CASE ) # print("s", s) # print("j", j) ((UpperCAmelCase__) , (UpperCAmelCase__)) = s UpperCAmelCase__ = (x - 1, y) UpperCAmelCase__ = (x + 1, y) UpperCAmelCase__ = (x, y + 1) UpperCAmelCase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_SCREAMING_SNAKE_CASE ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = -1 UpperCAmelCase__ = float("""inf""" ) if valid(_SCREAMING_SNAKE_CASE ) and g_function[neighbours] > g_function[s] + 1: UpperCAmelCase__ = g_function[s] + 1 UpperCAmelCase__ = s if neighbours not in close_list_anchor: open_list[0].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if neighbours not in close_list_inad: for var in range(1 , _SCREAMING_SNAKE_CASE ): if key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) <= Wa * key( _SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): open_list[j].put( _SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case__ ( ) ->Any: UpperCAmelCase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list a : Union[str, Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a : Union[str, Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a : int = make_common_ground() a : Tuple = blocks_blk # hyper parameters a : Optional[Any] = 1 a : List[str] = 1 a : Any = 20 a : Tuple = 3 # one consistent and two other inconsistent # start and end destination a : int = (0, 0) a : str = (n - 1, n - 1) a : Any = 1 def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: UpperCAmelCase__ = {start: 0, goal: float("""inf""" )} UpperCAmelCase__ = {start: -1, goal: -1} UpperCAmelCase__ = [] UpperCAmelCase__ = set() for i in range(_SCREAMING_SNAKE_CASE ): open_list.append(PriorityQueue() ) open_list[i].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , _SCREAMING_SNAKE_CASE ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: UpperCAmelCase__ , UpperCAmelCase__ = open_list[i].top_show() visited.add(_SCREAMING_SNAKE_CASE ) expand_state( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) close_list_inad.append(_SCREAMING_SNAKE_CASE ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: UpperCAmelCase__ = open_list[0].top_show() visited.add(_SCREAMING_SNAKE_CASE ) expand_state( _SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) close_list_anchor.append(_SCREAMING_SNAKE_CASE ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_SCREAMING_SNAKE_CASE ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
422
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: UpperCAmelCase__ = old_name if "patch_embed" in old_name: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = old_name.split(""".""" ) if layer == "0": UpperCAmelCase__ = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": UpperCAmelCase__ = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": UpperCAmelCase__ = old_name.replace("""3""" , """convolution2""" ) else: UpperCAmelCase__ = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(r"""\d\.\d""" , _SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = r"""\b\d{2}\b""" if bool(re.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): UpperCAmelCase__ = re.search(r"""\d\.\d\d.""" , _SCREAMING_SNAKE_CASE ).group() else: UpperCAmelCase__ = re.search(r"""\d\.\d.""" , _SCREAMING_SNAKE_CASE ).group() if int(match[0] ) < 6: UpperCAmelCase__ = old_name.replace(_SCREAMING_SNAKE_CASE , """""" ) UpperCAmelCase__ = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) UpperCAmelCase__ = """intermediate_stages.""" + trimmed_name else: UpperCAmelCase__ = old_name.replace(_SCREAMING_SNAKE_CASE , """""" ) if int(match[2] ) < num_meta4D_last_stage: UpperCAmelCase__ = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: UpperCAmelCase__ = str(int(match[2] ) - num_meta4D_last_stage ) UpperCAmelCase__ = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: UpperCAmelCase__ = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: UpperCAmelCase__ = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: UpperCAmelCase__ = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: UpperCAmelCase__ = trimmed_name.replace("""fc2""" , """linear_out""" ) UpperCAmelCase__ = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(r""".\d.""" , _SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: UpperCAmelCase__ = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): UpperCAmelCase__ = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): UpperCAmelCase__ = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: UpperCAmelCase__ = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: UpperCAmelCase__ = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: UpperCAmelCase__ = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: UpperCAmelCase__ = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": UpperCAmelCase__ = new_name.replace("""norm""" , """layernorm""" ) UpperCAmelCase__ = """efficientformer.""" + new_name else: UpperCAmelCase__ = """efficientformer.encoder.""" + new_name return new_name def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: for key in checkpoint.copy().keys(): UpperCAmelCase__ = checkpoint.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = val return checkpoint def snake_case__ ( ) ->Optional[Any]: UpperCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return image def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: UpperCAmelCase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""] UpperCAmelCase__ = EfficientFormerConfig.from_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = EfficientFormerForImageClassificationWithTeacher(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) UpperCAmelCase__ = config.depths[-1] - config.num_metaad_blocks + 1 UpperCAmelCase__ = convert_torch_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase__ = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = 2_5_6 UpperCAmelCase__ = 2_2_4 UpperCAmelCase__ = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) UpperCAmelCase__ = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values # original processing pipeline UpperCAmelCase__ = Compose( [ Resize(_SCREAMING_SNAKE_CASE , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(_SCREAMING_SNAKE_CASE ), ToTensor(), Normalize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), ] ) UpperCAmelCase__ = image_transforms(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = outputs.logits UpperCAmelCase__ = (1, 1_0_0_0) if "l1" in model_name: UpperCAmelCase__ = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :1_0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: UpperCAmelCase__ = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :1_0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: UpperCAmelCase__ = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add model""" , use_temp_dir=_SCREAMING_SNAKE_CASE , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add image processor""" , use_temp_dir=_SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) a : Optional[int] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
422
1
from __future__ import annotations import numpy as np def a_ ( lowerCAmelCase_ : list[float] ): return np.maximum(0, lowerCAmelCase_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
53
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Any ={ 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[Any] =[ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
206
0
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """nielsr/canine-s""": 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” SCREAMING_SNAKE_CASE__ = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0xe_000 SCREAMING_SNAKE_CASE__ = 0xe_001 SCREAMING_SNAKE_CASE__ = 0xe_002 SCREAMING_SNAKE_CASE__ = 0xe_003 SCREAMING_SNAKE_CASE__ = 0xe_004 # Maps special codepoints to human-readable names. SCREAMING_SNAKE_CASE__ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: """[CLS]""", SEP: """[SEP]""", BOS: """[BOS]""", MASK: """[MASK]""", PAD: """[PAD]""", RESERVED: """[RESERVED]""", } # Maps special codepoint human-readable names to their codepoint values. SCREAMING_SNAKE_CASE__ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class __lowerCamelCase ( UpperCAmelCase__ ): """simple docstring""" lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCAmelCase=chr(UpperCAmelCase ) , UpperCAmelCase=chr(UpperCAmelCase ) , UpperCAmelCase=chr(UpperCAmelCase ) , UpperCAmelCase=chr(UpperCAmelCase ) , UpperCAmelCase=chr(UpperCAmelCase ) , UpperCAmelCase=chr(UpperCAmelCase ) , UpperCAmelCase=False , UpperCAmelCase=2048 , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , model_max_length=UpperCAmelCase , **UpperCAmelCase , ) # Creates a mapping for looking up the IDs of special symbols. lowercase_ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowercase_ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowercase_ = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowercase_ = UNICODE_VOCAB_SIZE lowercase_ = len(self._special_codepoints ) @property def A__ ( self ) -> int: '''simple docstring''' return self._unicode_vocab_size def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return list(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' try: return ord(UpperCAmelCase ) except TypeError: raise ValueError(F'invalid token: \'{token}\'' ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCAmelCase ) except TypeError: raise ValueError(F'invalid id: {index}' ) def A__ ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return "".join(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] lowercase_ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCAmelCase )) + [1] return result def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] lowercase_ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[str]: '''simple docstring''' return ()
714
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AutoencoderKL lowerCAmelCase__ = "sample" lowerCAmelCase__ = 1E-2 @property def A__ ( self ) -> int: '''simple docstring''' lowercase_ = 4 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase ) return {"sample": image} @property def A__ ( self ) -> Tuple: '''simple docstring''' return (3, 32, 32) @property def A__ ( self ) -> List[Any]: '''simple docstring''' return (3, 32, 32) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } lowercase_ = self.dummy_input return init_dict, inputs_dict def A__ ( self ) -> Any: '''simple docstring''' pass def A__ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skipIf(torch_device == "mps" , "Gradient checkpointing skipped on MPS" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.prepare_init_args_and_inputs_for_common() lowercase_ = self.model_class(**UpperCAmelCase ) model.to(UpperCAmelCase ) assert not model.is_gradient_checkpointing and model.training lowercase_ = model(**UpperCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() lowercase_ = torch.randn_like(UpperCAmelCase ) lowercase_ = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing lowercase_ = self.model_class(**UpperCAmelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(UpperCAmelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training lowercase_ = model_a(**UpperCAmelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() lowercase_ = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) lowercase_ = dict(model.named_parameters() ) lowercase_ = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" , output_loading_info=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase ) lowercase_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) lowercase_ = model.to(UpperCAmelCase ) model.eval() if torch_device == "mps": lowercase_ = torch.manual_seed(0 ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowercase_ = image.to(UpperCAmelCase ) with torch.no_grad(): lowercase_ = model(UpperCAmelCase , sample_posterior=UpperCAmelCase , generator=UpperCAmelCase ).sample lowercase_ = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": lowercase_ = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": lowercase_ = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: lowercase_ = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(UpperCAmelCase , UpperCAmelCase , rtol=1e-2 ) ) @slow class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return F'gaussian_noise_s={seed}_shape={"_".join([str(UpperCAmelCase ) for s in shape] )}.npy' def A__ ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self , UpperCAmelCase=0 , UpperCAmelCase=(4, 3, 512, 512) , UpperCAmelCase=False ) -> str: '''simple docstring''' lowercase_ = torch.floataa if fpaa else torch.floataa lowercase_ = torch.from_numpy(load_hf_numpy(self.get_file_format(UpperCAmelCase , UpperCAmelCase ) ) ).to(UpperCAmelCase ).to(UpperCAmelCase ) return image def A__ ( self , UpperCAmelCase="CompVis/stable-diffusion-v1-4" , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' lowercase_ = "fp16" if fpaa else None lowercase_ = torch.floataa if fpaa else torch.floataa lowercase_ = AutoencoderKL.from_pretrained( UpperCAmelCase , subfolder="vae" , torch_dtype=UpperCAmelCase , revision=UpperCAmelCase , ) model.to(UpperCAmelCase ).eval() return model def A__ ( self , UpperCAmelCase=0 ) -> int: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(UpperCAmelCase ) return torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.get_sd_vae_model() lowercase_ = self.get_sd_image(UpperCAmelCase ) lowercase_ = self.get_generator(UpperCAmelCase ) with torch.no_grad(): lowercase_ = model(UpperCAmelCase , generator=UpperCAmelCase , sample_posterior=UpperCAmelCase ).sample assert sample.shape == image.shape lowercase_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowercase_ = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = self.get_sd_vae_model(fpaa=UpperCAmelCase ) lowercase_ = self.get_sd_image(UpperCAmelCase , fpaa=UpperCAmelCase ) lowercase_ = self.get_generator(UpperCAmelCase ) with torch.no_grad(): lowercase_ = model(UpperCAmelCase , generator=UpperCAmelCase , sample_posterior=UpperCAmelCase ).sample assert sample.shape == image.shape lowercase_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowercase_ = torch.tensor(UpperCAmelCase ) assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = self.get_sd_vae_model() lowercase_ = self.get_sd_image(UpperCAmelCase ) with torch.no_grad(): lowercase_ = model(UpperCAmelCase ).sample assert sample.shape == image.shape lowercase_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowercase_ = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.get_sd_vae_model() lowercase_ = self.get_sd_image(UpperCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): lowercase_ = model.decode(UpperCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] lowercase_ = sample[-1, -2:, :2, -2:].flatten().cpu() lowercase_ = torch.tensor(UpperCAmelCase ) assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = self.get_sd_vae_model(fpaa=UpperCAmelCase ) lowercase_ = self.get_sd_image(UpperCAmelCase , shape=(3, 4, 64, 64) , fpaa=UpperCAmelCase ) with torch.no_grad(): lowercase_ = model.decode(UpperCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] lowercase_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowercase_ = torch.tensor(UpperCAmelCase ) assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def A__ ( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.get_sd_vae_model(fpaa=UpperCAmelCase ) lowercase_ = self.get_sd_image(UpperCAmelCase , shape=(3, 4, 64, 64) , fpaa=UpperCAmelCase ) with torch.no_grad(): lowercase_ = model.decode(UpperCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowercase_ = model.decode(UpperCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="xformers is not required when using PyTorch 2.0." ) def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = self.get_sd_vae_model() lowercase_ = self.get_sd_image(UpperCAmelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): lowercase_ = model.decode(UpperCAmelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowercase_ = model.decode(UpperCAmelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = self.get_sd_vae_model() lowercase_ = self.get_sd_image(UpperCAmelCase ) lowercase_ = self.get_generator(UpperCAmelCase ) with torch.no_grad(): lowercase_ = model.encode(UpperCAmelCase ).latent_dist lowercase_ = dist.sample(generator=UpperCAmelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] lowercase_ = sample[0, -1, -3:, -3:].flatten().cpu() lowercase_ = torch.tensor(UpperCAmelCase ) lowercase_ = 3e-3 if torch_device != "mps" else 1e-2 assert torch_all_close(UpperCAmelCase , UpperCAmelCase , atol=UpperCAmelCase )
601
0
def A_ ( A__ , A__ ) -> bool: a__ : List[Any] = len(A__ ) + 1 a__ : Optional[Any] = len(A__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. a__ : Optional[int] = [[0 for i in range(A__ )] for j in range(A__ )] # since string of zero length match pattern of zero length a__ : List[str] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , A__ ): a__ : str = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , A__ ): a__ : Dict = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , A__ ): for j in range(1 , A__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": a__ : List[str] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: a__ : Optional[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): a__ : Union[str, Any] = dp[i - 1][j] else: a__ : List[str] = 0 else: a__ : Dict = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") lowercase : List[Any] = """aab""" lowercase : Optional[int] = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
302
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights a__ : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=lowercase , cache_dir=lowercase) a__ : Any = [t[-1] for t in os.walk(os.path.join(lowercase , os.listdir(lowercase)[0] , 'snapshots'))] a__ : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin') for f in files) @slow @require_flax class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ , a__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=lowercase) a__ : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : Tuple = jax.random.PRNGKey(0) a__ : str = 4 a__ : Dict = jax.device_count() a__ : List[Any] = num_samples * [prompt] a__ : Any = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : str = replicate(lowercase) a__ : Dict = jax.random.split(lowercase , lowercase) a__ : Dict = shard(lowercase) a__ : List[str] = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1e-3 assert np.abs(np.abs(lowercase , dtype=np.floataa).sum() - 4_99_47.8_75) < 5e-1 a__ : List[str] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(lowercase) == num_samples def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ : int = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=lowercase) a__ : str = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : List[str] = jax.random.PRNGKey(0) a__ : Any = 50 a__ : Tuple = jax.device_count() a__ : Optional[int] = num_samples * [prompt] a__ : Optional[int] = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : List[Any] = replicate(lowercase) a__ : int = jax.random.split(lowercase , lowercase) a__ : Optional[int] = shard(lowercase) a__ : str = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5e-1 def __lowercase ( self) -> Dict: '''simple docstring''' a__ , a__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowercase) a__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : Optional[int] = jax.random.PRNGKey(0) a__ : Dict = 50 a__ : List[Any] = jax.device_count() a__ : Dict = num_samples * [prompt] a__ : Any = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : Optional[Any] = replicate(lowercase) a__ : List[Any] = jax.random.split(lowercase , lowercase) a__ : Optional[Any] = shard(lowercase) a__ : Optional[Any] = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5e-1 def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ , a__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa) a__ : Optional[int] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : List[Any] = jax.random.PRNGKey(0) a__ : List[Any] = 50 a__ : int = jax.device_count() a__ : Tuple = num_samples * [prompt] a__ : Dict = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : int = replicate(lowercase) a__ : List[str] = jax.random.split(lowercase , lowercase) a__ : Optional[Any] = shard(lowercase) a__ : Tuple = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5e-1 def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Any = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=lowercase , steps_offset=1 , ) a__ , a__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=lowercase , safety_checker=lowercase , ) a__ : str = scheduler.create_state() a__ : List[str] = scheduler_state a__ : Tuple = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : List[str] = jax.random.PRNGKey(0) a__ : List[Any] = 50 a__ : Tuple = jax.device_count() a__ : List[Any] = num_samples * [prompt] a__ : List[Any] = pipeline.prepare_inputs(lowercase) # shard inputs and rng a__ : List[Any] = replicate(lowercase) a__ : Any = jax.random.split(lowercase , lowercase) a__ : Optional[int] = shard(lowercase) a__ : Optional[int] = pipeline(lowercase , lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1e-3 assert np.abs((np.abs(lowercase , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5e-1 def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : str = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) a__ : Optional[Any] = jax.device_count() a__ : List[str] = num_samples * [prompt] a__ : List[str] = jax.random.split(jax.random.PRNGKey(0) , lowercase) a__ , a__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowercase , ) a__ : List[str] = replicate(lowercase) a__ : int = pipeline.prepare_inputs(lowercase) a__ : Dict = shard(lowercase) a__ : Tuple = pipeline(lowercase , lowercase , lowercase , jit=lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) a__ : Tuple = images[2, 0, 256, 10:17, 1] # With memory efficient attention a__ , a__ : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowercase , use_memory_efficient_attention=lowercase , ) a__ : int = replicate(lowercase) a__ : str = pipeline.prepare_inputs(lowercase) a__ : Dict = shard(lowercase) a__ : int = pipeline(lowercase , lowercase , lowercase , jit=lowercase).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) a__ : Dict = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1e-2
302
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class _UpperCAmelCase ( a__ ): '''simple docstring''' __A = """gptsan-japanese""" __A = [ """past_key_values""", ] __A = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowercase_ : Tuple=36000 , lowercase_ : Any=1280 , lowercase_ : Optional[int]=1024 , lowercase_ : Optional[Any]=8192 , lowercase_ : int=4096 , lowercase_ : Optional[Any]=128 , lowercase_ : List[str]=10 , lowercase_ : Any=0 , lowercase_ : Dict=16 , lowercase_ : List[str]=16 , lowercase_ : str=128 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Tuple=1e-5 , lowercase_ : Union[str, Any]=False , lowercase_ : List[Any]=0.0 , lowercase_ : Dict="float32" , lowercase_ : List[Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=False , lowercase_ : Dict=0.0_02 , lowercase_ : Tuple=False , lowercase_ : Any=True , lowercase_ : Optional[int]=35998 , lowercase_ : Optional[int]=35995 , lowercase_ : str=35999 , **lowercase_ : str , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = d_ff _UpperCamelCase = d_ext _UpperCamelCase = d_spout _UpperCamelCase = num_switch_layers _UpperCamelCase = num_ext_layers _UpperCamelCase = num_switch_layers + num_ext_layers _UpperCamelCase = num_heads _UpperCamelCase = num_experts _UpperCamelCase = expert_capacity _UpperCamelCase = dropout_rate _UpperCamelCase = layer_norm_epsilon _UpperCamelCase = router_bias _UpperCamelCase = router_jitter_noise _UpperCamelCase = router_dtype _UpperCamelCase = router_ignore_padding_tokens _UpperCamelCase = output_hidden_states _UpperCamelCase = output_attentions _UpperCamelCase = initializer_factor _UpperCamelCase = output_router_logits _UpperCamelCase = use_cache super().__init__( separator_token_id=lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
709
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *lowercase_ : List[str] , **lowercase_ : Union[str, Any]) -> None: """simple docstring""" warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_)
82
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP SCREAMING_SNAKE_CASE_: Any =False try: SCREAMING_SNAKE_CASE_: Optional[Any] =_is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class __A : def __init__(self : int , __a : str = None , __a : list = [] ): UpperCAmelCase_ = 0 UpperCAmelCase_ = choices UpperCAmelCase_ = prompt if sys.platform == "win32": UpperCAmelCase_ = "*" else: UpperCAmelCase_ = "➔ " def _lowercase (self : Union[str, Any] , __a : Optional[int] , __a : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , __a ) else: forceWrite(self.choices[index] , __a ) def _lowercase (self : Any , __a : int ): if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(__a ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def _lowercase (self : Optional[Any] , __a : Direction , __a : int = 1 ): UpperCAmelCase_ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a ) move_cursor(__a , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def _lowercase (self : Dict ): self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def _lowercase (self : Any ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def _lowercase (self : Optional[Any] ): move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def _lowercase (self : str ): move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a )] for number in range(10 )] ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = int(chr(self.current_selection ) ) UpperCAmelCase_ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __a ) else: return else: return def _lowercase (self : Optional[Any] , __a : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) UpperCAmelCase_ = default_choice for i in range(len(self.choices ) ): self.print_choice(__a ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: UpperCAmelCase_ = int(builtins.input() ) except ValueError: UpperCAmelCase_ = default_choice else: UpperCAmelCase_ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(__a , "\n" ) return choice
78
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = CLIPTokenizer UpperCamelCase = CLIPTokenizerFast UpperCamelCase = True UpperCamelCase = {} UpperCamelCase = False def a__ ( self : Tuple ) -> Tuple: """simple docstring""" super().setUp() # fmt: off lowerCamelCase_ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCamelCase_ = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) lowerCamelCase_ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] lowerCamelCase_ = {"""unk_token""": """<unk>"""} lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase__ ) ) def a__ ( self : str , **A_ : Tuple ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def a__ ( self : str , **A_ : Any ) -> Any: """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def a__ ( self : List[str] , A_ : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = """lower newer""" lowerCamelCase_ = """lower newer""" return input_text, output_text def a__ ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase_ = """lower newer""" lowerCamelCase_ = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] lowerCamelCase_ = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) lowerCamelCase_ = tokens + [tokenizer.unk_token] lowerCamelCase_ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) @require_ftfy def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) lowerCamelCase_ = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" lowerCamelCase_ = tokenizer_s.tokenize(lowercase__ ) lowerCamelCase_ = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCamelCase_ = """xa\u0303y""" + """ """ + """x\xe3y""" lowerCamelCase_ = tokenizer_s.tokenize(lowercase__ ) lowerCamelCase_ = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of space type lowerCamelCase_ = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCamelCase_ = tokenizer_s.tokenize(lowercase__ ) lowerCamelCase_ = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of line break type lowerCamelCase_ = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCamelCase_ = tokenizer_s.tokenize(lowercase__ ) lowerCamelCase_ = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase_ = f"""{text_of_1_token} {text_of_1_token}""" lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) lowerCamelCase_ = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) lowerCamelCase_ = f""" {text}""" lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) lowerCamelCase_ = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" with self.assertRaises(lowercase__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" super().test_tokenization_python_rust_equals() def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" pass
704
def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] ): '''simple docstring''' lowerCamelCase_ = len(lowercase ) print('The following activities are selected:' ) # The first activity is always selected lowerCamelCase_ = 0 print(lowercase , end=',' ) # Consider rest of the activities for j in range(lowercase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase , end=',' ) lowerCamelCase_ = j if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Tuple = [1, 3, 0, 5, 8, 5] lowerCamelCase : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
651
0
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = Mock() __lowercase = conn, Mock() __lowercase = iter([1, None] ) __lowercase = lambda A__ : next(A__ ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=A__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
41
"""simple docstring""" import math def a__ ( lowerCAmelCase ) -> list[int]: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Union[str, Any] = 2 UpperCAmelCase__ : List[Any] = int(math.sqrt(lowerCAmelCase ) ) # Size of every segment UpperCAmelCase__ : Dict = [True] * (end + 1) UpperCAmelCase__ : str = [] while start <= end: if temp[start] is True: in_prime.append(lowerCAmelCase ) for i in range(start * start , end + 1 , lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = False start += 1 prime += in_prime UpperCAmelCase__ : Optional[Any] = end + 1 UpperCAmelCase__ : Dict = min(2 * end , lowerCAmelCase ) while low <= n: UpperCAmelCase__ : Optional[int] = [True] * (high - low + 1) for each in in_prime: UpperCAmelCase__ : Optional[int] = math.floor(low / each ) * each if t < low: t += each for j in range(lowerCAmelCase , high + 1 , lowerCAmelCase ): UpperCAmelCase__ : int = False for j in range(len(lowerCAmelCase ) ): if temp[j] is True: prime.append(j + low ) UpperCAmelCase__ : Dict = high + 1 UpperCAmelCase__ : int = min(high + end , lowerCAmelCase ) return prime print(sieve(10**6))
182
0
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCAmelCase__ = input('''Enter image url: ''').strip() print(f'''Downloading image from {url} ...''') lowerCAmelCase__ = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image lowerCAmelCase__ = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] lowerCAmelCase__ = requests.get(image_url).content lowerCAmelCase__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, '''wb''') as fp: fp.write(image_data) print(f'''Done. Image saved to disk as {file_name}.''')
544
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( _lowercase ): def __init__(self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> Dict: super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=__a , speech_processor=__a , vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , feature_extractor=__a , ) def snake_case_ (self , __a = "auto" ) -> str: if slice_size == "auto": UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def snake_case_ (self ) -> List[Any]: self.enable_attention_slicing(__a ) @torch.no_grad() def __call__(self , __a , __a=1_60_00 , __a = 5_12 , __a = 5_12 , __a = 50 , __a = 7.5 , __a = None , __a = 1 , __a = 0.0 , __a = None , __a = None , __a = "pil" , __a = True , __a = None , __a = 1 , **__a , ) -> List[str]: UpperCamelCase = self.speech_processor.feature_extractor( __a , return_tensors="pt" , sampling_rate=__a ).input_features.to(self.device ) UpperCamelCase = self.speech_model.generate(__a , max_length=48_00_00 ) UpperCamelCase = self.speech_processor.tokenizer.batch_decode(__a , skip_special_tokens=__a , normalize=__a )[ 0 ] if isinstance(__a , __a ): UpperCamelCase = 1 elif isinstance(__a , __a ): UpperCamelCase = len(__a ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(__a )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__a , __a ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(__a )}." ) # get prompt text embeddings UpperCamelCase = self.tokenizer( __a , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase , UpperCamelCase , UpperCamelCase = text_embeddings.shape UpperCamelCase = text_embeddings.repeat(1 , __a , 1 ) UpperCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt , __a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase = 42 if negative_prompt is None: UpperCamelCase = [""] * batch_size elif type(__a ) is not type(__a ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(__a )} !=" F" {type(__a )}." ) elif isinstance(__a , __a ): UpperCamelCase = [negative_prompt] elif batch_size != len(__a ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(__a )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: UpperCamelCase = negative_prompt UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( __a , padding="max_length" , max_length=__a , truncation=__a , return_tensors="pt" , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = uncond_embeddings.shape[1] UpperCamelCase = uncond_embeddings.repeat(1 , __a , 1 ) UpperCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , __a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase = torch.randn(__a , generator=__a , device="cpu" , dtype=__a ).to( self.device ) else: UpperCamelCase = torch.randn(__a , generator=__a , device=self.device , dtype=__a ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase = {} if accepts_eta: UpperCamelCase = eta for i, t in enumerate(self.progress_bar(__a ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual UpperCamelCase = self.unet(__a , __a , encoder_hidden_states=__a ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = noise_pred.chunk(2 ) UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(__a , __a , __a , **__a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__a , __a , __a ) UpperCamelCase = 1 / 0.18215 * latents UpperCamelCase = self.vae.decode(__a ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(__a ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__a , nsfw_content_detected=__a )
544
1
import math import qiskit def __UpperCAmelCase ( lowerCamelCase_ : int = 1 , lowerCamelCase_ : int = 1 , lowerCamelCase_ : int = 1 ) -> qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) or isinstance(lowerCamelCase_ , lowerCamelCase_ ) or isinstance(lowerCamelCase_ , lowerCamelCase_ ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(lowerCamelCase_ ) != input_a) or (math.floor(lowerCamelCase_ ) != input_a) or (math.floor(lowerCamelCase_ ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers SCREAMING_SNAKE_CASE_ : Tuple = qiskit.QuantumRegister(4 , 'qr' ) SCREAMING_SNAKE_CASE_ : Any = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries SCREAMING_SNAKE_CASE_ : Optional[int] = [input_a, input_a, carry_in] SCREAMING_SNAKE_CASE_ : int = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowerCamelCase_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowerCamelCase_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowerCamelCase_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowerCamelCase_ ) # measure the last two qbits SCREAMING_SNAKE_CASE_ : Any = qiskit.Aer.get_backend('aer_simulator' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
105
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A : Tuple = logging.get_logger(__name__) _A : Union[str, Any] = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = "roberta-prelayernorm" def __init__( self : Dict , A : Dict=5_0_2_6_5 , A : Tuple=7_6_8 , A : str=1_2 , A : Optional[Any]=1_2 , A : Union[str, Any]=3_0_7_2 , A : Dict="gelu" , A : Optional[int]=0.1 , A : Union[str, Any]=0.1 , A : str=5_1_2 , A : Any=2 , A : Optional[Any]=0.02 , A : str=1e-12 , A : Optional[Any]=1 , A : Dict=0 , A : Any=2 , A : Any="absolute" , A : str=True , A : List[str]=None , **A : Any , ) ->str: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : str = type_vocab_size lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : List[Any] = layer_norm_eps lowerCamelCase__ : Any = position_embedding_type lowerCamelCase__ : Union[str, Any] = use_cache lowerCamelCase__ : Tuple = classifier_dropout class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): @property def __lowerCamelCase ( self : List[str] ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase__ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
315
0
from __future__ import annotations def __UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = 2 UpperCAmelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_lowerCAmelCase ) if n > 1: factors.append(_lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
405
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if index == r: for j in range(_lowerCAmelCase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase = arr[i] combination_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , index + 1 , _lowerCAmelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 0 , _lowerCAmelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above __lowerCAmelCase =[10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
405
1
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) __a = logging.getLogger(__name__) __a = {'facebook/bart-base': BartForConditionalGeneration} __a = {'facebook/bart-base': BartTokenizer} def __UpperCAmelCase ( ): _UpperCAmelCase : int = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file", type=_snake_case, default=_snake_case, help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length", type=_snake_case, default=5, help="The maximum total input sequence length after tokenization.", ) parser.add_argument( "--num_beams", type=_snake_case, default=_snake_case, help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ), ) parser.add_argument( "--model_name_or_path", type=_snake_case, help="Path to pretrained model or model identifier from huggingface.co/models.", required=_snake_case, ) parser.add_argument( "--config_name", type=_snake_case, default=_snake_case, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--device", type=_snake_case, default="cpu", help="Device where the model will be run", ) parser.add_argument("--output_file_path", type=_snake_case, default=_snake_case, help="Where to store the final ONNX file." ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() return args def __UpperCAmelCase ( a_: Any, a_: Optional[int]="cpu" ): _UpperCAmelCase : Tuple = model_dict[model_name].from_pretrained(_snake_case ).to(_snake_case ) _UpperCAmelCase : int = tokenizer_dict[model_name].from_pretrained(_snake_case ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Any = None _UpperCAmelCase : List[str] = 0 return huggingface_model, tokenizer def __UpperCAmelCase ( a_: List[Any], a_: Optional[Any], a_: List[str], a_: List[str], a_: Dict ): model.eval() _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : List[str] = torch.jit.script(BARTBeamSearchGenerator(_snake_case ) ) with torch.no_grad(): _UpperCAmelCase : str = "My friends are cool but they eat too many carbs." _UpperCAmelCase : int = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1_024, return_tensors="pt" ).to(model.device ) _UpperCAmelCase : str = model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], num_beams=_snake_case, max_length=_snake_case, early_stopping=_snake_case, decoder_start_token_id=model.config.decoder_start_token_id, ) torch.onnx.export( _snake_case, ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ), _snake_case, opset_version=14, input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"], output_names=["output_ids"], dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, }, example_outputs=_snake_case, ) logger.info("Model exported to {}".format(_snake_case ) ) _UpperCAmelCase : str = remove_dup_initializers(os.path.abspath(_snake_case ) ) logger.info("Deduplicated and optimized model written to {}".format(_snake_case ) ) _UpperCAmelCase : Optional[int] = onnxruntime.InferenceSession(_snake_case ) _UpperCAmelCase : List[Any] = ort_sess.run( _snake_case, { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(_snake_case ), "max_length": np.array(_snake_case ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), }, ) np.testing.assert_allclose(summary_ids.cpu().numpy(), ort_out[0], rtol=1e-3, atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = parse_args() _UpperCAmelCase : int = 5 _UpperCAmelCase : Optional[int] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase : Any = torch.device(args.device ) _UpperCAmelCase , _UpperCAmelCase : Tuple = load_model_tokenizer(args.model_name_or_path, _snake_case ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(_snake_case ) if args.max_length: _UpperCAmelCase : Union[str, Any] = args.max_length if args.num_beams: _UpperCAmelCase : List[str] = args.num_beams if args.output_file_path: _UpperCAmelCase : str = args.output_file_path else: _UpperCAmelCase : Optional[int] = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(_snake_case, _snake_case, _snake_case, _snake_case, _snake_case ) if __name__ == "__main__": main()
494
import torch from transformers import AutoModel class SCREAMING_SNAKE_CASE_ ( torch.nn.Module ): """simple docstring""" def __init__( self :Dict, snake_case :str="sayef/fsner-bert-base-uncased"): """simple docstring""" super(snake_case, self).__init__() _lowercase =AutoModel.from_pretrained(snake_case, return_dict=snake_case) _lowercase =torch.nn.CosineSimilarity(3, 1e-0_8) _lowercase =torch.nn.Softmax(dim=1) def UpperCamelCase__ ( self :str, **snake_case :int): """simple docstring""" return self.bert(**snake_case).last_hidden_state def UpperCamelCase__ ( self :Union[str, Any], snake_case :Optional[Any]): """simple docstring""" return token_embeddings.sum(2, keepdim=snake_case) def UpperCamelCase__ ( self :List[Any], snake_case :int, snake_case :Dict, snake_case :Dict=1): """simple docstring""" return self.softmax(T * self.cos(snake_case, snake_case)) def UpperCamelCase__ ( self :List[str], snake_case :int, snake_case :List[str]): """simple docstring""" _lowercase =W_supports['sizes'].tolist() _lowercase =W_supports['start_token_id'].item() _lowercase =W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] _lowercase =self.BERT(**snake_case) _lowercase =self.BERT(**snake_case) _lowercase =None _lowercase =None _lowercase =W_supports['input_ids'] == start_token_id _lowercase =W_supports['input_ids'] == end_token_id for i, size in enumerate(snake_case): if i == 0: _lowercase =0 else: _lowercase =support_sizes[i - 1] _lowercase =S[s : s + size][start_token_masks[s : s + size]] _lowercase =S[s : s + size][end_token_masks[s : s + size]] _lowercase =torch.matmul(q[i], s_start.T).sum(1).softmax(0) _lowercase =torch.matmul(q[i], s_end.T).sum(1).softmax(0) if p_starts is not None: _lowercase =torch.vstack((p_starts, p_start)) _lowercase =torch.vstack((p_ends, p_end)) else: _lowercase =p_start _lowercase =p_end return p_starts, p_ends
181
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
703
from abc import ABC, abstractmethod from argparse import ArgumentParser class __A( UpperCAmelCase ): @staticmethod @abstractmethod def lowercase__ ( __UpperCamelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def lowercase__ ( self : Any ): raise NotImplementedError()
103
0
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _A = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def A_ ( __SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def A_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : int = False elif args.student_type == "gpt2": __SCREAMING_SNAKE_CASE : List[str] = False def A_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]: if args.student_type == "roberta": __SCREAMING_SNAKE_CASE : List[Any] = False def A_ ( ) -> str: __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=__SCREAMING_SNAKE_CASE , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=__SCREAMING_SNAKE_CASE , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=__SCREAMING_SNAKE_CASE , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=__SCREAMING_SNAKE_CASE , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=__SCREAMING_SNAKE_CASE , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=__SCREAMING_SNAKE_CASE , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=__SCREAMING_SNAKE_CASE , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=__SCREAMING_SNAKE_CASE , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=__SCREAMING_SNAKE_CASE , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=__SCREAMING_SNAKE_CASE , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=__SCREAMING_SNAKE_CASE , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=__SCREAMING_SNAKE_CASE , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=__SCREAMING_SNAKE_CASE , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=__SCREAMING_SNAKE_CASE , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=__SCREAMING_SNAKE_CASE , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=__SCREAMING_SNAKE_CASE , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=__SCREAMING_SNAKE_CASE , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=__SCREAMING_SNAKE_CASE , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=__SCREAMING_SNAKE_CASE , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=__SCREAMING_SNAKE_CASE , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=__SCREAMING_SNAKE_CASE , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=__SCREAMING_SNAKE_CASE , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=__SCREAMING_SNAKE_CASE , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=__SCREAMING_SNAKE_CASE , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=__SCREAMING_SNAKE_CASE , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=__SCREAMING_SNAKE_CASE , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=__SCREAMING_SNAKE_CASE , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=__SCREAMING_SNAKE_CASE , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=__SCREAMING_SNAKE_CASE , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=__SCREAMING_SNAKE_CASE , default=40_00 , help='''Checkpoint interval.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() sanity_checks(__SCREAMING_SNAKE_CASE ) # ARGS # init_gpu_params(__SCREAMING_SNAKE_CASE ) set_seed(__SCREAMING_SNAKE_CASE ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , indent=4 ) git_log(args.dump_path ) __SCREAMING_SNAKE_CASE : str = MODEL_CLASSES[args.student_type] __SCREAMING_SNAKE_CASE : Dict = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __SCREAMING_SNAKE_CASE : List[str] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __SCREAMING_SNAKE_CASE : Any = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __SCREAMING_SNAKE_CASE : Tuple = tokenizer.all_special_tokens.index(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) __SCREAMING_SNAKE_CASE : int = special_tok_ids __SCREAMING_SNAKE_CASE : List[str] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : Dict = pickle.load(__SCREAMING_SNAKE_CASE ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: __SCREAMING_SNAKE_CASE : Optional[Any] = pickle.load(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Any = np.maximum(__SCREAMING_SNAKE_CASE , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __SCREAMING_SNAKE_CASE : Optional[int] = 0.0 # do not predict special tokens __SCREAMING_SNAKE_CASE : str = torch.from_numpy(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : str = LmSeqsDataset(params=__SCREAMING_SNAKE_CASE , data=__SCREAMING_SNAKE_CASE ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) __SCREAMING_SNAKE_CASE : Optional[int] = student_config_class.from_pretrained(args.student_config ) __SCREAMING_SNAKE_CASE : Dict = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) __SCREAMING_SNAKE_CASE : List[str] = student_model_class.from_pretrained(args.student_pretrained_weights , config=__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE : str = student_model_class(__SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # __SCREAMING_SNAKE_CASE : List[str] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __SCREAMING_SNAKE_CASE : str = Distiller( params=__SCREAMING_SNAKE_CASE , dataset=__SCREAMING_SNAKE_CASE , token_probs=__SCREAMING_SNAKE_CASE , student=__SCREAMING_SNAKE_CASE , teacher=__SCREAMING_SNAKE_CASE ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
158
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ) -> List[str]: """simple docstring""" lowercase_ : str = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ], dtype=tf.floataa, ) lowercase_ : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]], dtype=tf.intaa, ) # expected non filtered idx as noted above lowercase_ : List[Any] = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023], dtype=tf.floataa, ) # expected non filtered values as noted above lowercase_ : int = tf_top_k_top_p_filtering(snake_case__, top_k=10, top_p=0.6, min_tokens_to_keep=4 ) lowercase_ : Dict = output[output != -float("""inf""" )] lowercase_ : Tuple = tf.cast( tf.where(tf.not_equal(snake_case__, tf.constant(-float("""inf""" ), dtype=tf.floataa ) ) ), dtype=tf.intaa, ) tf.debugging.assert_near(snake_case__, snake_case__, rtol=1E-12 ) tf.debugging.assert_equal(snake_case__, snake_case__ ) @require_tf class UpperCamelCase__ ( unittest.TestCase , lowerCamelCase__ ): '''simple docstring''' if is_tf_available(): __a : Optional[int] = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def snake_case__ ( self ) -> str: """simple docstring""" # TF-only test: tf.saved_model export lowercase_ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ : int = 2 lowercase_ : Optional[Any] = 2 class UpperCamelCase__ ( tf.Module ): '''simple docstring''' def __init__( self, snake_case__ ) -> Any: """simple docstring""" super(snake_case__, self ).__init__() lowercase_ : int = model @tf.function( input_signature=( tf.TensorSpec((None, input_length), tf.intaa, name="""input_ids""" ), tf.TensorSpec((None, input_length), tf.intaa, name="""attention_mask""" ), ), jit_compile=snake_case__, ) def snake_case__ ( self, snake_case__, snake_case__ ) -> int: """simple docstring""" lowercase_ : Tuple = self.model.generate( input_ids=snake_case__, attention_mask=snake_case__, max_new_tokens=snake_case__, return_dict_in_generate=snake_case__, ) return {"sequences": outputs["sequences"]} lowercase_ : Union[str, Any] = [[2, 0], [1_02, 1_03]] lowercase_ : Tuple = [[1, 0], [1, 1]] lowercase_ : int = DummyModel(model=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case__, snake_case__, signatures={"""serving_default""": dummy_model.serving} ) lowercase_ : List[Any] = tf.saved_model.load(snake_case__ ).signatures["""serving_default"""] for batch_size in range(1, len(snake_case__ ) + 1 ): lowercase_ : str = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } lowercase_ : Optional[int] = serving_func(**snake_case__ )["""sequences"""] lowercase_ : Optional[int] = test_model.generate(**snake_case__, max_new_tokens=snake_case__ ) tf.debugging.assert_equal(snake_case__, snake_case__ ) @slow def snake_case__ ( self ) -> Tuple: """simple docstring""" # TF-only test: tf.saved_model export lowercase_ : int = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ : Tuple = 1 lowercase_ : Tuple = 2 class UpperCamelCase__ ( tf.Module ): '''simple docstring''' def __init__( self, snake_case__ ) -> List[str]: """simple docstring""" super(snake_case__, self ).__init__() lowercase_ : Union[str, Any] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None), tf.intaa, name="""input_ids""" ), tf.TensorSpec((batch_size, None), tf.intaa, name="""attention_mask""" ), ), jit_compile=snake_case__, ) def snake_case__ ( self, snake_case__, snake_case__ ) -> Optional[Any]: """simple docstring""" lowercase_ : str = self.model.generate( input_ids=snake_case__, attention_mask=snake_case__, max_new_tokens=snake_case__, return_dict_in_generate=snake_case__, ) return {"sequences": outputs["sequences"]} lowercase_ : Union[str, Any] = [[2], [1_02, 1_03]] lowercase_ : List[str] = [[1], [1, 1]] lowercase_ : Union[str, Any] = DummyModel(model=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case__, snake_case__, signatures={"""serving_default""": dummy_model.serving} ) lowercase_ : Optional[Any] = tf.saved_model.load(snake_case__ ).signatures["""serving_default"""] for input_row in range(len(snake_case__ ) ): lowercase_ : List[str] = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } lowercase_ : Union[str, Any] = serving_func(**snake_case__ )["""sequences"""] lowercase_ : Optional[Any] = test_model.generate(**snake_case__, max_new_tokens=snake_case__ ) tf.debugging.assert_equal(snake_case__, snake_case__ ) @slow @require_tensorflow_text def snake_case__ ( self ) -> Any: """simple docstring""" # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""", filename="""spiece.model""", local_dir=snake_case__ ) class UpperCamelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self ) -> Optional[Any]: """simple docstring""" super().__init__() lowercase_ : Tuple = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(snake_case__, """spiece.model""" ), """rb""" ).read() ) lowercase_ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def snake_case__ ( self, snake_case__, *snake_case__, **snake_case__ ) -> Optional[Any]: """simple docstring""" lowercase_ : Union[str, Any] = self.tokenizer.tokenize(snake_case__ ) lowercase_ , lowercase_ : Union[str, Any] = text.pad_model_inputs( snake_case__, max_seq_length=64, pad_value=self.model.config.pad_token_id ) lowercase_ : str = self.model.generate(input_ids=snake_case__, attention_mask=snake_case__ ) return self.tokenizer.detokenize(snake_case__ ) lowercase_ : Optional[int] = CompleteSentenceTransformer() lowercase_ : Union[str, Any] = tf.keras.layers.Input(shape=(1,), dtype=tf.string, name="""inputs""" ) lowercase_ : Any = complete_model(snake_case__ ) lowercase_ : Optional[Any] = tf.keras.Model(snake_case__, snake_case__ ) keras_model.save(snake_case__ ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" # Has PT equivalent: this test relies on random sampling lowercase_ : Any = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } lowercase_ : List[str] = 14 lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ : Dict = """Hello, my dog is cute and""" lowercase_ : List[str] = tokenizer(snake_case__, return_tensors="""tf""" ) lowercase_ : Tuple = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) lowercase_ : int = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) lowercase_ : Optional[int] = model.generate(**snake_case__, eos_token_id=snake_case__, **snake_case__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowercase_ : int = [6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) lowercase_ : Optional[int] = model.generate(**snake_case__, eos_token_id=snake_case__, **snake_case__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__ ( self ) -> str: """simple docstring""" # Has PT equivalent: ample use of framework-specific code lowercase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowercase_ : int = """Hugging Face is a technology company based in New York and Paris.""" lowercase_ : int = bart_tokenizer(snake_case__, return_tensors="""tf""" ).input_ids lowercase_ : Tuple = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowercase_ : Union[str, Any] = bart_model.generate(snake_case__ ).numpy() class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' def snake_case__ ( self, snake_case__, snake_case__=None, **snake_case__ ) -> str: """simple docstring""" return super().call(snake_case__, **snake_case__ ) lowercase_ : Tuple = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) lowercase_ : str = bart_model.generate(snake_case__, foo="""bar""" ).numpy() self.assertTrue(np.array_equal(snake_case__, snake_case__ ) ) class UpperCamelCase__ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__ ( self, snake_case__, **snake_case__ ) -> List[str]: """simple docstring""" return super().call(snake_case__, **snake_case__ ) lowercase_ : Optional[int] = FakeEncoder(bart_model.config, bart_model.model.shared ) lowercase_ : Any = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowercase_ : Any = bart_model.generate(snake_case__ ).numpy() with self.assertRaises(snake_case__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(snake_case__, foo="""bar""" )
458
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = state_dict.pop(A ) lowercase__ = val def __a ( A ): '''simple docstring''' lowercase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) lowercase__ = value else: lowercase__ = value return new_state_dict def __a ( A ): '''simple docstring''' lowercase__ = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:2_56, :] lowercase__ = in_proj_bias[:2_56] lowercase__ = in_proj_weight[2_56:5_12, :] lowercase__ = in_proj_bias[2_56:5_12] lowercase__ = in_proj_weight[-2_56:, :] lowercase__ = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:2_56, :] lowercase__ = in_proj_bias[:2_56] lowercase__ = in_proj_weight[2_56:5_12, :] lowercase__ = in_proj_bias[2_56:5_12] lowercase__ = in_proj_weight[-2_56:, :] lowercase__ = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention lowercase__ = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase__ = in_proj_weight_cross_attn[:2_56, :] lowercase__ = in_proj_bias_cross_attn[:2_56] lowercase__ = in_proj_weight_cross_attn[2_56:5_12, :] lowercase__ = in_proj_bias_cross_attn[2_56:5_12] lowercase__ = in_proj_weight_cross_attn[-2_56:, :] lowercase__ = in_proj_bias_cross_attn[-2_56:] def __a ( A , A ): '''simple docstring''' lowercase__ , lowercase__ = image.size lowercase__ = max(A , A ) lowercase__ = 8_00 if "detection" in checkpoint_url else 10_00 lowercase__ = target_max_size / current_max_size lowercase__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __a ( A ): '''simple docstring''' lowercase__ = F.to_tensor(A ) lowercase__ = F.normalize(A , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __a ( A , A , A ): '''simple docstring''' logger.info("Converting model..." ) # load original state dict lowercase__ = torch.hub.load_state_dict_from_url(A , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(A , A , A ) lowercase__ = rename_backbone_keys(A ) # query, key and value matrices need special treatment read_in_q_k_v(A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): lowercase__ = state_dict.pop(A ) lowercase__ = val # create HuggingFace model and load state dict lowercase__ = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: lowercase__ = 15 lowercase__ = 2 lowercase__ = {0: "table", 1: "table rotated"} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} else: lowercase__ = 1_25 lowercase__ = 6 lowercase__ = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = DetrImageProcessor( format="coco_detection" , max_size=8_00 if "detection" in checkpoint_url else 10_00 ) lowercase__ = TableTransformerForObjectDetection(A ) model.load_state_dict(A ) model.eval() # verify our conversion lowercase__ = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" lowercase__ = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=A ) lowercase__ = Image.open(A ).convert("RGB" ) lowercase__ = normalize(resize(A , A ) ).unsqueeze(0 ) lowercase__ = model(A ) if "detection" in checkpoint_url: lowercase__ = (1, 15, 3) lowercase__ = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) lowercase__ = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: lowercase__ = (1, 1_25, 7) lowercase__ = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) lowercase__ = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , A , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , A , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) lowercase__ = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(A ) image_processor.push_to_hub(A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCAmelCase_ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
706
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
668
0
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" if any(not isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(UpperCAmelCase__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(UpperCAmelCase__ ,sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
605
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" def merge(UpperCAmelCase__ ,UpperCAmelCase__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCAmelCase__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case : Any = input('Enter numbers separated by a comma:\n').strip() snake_case : List[Any] = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
605
1
'''simple docstring''' def _UpperCamelCase ( lowerCAmelCase__: Union[str, Any] ) -> int: if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 ,input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class snake_case : """simple docstring""" def __init__( self, _lowercase, _lowercase=13, _lowercase=30, _lowercase=2, _lowercase=3, _lowercase=True, _lowercase=True, _lowercase=32, _lowercase=2, _lowercase=4, _lowercase=37, _lowercase="gelu", _lowercase=0.1, _lowercase=0.1, _lowercase=10, _lowercase=0.02, _lowercase=3, _lowercase=None, _lowercase=2, ) -> List[str]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ = num_patches + 2 def a__ ( self ) -> Any: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Union[str, Any]: return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=_lowercase, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def a__ ( self, _lowercase, _lowercase, _lowercase ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = TFDeiTModel(config=_lowercase ) SCREAMING_SNAKE_CASE_ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self, _lowercase, _lowercase, _lowercase ) -> Any: SCREAMING_SNAKE_CASE_ = TFDeiTForMaskedImageModeling(config=_lowercase ) SCREAMING_SNAKE_CASE_ = model(_lowercase ) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFDeiTForMaskedImageModeling(_lowercase ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(_lowercase ) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size) ) def a__ ( self, _lowercase, _lowercase, _lowercase ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = TFDeiTForImageClassification(_lowercase ) SCREAMING_SNAKE_CASE_ = model(_lowercase, labels=_lowercase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFDeiTForImageClassification(_lowercase ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(_lowercase, labels=_lowercase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class snake_case ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _a = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) _a = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) _a = False _a = False _a = False _a = False def a__ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = TFDeiTModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self, config_class=_lowercase, has_text_modality=_lowercase, hidden_size=37 ) def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a__ ( self ) -> str: pass def a__ ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase, tf.keras.layers.Dense ) ) def a__ ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1], _lowercase ) def a__ ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def a__ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowercase ) def a__ ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) def a__ ( self, _lowercase, _lowercase, _lowercase=False ) -> List[str]: SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(_lowercase, _lowercase, return_labels=_lowercase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def a__ ( self ) -> Union[str, Any]: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = TFDeiTModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def _UpperCamelCase ( ) -> Tuple: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def a__ ( self ) -> Any: return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a__ ( self ) -> Any: SCREAMING_SNAKE_CASE_ = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_lowercase, return_tensors='tf' ) # forward pass SCREAMING_SNAKE_CASE_ = model(**_lowercase ) # verify the logits SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, _lowercase ) SCREAMING_SNAKE_CASE_ = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3], _lowercase, atol=1E-4 ) )
238
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class a : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = parent __SCREAMING_SNAKE_CASE: int = batch_size __SCREAMING_SNAKE_CASE: Optional[int] = seq_length __SCREAMING_SNAKE_CASE: List[Any] = is_training __SCREAMING_SNAKE_CASE: Tuple = use_input_mask __SCREAMING_SNAKE_CASE: List[str] = use_token_type_ids __SCREAMING_SNAKE_CASE: Any = use_labels __SCREAMING_SNAKE_CASE: str = vocab_size __SCREAMING_SNAKE_CASE: List[str] = hidden_size __SCREAMING_SNAKE_CASE: Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE: Dict = num_attention_heads __SCREAMING_SNAKE_CASE: Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE: Tuple = hidden_act __SCREAMING_SNAKE_CASE: List[str] = hidden_dropout_prob __SCREAMING_SNAKE_CASE: int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE: Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE: Union[str, Any] = type_vocab_size __SCREAMING_SNAKE_CASE: str = type_sequence_label_size __SCREAMING_SNAKE_CASE: int = initializer_range __SCREAMING_SNAKE_CASE: List[Any] = num_labels __SCREAMING_SNAKE_CASE: int = num_choices __SCREAMING_SNAKE_CASE: List[Any] = scope def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE: int = None if self.use_input_mask: __SCREAMING_SNAKE_CASE: int = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE: List[Any] = None __SCREAMING_SNAKE_CASE: List[str] = None __SCREAMING_SNAKE_CASE: List[str] = None __SCREAMING_SNAKE_CASE: Tuple = None if self.use_labels: __SCREAMING_SNAKE_CASE: int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE: int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE: Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE: Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ): """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__snake_case , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = FalconModel(config=__snake_case ) model.to(__snake_case ) model.eval() __SCREAMING_SNAKE_CASE: Optional[int] = model(__snake_case , attention_mask=__snake_case ) __SCREAMING_SNAKE_CASE: Tuple = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = True __SCREAMING_SNAKE_CASE: Union[str, Any] = FalconModel(__snake_case ) model.to(__snake_case ) model.eval() __SCREAMING_SNAKE_CASE: Dict = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) __SCREAMING_SNAKE_CASE: Union[str, Any] = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , ) __SCREAMING_SNAKE_CASE: List[Any] = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = FalconForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() __SCREAMING_SNAKE_CASE: int = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = True __SCREAMING_SNAKE_CASE: List[str] = True __SCREAMING_SNAKE_CASE: Union[str, Any] = FalconForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() # first forward pass __SCREAMING_SNAKE_CASE: int = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , use_cache=__snake_case , ) __SCREAMING_SNAKE_CASE: Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE: int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE: str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE: List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE: int = torch.cat([input_mask, next_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE: Optional[int] = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0] __SCREAMING_SNAKE_CASE: Any = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )['''hidden_states'''][0] # select random slice __SCREAMING_SNAKE_CASE: Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE: List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE: Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-3 ) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = self.prepare_config_and_inputs() ( __SCREAMING_SNAKE_CASE ): int = config_and_inputs __SCREAMING_SNAKE_CASE: Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( __lowercase ,__lowercase ,__lowercase ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = (FalconForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( { 'feature-extraction': FalconModel, 'text-classification': FalconForSequenceClassification, 'text-generation': FalconForCausalLM, 'question-answering': FalconForQuestionAnswering, 'token-classification': FalconForTokenClassification, 'zero-shot': FalconForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : int = False def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = FalconModelTester(self ) __SCREAMING_SNAKE_CASE: str = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def snake_case_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __SCREAMING_SNAKE_CASE: Any = alibi self.model_tester.create_and_check_model(__snake_case , *__snake_case ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE: Optional[Any] = 3 __SCREAMING_SNAKE_CASE: Tuple = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE: Optional[int] = input_ids.ne(1 ).to(__snake_case ) __SCREAMING_SNAKE_CASE: Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE: Optional[int] = FalconForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __SCREAMING_SNAKE_CASE: Union[str, Any] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE: List[str] = 3 __SCREAMING_SNAKE_CASE: int = '''single_label_classification''' __SCREAMING_SNAKE_CASE: int = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE: Optional[int] = input_ids.ne(1 ).to(__snake_case ) __SCREAMING_SNAKE_CASE: Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __SCREAMING_SNAKE_CASE: Union[str, Any] = FalconForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __SCREAMING_SNAKE_CASE: Dict = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE: List[Any] = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE: Tuple = FalconForCausalLM(__snake_case ) model.to(__snake_case ) model.eval() __SCREAMING_SNAKE_CASE: Any = model(__snake_case , use_cache=__snake_case ) __SCREAMING_SNAKE_CASE: int = input_ids.shape[0] __SCREAMING_SNAKE_CASE: List[str] = model._convert_to_rw_cache(result.past_key_values ) __SCREAMING_SNAKE_CASE: str = model._convert_cache_to_standard_format(__snake_case , __snake_case ) for layer in range(len(__snake_case ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE: Optional[int] = 3 __SCREAMING_SNAKE_CASE: Union[str, Any] = '''multi_label_classification''' __SCREAMING_SNAKE_CASE: int = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE: int = input_ids.ne(1 ).to(__snake_case ) __SCREAMING_SNAKE_CASE: Dict = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __SCREAMING_SNAKE_CASE: Tuple = FalconForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __SCREAMING_SNAKE_CASE: Tuple = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case_ ( self ): """simple docstring""" for model_class in self.all_generative_model_classes: __SCREAMING_SNAKE_CASE: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__snake_case , '''use_cache''' ): return __SCREAMING_SNAKE_CASE: Tuple = model_class(__snake_case ).to(__snake_case ) if "use_cache" not in inputs: __SCREAMING_SNAKE_CASE: Tuple = True __SCREAMING_SNAKE_CASE: Any = model(**__snake_case ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __SCREAMING_SNAKE_CASE: Dict = ( getattr(__snake_case , '''decoder_layers''' , __snake_case ) or getattr(__snake_case , '''num_decoder_layers''' , __snake_case ) or config.num_hidden_layers ) __SCREAMING_SNAKE_CASE: int = getattr(__snake_case , '''num_kv_heads''' , config.num_attention_heads ) __SCREAMING_SNAKE_CASE: str = getattr(__snake_case , '''d_model''' , config.hidden_size ) __SCREAMING_SNAKE_CASE: Union[str, Any] = embed_dim // num_attention_heads __SCREAMING_SNAKE_CASE: Optional[int] = outputs['''past_key_values'''] self.assertEqual(len(__snake_case ) , __snake_case ) __SCREAMING_SNAKE_CASE: Union[str, Any] = inputs['''input_ids'''].shape for i in range(__snake_case ): if config.new_decoder_architecture: __SCREAMING_SNAKE_CASE: Tuple = config.num_attention_heads elif config.multi_query: __SCREAMING_SNAKE_CASE: Optional[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class a ( unittest.TestCase ): @slow def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) __SCREAMING_SNAKE_CASE: str = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(__snake_case ) __SCREAMING_SNAKE_CASE: Tuple = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case ) __SCREAMING_SNAKE_CASE: Union[str, Any] = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) __SCREAMING_SNAKE_CASE: int = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=19 ) __SCREAMING_SNAKE_CASE: int = tokenizer.batch_decode(__snake_case )[0] self.assertEqual(__snake_case , __snake_case ) @slow def snake_case_ ( self ): """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __SCREAMING_SNAKE_CASE: Union[str, Any] = AutoTokenizer.from_pretrained(__snake_case ) __SCREAMING_SNAKE_CASE: List[Any] = FalconForCausalLM.from_pretrained(__snake_case ) model.eval() model.to(__snake_case ) __SCREAMING_SNAKE_CASE: Union[str, Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=4 ) model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=4 ) model.generate(**__snake_case , num_beams=2 , max_new_tokens=4 ) @slow def snake_case_ ( self ): """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __SCREAMING_SNAKE_CASE: List[Any] = AutoTokenizer.from_pretrained(__snake_case ) __SCREAMING_SNAKE_CASE: List[Any] = FalconForCausalLM.from_pretrained(__snake_case ) model.eval() model.to(device=__snake_case ) __SCREAMING_SNAKE_CASE: Optional[Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__snake_case ) # Test results are the same with and without cache __SCREAMING_SNAKE_CASE: List[str] = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=20 , use_cache=__snake_case ) __SCREAMING_SNAKE_CASE: str = model.generate(**__snake_case , do_sample=__snake_case , max_new_tokens=20 , use_cache=__snake_case ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
202
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __UpperCAmelCase : List[str] = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' __UpperCAmelCase : List[str] = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' __UpperCAmelCase : Union[str, Any] = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): return float((preds == labels).mean() ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): _a : int = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) _a : List[Any] = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): _a : str = float(pearsonr(UpperCamelCase_ , UpperCamelCase_ )[0] ) _a : str = float(spearmanr(UpperCamelCase_ , UpperCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def snake_case_ ( self : Dict ) -> Union[str, Any]: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def snake_case_ ( self : Optional[int] , __snake_case : Any , __snake_case : Any ) -> Union[str, Any]: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__snake_case , __snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(__snake_case , __snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__snake_case , __snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__snake_case , __snake_case )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
471
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = ["image_processor"] _A = "SamImageProcessor" def __init__( self : Optional[Any] , snake_case__ : Optional[Any] ): """simple docstring""" super().__init__(snake_case__ ) A =self.image_processor A =-10 A =self.image_processor.size["longest_edge"] def __call__( self : Union[str, Any] , snake_case__ : Optional[int]=None , snake_case__ : Optional[Any]=None , snake_case__ : List[Any]=None , snake_case__ : Tuple=None , snake_case__ : Optional[Union[str, TensorType]] = None , **snake_case__ : Dict , ): """simple docstring""" A =self.image_processor( snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) # pop arguments that are not used in the foward but used nevertheless A =encoding_image_processor["original_sizes"] if hasattr(snake_case__ , "numpy" ): # Checks if Torch or TF tensor A =original_sizes.numpy() A , A , A =self._check_and_preprocess_points( input_points=snake_case__ , input_labels=snake_case__ , input_boxes=snake_case__ , ) A =self._normalize_and_convert( snake_case__ , snake_case__ , input_points=snake_case__ , input_labels=snake_case__ , input_boxes=snake_case__ , return_tensors=snake_case__ , ) return encoding_image_processor def _a ( self : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any]=None , snake_case__ : List[Any]=None , snake_case__ : int=None , snake_case__ : Dict="pt" , ): """simple docstring""" if input_points is not None: if len(snake_case__ ) != len(snake_case__ ): A =[ self._normalize_coordinates(self.target_size , snake_case__ , original_sizes[0] ) for point in input_points ] else: A =[ self._normalize_coordinates(self.target_size , snake_case__ , snake_case__ ) for point, original_size in zip(snake_case__ , snake_case__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: A , A =self._pad_points_and_labels(snake_case__ , snake_case__ ) A =np.array(snake_case__ ) if input_labels is not None: A =np.array(snake_case__ ) if input_boxes is not None: if len(snake_case__ ) != len(snake_case__ ): A =[ self._normalize_coordinates(self.target_size , snake_case__ , original_sizes[0] , is_bounding_box=snake_case__ ) for box in input_boxes ] else: A =[ self._normalize_coordinates(self.target_size , snake_case__ , snake_case__ , is_bounding_box=snake_case__ ) for box, original_size in zip(snake_case__ , snake_case__ ) ] A =np.array(snake_case__ ) if input_boxes is not None: if return_tensors == "pt": A =torch.from_numpy(snake_case__ ) # boxes batch size of 1 by default A =input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": A =tf.convert_to_tensor(snake_case__ ) # boxes batch size of 1 by default A =tf.expand_dims(snake_case__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": A =torch.from_numpy(snake_case__ ) # point batch size of 1 by default A =input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": A =tf.convert_to_tensor(snake_case__ ) # point batch size of 1 by default A =tf.expand_dims(snake_case__ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": A =torch.from_numpy(snake_case__ ) # point batch size of 1 by default A =input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": A =tf.convert_to_tensor(snake_case__ ) # point batch size of 1 by default A =tf.expand_dims(snake_case__ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def _a ( self : Optional[int] , snake_case__ : str , snake_case__ : Dict ): """simple docstring""" A =max([point.shape[0] for point in input_points] ) A =[] for i, point in enumerate(snake_case__ ): if point.shape[0] != expected_nb_points: A =np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) A =np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(snake_case__ ) A =processed_input_points return input_points, input_labels def _a ( self : Optional[Any] , snake_case__ : int , snake_case__ : np.ndarray , snake_case__ : List[Any] , snake_case__ : Optional[Any]=False ): """simple docstring""" A , A =original_size A , A =self.image_processor._get_preprocess_shape(snake_case__ , longest_edge=snake_case__ ) A =deepcopy(snake_case__ ).astype(snake_case__ ) if is_bounding_box: A =coords.reshape(-1 , 2 , 2 ) A =coords[..., 0] * (new_w / old_w) A =coords[..., 1] * (new_h / old_h) if is_bounding_box: A =coords.reshape(-1 , 4 ) return coords def _a ( self : Tuple , snake_case__ : Optional[Any]=None , snake_case__ : Dict=None , snake_case__ : Optional[Any]=None , ): """simple docstring""" if input_points is not None: if hasattr(snake_case__ , "numpy" ): # Checks for TF or Torch tensor A =input_points.numpy().tolist() if not isinstance(snake_case__ , snake_case__ ) or not isinstance(input_points[0] , snake_case__ ): raise ValueError("Input points must be a list of list of floating points." ) A =[np.array(snake_case__ ) for input_point in input_points] else: A =None if input_labels is not None: if hasattr(snake_case__ , "numpy" ): A =input_labels.numpy().tolist() if not isinstance(snake_case__ , snake_case__ ) or not isinstance(input_labels[0] , snake_case__ ): raise ValueError("Input labels must be a list of list integers." ) A =[np.array(snake_case__ ) for label in input_labels] else: A =None if input_boxes is not None: if hasattr(snake_case__ , "numpy" ): A =input_boxes.numpy().tolist() if ( not isinstance(snake_case__ , snake_case__ ) or not isinstance(input_boxes[0] , snake_case__ ) or not isinstance(input_boxes[0][0] , snake_case__ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) A =[np.array(snake_case__ ).astype(np.floataa ) for box in input_boxes] else: A =None return input_points, input_labels, input_boxes @property def _a ( self : Optional[Any] ): """simple docstring""" A =self.image_processor.model_input_names return list(dict.fromkeys(snake_case__ ) ) def _a ( self : List[Any] , *snake_case__ : Optional[Any] , **snake_case__ : Union[str, Any] ): """simple docstring""" return self.image_processor.post_process_masks(*snake_case__ , **snake_case__ )
689
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
689
1
# Function to print upper half of diamond (pyramid) def A_ ( a ): """simple docstring""" for i in range(0 , a ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def A_ ( a ): """simple docstring""" for i in range(a , 0 , -1 ): for _ in range(a , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def A_ ( a ): """simple docstring""" if n <= 0: print(' ... .... nothing printing :(' ) return floyd(a ) # upper half reverse_floyd(a ) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') lowerCAmelCase : str = 1 while K: lowerCAmelCase : Any = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) lowerCAmelCase : Optional[Any] = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
511
import cva import numpy as np class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ : Any = k SCREAMING_SNAKE_CASE_ : List[Any] = window_size else: raise ValueError('invalid k value' ) def __str__( self ): """simple docstring""" return str(self.k ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = img.shape SCREAMING_SNAKE_CASE_ : list[list[int]] = [] SCREAMING_SNAKE_CASE_ : Tuple = img.copy() SCREAMING_SNAKE_CASE_ : int = cva.cvtColor(_SCREAMING_SNAKE_CASE , cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = np.gradient(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = dx**2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = dy**2 SCREAMING_SNAKE_CASE_ : Optional[int] = dx * dy SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.04 SCREAMING_SNAKE_CASE_ : int = self.window_size // 2 for y in range(_SCREAMING_SNAKE_CASE , h - offset ): for x in range(_SCREAMING_SNAKE_CASE , w - offset ): SCREAMING_SNAKE_CASE_ : str = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ : Optional[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ : List[Any] = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ : List[str] = wxx + wyy SCREAMING_SNAKE_CASE_ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCAmelCase : List[Any] = HarrisCorner(0.04, 3) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
511
1
'''simple docstring''' import os def _A (lowerCAmelCase__ :Any ) -> List[str]: '''simple docstring''' _a = len(grid[0] ) _a = len(lowerCAmelCase__ ) _a = 0 _a = 0 _a = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowerCAmelCase__ ): for j in range(n_rows - 3 ): _a = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _a = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _a = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _a = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _a = max( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if max_product > largest: _a = max_product return largest def _A () -> List[Any]: '''simple docstring''' _a = [] with open(os.path.dirname(lowerCAmelCase__ ) + '/grid.txt' ) as file: for line in file: grid.append(line.strip('\n' ).split(' ' ) ) _a = [[int(lowerCAmelCase__ ) for i in grid[j]] for j in range(len(lowerCAmelCase__ ) )] return largest_product(lowerCAmelCase__ ) if __name__ == "__main__": print(solution())
710
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = """EncodecFeatureExtractor""" _lowerCAmelCase = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , __magic_name__ , __magic_name__ ) -> Optional[Any]: super().__init__(__magic_name__ , __magic_name__ ) _a = self.feature_extractor _a = False def __UpperCAmelCase ( self , __magic_name__=None , __magic_name__=None , __magic_name__=True ) -> Tuple: return self.tokenizer.get_decoder_prompt_ids(task=__magic_name__ , language=__magic_name__ , no_timestamps=__magic_name__ ) def __call__( self , *__magic_name__ , **__magic_name__ ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__magic_name__ , **__magic_name__ ) _a = kwargs.pop('audio' , __magic_name__ ) _a = kwargs.pop('sampling_rate' , __magic_name__ ) _a = kwargs.pop('text' , __magic_name__ ) if len(__magic_name__ ) > 0: _a = args[0] _a = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if text is not None: _a = self.tokenizer(__magic_name__ , **__magic_name__ ) if audio is not None: _a = self.feature_extractor(__magic_name__ , *__magic_name__ , sampling_rate=__magic_name__ , **__magic_name__ ) if audio is None: return inputs elif text is None: return audio_inputs else: _a = audio_inputs['input_values'] if "padding_mask" in audio_inputs: _a = audio_inputs['padding_mask'] return inputs def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> Tuple: _a = kwargs.pop('audio' , __magic_name__ ) _a = kwargs.pop('padding_mask' , __magic_name__ ) if len(__magic_name__ ) > 0: _a = args[0] _a = args[1:] if audio_values is not None: return self._decode_audio(__magic_name__ , padding_mask=__magic_name__ ) else: return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> List[Any]: return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> List[np.ndarray]: _a = to_numpy(__magic_name__ ) _a , _a , _a = audio_values.shape if padding_mask is None: return list(__magic_name__ ) _a = to_numpy(__magic_name__ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _a = seq_len - padding_mask.shape[-1] _a = 1 - self.feature_extractor.padding_value _a = np.pad(__magic_name__ , ((0, 0), (0, difference)) , 'constant' , constant_values=__magic_name__ ) _a = audio_values.tolist() for i in range(__magic_name__ ): _a = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _a = sliced_audio.reshape(__magic_name__ , -1 ) return audio_values
532
0
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _snake_case (__lowercase , __lowercase , __lowercase=None , __lowercase=None): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id) , tf.inta) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _a : """simple docstring""" A_ = OPTConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=16 , _UpperCAmelCase=16 , ) -> Optional[int]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id UpperCamelCase_ = embed_dim UpperCamelCase_ = word_embed_proj_dim UpperCamelCase_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_UpperCAmelCase , **self.config_updates , ) UpperCamelCase_ = prepare_opt_inputs_dict(_UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = TFOPTModel(config=_UpperCAmelCase ) UpperCamelCase_ = inputs_dict['input_ids'] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] UpperCamelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-3 ) @require_tf class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () A_ = (TFOPTForCausalLM,) if is_tf_available() else () A_ = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) A_ = False A_ = False A_ = False A_ = 10 def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = TFOPTModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_UpperCAmelCase , _UpperCAmelCase ): if hasattr(_UpperCAmelCase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_UpperCAmelCase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings UpperCamelCase_ = model_class(config=_UpperCAmelCase ) UpperCamelCase_ = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings() ) UpperCamelCase_ = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_UpperCAmelCase ) UpperCamelCase_ = _get_word_embedding_weight(_UpperCAmelCase , model.get_input_embeddings() ) UpperCamelCase_ = _get_word_embedding_weight(_UpperCAmelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. UpperCamelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _UpperCAmelCase ) # check that weights remain the same after resizing UpperCamelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCamelCase_ = False self.assertTrue(_UpperCAmelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _UpperCAmelCase ) UpperCamelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: UpperCamelCase_ = False self.assertTrue(_UpperCAmelCase ) def _snake_case (__lowercase): return tf.constant(__lowercase , dtype=tf.intaa) @require_tf class _a ( unittest.TestCase ): """simple docstring""" A_ = 99 def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 UpperCamelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) UpperCamelCase_ = input_ids.shape[0] UpperCamelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) UpperCamelCase_ = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) UpperCamelCase_ = tf.not_equal(_UpperCAmelCase , model.config.pad_token_id ) with tf.GradientTape(): UpperCamelCase_ = model(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ).last_hidden_state UpperCamelCase_ = (1, 11, 512) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCamelCase_ = tf.constant( [[-0.2_8_7_3, -1.9_2_1_8, -0.3_0_3_3], [-1.2_7_1_0, -0.1_3_3_8, -0.1_9_0_2], [0.4_0_9_5, 0.1_2_1_4, -1.3_1_2_1]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4e-3 ) ) UpperCamelCase_ = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase ) UpperCamelCase_ = xla_generate(_UpperCAmelCase , _UpperCAmelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=4e-2 ) ) @require_tf @slow class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: super().setUp() UpperCamelCase_ = 'facebook/opt-350m' def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) UpperCamelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) UpperCamelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False UpperCamelCase_ = tokenizer(_UpperCAmelCase , return_tensors='tf' , padding=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) UpperCamelCase_ = tf.constant( [ [1.3_8_5_1, -1_3.8_9_2_3, -1_0.5_2_2_9, -1_0.7_5_3_3, -0.2_3_0_9, -1_0.2_3_8_4, -0.5_3_6_5, -9.0_9_4_7, -5.1_6_7_0], [-4.7_0_7_3, -1_0.6_2_7_6, -3.9_4_1_5, -2_1.5_2_4_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2], [0.6_2_4_7, -3.4_2_2_9, -8.9_1_7_9, -1.4_2_9_7, -1_4.1_6_5_0, 1.4_1_4_6, -9.0_2_1_8, -0.2_7_0_3, -0.2_7_0_3], [6.4_7_8_3, -1.9_9_1_3, -1_0.7_9_2_6, -2.3_3_3_6, 1.5_0_9_2, -0.9_9_7_4, -6.8_2_1_3, 1.3_4_7_7, 1.3_4_7_7], ] ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-4 ) ) UpperCamelCase_ = tf.function(_UpperCAmelCase , jit_compile=_UpperCAmelCase ) UpperCamelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-4 ) ) @require_tf @slow class _a ( unittest.TestCase ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Any: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = 'facebook/opt-125m' UpperCamelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] UpperCamelCase_ = [] UpperCamelCase_ = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) for prompt in self.prompts: UpperCamelCase_ = tokenizer(_UpperCAmelCase , return_tensors='tf' ).input_ids UpperCamelCase_ = model.generate(_UpperCAmelCase , max_length=10 ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = 'facebook/opt-350m' UpperCamelCase_ = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) UpperCamelCase_ = 'left' # use different length sentences to test batching UpperCamelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] UpperCamelCase_ = tokenizer(_UpperCAmelCase , return_tensors='tf' , padding=_UpperCAmelCase ) UpperCamelCase_ = inputs['input_ids'] UpperCamelCase_ = model.generate(input_ids=_UpperCAmelCase , attention_mask=inputs['attention_mask'] ) UpperCamelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids UpperCamelCase_ = model.generate(input_ids=_UpperCAmelCase ) UpperCamelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) UpperCamelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids UpperCamelCase_ = model.generate(input_ids=_UpperCAmelCase , max_length=model.config.max_length - num_paddings ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase ) UpperCamelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = 'facebook/opt-350m' UpperCamelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] UpperCamelCase_ = [] UpperCamelCase_ = GPTaTokenizer.from_pretrained(_UpperCAmelCase ) UpperCamelCase_ = TFOPTForCausalLM.from_pretrained(_UpperCAmelCase ) for prompt in self.prompts: UpperCamelCase_ = tokenizer(_UpperCAmelCase , return_tensors='tf' ).input_ids UpperCamelCase_ = model.generate(_UpperCAmelCase , max_length=10 ) UpperCamelCase_ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
23
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """vision-encoder-decoder""" A_ = True def __init__( self , **_UpperCAmelCase ) -> Dict: super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCamelCase_ = kwargs.pop('encoder' ) UpperCamelCase_ = encoder_config.pop('model_type' ) UpperCamelCase_ = kwargs.pop('decoder' ) UpperCamelCase_ = decoder_config.pop('model_type' ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = AutoConfig.for_model(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = True @classmethod def _UpperCAmelCase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> PretrainedConfig: logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) UpperCamelCase_ = True UpperCamelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.encoder.to_dict() UpperCamelCase_ = self.decoder.to_dict() UpperCamelCase_ = self.__class__.model_type return output class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = version.parse("""1.11""" ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase_ = OrderedDict() UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} UpperCamelCase_ = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch UpperCamelCase_ = OrderedDict() UpperCamelCase_ = super().generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = dummy_input['input_ids'].shape UpperCamelCase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCamelCase_ = dummy_input.pop('input_ids' ) UpperCamelCase_ = dummy_input.pop('attention_mask' ) UpperCamelCase_ = torch.zeros(_UpperCAmelCase ) return common_inputs class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , _UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "default" ) -> OnnxConfig: UpperCamelCase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase , _UpperCAmelCase )
23
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : int =logging.get_logger(__name__) class A_ ( __a ): _A :Union[str, Any] = '''encoder-decoder''' _A :List[str] = True def __init__( self : Any , **snake_case__ : int ): super().__init__(**snake_case__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase = kwargs.pop("""encoder""" ) lowercase = encoder_config.pop("""model_type""" ) lowercase = kwargs.pop("""decoder""" ) lowercase = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig lowercase = AutoConfig.for_model(snake_case__ , **snake_case__ ) lowercase = AutoConfig.for_model(snake_case__ , **snake_case__ ) lowercase = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , snake_case__ : PretrainedConfig , snake_case__ : PretrainedConfig , **snake_case__ : Any ): logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) lowercase = True lowercase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.encoder.to_dict() lowercase = self.decoder.to_dict() lowercase = self.__class__.model_type return output
712
import argparse import os import re import packaging.version __SCREAMING_SNAKE_CASE : Optional[int] ='''examples/''' __SCREAMING_SNAKE_CASE : Any ={ '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __SCREAMING_SNAKE_CASE : Union[str, Any] ={ '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __SCREAMING_SNAKE_CASE : Any ='''README.md''' def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): with open(lowerCAmelCase__ ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: lowercase = f.read() lowercase , lowercase = REPLACE_PATTERNS[pattern] lowercase = replace.replace("""VERSION""" ,lowerCAmelCase__ ) lowercase = re_pattern.sub(lowerCAmelCase__ ,lowerCAmelCase__ ) with open(lowerCAmelCase__ ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.write(lowerCAmelCase__ ) def UpperCamelCase__ ( lowerCAmelCase__ ): for folder, directories, fnames in os.walk(lowerCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) ,lowerCAmelCase__ ,pattern="""examples""" ) def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) if not patch: update_version_in_examples(lowerCAmelCase__ ) def UpperCamelCase__ ( ): lowercase = """🤗 Transformers currently provides the following architectures""" lowercase = """1. Want to contribute a new model?""" with open(lowerCAmelCase__ ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: lowercase = f.readlines() # Find the start of the list. lowercase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowercase = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" ,"""https://huggingface.co/docs/transformers/model_doc""" ,) index += 1 with open(lowerCAmelCase__ ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.writelines(lowerCAmelCase__ ) def UpperCamelCase__ ( ): with open(REPLACE_FILES["""init"""] ,"""r""" ) as f: lowercase = f.read() lowercase = REPLACE_PATTERNS["""init"""][0].search(lowerCAmelCase__ ).groups()[0] return packaging.version.parse(lowerCAmelCase__ ) def UpperCamelCase__ ( lowerCAmelCase__=False ): lowercase = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowercase = default_version.base_version elif patch: lowercase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: lowercase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. lowercase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(lowerCAmelCase__ ) == 0: lowercase = default_version print(f"""Updating version to {version}.""" ) global_version_update(lowerCAmelCase__ ,patch=lowerCAmelCase__ ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def UpperCamelCase__ ( ): lowercase = get_version() lowercase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" lowercase = current_version.base_version # Check with the user we got that right. lowercase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(lowerCAmelCase__ ) == 0: lowercase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(lowerCAmelCase__ ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] =argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __SCREAMING_SNAKE_CASE : Optional[int] =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
72
0
'''simple docstring''' def _A ( A__ , A__ ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
41
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ : Any = """pt""" elif is_tf_available(): __magic_name__ : Optional[Any] = """tf""" else: __magic_name__ : int = """jax""" class lowercase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Any = PerceiverTokenizer __lowerCAmelCase : int = False def _a ( self ): '''simple docstring''' super().setUp() UpperCamelCase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _a ( self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def _a ( self , **_A ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _a ( self , _A , _A=False , _A=2_0 , _A=5 ): '''simple docstring''' UpperCamelCase : Tuple = [] for i in range(len(_A ) ): try: UpperCamelCase : List[str] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCamelCase : Dict = list(filter(lambda _A : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , _A ) ) UpperCamelCase : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: UpperCamelCase : int = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: UpperCamelCase : List[str] = toks + toks # toks_str = [t[1] for t in toks] UpperCamelCase : Any = [t[0] for t in toks] # Ensure consistency UpperCamelCase : List[str] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: UpperCamelCase : Optional[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: UpperCamelCase : Dict = """ """ + output_txt UpperCamelCase : List[Any] = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _a ( self ): '''simple docstring''' UpperCamelCase : Any = self.perceiver_tokenizer UpperCamelCase : str = """Unicode €.""" UpperCamelCase : Dict = tokenizer(_A ) UpperCamelCase : Optional[Any] = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded["""input_ids"""] , _A ) # decoding UpperCamelCase : Optional[int] = tokenizer.decode(_A ) self.assertEqual(_A , """[CLS]Unicode €.[SEP]""" ) UpperCamelCase : str = tokenizer("""e è é ê ë""" ) UpperCamelCase : str = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded["""input_ids"""] , _A ) # decoding UpperCamelCase : Any = tokenizer.decode(_A ) self.assertEqual(_A , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.perceiver_tokenizer UpperCamelCase : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off UpperCamelCase : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on UpperCamelCase : Dict = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": UpperCamelCase : Dict = list(batch.input_ids.numpy()[0] ) else: UpperCamelCase : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def _a ( self ): '''simple docstring''' UpperCamelCase : Any = self.perceiver_tokenizer UpperCamelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase : Any = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , _A ) self.assertIn("""attention_mask""" , _A ) self.assertNotIn("""decoder_input_ids""" , _A ) self.assertNotIn("""decoder_attention_mask""" , _A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.perceiver_tokenizer UpperCamelCase : int = [ """Summary of the text.""", """Another summary.""", ] UpperCamelCase : int = tokenizer( text_target=_A , max_length=3_2 , padding="""max_length""" , truncation=_A , return_tensors=_A ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) def _a ( self ): '''simple docstring''' UpperCamelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test UpperCamelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase : int = tempfile.mkdtemp() UpperCamelCase : Tuple = """ He is very happy, UNwant\u00E9d,running""" UpperCamelCase : Dict = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) UpperCamelCase : Any = tokenizer.__class__.from_pretrained(_A ) UpperCamelCase : Tuple = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) UpperCamelCase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase : List[Any] = tempfile.mkdtemp() UpperCamelCase : Union[str, Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) UpperCamelCase : int = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) UpperCamelCase : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) UpperCamelCase : List[str] = tokenizer.__class__.from_pretrained(_A ) UpperCamelCase : Tuple = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) UpperCamelCase : Any = tokenizer.__class__.from_pretrained(_A , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: UpperCamelCase : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: UpperCamelCase : List[Any] = json.load(_A ) UpperCamelCase : Optional[int] = [f"""<extra_id_{i}>""" for i in range(1_2_5 )] UpperCamelCase : List[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] UpperCamelCase : int = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(_A , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCamelCase : Tuple = tokenizer_class.from_pretrained( _A , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCamelCase : List[str] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=_A )] UpperCamelCase : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , """�""" ) def _a ( self ): '''simple docstring''' pass def _a ( self ): '''simple docstring''' pass def _a ( self ): '''simple docstring''' pass def _a ( self ): '''simple docstring''' pass def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCamelCase : Optional[Any] = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] UpperCamelCase : Dict = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A )
102
0
"""simple docstring""" def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowercase__ :int = 'src/transformers' lowercase__ :List[str] = 'docs/source/en/tasks' def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->str: """simple docstring""" with open(UpperCAmelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase : Union[str, Any] = f.readlines() # Find the start prompt. __UpperCAmelCase : Any = 0 while not lines[start_index].startswith(UpperCAmelCase_ ): start_index += 1 start_index += 1 __UpperCAmelCase : Optional[Any] = start_index while not lines[end_index].startswith(UpperCAmelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowercase__ :Any = direct_transformers_import(TRANSFORMERS_PATH) lowercase__ :List[Any] = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowercase__ :Union[str, Any] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def lowerCamelCase_ ( UpperCAmelCase_ ) ->Union[str, Any]: """simple docstring""" __UpperCAmelCase : List[str] = TASK_GUIDE_TO_MODELS[task_guide] __UpperCAmelCase : Dict = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCAmelCase_ , set() ) __UpperCAmelCase : List[Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_=False ) ->Tuple: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = _find_text_in_file( filename=os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) __UpperCAmelCase : List[str] = get_model_list_for_task(UpperCAmelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ''' to fix this.''' ) if __name__ == "__main__": lowercase__ :int = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowercase__ :Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
374
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
314
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowercase_ = False class a_ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def snake_case_( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe.dual_guided( prompt="""first prompt""" , image=A , text_to_image_strength=0.75 , generator=A , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A ) _SCREAMING_SNAKE_CASE = VersatileDiffusionPipeline.from_pretrained(A , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _SCREAMING_SNAKE_CASE = generator.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe.dual_guided( prompt="""first prompt""" , image=A , text_to_image_strength=0.75 , generator=A , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _SCREAMING_SNAKE_CASE = """cyberpunk 2077""" _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe.dual_guided( prompt=A , image=A , text_to_image_strength=0.75 , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _SCREAMING_SNAKE_CASE = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _SCREAMING_SNAKE_CASE = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger """ _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe.text_to_image( prompt=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images _SCREAMING_SNAKE_CASE = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _SCREAMING_SNAKE_CASE = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _SCREAMING_SNAKE_CASE = pipe.image_variation(A , generator=A , output_type="""numpy""" ).images _SCREAMING_SNAKE_CASE = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _SCREAMING_SNAKE_CASE = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
314
1
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : int = 4_00_00_00 ) -> List[Any]: _snake_case = [0, 1] _snake_case = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 _snake_case = 0 for j in range(len(__lowerCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"{solution() = }")
705
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _UpperCAmelCase ( __lowerCamelCase : List[str] ) -> Any: _snake_case = [False] * len(__lowerCamelCase ) _snake_case = [-1] * len(__lowerCamelCase ) def dfs(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): _snake_case = True _snake_case = c for u in graph[v]: if not visited[u]: dfs(__lowerCamelCase , 1 - c ) for i in range(len(__lowerCamelCase ) ): if not visited[i]: dfs(__lowerCamelCase , 0 ) for i in range(len(__lowerCamelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase__ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
430
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _UpperCAmelCase ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): def __init__( self : Tuple , a : Dict=None , **a : str ): '''simple docstring''' super().__init__(features=a ) lowercase_ : Dict = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCAmelCase__ ( self : int , a : int ): '''simple docstring''' import torch if isinstance(a , a ) and column: if all( isinstance(a , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(a ) return column def lowerCAmelCase__ ( self : Any , a : Any ): '''simple docstring''' import torch if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowercase_ : Any = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowercase_ : int = {"dtype": torch.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowercase_ : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): lowercase_ : List[Any] = np.asarray(a ) return torch.tensor(a , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCAmelCase__ ( self : Union[str, Any] , a : List[Any] ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(a , "__array__" ) and not isinstance(a , torch.Tensor ): lowercase_ : int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def lowerCAmelCase__ ( self : List[str] , a : dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , a , map_list=a ) def lowerCAmelCase__ ( self : int , a : pa.Table ): '''simple docstring''' lowercase_ : Optional[int] = self.numpy_arrow_extractor().extract_row(a ) lowercase_ : int = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def lowerCAmelCase__ ( self : str , a : pa.Table ): '''simple docstring''' lowercase_ : List[str] = self.numpy_arrow_extractor().extract_column(a ) lowercase_ : Tuple = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) lowercase_ : List[str] = self.recursive_tensorize(a ) lowercase_ : str = self._consolidate(a ) return column def lowerCAmelCase__ ( self : Optional[int] , a : pa.Table ): '''simple docstring''' lowercase_ : Optional[int] = self.numpy_arrow_extractor().extract_batch(a ) lowercase_ : List[Any] = self.python_features_decoder.decode_batch(a ) lowercase_ : Dict = self.recursive_tensorize(a ) for column_name in batch: lowercase_ : Optional[int] = self._consolidate(batch[column_name] ) return batch
620
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = 2 lowercase_ : Tuple = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_UpperCamelCase ) if n > 1: factors.append(_UpperCamelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
620
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = FunnelConfig.from_json_file(UpperCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase_ = FunnelBaseModel(UpperCamelCase__ ) if base_model else FunnelModel(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) SCREAMING_SNAKE_CASE_: Any =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
720
'''simple docstring''' import sys SCREAMING_SNAKE_CASE_: Optional[int] =( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCAmelCase_ ( snake_case_ : str = N ) -> int: '''simple docstring''' UpperCAmelCase_ = -sys.maxsize - 1 for i in range(len(snake_case_ ) - 12 ): UpperCAmelCase_ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: UpperCAmelCase_ = product return largest_product if __name__ == "__main__": print(f"{solution() = }")
415
0
import unittest from knapsack import knapsack as k class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = 0 lowerCamelCase = [0] lowerCamelCase = [0] lowerCamelCase = len(A ) self.assertEqual(k.knapsack(A , A , A , A ) , 0 ) lowerCamelCase = [60] lowerCamelCase = [10] lowerCamelCase = len(A ) self.assertEqual(k.knapsack(A , A , A , A ) , 0 ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = 3 lowerCamelCase = [1, 2, 3] lowerCamelCase = [3, 2, 1] lowerCamelCase = len(A ) self.assertEqual(k.knapsack(A , A , A , A ) , 5 ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = 50 lowerCamelCase = [60, 1_00, 1_20] lowerCamelCase = [10, 20, 30] lowerCamelCase = len(A ) self.assertEqual(k.knapsack(A , A , A , A ) , 2_20 ) if __name__ == "__main__": unittest.main()
457
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor UpperCAmelCase : Any = random.Random() def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any]=1.0 , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : int=None ): '''simple docstring''' if rng is None: lowerCamelCase = global_rng lowerCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=4_00 , A=20_00 , A=24 , A=24 , A=0.0 , A=1_60_00 , A=True , A=True , ) -> str: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = min_seq_length lowerCamelCase = max_seq_length lowerCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase = feature_size lowerCamelCase = num_mel_bins lowerCamelCase = padding_value lowerCamelCase = sampling_rate lowerCamelCase = return_attention_mask lowerCamelCase = do_normalize def __A ( self ) -> List[str]: '''simple docstring''' return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self , A=False , A=False ) -> Tuple: '''simple docstring''' def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: lowerCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : str = SpeechaTextFeatureExtractor if is_speech_available() else None def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = SpeechaTextFeatureExtractionTester(self ) def __A ( self , A ) -> List[Any]: '''simple docstring''' self.assertTrue(np.all(np.mean(A , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A , axis=0 ) - 1 ) < 1e-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = [np.asarray(A ) for speech_input in speech_inputs] # Test feature size lowerCamelCase = feature_extractor(A , padding=A , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features lowerCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test batched lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCamelCase = np.asarray(A ) lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = ["""longest""", """max_length""", """do_not_pad"""] lowerCamelCase = [None, 16, None] for max_length, padding in zip(A , A ): lowerCamelCase = feature_extractor( A , padding=A , max_length=A , return_attention_mask=A ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = [np.sum(A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = ["""longest""", """max_length""", """do_not_pad"""] lowerCamelCase = [None, 16, None] for max_length, padding in zip(A , A ): lowerCamelCase = feature_extractor( A , max_length=A , padding=A , return_tensors="""np""" , return_attention_mask=A ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = [np.sum(A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = feature_extractor( A , padding="""max_length""" , max_length=4 , truncation=A , return_tensors="""np""" , return_attention_mask=A , ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = feature_extractor( A , padding="""longest""" , max_length=4 , truncation=A , return_tensors="""np""" , return_attention_mask=A , ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = feature_extractor( A , padding="""longest""" , max_length=16 , truncation=A , return_tensors="""np""" , return_attention_mask=A , ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __A ( self ) -> Optional[int]: '''simple docstring''' import torch lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = np.random.rand(1_00 , 32 ).astype(np.floataa ) lowerCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __A ( self , A ) -> Any: '''simple docstring''' from datasets import load_dataset lowerCamelCase = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowerCamelCase = ds.sort("""id""" ).select(range(A ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on lowerCamelCase = self._load_datasamples(1 ) lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = feature_extractor(A , return_tensors="""pt""" ).input_features self.assertEquals(input_features.shape , (1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , A , atol=1e-4 ) )
457
1
'''simple docstring''' from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar A : int = TypeVar("""T""") class lowerCAmelCase_ ( Generic[T] ): __UpperCAmelCase = 42 # Cache store of keys __UpperCAmelCase = 42 # References of the keys in cache __UpperCAmelCase = 10 # Maximum capacity of cache def __init__( self : Optional[int], _snake_case : int ): '''simple docstring''' snake_case : str =deque() snake_case : Tuple =set() if not n: snake_case : str =sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: snake_case : int =n def __snake_case ( self : str, _snake_case : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case : Union[str, Any] =self.dq_store.pop() self.key_reference.remove(_snake_case ) else: self.dq_store.remove(_snake_case ) self.dq_store.appendleft(_snake_case ) self.key_reference.add(_snake_case ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' for k in self.dq_store: print(_snake_case ) def __repr__( self : Tuple ): '''simple docstring''' return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() A : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
711
'''simple docstring''' from __future__ import annotations from statistics import mean def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Dict =[0] * no_of_processes snake_case : Dict =[0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase_ ): snake_case : Any =burst_time[i] snake_case : list[int] =[] snake_case : Optional[Any] =0 snake_case : List[Any] =0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case : Union[str, Any] =[] snake_case : Optional[int] =-1 for i in range(lowerCamelCase_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: snake_case : Any =ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case : str =i total_time += burst_time[target_process] completed += 1 snake_case : Dict =0 snake_case : Dict =( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Optional[int] =[0] * no_of_processes for i in range(lowerCamelCase_ ): snake_case : Optional[int] =burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") A : Optional[Any] = 4 A : Dict = [2, 5, 3, 7] A : Any = [0, 0, 0, 0] A : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) A : Optional[int] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( f"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" f"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(f"\nAverage waiting time = {mean(waiting_time):.5f}") print(f"Average turnaround time = {mean(turn_around_time):.5f}")
136
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase__ ( lowerCAmelCase__ ): lowerCAmelCase = ['''image_processor''', '''tokenizer'''] lowerCAmelCase = '''ViltImageProcessor''' lowerCAmelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Tuple , _lowercase : Optional[int]=None , _lowercase : List[str]=None , **_lowercase : Optional[Any] ): A = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __lowerCAmelCase , ) A = kwargs.pop('feature_extractor' ) A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) A = self.image_processor def __call__( self : Union[str, Any] , _lowercase : Tuple , _lowercase : List[Any] = None , _lowercase : List[str] = True , _lowercase : Dict = False , _lowercase : List[str] = None , _lowercase : Union[str, Any] = None , _lowercase : int = 0 , _lowercase : Any = None , _lowercase : List[str] = None , _lowercase : Dict = None , _lowercase : Optional[Any] = False , _lowercase : Any = False , _lowercase : Dict = False , _lowercase : Union[str, Any] = False , _lowercase : Tuple = True , _lowercase : List[str] = None , **_lowercase : Any , ): A = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) # add pixel_values + pixel_mask A = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) encoding.update(__lowerCAmelCase ) return encoding def __a ( self : List[str] , *_lowercase : Tuple , **_lowercase : List[str] ): return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __a ( self : Optional[Any] , *_lowercase : Tuple , **_lowercase : int ): return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def __a ( self : Union[str, Any] ): A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __a ( self : int ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __lowerCAmelCase , ) return self.image_processor_class @property def __a ( self : Tuple ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __lowerCAmelCase , ) return self.image_processor
690
'''simple docstring''' from functools import lru_cache @lru_cache def snake_case__ ( _A: int ) -> int: '''simple docstring''' if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
370
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" @staticmethod @abstractmethod def __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" raise NotImplementedError() @abstractmethod def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" raise NotImplementedError()
462
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase =logging.get_logger(__name__) lowerCamelCase ={ "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = '''realm''' def __init__( self , __SCREAMING_SNAKE_CASE=3_0_5_2_2 , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=1_2_8 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=3_0_7_2 , __SCREAMING_SNAKE_CASE="gelu_new" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=1e-3 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=3_2_0 , __SCREAMING_SNAKE_CASE=1_3_3_5_3_7_1_8 , __SCREAMING_SNAKE_CASE=5_0_0_0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , **__SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # Common config UpperCamelCase__ : int = vocab_size UpperCamelCase__ : Any = max_position_embeddings UpperCamelCase__ : List[str] = hidden_size UpperCamelCase__ : Union[str, Any] = retriever_proj_size UpperCamelCase__ : int = num_hidden_layers UpperCamelCase__ : Union[str, Any] = num_attention_heads UpperCamelCase__ : str = num_candidates UpperCamelCase__ : int = intermediate_size UpperCamelCase__ : Dict = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : Any = attention_probs_dropout_prob UpperCamelCase__ : Any = initializer_range UpperCamelCase__ : Optional[Any] = type_vocab_size UpperCamelCase__ : List[Any] = layer_norm_eps # Reader config UpperCamelCase__ : List[Any] = span_hidden_size UpperCamelCase__ : List[Any] = max_span_width UpperCamelCase__ : Optional[Any] = reader_layer_norm_eps UpperCamelCase__ : Optional[Any] = reader_beam_size UpperCamelCase__ : int = reader_seq_len # Retrieval config UpperCamelCase__ : List[str] = num_block_records UpperCamelCase__ : Union[str, Any] = searcher_beam_size
462
1
'''simple docstring''' from __future__ import annotations def A_ ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] ) -> int: __SCREAMING_SNAKE_CASE : Optional[Any] = get_failure_array(snake_case__ ) # 2) Step through text searching for pattern __SCREAMING_SNAKE_CASE : Union[str, Any] = 0, 0 # index into text, pattern while i < len(snake_case__ ): if pattern[j] == text[i]: if j == (len(snake_case__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __SCREAMING_SNAKE_CASE : Optional[Any] = failure[j - 1] continue i += 1 return False def A_ ( __SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[int] = [0] __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : List[Any] = 1 while j < len(snake_case__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __SCREAMING_SNAKE_CASE : Dict = failure[i - 1] continue j += 1 failure.append(snake_case__ ) return failure if __name__ == "__main__": # Test 1) _A = """abc1abc12""" _A = """alskfjaldsabc1abc1abc12k23adsfabcabc""" _A = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) _A = """ABABX""" _A = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) _A = """AAAB""" _A = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) _A = """abcdabcy""" _A = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) _A = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
158
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'swinv2' UpperCamelCase_ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[Any] ,lowerCAmelCase__ : Optional[int]=2_24 ,lowerCAmelCase__ : Dict=4 ,lowerCAmelCase__ : Dict=3 ,lowerCAmelCase__ : List[Any]=96 ,lowerCAmelCase__ : Optional[Any]=[2, 2, 6, 2] ,lowerCAmelCase__ : Optional[Any]=[3, 6, 12, 24] ,lowerCAmelCase__ : Optional[int]=7 ,lowerCAmelCase__ : Dict=4.0 ,lowerCAmelCase__ : Dict=True ,lowerCAmelCase__ : str=0.0 ,lowerCAmelCase__ : Tuple=0.0 ,lowerCAmelCase__ : str=0.1 ,lowerCAmelCase__ : List[str]="gelu" ,lowerCAmelCase__ : Union[str, Any]=False ,lowerCAmelCase__ : Dict=0.02 ,lowerCAmelCase__ : int=1e-5 ,lowerCAmelCase__ : List[str]=32 ,**lowerCAmelCase__ : Tuple ,) -> List[str]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = image_size lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : Dict = num_channels lowerCAmelCase_ : Optional[int] = embed_dim lowerCAmelCase_ : Optional[Any] = depths lowerCAmelCase_ : Any = len(lowerCAmelCase__ ) lowerCAmelCase_ : str = num_heads lowerCAmelCase_ : List[str] = window_size lowerCAmelCase_ : List[str] = mlp_ratio lowerCAmelCase_ : Dict = qkv_bias lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : str = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = drop_path_rate lowerCAmelCase_ : List[Any] = hidden_act lowerCAmelCase_ : Any = use_absolute_embeddings lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ : Tuple = int(embed_dim * 2 ** (len(lowerCAmelCase__ ) - 1) ) lowerCAmelCase_ : str = (0, 0, 0, 0)
659
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __a = None __a = logging.get_logger(__name__) __a = '▁' __a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } __a = { 'google/pegasus-xsum': 5_1_2, } class lowercase__( UpperCAmelCase ): """simple docstring""" a :Tuple = VOCAB_FILES_NAMES a :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a :List[Any] = PegasusTokenizer a :Optional[int] = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<unk>" , SCREAMING_SNAKE_CASE_ : List[Any]="<mask_2>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<mask_1>" , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_0_3 , **SCREAMING_SNAKE_CASE_ : Any , ) -> Optional[int]: lowercase_ = offset if additional_special_tokens is not None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError( f'''additional_special_tokens should be of type {type(SCREAMING_SNAKE_CASE_ )}, but is''' f''' {type(SCREAMING_SNAKE_CASE_ )}''' ) lowercase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(SCREAMING_SNAKE_CASE_ ) , self.offset - 1 ) ] if len(set(SCREAMING_SNAKE_CASE_ ) ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) lowercase_ = additional_special_tokens_extended else: lowercase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , mask_token_sent=SCREAMING_SNAKE_CASE_ , offset=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Tuple ) -> Any: lowercase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : List , SCREAMING_SNAKE_CASE_ : Optional[List] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) elif token_ids_a is None: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
409
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __a = 5_0_0_0_0 __a = 5_0_0_0 __a , __a = os.path.split(__file__) __a = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( snake_case__: datasets.Dataset , snake_case__: Tuple ): '''simple docstring''' for i in range(snake_case__ ): lowercase_ = dataset[i] @get_duration def a ( snake_case__: datasets.Dataset , snake_case__: List[str] , snake_case__: Tuple ): '''simple docstring''' for i in range(0 , len(snake_case__ ) , snake_case__ ): lowercase_ = dataset[i : i + batch_size] @get_duration def a ( snake_case__: datasets.Dataset , snake_case__: Tuple , snake_case__: Optional[Any] ): '''simple docstring''' with dataset.formatted_as(type=snake_case__ ): for i in range(snake_case__ ): lowercase_ = dataset[i] @get_duration def a ( snake_case__: datasets.Dataset , snake_case__: List[Any] , snake_case__: Dict , snake_case__: Any ): '''simple docstring''' with dataset.formatted_as(type=snake_case__ ): for i in range(0 , snake_case__ , snake_case__ ): lowercase_ = dataset[i : i + batch_size] def a ( ): '''simple docstring''' lowercase_ = {'''num examples''': SPEED_TEST_N_EXAMPLES} lowercase_ = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_000}), ] lowercase_ = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''' ) lowercase_ = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''' ) ), '''numbers''': datasets.Value('''float32''' )} ) lowercase_ = generate_example_dataset( os.path.join(snake_case__ , '''dataset.arrow''' ) , snake_case__ , num_examples=snake_case__ , seq_shapes={'''list''': (100,)} , ) print('''first set of iterations''' ) for func, kwargs in functions: print(func.__name__ , str(snake_case__ ) ) lowercase_ = func(snake_case__ , **snake_case__ ) print('''shuffling dataset''' ) lowercase_ = dataset.shuffle() print('''Second set of iterations (after shuffling''' ) for func, kwargs in functions_shuffled: print('''shuffled ''' , func.__name__ , str(snake_case__ ) ) lowercase_ = func( snake_case__ , **snake_case__ ) with open(snake_case__ , '''wb''' ) as f: f.write(json.dumps(snake_case__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
409
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCamelCase : Optional[int] =logging.get_logger(__name__) def a__ (__lowercase :List[Any] , __lowercase :Dict , __lowercase :str ) -> Any: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def a__ (__lowercase :Union[str, Any] , __lowercase :List[Any] , __lowercase :Optional[Any] ) -> List[Any]: _A : Optional[int] = to_pil_image(lowerCamelCase_ ) _A : List[Any] = pil_image.size _A : Tuple = pytesseract.image_to_data(lowerCamelCase_ , lang=lowerCamelCase_ , output_type='''dict''' , config=lowerCamelCase_ ) _A : Optional[Any] = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates _A : List[Any] = [idx for idx, word in enumerate(lowerCamelCase_ ) if not word.strip()] _A : Any = [word for idx, word in enumerate(lowerCamelCase_ ) if idx not in irrelevant_indices] _A : Union[str, Any] = [coord for idx, coord in enumerate(lowerCamelCase_ ) if idx not in irrelevant_indices] _A : Dict = [coord for idx, coord in enumerate(lowerCamelCase_ ) if idx not in irrelevant_indices] _A : List[str] = [coord for idx, coord in enumerate(lowerCamelCase_ ) if idx not in irrelevant_indices] _A : Tuple = [coord for idx, coord in enumerate(lowerCamelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _A : str = [] for x, y, w, h in zip(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): _A : Optional[int] = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase_ ) # finally, normalize the bounding boxes _A : Tuple = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase__ ( _a ): __snake_case : Tuple = ["""pixel_values"""] def __init__( self ,A__ = True ,A__ = None ,A__ = PILImageResampling.BILINEAR ,A__ = True ,A__ = 1 / 255 ,A__ = True ,A__ = None ,A__ = None ,A__ = True ,A__ = None ,A__ = "" ,**A__ ,): super().__init__(**A__ ) _A : Union[str, Any] = size if size is not None else {'height': 224, 'width': 224} _A : Dict = get_size_dict(A__ ) _A : int = do_resize _A : Any = size _A : List[Any] = resample _A : Optional[Any] = do_rescale _A : Optional[Any] = rescale_value _A : Dict = do_normalize _A : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD _A : List[str] = apply_ocr _A : Any = ocr_lang _A : Optional[int] = tesseract_config def A__ ( self ,A__ ,A__ ,A__ = PILImageResampling.BILINEAR ,A__ = None ,**A__ ,): _A : List[Any] = get_size_dict(A__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}""" ) _A : Any = (size['height'], size['width']) return resize(A__ ,size=A__ ,resample=A__ ,data_format=A__ ,**A__ ) def A__ ( self ,A__ ,A__ ,A__ = None ,**A__ ,): return rescale(A__ ,scale=A__ ,data_format=A__ ,**A__ ) def A__ ( self ,A__ ,A__ ,A__ ,A__ = None ,**A__ ,): return normalize(A__ ,mean=A__ ,std=A__ ,data_format=A__ ,**A__ ) def A__ ( self ,A__ ,A__ = None ,A__ = None ,A__=None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = ChannelDimension.FIRST ,**A__ ,): _A : int = do_resize if do_resize is not None else self.do_resize _A : int = size if size is not None else self.size _A : int = get_size_dict(A__ ) _A : Tuple = resample if resample is not None else self.resample _A : int = do_rescale if do_rescale is not None else self.do_rescale _A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize _A : Any = image_mean if image_mean is not None else self.image_mean _A : Optional[int] = image_std if image_std is not None else self.image_std _A : int = apply_ocr if apply_ocr is not None else self.apply_ocr _A : Optional[int] = ocr_lang if ocr_lang is not None else self.ocr_lang _A : Any = tesseract_config if tesseract_config is not None else self.tesseract_config _A : str = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. _A : List[Any] = [to_numpy_array(A__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self ,'''pytesseract''' ) _A : Optional[Any] = [] _A : Tuple = [] for image in images: _A : Optional[int] = apply_tesseract(A__ ,A__ ,A__ ) words_batch.append(A__ ) boxes_batch.append(A__ ) if do_resize: _A : Tuple = [self.resize(image=A__ ,size=A__ ,resample=A__ ) for image in images] if do_rescale: _A : str = [self.rescale(image=A__ ,scale=A__ ) for image in images] if do_normalize: _A : str = [self.normalize(image=A__ ,mean=A__ ,std=A__ ) for image in images] _A : List[str] = [to_channel_dimension_format(A__ ,A__ ) for image in images] _A : List[Any] = BatchFeature(data={'''pixel_values''': images} ,tensor_type=A__ ) if apply_ocr: _A : List[str] = words_batch _A : Tuple = boxes_batch return data
206
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Optional[int] = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def UpperCamelCase ( self, lowerCamelCase=0) -> str: """simple docstring""" _lowercase : Optional[int] = np.random.RandomState(lowerCamelCase) _lowercase : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs() _lowercase : Tuple = pipe(**lowerCamelCase).images _lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : List[Any] = np.array([0.6_5_0_7_2, 0.5_8_4_9_2, 0.4_8_2_1_9, 0.5_5_5_2_1, 0.5_3_1_8_0, 0.5_5_9_3_9, 0.5_0_6_9_7, 0.3_9_8_0_0, 0.4_6_4_5_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images _lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : List[Any] = np.array([0.6_5_8_6_3, 0.5_9_4_2_5, 0.4_9_3_2_6, 0.5_6_3_1_3, 0.5_3_8_7_5, 0.5_6_6_2_7, 0.5_1_0_6_5, 0.3_9_7_7_7, 0.4_6_3_3_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : Union[str, Any] = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_dummy_inputs() _lowercase : Any = pipe(**lowerCamelCase).images _lowercase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : Union[str, Any] = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : List[str] = np.array([0.5_3_8_1_7, 0.6_0_8_1_2, 0.4_7_3_8_4, 0.4_9_5_3_0, 0.5_1_8_9_4, 0.4_9_8_1_4, 0.4_7_9_8_4, 0.3_8_9_5_8, 0.4_4_2_7_1]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Union[str, Any] = self.get_dummy_inputs() _lowercase : Any = pipe(**lowerCamelCase).images _lowercase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : Any = np.array([0.5_3_8_9_5, 0.6_0_8_0_8, 0.4_7_9_3_3, 0.4_9_6_0_8, 0.5_1_8_8_6, 0.4_9_9_5_0, 0.4_8_0_5_3, 0.3_8_9_5_7, 0.4_4_2_0_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_dummy_inputs() _lowercase : Any = 3 * [inputs['prompt']] # forward _lowercase : int = pipe(**lowerCamelCase) _lowercase : Optional[int] = output.images[0, -3:, -3:, -1] _lowercase : int = self.get_dummy_inputs() _lowercase : Union[str, Any] = 3 * [inputs.pop('prompt')] _lowercase : Union[str, Any] = pipe.tokenizer( lowerCamelCase, padding='max_length', max_length=pipe.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='np', ) _lowercase : Tuple = text_inputs['input_ids'] _lowercase : Any = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0] _lowercase : List[Any] = prompt_embeds # forward _lowercase : Union[str, Any] = pipe(**lowerCamelCase) _lowercase : Union[str, Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = self.get_dummy_inputs() _lowercase : Any = 3 * ['this is a negative prompt'] _lowercase : str = negative_prompt _lowercase : Optional[int] = 3 * [inputs['prompt']] # forward _lowercase : int = pipe(**lowerCamelCase) _lowercase : str = output.images[0, -3:, -3:, -1] _lowercase : Union[str, Any] = self.get_dummy_inputs() _lowercase : str = 3 * [inputs.pop('prompt')] _lowercase : Optional[int] = [] for p in [prompt, negative_prompt]: _lowercase : Tuple = pipe.tokenizer( lowerCamelCase, padding='max_length', max_length=pipe.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='np', ) _lowercase : Dict = text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0]) _lowercase , _lowercase : str = embeds # forward _lowercase : Dict = pipe(**lowerCamelCase) _lowercase : Tuple = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): @property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : int = ort.SessionOptions() _lowercase : str = False return options def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = 'A painting of a squirrel eating a burger' np.random.seed(0) _lowercase : Union[str, Any] = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=10, output_type='np') _lowercase : Optional[Any] = output.images _lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array([0.0_4_5_2, 0.0_3_9_0, 0.0_0_8_7, 0.0_3_5_0, 0.0_6_1_7, 0.0_3_6_4, 0.0_5_4_4, 0.0_5_2_3, 0.0_7_2_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : str = DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') _lowercase : str = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = 'open neural network exchange' _lowercase : List[Any] = np.random.RandomState(0) _lowercase : Optional[Any] = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np') _lowercase : Optional[Any] = output.images _lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[int] = np.array([0.2_8_6_7, 0.1_9_7_4, 0.1_4_8_1, 0.7_2_9_4, 0.7_2_5_1, 0.6_6_6_7, 0.4_1_9_4, 0.5_6_4_2, 0.6_4_8_6]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') _lowercase : Dict = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = 'open neural network exchange' _lowercase : str = np.random.RandomState(0) _lowercase : Dict = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np') _lowercase : Optional[Any] = output.images _lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[Any] = np.array([0.2_3_0_6, 0.1_9_5_9, 0.1_5_9_3, 0.6_5_4_9, 0.6_3_9_4, 0.5_4_0_8, 0.5_0_6_5, 0.6_0_1_0, 0.6_1_6_1]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : List[Any] = 0 def test_callback_fn(lowerCamelCase, lowerCamelCase, lowerCamelCase) -> None: _lowercase : List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _lowercase : Any = latents[0, -3:, -3:, -1] _lowercase : Tuple = np.array( [-0.6_7_7_2, -0.3_8_3_5, -1.2_4_5_6, 0.1_9_0_5, -1.0_9_7_4, 0.6_9_6_7, -1.9_3_5_3, 0.0_1_7_8, 1.0_1_6_7]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _lowercase : List[Any] = latents[0, -3:, -3:, -1] _lowercase : str = np.array( [-0.3_3_5_1, 0.2_2_4_1, -0.1_8_3_7, -0.2_3_2_5, -0.6_5_7_7, 0.3_3_9_3, -0.0_2_4_1, 0.5_8_9_9, 1.3_8_7_5]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3 _lowercase : Any = False _lowercase : int = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = 'Andromeda galaxy in a bottle' _lowercase : str = np.random.RandomState(0) pipe( prompt=lowerCamelCase, num_inference_steps=5, guidance_scale=7.5, generator=lowerCamelCase, callback=lowerCamelCase, callback_steps=1, ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) assert isinstance(lowerCamelCase, lowerCamelCase) assert pipe.safety_checker is None _lowercase : Optional[int] = pipe('example prompt', num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase) _lowercase : Any = OnnxStableDiffusionPipeline.from_pretrained(lowerCamelCase) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowercase : List[str] = pipe('example prompt', num_inference_steps=2).images[0] assert image is not None
89
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase__ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase__ : Tuple = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def __lowercase ( _a , _a , _a=8 ): snake_case_ : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case_ : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : Tuple , lowercase_ : UNetaDConditionModel , lowercase_ : DDPMScheduler , lowercase_ : VQModel , ): super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) snake_case_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _snake_case ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Dict , lowercase_ : str , lowercase_ : Tuple ): if latents is None: snake_case_ : int = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) snake_case_ : Optional[int] = latents.to(lowercase_ ) snake_case_ : Any = latents * scheduler.init_noise_sigma return latents def _snake_case ( self : Optional[int] , lowercase_ : Optional[int]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) snake_case_ : int = torch.device(f"cuda:{gpu_id}" ) snake_case_ : List[str] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def _snake_case ( self : Any , lowercase_ : List[str]=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) snake_case_ : str = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case_ : str = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case_ : List[Any] = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. snake_case_ : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _snake_case ( self : Optional[Any] ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self : Any , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : torch.FloatTensor , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 100 , lowercase_ : float = 4.0 , lowercase_ : int = 1 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ): snake_case_ : List[str] = self._execution_device snake_case_ : str = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): snake_case_ : Any = torch.cat(lowercase_ , dim=0 ) if isinstance(lowercase_ , lowercase_ ): snake_case_ : Union[str, Any] = torch.cat(lowercase_ , dim=0 ) if isinstance(lowercase_ , lowercase_ ): snake_case_ : Union[str, Any] = torch.cat(lowercase_ , dim=0 ) snake_case_ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: snake_case_ : List[Any] = image_embeds.repeat_interleave(lowercase_ , dim=0 ) snake_case_ : Tuple = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) snake_case_ : str = hint.repeat_interleave(lowercase_ , dim=0 ) snake_case_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) snake_case_ : List[str] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) snake_case_ : Optional[Any] = self.scheduler.timesteps snake_case_ : int = self.movq.config.latent_channels snake_case_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent snake_case_ : Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance snake_case_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ : str = {'''image_embeds''': image_embeds, '''hint''': hint} snake_case_ : List[str] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: snake_case_ : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) snake_case_ : Union[str, Any] = noise_pred.chunk(2 ) snake_case_ : List[str] = variance_pred.chunk(2 ) snake_case_ : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ : str = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing snake_case_ : Union[str, Any] = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: snake_case_ : Optional[int] = image * 0.5 + 0.5 snake_case_ : Optional[Any] = image.clamp(0 , 1 ) snake_case_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case_ : Union[str, Any] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
711
"""simple docstring""" from statistics import mean, stdev def __lowercase ( _a , _a = 3 ): snake_case_ : Optional[int] = min(_a ) snake_case_ : str = max(_a ) # normalize data return [round((x - x_min) / (x_max - x_min) , _a ) for x in data] def __lowercase ( _a , _a = 3 ): snake_case_ : Any = mean(_a ) snake_case_ : str = stdev(_a ) # standardize data return [round((x - mu) / (sigma) , _a ) for x in data]
485
0
from __future__ import annotations class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ = text, pattern UpperCamelCase_ , UpperCamelCase_ = len(_UpperCAmelCase ), len(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _UpperCAmelCase ( self ) -> list[int]: # searches pattern in text and returns index positions UpperCamelCase_ = [] for i in range(self.textLen - self.patLen + 1 ): UpperCamelCase_ = self.mismatch_in_text(_UpperCAmelCase ) if mismatch_index == -1: positions.append(_UpperCAmelCase ) else: UpperCamelCase_ = self.match_in_pattern(self.text[mismatch_index] ) UpperCamelCase_ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions snake_case__ : List[str] = """ABAABA""" snake_case__ : Tuple = """AB""" snake_case__ : Tuple = BoyerMooreSearch(text, pattern) snake_case__ : Union[str, Any] = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
23
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar __lowerCAmelCase = TypeVar('KT') __lowerCAmelCase = TypeVar('VT') class _lowerCAmelCase ( Generic[KT, VT] ): '''simple docstring''' def __init__(self , UpperCAmelCase = "root" , UpperCAmelCase = None ) -> Tuple: _snake_case = key _snake_case = value _snake_case = [] def __repr__(self ) -> str: return f"""Node({self.key}: {self.value})""" @property def lowercase (self ) -> int: return len(self.forward ) class _lowerCAmelCase ( Generic[KT, VT] ): '''simple docstring''' def __init__(self , UpperCAmelCase = 0.5 , UpperCAmelCase = 16 ) -> int: _snake_case = Node[KT, VT]() _snake_case = 0 _snake_case = p _snake_case = max_level def __str__(self ) -> str: _snake_case = list(self ) if len(UpperCAmelCase ) == 0: return f"""SkipList(level={self.level})""" _snake_case = max((len(str(UpperCAmelCase ) ) for item in items) , default=4 ) _snake_case = max(UpperCAmelCase , 4 ) + 4 _snake_case = self.head _snake_case = [] _snake_case = node.forward.copy() lines.append(f"""[{node.key}]""".ljust(UpperCAmelCase , """-""" ) + """* """ * len(UpperCAmelCase ) ) lines.append(""" """ * label_size + """| """ * len(UpperCAmelCase ) ) while len(node.forward ) != 0: _snake_case = node.forward[0] lines.append( f"""[{node.key}]""".ljust(UpperCAmelCase , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(UpperCAmelCase ) ) _snake_case = node.forward lines.append("""None""".ljust(UpperCAmelCase ) + """* """ * len(UpperCAmelCase ) ) return f"""SkipList(level={self.level})\n""" + "\n".join(UpperCAmelCase ) def __iter__(self ) -> Any: _snake_case = self.head while len(node.forward ) != 0: yield node.forward[0].key _snake_case = node.forward[0] def lowercase (self ) -> int: _snake_case = 1 while random() < self.p and level < self.max_level: level += 1 return level def lowercase (self , UpperCAmelCase ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: _snake_case = [] _snake_case = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _snake_case = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(UpperCAmelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def lowercase (self , UpperCAmelCase ) -> str: _snake_case, _snake_case = self._locate_node(UpperCAmelCase ) if node is not None: for i, update_node in enumerate(UpperCAmelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _snake_case = node.forward[i] else: _snake_case = update_node.forward[:i] def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Any: _snake_case, _snake_case = self._locate_node(UpperCAmelCase ) if node is not None: _snake_case = value else: _snake_case = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , UpperCAmelCase ): update_vector.append(self.head ) _snake_case = level _snake_case = Node(UpperCAmelCase , UpperCAmelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(UpperCAmelCase ) else: _snake_case = new_node def lowercase (self , UpperCAmelCase ) -> VT | None: _snake_case, _snake_case = self._locate_node(UpperCAmelCase ) if node is not None: return node.value return None def __SCREAMING_SNAKE_CASE ( ): _snake_case = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 12 ) skip_list.insert("""Key3""" , 41 ) skip_list.insert("""Key4""" , -19 ) _snake_case = skip_list.head _snake_case = {} while node.level != 0: _snake_case = node.forward[0] _snake_case = node.value assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __SCREAMING_SNAKE_CASE ( ): _snake_case = SkipList() skip_list.insert("""Key1""" , 10 ) skip_list.insert("""Key1""" , 12 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 10 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 10 ) _snake_case = skip_list.head _snake_case = {} while node.level != 0: _snake_case = node.forward[0] _snake_case = node.value if len(_SCREAMING_SNAKE_CASE ) != 4: print() assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __SCREAMING_SNAKE_CASE ( ): _snake_case = SkipList() assert skip_list.find("""Some key""" ) is None def __SCREAMING_SNAKE_CASE ( ): _snake_case = SkipList() skip_list.insert("""Key2""" , 20 ) assert skip_list.find("""Key2""" ) == 20 skip_list.insert("""Some Key""" , 10 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 13 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 10 assert skip_list.find("""V""" ) == 13 def __SCREAMING_SNAKE_CASE ( ): _snake_case = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def __SCREAMING_SNAKE_CASE ( ): _snake_case = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def __SCREAMING_SNAKE_CASE ( ): _snake_case = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 14 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 14 assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 12 assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 15 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def __SCREAMING_SNAKE_CASE ( ): _snake_case = SkipList() skip_list.insert("""Key1""" , 12 ) skip_list.insert("""V""" , 13 ) skip_list.insert("""X""" , 142 ) skip_list.insert("""Key2""" , 15 ) skip_list.delete("""X""" ) def traverse_keys(_SCREAMING_SNAKE_CASE ): yield node.key for forward_node in node.forward: yield from traverse_keys(_SCREAMING_SNAKE_CASE ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __SCREAMING_SNAKE_CASE ( ): def is_sorted(_SCREAMING_SNAKE_CASE ): return all(next_item >= item for item, next_item in zip(_SCREAMING_SNAKE_CASE , lst[1:] ) ) _snake_case = SkipList() for i in range(10 ): skip_list.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( ): for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __SCREAMING_SNAKE_CASE ( ): _snake_case = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
585
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
701
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( snake_case__ , unittest.TestCase ): snake_case_ = FunnelTokenizer snake_case_ = FunnelTokenizerFast snake_case_ = True snake_case_ = True def snake_case_ ( self ): """simple docstring""" super().setUp() UpperCAmelCase_: int = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_: List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def snake_case_ ( self , **A__ ): """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **A__ ) def snake_case_ ( self , **A__ ): """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **A__ ) def snake_case_ ( self , A__ ): """simple docstring""" UpperCAmelCase_: Union[str, Any] = "UNwant\u00E9d,running" UpperCAmelCase_: Dict = "unwanted, running" return input_text, output_text def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_: Dict = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [7, 4, 5, 10, 8, 9] ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[int] = self.get_tokenizers(do_lower_case=A__ ) for tokenizer in tokenizers: UpperCAmelCase_: Any = tokenizer("UNwant\u00E9d,running" ) UpperCAmelCase_: str = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) UpperCAmelCase_: Tuple = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
306
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = [] for line in lines: _lowerCamelCase : List[str] = re.sub(r"#.*" , "" , _lowerCAmelCase ) # remove comments if line: filtered_lines.append(_lowerCAmelCase ) _lowerCamelCase : Optional[Any] = "\n".join(_lowerCAmelCase ) # Make a hash from all this code _lowerCamelCase : Tuple = full_str.encode("utf-8" ) return shaaaa(_lowerCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase_ : int = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase_ : Union[str, Any] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase_ : Dict = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name UpperCAmelCase_ : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
44
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _SCREAMING_SNAKE_CASE : Optional[Any] = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _SCREAMING_SNAKE_CASE : Dict = concatenate_datasets _SCREAMING_SNAKE_CASE : Optional[Any] = DownloadConfig _SCREAMING_SNAKE_CASE : Dict = DownloadManager _SCREAMING_SNAKE_CASE : str = DownloadMode _SCREAMING_SNAKE_CASE : Dict = DownloadConfig _SCREAMING_SNAKE_CASE : Optional[int] = DownloadMode _SCREAMING_SNAKE_CASE : Any = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
493
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self ,*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ): warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' ,__SCREAMING_SNAKE_CASE ,) super().__init__(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
220
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = 0 A = False A = 3.0 class _a ( unittest.TestCase ): """simple docstring""" def __a ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() ,{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() ,{'a': 2} ) self.assertDictEqual(MockClass(a=2 ,b=__SCREAMING_SNAKE_CASE ).to_kwargs() ,{'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 ,c=2.25 ).to_kwargs() ,{'a': 2, 'c': 2.25} ) @require_cuda def __a ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. SCREAMING_SNAKE_CASE : Union[str, Any] = GradScalerKwargs(init_scale=1024 ,growth_factor=2 ) AcceleratorState._reset_state() SCREAMING_SNAKE_CASE : Optional[int] = Accelerator(mixed_precision='fp16' ,kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) SCREAMING_SNAKE_CASE : int = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale ,1024.0 ) self.assertEqual(scaler._growth_factor ,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor ,0.5 ) self.assertEqual(scaler._growth_interval ,2000 ) self.assertEqual(scaler._enabled ,__SCREAMING_SNAKE_CASE ) @require_multi_gpu def __a ( self ): SCREAMING_SNAKE_CASE : Optional[int] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(__SCREAMING_SNAKE_CASE ,env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __UpperCAmelCase = Accelerator(kwargs_handlers=[ddp_scaler]) __UpperCAmelCase = torch.nn.Linear(100, 200) __UpperCAmelCase = accelerator.prepare(model) # Check the values changed in kwargs __UpperCAmelCase = '' __UpperCAmelCase = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
220
1
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __snake_case =logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): def __init__( self : Tuple , **UpperCAmelCase__ : Optional[int] ) -> int: super().__init__(**UpperCAmelCase__ ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self : Union[str, Any] , UpperCAmelCase__ : Union[np.ndarray, bytes, str] , **UpperCAmelCase__ : Any ) -> Dict: return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict , **UpperCAmelCase__ : Optional[Any] ) -> List[Any]: lowerCAmelCase = {} if "candidate_labels" in kwargs: lowerCAmelCase = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: lowerCAmelCase = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Any="This is a sound of {}." ) -> Union[str, Any]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowerCAmelCase = requests.get(UpperCAmelCase__ ).content else: with open(UpperCAmelCase__ , 'rb' ) as f: lowerCAmelCase = f.read() if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = ffmpeg_read(UpperCAmelCase__ , self.feature_extractor.sampling_rate ) if not isinstance(UpperCAmelCase__ , np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) lowerCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' ) lowerCAmelCase = candidate_labels lowerCAmelCase = [hypothesis_template.format(UpperCAmelCase__ ) for x in candidate_labels] lowerCAmelCase = self.tokenizer(UpperCAmelCase__ , return_tensors=self.framework , padding=UpperCAmelCase__ ) lowerCAmelCase = [text_inputs] return inputs def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase = model_inputs.pop('candidate_labels' ) lowerCAmelCase = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCAmelCase__ ): lowerCAmelCase = text_inputs[0] else: # Batching case. lowerCAmelCase = text_inputs[0][0] lowerCAmelCase = self.model(**UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[str] ) -> Tuple: lowerCAmelCase = model_outputs.pop('candidate_labels' ) lowerCAmelCase = model_outputs['logits'][0] if self.framework == "pt": lowerCAmelCase = logits.softmax(dim=0 ) lowerCAmelCase = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) lowerCAmelCase = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase__ , UpperCAmelCase__ ) , key=lambda UpperCAmelCase__ : -x[0] ) ] return result
133
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __snake_case ="""http://www.mocksite.com/file1.txt""" __snake_case ="""\"text\": [\"foo\", \"foo\"]""" __snake_case ="""6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class UpperCAmelCase_ : lowerCamelCase : Dict = 200 lowerCamelCase : Optional[Any] = {'''Content-Length''': '''100'''} lowerCamelCase : List[str] = {} def __UpperCAmelCase ( self : List[str] , **UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: return [bytes(UpperCAmelCase__ , 'utf-8' )] def a_ ( *lowerCamelCase : Optional[Any] , **lowerCamelCase : Optional[Any] ): return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def a_ ( lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] ): import requests monkeypatch.setattr(lowerCamelCase , 'request' , lowerCamelCase ) lowerCAmelCase = URL if issubclass(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = url elif issubclass(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = [url] elif issubclass(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = {'train': url} lowerCAmelCase = 'dummy' lowerCAmelCase = 'downloads' lowerCAmelCase = tmp_path lowerCAmelCase = DownloadConfig( cache_dir=os.path.join(lowerCamelCase , lowerCamelCase ) , use_etag=lowerCamelCase , ) lowerCAmelCase = DownloadManager(dataset_name=lowerCamelCase , download_config=lowerCamelCase ) lowerCAmelCase = dl_manager.download(lowerCamelCase ) lowerCAmelCase = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = [downloaded_paths] lowerCAmelCase = [urls] elif isinstance(lowerCamelCase , lowerCamelCase ): assert "train" in downloaded_paths.keys() lowerCAmelCase = downloaded_paths.values() lowerCAmelCase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCamelCase , lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCAmelCase = Path(lowerCamelCase ) lowerCAmelCase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCAmelCase = downloaded_path.read_text() assert content == CONTENT lowerCAmelCase = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() lowerCAmelCase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def a_ ( lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : str ): lowerCAmelCase = str(lowerCamelCase ) if issubclass(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = filename elif issubclass(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = [filename] elif issubclass(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = {'train': filename} lowerCAmelCase = 'dummy' lowerCAmelCase = xz_file.parent lowerCAmelCase = 'extracted' lowerCAmelCase = DownloadConfig( cache_dir=lowerCamelCase , use_etag=lowerCamelCase , ) lowerCAmelCase = DownloadManager(dataset_name=lowerCamelCase , download_config=lowerCamelCase ) lowerCAmelCase = dl_manager.extract(lowerCamelCase ) lowerCAmelCase = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase = [extracted_paths] lowerCAmelCase = [paths] elif isinstance(lowerCamelCase , lowerCamelCase ): assert "train" in extracted_paths.keys() lowerCAmelCase = extracted_paths.values() lowerCAmelCase = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCamelCase , lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCAmelCase = Path(lowerCamelCase ) lowerCAmelCase = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCamelCase , etag=lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCAmelCase = extracted_path.read_text() lowerCAmelCase = text_file.read_text() assert extracted_file_content == expected_file_content def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Tuple ): assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCamelCase , start=1 ): lowerCAmelCase = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] ): lowerCAmelCase = request.getfixturevalue(lowerCamelCase ) lowerCAmelCase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCamelCase ) , start=1 ): _test_jsonl(lowerCamelCase , lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple ): lowerCAmelCase = request.getfixturevalue(lowerCamelCase ) lowerCAmelCase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCamelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCamelCase ) , start=1 ): _test_jsonl(lowerCamelCase , lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def a_ ( lowerCamelCase : List[Any] ): lowerCAmelCase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCamelCase ) , start=1 ): assert os.path.basename(lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
133
1
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCAmelCase_ : Union[str, Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model UpperCAmelCase_ : Any = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names UpperCAmelCase_ : Union[str, Any] = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCAmelCase_ : Union[str, Any] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: UpperCAmelCase_ : List[str] = "allenai" def UpperCamelCase ( _A : Tuple )-> Dict: """simple docstring""" A__ = dict((re.sub(R"@@$" , "" , _A ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , _A ), v) for k, v in d.items() ) A__ = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] A__ = d[k] # restore return da def UpperCamelCase ( _A : str , _A : Dict )-> Dict: """simple docstring""" assert os.path.exists(_A ) os.makedirs(_A , exist_ok=_A ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models A__ = basename(_A ) A__ = dirname(_A ) A__ = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel A__ = cls.hub_models() A__ = {"bpe": "fastbpe", "tokenizer": "moses"} A__ = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) A__ = hub_utils.from_pretrained( _A , _A , _A , archive_map=_A , **_A ) A__ = vars(chkpt["args"]["model"] ) A__ = args["source_lang"] A__ = args["target_lang"] A__ = dirname(_A ) A__ = basename(_A ) # dicts A__ = os.path.join(_A , f"""dict.{src_lang}.txt""" ) A__ = os.path.join(_A , f"""dict.{tgt_lang}.txt""" ) A__ = Dictionary.load(_A ) A__ = rewrite_dict_keys(src_dict.indices ) A__ = len(_A ) A__ = os.path.join(_A , "vocab-src.json" ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab A__ = True for k in src_vocab.keys(): if not k.islower(): A__ = False break A__ = Dictionary.load(_A ) A__ = rewrite_dict_keys(tgt_dict.indices ) A__ = len(_A ) A__ = os.path.join(_A , "vocab-tgt.json" ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # merges_file (bpecodes) A__ = os.path.join(_A , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" A__ = os.path.join(_A , _A ) if os.path.exists(_A ): break with open(_A , encoding="utf-8" ) as fin: A__ = fin.read() A__ = re.sub(R" \d+$" , "" , _A , 0 , re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_A , "w" , encoding="utf-8" ) as fout: fout.write(_A ) # model config A__ = os.path.join(_A , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args["bpe"]}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args["tokenizer"]}""" A__ = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with A__ = 5 A__ = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: A__ = best_score_hparams[model_dir]["length_penalty"] else: A__ = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # tokenizer config A__ = os.path.join(_A , _A ) A__ = { "langs": [src_lang, tgt_lang], "model_max_length": 1024, "do_lower_case": do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # model A__ = chkpt["models"][0] A__ = model.state_dict() # rename keys to start with 'model.' A__ = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys A__ = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(_A , _A ) A__ = FSMTConfig.from_pretrained(_A ) A__ = FSMTForConditionalGeneration(_A ) # check that it loads ok model_new.load_state_dict(_A , strict=_A ) # save A__ = os.path.join(_A , _A ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_A , _A ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
232
def UpperCamelCase ( _A : list[int] , _A : int )-> bool: """simple docstring""" A__ = len(_A ) A__ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): A__ = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): A__ = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: A__ = subset[i - 1][j] if arr[i - 1] <= j: A__ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
232
1
'''simple docstring''' def __lowercase (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :str ): assert x is not None assert y is not None SCREAMING_SNAKE_CASE : Tuple = len(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = len(_SCREAMING_SNAKE_CASE ) # declaring the array for storing the dp values SCREAMING_SNAKE_CASE : str = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): SCREAMING_SNAKE_CASE : List[str] = 1 if x[i - 1] == y[j - 1] else 0 SCREAMING_SNAKE_CASE : Union[str, Any] = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) SCREAMING_SNAKE_CASE : Any = '''''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = m, n while i > 0 and j > 0: SCREAMING_SNAKE_CASE : Optional[int] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: SCREAMING_SNAKE_CASE : Tuple = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": snake_case_ = """AGGTAB""" snake_case_ = """GXTXAYB""" snake_case_ = 4 snake_case_ = """GTAB""" snake_case_ , snake_case_ = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
507
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowercase (_SCREAMING_SNAKE_CASE :Tuple ): if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(_SCREAMING_SNAKE_CASE , '''_dynamo''' ): return False return isinstance(_SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def __lowercase (_SCREAMING_SNAKE_CASE :Tuple , _SCREAMING_SNAKE_CASE :bool = True ): SCREAMING_SNAKE_CASE : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) SCREAMING_SNAKE_CASE : Any = is_compiled_module(_SCREAMING_SNAKE_CASE ) if is_compiled: SCREAMING_SNAKE_CASE : int = model SCREAMING_SNAKE_CASE : Tuple = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Any = model.module if not keep_fpaa_wrapper: SCREAMING_SNAKE_CASE : Optional[int] = getattr(_SCREAMING_SNAKE_CASE , '''forward''' ) SCREAMING_SNAKE_CASE : Tuple = model.__dict__.pop('''_original_forward''' , _SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(_SCREAMING_SNAKE_CASE , '''__wrapped__''' ): SCREAMING_SNAKE_CASE : Optional[Any] = forward.__wrapped__ if forward == original_forward: break SCREAMING_SNAKE_CASE : Tuple = forward if getattr(_SCREAMING_SNAKE_CASE , '''_converted_to_transformer_engine''' , _SCREAMING_SNAKE_CASE ): convert_model(_SCREAMING_SNAKE_CASE , to_transformer_engine=_SCREAMING_SNAKE_CASE ) if is_compiled: SCREAMING_SNAKE_CASE : List[Any] = model SCREAMING_SNAKE_CASE : int = compiled_model return model def __lowercase (): PartialState().wait_for_everyone() def __lowercase (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :Union[str, Any] ): if PartialState().distributed_type == DistributedType.TPU: xm.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @contextmanager def __lowercase (**_SCREAMING_SNAKE_CASE :str ): for key, value in kwargs.items(): SCREAMING_SNAKE_CASE : str = str(_SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowercase (_SCREAMING_SNAKE_CASE :List[Any] ): if not hasattr(_SCREAMING_SNAKE_CASE , '''__qualname__''' ) and not hasattr(_SCREAMING_SNAKE_CASE , '''__name__''' ): SCREAMING_SNAKE_CASE : str = getattr(_SCREAMING_SNAKE_CASE , '''__class__''' , _SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , '''__qualname__''' ): return obj.__qualname__ if hasattr(_SCREAMING_SNAKE_CASE , '''__name__''' ): return obj.__name__ return str(_SCREAMING_SNAKE_CASE ) def __lowercase (_SCREAMING_SNAKE_CASE :Optional[Any] , _SCREAMING_SNAKE_CASE :str ): for key, value in source.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : int = destination.setdefault(_SCREAMING_SNAKE_CASE , {} ) merge_dicts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE : Dict = value return destination def __lowercase (_SCREAMING_SNAKE_CASE :int = None ): if port is None: SCREAMING_SNAKE_CASE : Dict = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
507
1
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __snake_case ( lowercase : List[str] , lowercase : str=7 ): snake_case_ = None if token is not None: snake_case_ = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) snake_case_ = "636036" snake_case_ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' snake_case_ = requests.get(lowercase , headers=lowercase ).json() return result["workflow_runs"] def __snake_case ( lowercase : List[Any] ): snake_case_ = get_daily_ci_runs(lowercase ) snake_case_ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": snake_case_ = workflow_run["id"] break return workflow_run_id def __snake_case ( lowercase : Dict , lowercase : Tuple , lowercase : List[Any] ): snake_case_ = get_last_daily_ci_runs(lowercase ) if workflow_run_id is not None: snake_case_ = get_artifacts_links(worflow_run_id=lowercase , token=lowercase ) for artifact_name in artifact_names: if artifact_name in artifacts_links: snake_case_ = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase , artifact_url=lowercase , output_dir=lowercase , token=lowercase ) def __snake_case ( lowercase : List[str] , lowercase : str , lowercase : Dict ): get_last_daily_ci_artifacts(lowercase , lowercase , lowercase ) snake_case_ = {} for artifact_name in artifact_names: snake_case_ = os.path.join(lowercase , f'''{artifact_name}.zip''' ) if os.path.isfile(lowercase ): snake_case_ = {} with zipfile.ZipFile(lowercase ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase ): # read the file with z.open(lowercase ) as f: snake_case_ = f.read().decode("UTF-8" ) return results
704
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case = """encoder-decoder""" snake_case = True def __init__( self , **UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case_ = kwargs.pop("encoder" ) snake_case_ = encoder_config.pop("model_type" ) snake_case_ = kwargs.pop("decoder" ) snake_case_ = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig snake_case_ = AutoConfig.for_model(UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = AutoConfig.for_model(UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = True @classmethod def _lowercase ( cls , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ): logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) snake_case_ = True snake_case_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.encoder.to_dict() snake_case_ = self.decoder.to_dict() snake_case_ = self.__class__.model_type return output
420
0
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a__ : def __init__( self : Union[str, Any] ,a__ : List[str] ,a__ : List[str]=2 ,a__ : Any=3 ,a__ : Dict=4 ,a__ : Tuple=2 ,a__ : Tuple=7 ,a__ : Optional[Any]=True ,a__ : Any=True ,a__ : Optional[Any]=True ,a__ : List[Any]=True ,a__ : List[Any]=99 ,a__ : Optional[int]=36 ,a__ : Optional[int]=2 ,a__ : Dict=4 ,a__ : int=37 ,a__ : Optional[int]="gelu" ,a__ : Tuple=0.1 ,a__ : List[str]=0.1 ,a__ : List[str]=512 ,a__ : Tuple=16 ,a__ : List[Any]=2 ,a__ : Tuple=0.02 ,a__ : Tuple=6 ,a__ : Optional[int]=6 ,a__ : List[Any]=3 ,a__ : Dict=4 ,a__ : Any=None ,a__ : Any=1000 ,) -> List[str]: """simple docstring""" _lowerCAmelCase:Tuple = parent _lowerCAmelCase:Dict = batch_size _lowerCAmelCase:Dict = num_channels _lowerCAmelCase:Optional[int] = image_size _lowerCAmelCase:int = patch_size _lowerCAmelCase:List[Any] = is_training _lowerCAmelCase:Union[str, Any] = use_input_mask _lowerCAmelCase:List[Any] = use_token_type_ids _lowerCAmelCase:Union[str, Any] = use_labels _lowerCAmelCase:str = vocab_size _lowerCAmelCase:Any = hidden_size _lowerCAmelCase:str = num_hidden_layers _lowerCAmelCase:Optional[int] = num_attention_heads _lowerCAmelCase:Any = intermediate_size _lowerCAmelCase:Union[str, Any] = hidden_act _lowerCAmelCase:Tuple = hidden_dropout_prob _lowerCAmelCase:Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase:Optional[int] = max_position_embeddings _lowerCAmelCase:Union[str, Any] = type_vocab_size _lowerCAmelCase:Dict = type_sequence_label_size _lowerCAmelCase:Tuple = initializer_range _lowerCAmelCase:str = coordinate_size _lowerCAmelCase:Any = shape_size _lowerCAmelCase:Union[str, Any] = num_labels _lowerCAmelCase:Dict = num_choices _lowerCAmelCase:List[str] = scope _lowerCAmelCase:int = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCAmelCase:Dict = text_seq_length _lowerCAmelCase:Union[str, Any] = (image_size // patch_size) ** 2 + 1 _lowerCAmelCase:Optional[int] = self.text_seq_length + self.image_seq_length def __UpperCamelCase ( self : Dict) -> Any: """simple docstring""" _lowerCAmelCase:Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size) _lowerCAmelCase:Dict = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox) _lowerCAmelCase:Dict = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase:Optional[Any] = bbox[i, j, 3] _lowerCAmelCase:Tuple = bbox[i, j, 1] _lowerCAmelCase:Union[str, Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase:List[Any] = bbox[i, j, 2] _lowerCAmelCase:Any = bbox[i, j, 0] _lowerCAmelCase:Optional[int] = tmp_coordinate _lowerCAmelCase:List[Any] = tf.constant(a__) _lowerCAmelCase:Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase:Union[str, Any] = None if self.use_input_mask: _lowerCAmelCase:Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length]) _lowerCAmelCase:Dict = None if self.use_token_type_ids: _lowerCAmelCase:str = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size) _lowerCAmelCase:Any = None _lowerCAmelCase:Any = None if self.use_labels: _lowerCAmelCase:str = ids_tensor([self.batch_size] ,self.type_sequence_label_size) _lowerCAmelCase:str = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels) _lowerCAmelCase:List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCamelCase ( self : List[Any] ,a__ : Optional[Any] ,a__ : List[Any] ,a__ : List[Any] ,a__ : Union[str, Any] ,a__ : str ,a__ : Optional[Any]) -> List[str]: """simple docstring""" _lowerCAmelCase:Optional[Any] = TFLayoutLMvaModel(config=a__) # text + image _lowerCAmelCase:Any = model(a__ ,pixel_values=a__ ,training=a__) _lowerCAmelCase:List[str] = model( a__ ,bbox=a__ ,pixel_values=a__ ,attention_mask=a__ ,token_type_ids=a__ ,training=a__ ,) _lowerCAmelCase:Union[str, Any] = model(a__ ,bbox=a__ ,pixel_values=a__ ,training=a__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) # text only _lowerCAmelCase:List[Any] = model(a__ ,training=a__) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size)) # image only _lowerCAmelCase:int = model({'''pixel_values''': pixel_values} ,training=a__) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size)) def __UpperCamelCase ( self : List[str] ,a__ : Optional[Any] ,a__ : Optional[Any] ,a__ : str ,a__ : Optional[int] ,a__ : List[str] ,a__ : Dict ,a__ : List[str]) -> Tuple: """simple docstring""" _lowerCAmelCase:Optional[int] = self.num_labels _lowerCAmelCase:Optional[Any] = TFLayoutLMvaForSequenceClassification(config=a__) _lowerCAmelCase:Tuple = model( a__ ,bbox=a__ ,pixel_values=a__ ,attention_mask=a__ ,token_type_ids=a__ ,labels=a__ ,training=a__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels)) def __UpperCamelCase ( self : str ,a__ : Any ,a__ : List[Any] ,a__ : Dict ,a__ : Union[str, Any] ,a__ : int ,a__ : Any ,a__ : Dict) -> Dict: """simple docstring""" _lowerCAmelCase:Dict = self.num_labels _lowerCAmelCase:Any = TFLayoutLMvaForTokenClassification(config=a__) _lowerCAmelCase:Optional[Any] = model( a__ ,bbox=a__ ,pixel_values=a__ ,attention_mask=a__ ,token_type_ids=a__ ,labels=a__ ,training=a__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels)) def __UpperCamelCase ( self : int ,a__ : Any ,a__ : str ,a__ : List[Any] ,a__ : List[str] ,a__ : Optional[Any] ,a__ : int ,a__ : Tuple) -> Dict: """simple docstring""" _lowerCAmelCase:Optional[int] = 2 _lowerCAmelCase:Any = TFLayoutLMvaForQuestionAnswering(config=a__) _lowerCAmelCase:int = model( a__ ,bbox=a__ ,pixel_values=a__ ,attention_mask=a__ ,token_type_ids=a__ ,start_positions=a__ ,end_positions=a__ ,training=a__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length)) def __UpperCamelCase ( self : int) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Dict = self.prepare_config_and_inputs() (_lowerCAmelCase):Dict = config_and_inputs _lowerCAmelCase:Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class a__ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False def __UpperCamelCase ( self : Dict ,a__ : int ,a__ : List[str] ,a__ : Dict ,a__ : List[Any] ,a__ : List[Any]) -> List[str]: """simple docstring""" return True def __UpperCamelCase ( self : Dict ,a__ : Optional[Any] ,a__ : str ,a__ : Optional[int]=False) -> Tuple: """simple docstring""" _lowerCAmelCase:List[str] = copy.deepcopy(a__) if model_class in get_values(a__): _lowerCAmelCase:Union[str, Any] = { k: tf.tile(tf.expand_dims(a__ ,1) ,(1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) if isinstance(a__ ,tf.Tensor) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(a__): _lowerCAmelCase:Optional[Any] = tf.ones(self.model_tester.batch_size ,dtype=tf.intaa) elif model_class in get_values(a__): _lowerCAmelCase:Optional[Any] = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa) _lowerCAmelCase:Tuple = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa) elif model_class in get_values(a__): _lowerCAmelCase:Dict = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa) elif model_class in get_values(a__): _lowerCAmelCase:Union[str, Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=tf.intaa) return inputs_dict def __UpperCamelCase ( self : Tuple) -> str: """simple docstring""" _lowerCAmelCase:Optional[int] = TFLayoutLMvaModelTester(self) _lowerCAmelCase:Dict = ConfigTester(self ,config_class=a__ ,hidden_size=37) def __UpperCamelCase ( self : Tuple) -> Any: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple) -> int: """simple docstring""" _lowerCAmelCase:Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase:str = model_class(a__) if getattr(a__ ,'''hf_compute_loss''' ,a__): # The number of elements in the loss should be the same as the number of elements in the label _lowerCAmelCase:int = self._prepare_for_class(inputs_dict.copy() ,a__ ,return_labels=a__) _lowerCAmelCase:List[str] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() ,reverse=a__)[0] ] _lowerCAmelCase:Dict = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs _lowerCAmelCase:Any = self._prepare_for_class(inputs_dict.copy() ,a__ ,return_labels=a__) _lowerCAmelCase:Optional[int] = prepared_for_class.pop('''input_ids''') _lowerCAmelCase:Any = model(a__ ,**a__)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss when we mask some positions _lowerCAmelCase:List[str] = self._prepare_for_class(inputs_dict.copy() ,a__ ,return_labels=a__) _lowerCAmelCase:Optional[int] = prepared_for_class.pop('''input_ids''') if "labels" in prepared_for_class: _lowerCAmelCase:List[Any] = prepared_for_class['''labels'''].numpy() if len(labels.shape) > 1 and labels.shape[1] != 1: _lowerCAmelCase:int = -100 _lowerCAmelCase:List[Any] = tf.convert_to_tensor(a__) _lowerCAmelCase:List[Any] = model(a__ ,**a__)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) self.assertTrue(not np.any(np.isnan(loss.numpy()))) # Test that model correctly compute the loss with a dict _lowerCAmelCase:List[Any] = self._prepare_for_class(inputs_dict.copy() ,a__ ,return_labels=a__) _lowerCAmelCase:int = model(a__)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss with a tuple _lowerCAmelCase:Union[str, Any] = self._prepare_for_class(inputs_dict.copy() ,a__ ,return_labels=a__) # Get keys that were added with the _prepare_for_class function _lowerCAmelCase:Tuple = prepared_for_class.keys() - inputs_dict.keys() _lowerCAmelCase:Optional[Any] = inspect.signature(model.call).parameters _lowerCAmelCase:Any = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple _lowerCAmelCase:Any = {0: '''input_ids'''} for label_key in label_keys: _lowerCAmelCase:Union[str, Any] = signature_names.index(a__) _lowerCAmelCase:Optional[Any] = label_key _lowerCAmelCase:Tuple = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple _lowerCAmelCase:Optional[int] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: _lowerCAmelCase:Union[str, Any] = prepared_for_class[value] _lowerCAmelCase:List[str] = tuple(a__) # Send to model _lowerCAmelCase:str = model(tuple_input[:-1])[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) def __UpperCamelCase ( self : int) -> Optional[Any]: """simple docstring""" ( _lowerCAmelCase ):List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a__ ,a__ ,a__ ,a__ ,a__ ,a__) def __UpperCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" ( _lowerCAmelCase ):List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase:str = type self.model_tester.create_and_check_model(a__ ,a__ ,a__ ,a__ ,a__ ,a__) def __UpperCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" ( _lowerCAmelCase ):int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__) def __UpperCamelCase ( self : List[str]) -> Dict: """simple docstring""" ( _lowerCAmelCase ):List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__) def __UpperCamelCase ( self : Dict) -> Optional[int]: """simple docstring""" ( _lowerCAmelCase ):Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__) @slow def __UpperCamelCase ( self : Optional[int]) -> Tuple: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase:Dict = TFLayoutLMvaModel.from_pretrained(a__) self.assertIsNotNone(a__) def UpperCAmelCase ( ): _lowerCAmelCase:Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class a__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=a__) if is_vision_available() else None @slow def __UpperCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" _lowerCAmelCase:Tuple = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''') _lowerCAmelCase:Union[str, Any] = self.default_image_processor _lowerCAmelCase:Optional[Any] = prepare_img() _lowerCAmelCase:Union[str, Any] = image_processor(images=a__ ,return_tensors='''tf''').pixel_values _lowerCAmelCase:str = tf.constant([[1, 2]]) _lowerCAmelCase:str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]]) ,axis=0) # forward pass _lowerCAmelCase:str = model(input_ids=a__ ,bbox=a__ ,pixel_values=a__ ,training=a__) # verify the logits _lowerCAmelCase:Optional[int] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape ,a__) _lowerCAmelCase:Any = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]]) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,a__ ,atol=1E-4))
227
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") snake_case__ = logging.getLogger(__name__) @dataclass class UpperCAmelCase : a__: str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a__: Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a__: Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a__: Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a__: bool = field( default=__lowerCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a__: str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a__: bool = field( default=__lowerCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class UpperCAmelCase : a__: Optional[str] = field(default=__lowerCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a__: Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a__: bool = field( default=__lowerCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a__: Optional[int] = field( default=__lowerCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a__: Optional[int] = field( default=__lowerCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a__: bool = field( default=__lowerCamelCase , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) a__: Optional[int] = field( default=__lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a__: Optional[int] = field( default=__lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _lowerCAmelCase ( self : Optional[Any] ): if self.train_file is not None: lowercase : List[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowercase : Optional[int] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class UpperCAmelCase : a__: PreTrainedTokenizerBase a__: Union[bool, str, PaddingStrategy] = True a__: Optional[int] = None a__: Optional[int] = None def __call__( self : Union[str, Any] , lowerCAmelCase : int ): lowercase : Any = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase : Any = [feature.pop(lowerCAmelCase ) for feature in features] lowercase : int = len(lowerCAmelCase ) lowercase : List[str] = len(features[0]['''input_ids'''] ) lowercase : Optional[int] = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase )] for feature in features ] lowercase : List[Any] = list(chain(*lowerCAmelCase ) ) lowercase : List[str] = self.tokenizer.pad( lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten lowercase : Optional[Any] = {k: v.view(lowerCAmelCase , lowerCAmelCase , -1 ) for k, v in batch.items()} # Add back labels lowercase : str = torch.tensor(lowerCAmelCase , dtype=torch.intaa ) return batch def lowerCamelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , UpperCAmelCase_ , UpperCAmelCase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase : int = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase_ ) datasets.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.set_verbosity(UpperCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowercase : Dict = {} if data_args.train_file is not None: lowercase : str = data_args.train_file if data_args.validation_file is not None: lowercase : List[str] = data_args.validation_file lowercase : Dict = data_args.train_file.split('''.''' )[-1] lowercase : Any = load_dataset( UpperCAmelCase_ , data_files=UpperCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowercase : str = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase : Tuple = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowercase : Union[str, Any] = [f'''ending{i}''' for i in range(4 )] lowercase : List[str] = '''sent1''' lowercase : str = '''sent2''' if data_args.max_seq_length is None: lowercase : Optional[int] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowercase : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowercase : int = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCAmelCase_ : List[str] ): lowercase : int = [[context] * 4 for context in examples[context_name]] lowercase : Dict = examples[question_header_name] lowercase : Optional[int] = [ [f'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(UpperCAmelCase_ ) ] # Flatten out lowercase : str = list(chain(*UpperCAmelCase_ ) ) lowercase : Any = list(chain(*UpperCAmelCase_ ) ) # Tokenize lowercase : Union[str, Any] = tokenizer( UpperCAmelCase_ , UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(UpperCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowercase : Dict = raw_datasets['''train'''] if data_args.max_train_samples is not None: lowercase : Optional[Any] = min(len(UpperCAmelCase_ ) , data_args.max_train_samples ) lowercase : Union[str, Any] = train_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowercase : Tuple = train_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowercase : Optional[Any] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowercase : Optional[int] = min(len(UpperCAmelCase_ ) , data_args.max_eval_samples ) lowercase : int = eval_dataset.select(range(UpperCAmelCase_ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowercase : str = eval_dataset.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowercase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=UpperCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCAmelCase_ : Any ): lowercase , lowercase : int = eval_predictions lowercase : Tuple = np.argmax(UpperCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowercase : List[str] = Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , ) # Training if training_args.do_train: lowercase : Any = None if training_args.resume_from_checkpoint is not None: lowercase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase : Any = last_checkpoint lowercase : List[Any] = trainer.train(resume_from_checkpoint=UpperCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload lowercase : int = train_result.metrics lowercase : Dict = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase_ ) ) lowercase : Any = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('''train''' , UpperCAmelCase_ ) trainer.save_metrics('''train''' , UpperCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase : Tuple = trainer.evaluate() lowercase : Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCAmelCase_ ) lowercase : Any = min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) trainer.log_metrics('''eval''' , UpperCAmelCase_ ) trainer.save_metrics('''eval''' , UpperCAmelCase_ ) lowercase : List[Any] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase_ ) else: trainer.create_model_card(**UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
583
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer a_ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast a_ : Tuple = TaTokenizerFast a_ : Tuple = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys a_ : Dict = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
484
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def _a (self ): '''simple docstring''' lowerCamelCase = mock.Mock() lowerCamelCase = 5_00 lowerCamelCase = {} lowerCamelCase = HTTPError lowerCamelCase = {} # Download this model to make sure it's in the cache. lowerCamelCase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=__a ) as mock_head: lowerCamelCase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _a (self ): '''simple docstring''' lowerCamelCase = mock.Mock() lowerCamelCase = 5_00 lowerCamelCase = {} lowerCamelCase = HTTPError lowerCamelCase = {} # Download this model to make sure it's in the cache. lowerCamelCase = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=__a ) as mock_head: lowerCamelCase = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def _a (self ): '''simple docstring''' try: lowerCamelCase = tempfile.mktemp() with open(__a , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , __a ) lowerCamelCase = AlbertTokenizer.from_pretrained(__a ) finally: os.remove(__a ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , __a ) lowerCamelCase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 10_00 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def _a (self ): '''simple docstring''' lowerCamelCase = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def _a (cls ): '''simple docstring''' lowerCamelCase = TOKEN HfFolder.save_token(__a ) @classmethod def _a (cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def _a (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(__a , "vocab.txt" ) with open(__a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCamelCase = BertTokenizer(__a ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) lowerCamelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a , repo_id="test-tokenizer" , push_to_hub=__a , use_auth_token=self._token ) lowerCamelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def _a (self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(__a , "vocab.txt" ) with open(__a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCamelCase = BertTokenizer(__a ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) lowerCamelCase = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __a , repo_id="valid_org/test-tokenizer-org" , push_to_hub=__a , use_auth_token=self._token ) lowerCamelCase = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def _a (self ): '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(__a , "vocab.txt" ) with open(__a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCamelCase = CustomTokenizer(__a ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) lowerCamelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = os.path.join(__a , "vocab.txt" ) with open(__a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCamelCase = BertTokenizerFast.from_pretrained(__a ) bert_tokenizer.save_pretrained(__a ) lowerCamelCase = CustomTokenizerFast.from_pretrained(__a ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) lowerCamelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) lowerCamelCase = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=__a , trust_remote_code=__a ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def _a (self ): '''simple docstring''' lowerCamelCase = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def _a (self ): '''simple docstring''' lowerCamelCase = Trie() lowerCamelCase = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(__a , ["AB", "C"] )
484
1
from cva import destroyAllWindows, imread, imshow, waitKey def __A ( __lowerCamelCase ) -> Any: # getting number of pixels in the image a , a = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): a = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCamelCase : Optional[Any] = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCamelCase : Dict = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
468
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class __lowerCAmelCase : UpperCamelCase__ = PegasusConfig UpperCamelCase__ = {} UpperCamelCase__ = '''gelu''' def __init__( self :int , __magic_name__ :Optional[int] , __magic_name__ :str=13 , __magic_name__ :List[Any]=7 , __magic_name__ :Optional[int]=True , __magic_name__ :Optional[int]=False , __magic_name__ :List[Any]=99 , __magic_name__ :int=32 , __magic_name__ :Tuple=2 , __magic_name__ :List[str]=4 , __magic_name__ :Dict=37 , __magic_name__ :Tuple=0.1 , __magic_name__ :Optional[Any]=0.1 , __magic_name__ :Dict=40 , __magic_name__ :Tuple=2 , __magic_name__ :Optional[Any]=1 , __magic_name__ :Dict=0 , ): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id def lowerCamelCase__ ( self :str ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a = tf.concat([input_ids, eos_tensor] , axis=1 ) a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a = prepare_pegasus_inputs_dict(__magic_name__ , __magic_name__ , __magic_name__ ) return config, inputs_dict def lowerCamelCase__ ( self :List[Any] , __magic_name__ :Any , __magic_name__ :str ): '''simple docstring''' a = TFPegasusModel(config=__magic_name__ ).get_decoder() a = inputs_dict["""input_ids"""] a = input_ids[:1, :] a = inputs_dict["""attention_mask"""][:1, :] a = inputs_dict["""head_mask"""] a = 1 # first forward pass a = model(__magic_name__ , attention_mask=__magic_name__ , head_mask=__magic_name__ , use_cache=__magic_name__ ) a , a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a = tf.concat([input_ids, next_tokens] , axis=-1 ) a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a = model(__magic_name__ , attention_mask=__magic_name__ )[0] a = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a = output_from_no_past[:, -3:, random_slice_idx] a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1E-3 ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Tuple: if attention_mask is None: a = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): UpperCamelCase__ = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCamelCase__ = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCamelCase__ = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' a = TFPegasusModelTester(self ) a = ConfigTester(self , config_class=__magic_name__ ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ ) @require_sentencepiece @require_tokenizers @require_tf class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase__ = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] UpperCamelCase__ = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCamelCase__ = '''google/pegasus-xsum''' @cached_property def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCamelCase__ ( self :int , **__magic_name__ :int ): '''simple docstring''' a = self.translate_src_text(**__magic_name__ ) assert self.expected_text == generated_words def lowerCamelCase__ ( self :Union[str, Any] , **__magic_name__ :int ): '''simple docstring''' a = self.tokenizer(self.src_text , **__magic_name__ , padding=__magic_name__ , return_tensors="""tf""" ) a = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__magic_name__ , ) a = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__magic_name__ ) return generated_words @slow def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' self._assert_generated_batch_equal_expected()
468
1
'''simple docstring''' # using dfs for finding eulerian path traversal def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None ): __UpperCAmelCase : Union[str, Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __UpperCAmelCase , __UpperCAmelCase : Optional[int] = True, True __UpperCAmelCase : Optional[Any] = dfs(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) return path def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Tuple = -1 for i in range(_UpperCAmelCase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __UpperCAmelCase : str = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : List[str] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __UpperCAmelCase , __UpperCAmelCase : str = check_circuit_or_path(_UpperCAmelCase, _UpperCAmelCase ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return __UpperCAmelCase : Union[str, Any] = 1 if check == 2: __UpperCAmelCase : List[str] = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) __UpperCAmelCase : Union[str, Any] = dfs(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) print(_UpperCAmelCase ) def __UpperCamelCase ( ): __UpperCAmelCase : Tuple = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __UpperCAmelCase : int = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __UpperCAmelCase : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __UpperCAmelCase : Union[str, Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} __UpperCAmelCase : Any = { 1: [], 2: [] # all degree is zero } __UpperCAmelCase : Any = 10 check_euler(_UpperCAmelCase, _UpperCAmelCase ) check_euler(_UpperCAmelCase, _UpperCAmelCase ) check_euler(_UpperCAmelCase, _UpperCAmelCase ) check_euler(_UpperCAmelCase, _UpperCAmelCase ) check_euler(_UpperCAmelCase, _UpperCAmelCase ) if __name__ == "__main__": main()
329
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : List[str] = logging.get_logger(__name__) lowerCAmelCase__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCAmelCase__ : Tuple = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } lowerCAmelCase__ : str = {"facebook/blenderbot_small-90M": 5_12} def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : List[str] = set() __UpperCAmelCase : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : str = char __UpperCAmelCase : Optional[int] = set(_UpperCAmelCase ) return pairs class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str="__start__" , UpperCAmelCase_ : List[Any]="__end__" , UpperCAmelCase_ : str="__unk__" , UpperCAmelCase_ : int="__null__" , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , **UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : Any = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Dict = [tuple(merge.split() ) for merge in merges] __UpperCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) __UpperCAmelCase : Dict = {} @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self : Any ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = re.sub("([.,!?()])" , R" \1" , UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = re.sub("(')" , R" \1 " , UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = re.sub(R"\s{2,}" , " " , UpperCAmelCase_ ) if "\n" in token: __UpperCAmelCase : List[Any] = token.replace("\n" , " __newln__" ) __UpperCAmelCase : str = token.split(" " ) __UpperCAmelCase : int = [] for token in tokens: if not len(UpperCAmelCase_ ): continue __UpperCAmelCase : Any = token.lower() __UpperCAmelCase : Optional[Any] = tuple(UpperCAmelCase_ ) __UpperCAmelCase : int = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) __UpperCAmelCase : Union[str, Any] = get_pairs(UpperCAmelCase_ ) if not pairs: words.append(UpperCAmelCase_ ) continue while True: __UpperCAmelCase : Union[str, Any] = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : self.bpe_ranks.get(UpperCAmelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : int = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCAmelCase_ ): try: __UpperCAmelCase : str = word.index(UpperCAmelCase_ , UpperCAmelCase_ ) new_word.extend(word[i:j] ) __UpperCAmelCase : Dict = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = new_word if len(UpperCAmelCase_ ) == 1: break else: __UpperCAmelCase : Union[str, Any] = get_pairs(UpperCAmelCase_ ) __UpperCAmelCase : int = "@@ ".join(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = word[:-4] __UpperCAmelCase : Any = word words.append(UpperCAmelCase_ ) return " ".join(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : str ): """simple docstring""" __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Dict = re.findall(R"\S+\n?" , UpperCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase_ ).split(" " ) ) ) return split_tokens def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : str ): """simple docstring""" __UpperCAmelCase : str = token.lower() return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Any , UpperCAmelCase_ : int ): """simple docstring""" return self.decoder.get(UpperCAmelCase_ , self.unk_token ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase_ : List[str] ): """simple docstring""" __UpperCAmelCase : Any = " ".join(UpperCAmelCase_ ).replace("@@ " , "" ).strip() return out_string def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : List[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) + "\n" ) __UpperCAmelCase : Dict = 0 with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Union[str, Any] = token_index writer.write(" ".join(UpperCAmelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file
329
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A : Optional[Any] = get_tests_dir("""fixtures""") class lowerCAmelCase_ ( unittest.TestCase ): def __snake_case ( self : int ): '''simple docstring''' snake_case : List[str] =mock.Mock() snake_case : Union[str, Any] =500 snake_case : Optional[int] ={} snake_case : str =HTTPError snake_case : Dict ={} # Download this model to make sure it's in the cache. snake_case : Optional[int] =WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''', return_value=__lowerCAmelCase ) as mock_head: snake_case : Optional[int] =WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : int =WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): @classmethod def __snake_case ( cls : int ): '''simple docstring''' snake_case : Optional[Any] =TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def __snake_case ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def __snake_case ( self : str ): '''simple docstring''' snake_case : List[Any] =WavaVecaFeatureExtractor.from_pretrained(__lowerCAmelCase ) feature_extractor.push_to_hub('''test-feature-extractor''', use_auth_token=self._token ) snake_case : List[Any] =WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase, getattr(__lowerCAmelCase, __lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCAmelCase, repo_id='''test-feature-extractor''', push_to_hub=__lowerCAmelCase, use_auth_token=self._token ) snake_case : Tuple =WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase, getattr(__lowerCAmelCase, __lowerCAmelCase ) ) def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : Dict =WavaVecaFeatureExtractor.from_pretrained(__lowerCAmelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''', use_auth_token=self._token ) snake_case : Optional[int] =WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase, getattr(__lowerCAmelCase, __lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowerCAmelCase, repo_id='''valid_org/test-feature-extractor-org''', push_to_hub=__lowerCAmelCase, use_auth_token=self._token ) snake_case : str =WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowerCAmelCase, getattr(__lowerCAmelCase, __lowerCAmelCase ) ) def __snake_case ( self : List[str] ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() snake_case : Optional[Any] =CustomFeatureExtractor.from_pretrained(__lowerCAmelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map, {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''}, ) snake_case : Optional[int] =AutoFeatureExtractor.from_pretrained( f'''{USER}/test-dynamic-feature-extractor''', trust_remote_code=__lowerCAmelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__, '''CustomFeatureExtractor''' )
349
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = MgpstrTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = {} lowerCAmelCase__ = False def _lowercase ( self: int ): '''simple docstring''' super().setUp() # fmt: off _lowerCamelCase : List[Any] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on _lowerCamelCase : Optional[Any] = dict(zip(__lowerCAmelCase ,range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = "tester" _lowerCamelCase : Optional[Any] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) _lowerCamelCase : Optional[Any] = tokenizer.encode([special_token] ,add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) ,1 ) _lowerCamelCase : int = tokenizer.decode(__lowerCAmelCase ,skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase, _lowerCamelCase : List[Any] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) _lowerCamelCase : List[Any] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertNotEqual(len(__lowerCAmelCase ) ,0 ) _lowerCamelCase : Optional[int] = tokenizer.decode(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(text_a.replace(" " ,"" ) ,__lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowercase ( self: str ): '''simple docstring''' pass
46
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : Any = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
178
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCamelCase__ : Tuple = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
178
1
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A__ : Optional[Any] = tuple[int, int] class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : set[int] = vertices __lowerCamelCase : dict[EdgeT, int] = { (min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items() } def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowerCamelCase : Union[str, Any] = weight def lowercase_ ( self ) -> Graph: __lowerCamelCase : Graph = Graph({min(self.vertices )} , {} ) __lowerCamelCase : EdgeT __lowerCamelCase : int __lowerCamelCase : EdgeT __lowerCamelCase : int while len(subgraph.vertices ) < len(self.vertices ): __lowerCamelCase : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowerCamelCase : Optional[int] = edge __lowerCamelCase : List[str] = weight subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return subgraph def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int: __lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) ) __lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : dict[EdgeT, int] = {} __lowerCamelCase : list[str] __lowerCamelCase : int __lowerCamelCase : int with open(UpperCAmelCase_ ) as f: __lowerCamelCase : Any = f.read().strip().split('\n' ) __lowerCamelCase : Any = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCAmelCase_ ) ): for edgea in range(UpperCAmelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": __lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] ) __lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ ) __lowerCamelCase : Graph = graph.prims_algorithm() __lowerCamelCase : int = sum(graph.edges.values() ) __lowerCamelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
13
def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) A_ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" A_ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" A_ = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
141
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _a ): def __init__( self , __lowerCAmelCase ): super().__init__() UpperCamelCase__ = nn.ModuleList(__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = True , ): for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase , self.nets ) ): UpperCamelCase__ , UpperCamelCase__ = controlnet( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) # merge samples if i == 0: UpperCamelCase__ , UpperCamelCase__ = down_samples, mid_sample else: UpperCamelCase__ = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase , __lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , ): UpperCamelCase__ = 0 UpperCamelCase__ = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase , is_main_process=__lowerCAmelCase , save_function=__lowerCAmelCase , safe_serialization=__lowerCAmelCase , variant=__lowerCAmelCase , ) idx += 1 UpperCamelCase__ = model_path_to_save + f"""_{idx}""" @classmethod def _lowerCamelCase ( cls , __lowerCAmelCase , **__lowerCAmelCase ): UpperCamelCase__ = 0 UpperCamelCase__ = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... UpperCamelCase__ = pretrained_model_path while os.path.isdir(__lowerCAmelCase ): UpperCamelCase__ = ControlNetModel.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) controlnets.append(__lowerCAmelCase ) idx += 1 UpperCamelCase__ = pretrained_model_path + f"""_{idx}""" logger.info(f"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCAmelCase ) == 0: raise ValueError( f"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + "_0"}.""" ) return cls(__lowerCAmelCase )
548
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__lowerCAmelCase ): UpperCamelCase__ = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__lowerCAmelCase ): UpperCamelCase__ = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCamelCase__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = FlaxBertModel.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCAmelCase ): return model(**__lowerCAmelCase ) eval(**__lowerCAmelCase ).block_until_ready() @slow def _lowerCamelCase ( self ): for model_name in ["roberta-base", "roberta-large"]: UpperCamelCase__ = AutoTokenizer.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = FlaxRobertaModel.from_pretrained(__lowerCAmelCase ) UpperCamelCase__ = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**__lowerCAmelCase ): return model(**__lowerCAmelCase ) eval(**__lowerCAmelCase ).block_until_ready() def _lowerCamelCase ( self ): with self.assertRaisesRegex( __lowerCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ = FlaxAutoModel.from_pretrained("""bert-base""" ) def _lowerCamelCase ( self ): with self.assertRaisesRegex( __lowerCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ = FlaxAutoModel.from_pretrained(__lowerCAmelCase , revision="""aaaaaa""" ) def _lowerCamelCase ( self ): with self.assertRaisesRegex( __lowerCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ): UpperCamelCase__ = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def _lowerCamelCase ( self ): with self.assertRaisesRegex(__lowerCAmelCase , """Use `from_pt=True` to load this model""" ): UpperCamelCase__ = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
548
1
import os import re import shutil import sys import tempfile import unittest import black _UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _UpperCamelCase = ''' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n''' class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) UpperCAmelCase__ = self.transformer_dir shutil.copy( os.path.join(UpperCamelCase__ , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = 'src/transformers' shutil.rmtree(self.transformer_dir ) def UpperCamelCase__ (self , __a , __a , __a , __a=None ) -> Tuple: """simple docstring""" UpperCAmelCase__ = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: UpperCAmelCase__ = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result UpperCAmelCase__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) UpperCAmelCase__ = black.format_str(UpperCamelCase__ , mode=UpperCamelCase__ ) UpperCAmelCase__ = os.path.join(self.transformer_dir , 'new_code.py' ) with open(UpperCamelCase__ , 'w' , newline='\n' ) as f: f.write(UpperCamelCase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase__ ) with open(UpperCamelCase__ , 'r' ) as f: self.assertTrue(f.read() , UpperCamelCase__ ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , UpperCamelCase__ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , UpperCamelCase__ ) , ) # Copy consistency with a really long name UpperCAmelCase__ = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub('Bert' , UpperCamelCase__ , UpperCamelCase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , UpperCamelCase__ , overwrite_result=re.sub('Bert' , 'TestModel' , UpperCamelCase__ ) , ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = check_copies.LOCALIZED_READMES['README_zh-hans.md'] UpperCAmelCase__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) UpperCAmelCase__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) UpperCAmelCase__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) UpperCAmelCase__ , UpperCAmelCase__ = check_copies.convert_to_localized_md( UpperCamelCase__ , UpperCamelCase__ , localized_readme['format_model_list'] ) self.assertFalse(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ = check_copies.convert_to_localized_md( UpperCamelCase__ , UpperCamelCase__ , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(UpperCamelCase__ ) UpperCAmelCase__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) UpperCAmelCase__ = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) UpperCAmelCase__ = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) UpperCAmelCase__ , UpperCAmelCase__ = check_copies.convert_to_localized_md( UpperCamelCase__ , UpperCamelCase__ , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
146
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) __lowerCAmelCase = "pytorch_model.bin" __lowerCAmelCase = "pytorch_model.bin.index.json" __lowerCAmelCase = "adapter_config.json" __lowerCAmelCase = "adapter_model.bin" __lowerCAmelCase = "adapter_model.safetensors" __lowerCAmelCase = "tf_model.h5" __lowerCAmelCase = "tf_model.h5.index.json" __lowerCAmelCase = "model.ckpt" __lowerCAmelCase = "flax_model.msgpack" __lowerCAmelCase = "flax_model.msgpack.index.json" __lowerCAmelCase = "model.safetensors" __lowerCAmelCase = "model.safetensors.index.json" __lowerCAmelCase = "config.json" __lowerCAmelCase = "preprocessor_config.json" __lowerCAmelCase = FEATURE_EXTRACTOR_NAME __lowerCAmelCase = "generation_config.json" __lowerCAmelCase = "modelcard.json" __lowerCAmelCase = "▁" __lowerCAmelCase = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility __lowerCAmelCase = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. __lowerCAmelCase = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] __lowerCAmelCase = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __UpperCamelCase ( lowercase_ : Optional[int] ): """simple docstring""" if version.parse(lowercase_ ) < version.parse(lowercase_ ): if "dev" in min_version: a_ = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: a_ = F'This example requires a minimum version of {min_version},' error_message += F' but the version found is {__version__}.\n' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
536
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A_ ( A_ , A_ , unittest.TestCase ): """simple docstring""" lowercase : List[Any] = StableDiffusionXLImgaImgPipeline lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} lowercase : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self ) -> Optional[Any]: torch.manual_seed(0 ) a : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) a : Optional[int] = EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) a : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) a : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=32 , ) a : Dict = CLIPTextModel(__UpperCAmelCase ) a : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__UpperCAmelCase ) a : Optional[Any] = CLIPTextModelWithProjection(__UpperCAmelCase ) a : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__UpperCAmelCase ) a : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> List[str]: a : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) a : List[Any] = image / 2 + 0.5 if str(__UpperCAmelCase ).startswith('mps' ): a : int = torch.manual_seed(__UpperCAmelCase ) else: a : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def lowercase_ ( self ) -> Any: a : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator a : List[Any] = self.get_dummy_components() a : str = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) a : Optional[int] = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : List[str] = self.get_dummy_inputs(__UpperCAmelCase ) a : List[str] = sd_pipe(**__UpperCAmelCase ).images a : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a : Tuple = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ) -> List[Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowercase_ ( self ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Dict: a : Union[str, Any] = self.get_dummy_components() a : str = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) a : List[Any] = sd_pipe.to(__UpperCAmelCase ) a : Union[str, Any] = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # forward without prompt embeds a : List[str] = self.get_dummy_inputs(__UpperCAmelCase ) a : int = 3 * ["""this is a negative prompt"""] a : str = negative_prompt a : Union[str, Any] = 3 * [inputs["""prompt"""]] a : str = sd_pipe(**__UpperCAmelCase ) a : Union[str, Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds a : List[str] = self.get_dummy_inputs(__UpperCAmelCase ) a : Union[str, Any] = 3 * ["""this is a negative prompt"""] a : Any = 3 * [inputs.pop('prompt' )] ( a ) : Any = sd_pipe.encode_prompt(__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) a : Union[str, Any] = sd_pipe( **__UpperCAmelCase , prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , pooled_prompt_embeds=__UpperCAmelCase , negative_pooled_prompt_embeds=__UpperCAmelCase , ) a : List[str] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> Optional[int]: a : Any = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a : Dict = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) a : Tuple = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) a : List[str] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowercase_ ( self ) -> Dict: a : str = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a : str = self.get_inputs(__UpperCAmelCase ) a : Dict = pipe(**__UpperCAmelCase ).images a : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) a : List[str] = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
708
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ : int = get_tests_dir("fixtures/test_sentencepiece.model") SCREAMING_SNAKE_CASE__ : Optional[int] = get_tests_dir("fixtures/test_sentencepiece_bpe.model") SCREAMING_SNAKE_CASE__ : Tuple = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class A_ ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowercase : str = CamembertTokenizer lowercase : str = CamembertTokenizerFast lowercase : List[str] = True lowercase : Tuple = True def lowercase_ ( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing a : List[str] = CamembertTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ) -> int: a : Dict = '<pad>' a : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def lowercase_ ( self ) -> List[str]: a : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(__UpperCAmelCase ) , 10_04 ) def lowercase_ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowercase_ ( self ) -> int: a : List[str] = CamembertTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) a : str = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) a : Tuple = 'I was born in 92000, and this is falsé.' a : Union[str, Any] = tokenizer.encode(__UpperCAmelCase ) a : Union[str, Any] = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a : Dict = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) a : Tuple = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) a : Tuple = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) a : Tuple = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( self ) -> str: if not self.test_rust_tokenizer: return a : Tuple = self.get_tokenizer() a : List[str] = self.get_rust_tokenizer() a : Optional[Any] = 'I was born in 92000, and this is falsé.' a : Optional[int] = tokenizer.tokenize(__UpperCAmelCase ) a : str = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a : Optional[int] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) a : Tuple = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a : str = self.get_rust_tokenizer() a : List[Any] = tokenizer.encode(__UpperCAmelCase ) a : List[Any] = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowercase_ ( self ) -> List[str]: # fmt: off a : Optional[int] = {'input_ids': [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. a : Any = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=__UpperCAmelCase , )
509
0
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class _snake_case (__SCREAMING_SNAKE_CASE): def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = SMALL_MODEL_IDENTIFIER UpperCAmelCase_ : List[Any] = "pt" UpperCAmelCase_ : List[str] = "tf" def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : str = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : int = TFAutoModel.from_pretrained(self.test_model ,from_pt=_snake_case ) model_tf.save_pretrained(_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[Any] = "mock_framework" # Framework provided - return whatever the user provides UpperCAmelCase_ : List[Any] = FeaturesManager.determine_framework(self.test_model ,_snake_case ) self.assertEqual(_snake_case ,_snake_case ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_snake_case ) UpperCAmelCase_ : Optional[Any] = FeaturesManager.determine_framework(_snake_case ,_snake_case ) self.assertEqual(_snake_case ,_snake_case ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_snake_case ) UpperCAmelCase_ : int = FeaturesManager.determine_framework(_snake_case ,_snake_case ) self.assertEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_snake_case ) UpperCAmelCase_ : List[str] = FeaturesManager.determine_framework(_snake_case ) self.assertEqual(_snake_case ,self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_snake_case ) UpperCAmelCase_ : Any = FeaturesManager.determine_framework(_snake_case ) self.assertEqual(_snake_case ,self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_snake_case ): UpperCAmelCase_ : List[Any] = FeaturesManager.determine_framework(_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = MagicMock(return_value=_snake_case ) with patch("transformers.onnx.features.is_tf_available" ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_snake_case ,self.framework_pt ) # PyTorch not in environment -> use TensorFlow UpperCAmelCase_ : Dict = MagicMock(return_value=_snake_case ) with patch("transformers.onnx.features.is_torch_available" ,_snake_case ): UpperCAmelCase_ : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_snake_case ,self.framework_tf ) # Both in environment -> use PyTorch UpperCAmelCase_ : List[Any] = MagicMock(return_value=_snake_case ) UpperCAmelCase_ : Union[str, Any] = MagicMock(return_value=_snake_case ) with patch("transformers.onnx.features.is_tf_available" ,_snake_case ), patch( "transformers.onnx.features.is_torch_available" ,_snake_case ): UpperCAmelCase_ : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_snake_case ,self.framework_pt ) # Both not in environment -> raise error UpperCAmelCase_ : Optional[int] = MagicMock(return_value=_snake_case ) UpperCAmelCase_ : Any = MagicMock(return_value=_snake_case ) with patch("transformers.onnx.features.is_tf_available" ,_snake_case ), patch( "transformers.onnx.features.is_torch_available" ,_snake_case ): with self.assertRaises(_snake_case ): UpperCAmelCase_ : Dict = FeaturesManager.determine_framework(self.test_model )
71
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase__ : """simple docstring""" def __init__( self : str ,a__ : Union[str, Any] ,a__ : Any=13 ,a__ : Dict=30 ,a__ : Union[str, Any]=2 ,a__ : Optional[Any]=3 ,a__ : List[Any]=True ,a__ : str=True ,a__ : Tuple=32 ,a__ : Any=5 ,a__ : Dict=4 ,a__ : Dict=37 ,a__ : List[Any]="gelu" ,a__ : List[Any]=0.1 ,a__ : Union[str, Any]=0.1 ,a__ : Optional[int]=10 ,a__ : Dict=0.02 ,a__ : List[str]=None ,): a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = type_sequence_label_size a__ = initializer_range a__ = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ = (image_size // patch_size) ** 2 a__ = num_patches + 1 def lowerCAmelCase_ ( self : Dict ): a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : Tuple ): return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def lowerCAmelCase_ ( self : str ,a__ : Any ,a__ : Tuple ,a__ : Optional[Any] ): a__ = ViTMSNModel(config=a__ ) model.to(a__ ) model.eval() a__ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[Any] ,a__ : Union[str, Any] ,a__ : List[Any] ,a__ : List[str] ): a__ = self.type_sequence_label_size a__ = ViTMSNForImageClassification(a__ ) model.to(a__ ) model.eval() a__ = model(a__ ,labels=a__ ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ = 1 a__ = ViTMSNForImageClassification(a__ ) model.to(a__ ) model.eval() a__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Union[str, Any] ): a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase__ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () UpperCamelCase__ = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def lowerCAmelCase_ ( self : List[Any] ): a__ = ViTMSNModelTester(self ) a__ = ConfigTester(self ,config_class=a__ ,has_text_modality=a__ ,hidden_size=37 ) def lowerCAmelCase_ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ ,nn.Linear ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(a__ ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ["pixel_values"] self.assertListEqual(arg_names[:1] ,a__ ) def lowerCAmelCase_ ( self : Optional[Any] ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowerCAmelCase_ ( self : Optional[int] ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def lowerCAmelCase_ ( self : Optional[int] ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = ViTMSNModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def _lowerCAmelCase (): """simple docstring""" a__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase_ ( self : Dict ): return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(2 ) a__ = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(a__ ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=a__ ,return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): a__ = model(**a__ ) # verify the logits a__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,a__ ) a__ = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,a__ ,atol=1e-4 ) )
331
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class _a ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Any = """van""" def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3, 3] , __UpperCAmelCase=[4, 2, 2, 2] , __UpperCAmelCase=[64, 128, 320, 512] , __UpperCAmelCase=[3, 3, 12, 3] , __UpperCAmelCase=[8, 8, 4, 4] , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=1e-2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , **__UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) __A : Optional[int] = image_size __A : str = num_channels __A : List[Any] = patch_sizes __A : Optional[int] = strides __A : Any = hidden_sizes __A : Tuple = depths __A : Tuple = mlp_ratios __A : Optional[int] = hidden_act __A : int = initializer_range __A : int = layer_norm_eps __A : int = layer_scale_init_value __A : Optional[Any] = drop_path_rate __A : List[Any] = dropout_rate
703
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase=5 ) -> str: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("<mask>" ) == 1 __A : Optional[Any] = torch.tensor(tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ).unsqueeze(0 ) # Batch size 1 __A : List[str] = model(_lowercase )[0] # The last hidden-state is the first element of the output tuple __A : Optional[int] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __A : Optional[Any] = logits[0, masked_index, :] __A : int = logits.softmax(dim=0 ) __A , __A : Union[str, Any] = prob.topk(k=_lowercase , dim=0 ) __A : Dict = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowercase ) )] ) __A : Dict = tokenizer.mask_token __A : str = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): __A : int = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(_lowercase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(_lowercase ) , _lowercase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_lowercase , _lowercase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs UpperCamelCase = CamembertTokenizer.from_pretrained('camembert-base') UpperCamelCase = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() UpperCamelCase = 'Le camembert est <mask> :)' print(fill_mask(masked_input, model, tokenizer, topk=3))
387
0
from __future__ import annotations from collections.abc import Iterator class A: '''simple docstring''' def __init__( self : Tuple , A_ : int ) -> None: """simple docstring""" lowerCamelCase_ = value lowerCamelCase_ = None lowerCamelCase_ = None class A: '''simple docstring''' def __init__( self : List[str] , A_ : Node ) -> None: """simple docstring""" lowerCamelCase_ = tree def a__ ( self : Optional[int] , A_ : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Tuple ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
70
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def A ( __snake_case: Optional[int] ) -> Tuple: """simple docstring""" for param in module.parameters(): __magic_name__ = False def A ( ) -> Optional[Any]: """simple docstring""" __magic_name__ = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __magic_name__ = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def A ( __snake_case: int ) -> List[Any]: """simple docstring""" __magic_name__ = plt.imshow(__snake_case ) fig.axes.get_xaxis().set_visible(__snake_case ) fig.axes.get_yaxis().set_visible(__snake_case ) plt.show() def A ( ) -> List[Any]: """simple docstring""" __magic_name__ = datetime.now() __magic_name__ = current_time.strftime('%H:%M:%S' ) return timestamp
545
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowerCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class a__ ( lowerCAmelCase_ ): lowerCamelCase__: Optional[int] = ["""pixel_values"""] def __init__( self : Dict , lowerCamelCase_ : bool = True , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ : bool = True , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : bool = True , **lowerCamelCase_ : Union[str, Any] , ): super().__init__(**lowerCamelCase_ ) a_ : Tuple = size if size is not None else {"""shortest_edge""": 2_2_4} a_ : Tuple = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) a_ : Tuple = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} a_ : List[str] = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ , param_name="""crop_size""" ) a_ : int = do_resize a_ : Tuple = size a_ : Any = resample a_ : Union[str, Any] = do_center_crop a_ : str = crop_size a_ : Dict = do_rescale a_ : int = rescale_factor a_ : Tuple = do_normalize a_ : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN a_ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD a_ : List[Any] = do_convert_rgb def UpperCAmelCase( self : str , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Tuple , ): a_ : Tuple = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) a_ : str = get_resize_output_image_size(lowerCamelCase_ , size=size["""shortest_edge"""] , default_to_square=lowerCamelCase_ ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase( self : Dict , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Dict , ): a_ : List[Any] = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCamelCase_ , size=(size["""height"""], size["""width"""]) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase( self : List[Any] , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Union[int, float] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : List[str] , ): return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Union[float, List[float]] , lowerCamelCase_ : Union[float, List[float]] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Any , ): return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase( self : Optional[int] , lowerCamelCase_ : ImageInput , lowerCamelCase_ : bool = None , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : PILImageResampling = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : int = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : float = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCamelCase_ : Any , ): a_ : List[str] = do_resize if do_resize is not None else self.do_resize a_ : Optional[Any] = size if size is not None else self.size a_ : Dict = get_size_dict(lowerCamelCase_ , param_name="""size""" , default_to_square=lowerCamelCase_ ) a_ : Optional[int] = resample if resample is not None else self.resample a_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop a_ : List[str] = crop_size if crop_size is not None else self.crop_size a_ : List[Any] = get_size_dict(lowerCamelCase_ , param_name="""crop_size""" , default_to_square=lowerCamelCase_ ) a_ : int = do_rescale if do_rescale is not None else self.do_rescale a_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : str = do_normalize if do_normalize is not None else self.do_normalize a_ : Tuple = image_mean if image_mean is not None else self.image_mean a_ : List[str] = image_std if image_std is not None else self.image_std a_ : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb a_ : Optional[int] = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: a_ : Tuple = [convert_to_rgb(lowerCamelCase_ ) for image in images] # All transformations expect numpy arrays. a_ : Tuple = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: a_ : List[str] = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: a_ : Dict = [self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: a_ : Tuple = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: a_ : Optional[Any] = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] a_ : List[Any] = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] a_ : Tuple = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
478
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _a ( __UpperCamelCase ): a_ : int = int(number**0.5 ) return number == sq * sq def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): a_ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den a_ : int = x_den * y_den * z_den a_ : int = gcd(__UpperCamelCase , __UpperCamelCase ) top //= hcf bottom //= hcf return top, bottom def _a ( __UpperCamelCase = 3_5 ): a_ : set = set() a_ : int a_ : Fraction = Fraction(0 ) a_ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 a_ : int = x_num * y_den + x_den * y_num a_ : Optional[int] = x_den * y_den a_ : Optional[Any] = gcd(__UpperCamelCase , __UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a_ : Optional[int] = add_three( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) unique_s.add(__UpperCamelCase ) # n=2 a_ : List[Any] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) a_ : str = x_den * x_den * y_den * y_den if is_sq(__UpperCamelCase ) and is_sq(__UpperCamelCase ): a_ : Optional[Any] = int(sqrt(__UpperCamelCase ) ) a_ : Optional[int] = int(sqrt(__UpperCamelCase ) ) a_ : Optional[Any] = gcd(__UpperCamelCase , __UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a_ : str = add_three( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) unique_s.add(__UpperCamelCase ) # n=-1 a_ : Union[str, Any] = x_num * y_num a_ : Tuple = x_den * y_num + x_num * y_den a_ : List[Any] = gcd(__UpperCamelCase , __UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a_ : Union[str, Any] = add_three( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) unique_s.add(__UpperCamelCase ) # n=2 a_ : Union[str, Any] = x_num * x_num * y_num * y_num a_ : Dict = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__UpperCamelCase ) and is_sq(__UpperCamelCase ): a_ : Dict = int(sqrt(__UpperCamelCase ) ) a_ : Union[str, Any] = int(sqrt(__UpperCamelCase ) ) a_ : Dict = gcd(__UpperCamelCase , __UpperCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a_ : List[Any] = add_three( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) unique_s.add(__UpperCamelCase ) for num, den in unique_s: total += Fraction(__UpperCamelCase , __UpperCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
478
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
68
'''simple docstring''' from __future__ import annotations def __UpperCamelCase( _A : list[int] , _A : int , _A : int , _A : int ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = array[indexa], array[indexa] def __UpperCamelCase( _A : list[int] , _A : int , _A : int , _A : int ): '''simple docstring''' if length > 1: UpperCAmelCase__ : List[Any] = int(length / 2 ) for i in range(_A , low + middle ): comp_and_swap(_A , _A , i + middle , _A ) bitonic_merge(_A , _A , _A , _A ) bitonic_merge(_A , low + middle , _A , _A ) def __UpperCamelCase( _A : list[int] , _A : int , _A : int , _A : int ): '''simple docstring''' if length > 1: UpperCAmelCase__ : Optional[int] = int(length / 2 ) bitonic_sort(_A , _A , _A , 1 ) bitonic_sort(_A , low + middle , _A , 0 ) bitonic_merge(_A , _A , _A , _A ) if __name__ == "__main__": UpperCamelCase__ : Dict = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase__ : Tuple = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
614
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def lowerCAmelCase (__UpperCamelCase : int ): """simple docstring""" __UpperCamelCase =3_8_4 if "tiny" in model_name: __UpperCamelCase =[3, 3, 9, 3] __UpperCamelCase =[9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: __UpperCamelCase =[3, 3, 2_7, 3] __UpperCamelCase =[9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: __UpperCamelCase =[3, 3, 2_7, 3] __UpperCamelCase =[1_2_8, 2_5_6, 5_1_2, 1_0_2_4] __UpperCamelCase =5_1_2 if "large" in model_name: __UpperCamelCase =[3, 3, 2_7, 3] __UpperCamelCase =[1_9_2, 3_8_4, 7_6_8, 1_5_3_6] __UpperCamelCase =7_6_8 if "xlarge" in model_name: __UpperCamelCase =[3, 3, 2_7, 3] __UpperCamelCase =[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] __UpperCamelCase =1_0_2_4 # set label information __UpperCamelCase =1_5_0 __UpperCamelCase ="""huggingface/label-files""" __UpperCamelCase ="""ade20k-id2label.json""" __UpperCamelCase =json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) __UpperCamelCase ={int(lowerCamelCase_ ): v for k, v in idalabel.items()} __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =ConvNextConfig( depths=lowerCamelCase_ , hidden_sizes=lowerCamelCase_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __UpperCamelCase =UperNetConfig( backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , ) return config def lowerCAmelCase (__UpperCamelCase : Optional[Any] ): """simple docstring""" __UpperCamelCase =[] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def lowerCAmelCase (__UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): """simple docstring""" __UpperCamelCase =dct.pop(lowerCamelCase_ ) __UpperCamelCase =val def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : List[str] ): """simple docstring""" __UpperCamelCase ={ """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } __UpperCamelCase =model_name_to_url[model_name] __UpperCamelCase =torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='''cpu''' )["""state_dict"""] __UpperCamelCase =get_upernet_config(lowerCamelCase_ ) __UpperCamelCase =UperNetForSemanticSegmentation(lowerCamelCase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCamelCase =state_dict.pop(lowerCamelCase_ ) if "bn" in key: __UpperCamelCase =key.replace('''bn''' , '''batch_norm''' ) __UpperCamelCase =val # rename keys __UpperCamelCase =create_rename_keys(lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # verify on image __UpperCamelCase ="""https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" __UpperCamelCase =Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('''RGB''' ) __UpperCamelCase =SegformerImageProcessor() __UpperCamelCase =processor(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values with torch.no_grad(): __UpperCamelCase =model(lowerCamelCase_ ) if model_name == "upernet-convnext-tiny": __UpperCamelCase =torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": __UpperCamelCase =torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": __UpperCamelCase =torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": __UpperCamelCase =torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": __UpperCamelCase =torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase_ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[f'''upernet-convnext-{size}''' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowercase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
713
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __lowercase = logging.get_logger(__name__) def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] ): """simple docstring""" try: with open(__UpperCamelCase , '''rb''' ) as flax_state_f: __UpperCamelCase =from_bytes(__UpperCamelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(__UpperCamelCase ) as f: if f.read().startswith('''version''' ): raise OSError( '''You seem to have cloned a repository without having git-lfs installed. Please''' ''' install git-lfs and run `git lfs install` followed by `git lfs pull` in the''' ''' folder you cloned.''' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase (__UpperCamelCase : Tuple , __UpperCamelCase : List[str] ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( '''Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights __UpperCamelCase =flatten_dict(jax.tree_util.tree_map(lambda __UpperCamelCase : x.dtype == jnp.bfloataa , __UpperCamelCase ) ).values() if any(__UpperCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) __UpperCamelCase =jax.tree_util.tree_map( lambda __UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __UpperCamelCase ) __UpperCamelCase ='''''' __UpperCamelCase =flatten_dict(__UpperCamelCase , sep='''.''' ) __UpperCamelCase =pt_model.state_dict() # keep track of unexpected & missing keys __UpperCamelCase =[] __UpperCamelCase =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __UpperCamelCase =flax_key_tuple.split('''.''' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __UpperCamelCase =flax_key_tuple_array[:-1] + ['''weight'''] __UpperCamelCase =jnp.transpose(__UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __UpperCamelCase =flax_key_tuple_array[:-1] + ['''weight'''] __UpperCamelCase =flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __UpperCamelCase =flax_key_tuple_array[:-1] + ['''weight'''] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__UpperCamelCase ): __UpperCamelCase =( flax_key_tuple_string.replace('''_0''' , '''.0''' ) .replace('''_1''' , '''.1''' ) .replace('''_2''' , '''.2''' ) .replace('''_3''' , '''.3''' ) .replace('''_4''' , '''.4''' ) .replace('''_5''' , '''.5''' ) .replace('''_6''' , '''.6''' ) .replace('''_7''' , '''.7''' ) .replace('''_8''' , '''.8''' ) .replace('''_9''' , '''.9''' ) ) __UpperCamelCase ='''.'''.join(__UpperCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict __UpperCamelCase =np.asarray(__UpperCamelCase ) if not isinstance(__UpperCamelCase , np.ndarray ) else flax_tensor __UpperCamelCase =torch.from_numpy(__UpperCamelCase ) # remove from missing keys missing_keys.remove(__UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__UpperCamelCase ) pt_model.load_state_dict(__UpperCamelCase ) # re-transform missing_keys to list __UpperCamelCase =list(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) if len(__UpperCamelCase ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) return pt_model
296
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') __snake_case :Dict =logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : A_ : Optional[int] = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : bool = field( default=_lowerCamelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) A_ : bool = field( default=_lowerCamelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) A_ : Optional[int] = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A_ : Optional[int] = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) A_ : Optional[int] = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class lowerCAmelCase__ : A_ : str = field( default=_lowerCamelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ : str = field( default=_lowerCamelCase , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Train language if it is different from the evaluation language.'} ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A_ : Optional[bool] = field( default=_lowerCamelCase , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) A_ : bool = field( default=_lowerCamelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) A_ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A_ : bool = field( default=_lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A_ : bool = field( default=_lowerCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCamelCase_ ( ) -> List[str]: '''simple docstring''' A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: A = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: A = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A = train_dataset.features['label'].names if training_args.do_eval: A = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A = eval_dataset.features['label'].names if training_args.do_predict: A = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A = predict_dataset.features['label'].names # Labels A = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase__ , idalabel={str(lowerCAmelCase__ ): label for i, label in enumerate(lowerCAmelCase__ )} , labelaid={label: i for i, label in enumerate(lowerCAmelCase__ )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: A = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch A = False def preprocess_function(lowerCAmelCase__ : Dict ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=lowerCAmelCase__ , max_length=data_args.max_seq_length , truncation=lowerCAmelCase__ , ) if training_args.do_train: if data_args.max_train_samples is not None: A = min(len(lowerCAmelCase__ ) , data_args.max_train_samples ) A = train_dataset.select(range(lowerCAmelCase__ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): A = train_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCAmelCase__ ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: A = min(len(lowerCAmelCase__ ) , data_args.max_eval_samples ) A = eval_dataset.select(range(lowerCAmelCase__ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): A = eval_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: A = min(len(lowerCAmelCase__ ) , data_args.max_predict_samples ) A = predict_dataset.select(range(lowerCAmelCase__ ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): A = predict_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function A = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ : EvalPrediction ): A = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase__ ) else p.predictions A = np.argmax(lowerCAmelCase__ , axis=1 ) return metric.compute(predictions=lowerCAmelCase__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: A = default_data_collator elif training_args.fpaa: A = DataCollatorWithPadding(lowerCAmelCase__ , pad_to_multiple_of=8 ) else: A = None # Initialize our Trainer A = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: A = None if training_args.resume_from_checkpoint is not None: A = training_args.resume_from_checkpoint elif last_checkpoint is not None: A = last_checkpoint A = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) A = train_result.metrics A = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) A = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowerCAmelCase__ ) trainer.save_metrics('train' , lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) A = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) A = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics('eval' , lowerCAmelCase__ ) trainer.save_metrics('eval' , lowerCAmelCase__ ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) A , A , A = trainer.predict(lowerCAmelCase__ , metric_key_prefix='predict' ) A = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCAmelCase__ ) ) A = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics('predict' , lowerCAmelCase__ ) trainer.save_metrics('predict' , lowerCAmelCase__ ) A = np.argmax(lowerCAmelCase__ , axis=1 ) A = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(lowerCAmelCase__ ): A = label_list[item] writer.write(F'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
106
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = [0] * len(__SCREAMING_SNAKE_CASE ) lowercase = [] lowercase = [] lowercase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(__SCREAMING_SNAKE_CASE ) while queue: lowercase = queue.pop(0 ) cnt += 1 topo.append(__SCREAMING_SNAKE_CASE ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__SCREAMING_SNAKE_CASE ) if cnt != len(__SCREAMING_SNAKE_CASE ): print('Cycle exists' ) else: print(__SCREAMING_SNAKE_CASE ) # Adjacency List of Graph UpperCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
84
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __a = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self : List[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : int , snake_case_ : List[str] , snake_case_ : Tuple , ): super().__init__() self.register_modules( vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Union[str, Any] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case__ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase__ ) def lowerCamelCase ( self : str ): self.enable_attention_slicing(UpperCamelCase__ ) @torch.no_grad() def __call__( self : Optional[Any] , snake_case_ : List[Any] , snake_case_ : str = 512 , snake_case_ : Optional[int] = 512 , snake_case_ : int = 50 , snake_case_ : Union[str, Any] = 7.5 , snake_case_ : int = None , snake_case_ : Union[str, Any] = 1 , snake_case_ : Any = 0.0 , snake_case_ : List[Any] = None , snake_case_ : Tuple = None , snake_case_ : Any = "pil" , snake_case_ : int = True , snake_case_ : Any = None , snake_case_ : Union[str, Any] = 1 , snake_case_ : Optional[Any] = None , **snake_case_ : Dict , ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case__ : Tuple = 1 elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case__ : Dict = len(UpperCamelCase__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(UpperCamelCase__ )}." ) # get prompt text embeddings snake_case__ : Any = self.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) snake_case__ : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case__ : Union[str, Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) snake_case__ : Any = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: snake_case__ : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method snake_case__ : Dict = text_embeddings.shape snake_case__ : Any = text_embeddings.repeat(1 , UpperCamelCase__ , 1 ) snake_case__ : Any = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCamelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case__ : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case__ : List[str] if negative_prompt is None: snake_case__ : Dict = [''''''] elif type(UpperCamelCase__ ) is not type(UpperCamelCase__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(UpperCamelCase__ )} !=" f" {type(UpperCamelCase__ )}." ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): snake_case__ : Tuple = [negative_prompt] elif batch_size != len(UpperCamelCase__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(UpperCamelCase__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""" ) else: snake_case__ : Optional[Any] = negative_prompt snake_case__ : int = text_input_ids.shape[-1] snake_case__ : Dict = self.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="""pt""" , ) snake_case__ : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case__ : int = uncond_embeddings.shape[1] snake_case__ : List[str] = uncond_embeddings.repeat(UpperCamelCase__ , UpperCamelCase__ , 1 ) snake_case__ : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCamelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case__ : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case__ : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) snake_case__ : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) snake_case__ : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps snake_case__ : Any = torch.randn( UpperCamelCase__ , generator=UpperCamelCase__ , device="""cpu""" , dtype=UpperCamelCase__ ).to(self.device ) snake_case__ : Dict = torch.randn(UpperCamelCase__ , generator=UpperCamelCase__ , device="""cpu""" , dtype=UpperCamelCase__ ).to( self.device ) else: snake_case__ : Any = torch.randn( UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=UpperCamelCase__ ) snake_case__ : Optional[Any] = torch.randn(UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=UpperCamelCase__ ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) snake_case__ : Union[str, Any] = latents_reference.to(self.device ) snake_case__ : List[Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images snake_case__ : Union[str, Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 snake_case__ : Dict = (latents_shape[2] - latents_shape_reference[2]) // 2 snake_case__ : List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx snake_case__ : Optional[Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy snake_case__ : Dict = 0 if dx < 0 else dx snake_case__ : Optional[Any] = 0 if dy < 0 else dy snake_case__ : Union[str, Any] = max(-dx , 0 ) snake_case__ : str = max(-dy , 0 ) # import pdb # pdb.set_trace() snake_case__ : Union[str, Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(UpperCamelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand snake_case__ : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case__ : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case__ : Dict = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case__ : int = {} if accepts_eta: snake_case__ : Optional[Any] = eta for i, t in enumerate(self.progress_bar(UpperCamelCase__ ) ): # expand the latents if we are doing classifier free guidance snake_case__ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case__ : List[str] = self.scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) # predict the noise residual snake_case__ : List[Any] = self.unet(UpperCamelCase__ , UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ ).sample # perform guidance if do_classifier_free_guidance: snake_case__ : List[Any] = noise_pred.chunk(2 ) snake_case__ : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 snake_case__ : List[Any] = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : Optional[Any] = 1 / 0.18215 * latents snake_case__ : List[Any] = self.vae.decode(UpperCamelCase__ ).sample snake_case__ : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: snake_case__ : Optional[int] = self.feature_extractor(self.numpy_to_pil(UpperCamelCase__ ) , return_tensors="""pt""" ).to( self.device ) snake_case__ : List[Any] = self.safety_checker( images=UpperCamelCase__ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: snake_case__ : List[Any] = None if output_type == "pil": snake_case__ : Any = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=UpperCamelCase__ , nsfw_content_detected=UpperCamelCase__ )
711
'''simple docstring''' def __snake_case( _lowerCAmelCase = 600_851_475_143 ) -> int: try: snake_case__ : str = int(_lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) snake_case__ : Dict = 2 snake_case__ : Optional[Any] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case__ : Tuple = i while n % i == 0: snake_case__ : int = n // i i += 1 return int(_lowerCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
301
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : List[Any] = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
663
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> int: __lowerCamelCase : Optional[Any] = 1.5 __lowerCamelCase : Tuple = int(factor * num_class_images ) __lowerCamelCase : Tuple = ClipClient( url='https://knn.laion.ai/knn-service' ,indice_name='laion_400m' ,num_images=_lowerCAmelCase ,aesthetic_weight=0.1 ) os.makedirs(F'{class_data_dir}/images' ,exist_ok=_lowerCAmelCase ) if len(list(Path(F'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: __lowerCamelCase : Dict = client.query(text=_lowerCAmelCase ) if len(_lowerCAmelCase ) >= factor * num_class_images or num_images > 1E4: break else: __lowerCamelCase : Union[str, Any] = int(factor * num_images ) __lowerCamelCase : List[str] = ClipClient( url='https://knn.laion.ai/knn-service' ,indice_name='laion_400m' ,num_images=_lowerCAmelCase ,aesthetic_weight=0.1 ,) __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Tuple = 0 __lowerCamelCase : int = tqdm(desc='downloading real regularization images' ,total=_lowerCAmelCase ) with open(F'{class_data_dir}/caption.txt' ,'w' ) as fa, open(F'{class_data_dir}/urls.txt' ,'w' ) as fa, open( F'{class_data_dir}/images.txt' ,'w' ) as fa: while total < num_class_images: __lowerCamelCase : List[str] = class_images[count] count += 1 try: __lowerCamelCase : int = requests.get(images['url'] ) if img.status_code == 200: __lowerCamelCase : str = Image.open(BytesIO(img.content ) ) with open(F'{class_data_dir}/images/{total}.jpg' ,'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'{class_data_dir}/images/{total}.jpg' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def a_ ( ) -> Dict: __lowerCamelCase : Any = argparse.ArgumentParser('' ,add_help=_lowerCAmelCase ) parser.add_argument('--class_prompt' ,help='text prompt to retrieve images' ,required=_lowerCAmelCase ,type=_lowerCAmelCase ) parser.add_argument('--class_data_dir' ,help='path to save images' ,required=_lowerCAmelCase ,type=_lowerCAmelCase ) parser.add_argument('--num_class_images' ,help='number of images to download' ,default=200 ,type=_lowerCAmelCase ) return parser.parse_args() if __name__ == "__main__": _UpperCamelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
459
0
"""simple docstring""" import unittest from transformers import DonutProcessor lowerCAmelCase__ = '''naver-clova-ix/donut-base''' class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = DonutProcessor.from_pretrained(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : str = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } _lowerCamelCase : Dict = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) _lowerCamelCase : Union[str, Any] = self.processor.tokenajson(__lowerCAmelCase ) self.assertDictEqual(__lowerCAmelCase , __lowerCAmelCase )
720
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def snake_case_ ( A_ : Union[str, Any], A_ : Optional[Any]="shi-labs/oneformer_demo" ): '''simple docstring''' with open(hf_hub_download(A_, A_, repo_type='''dataset''' ), '''r''' ) as f: _lowerCamelCase : Tuple = json.load(A_ ) _lowerCamelCase : int = {} _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = [] for key, info in class_info.items(): _lowerCamelCase : Optional[int] = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(A_ ) ) _lowerCamelCase : List[Any] = thing_ids _lowerCamelCase : Any = class_names return metadata class __snake_case ( unittest.TestCase): def __init__( self : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Any=3 , __lowerCAmelCase : Tuple=3_0 , __lowerCAmelCase : Optional[int]=4_0_0 , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Tuple=[0.5, 0.5, 0.5] , __lowerCAmelCase : List[Any]=[0.5, 0.5, 0.5] , __lowerCAmelCase : Union[str, Any]=1_0 , __lowerCAmelCase : str=False , __lowerCAmelCase : int=2_5_5 , __lowerCAmelCase : Dict="shi-labs/oneformer_demo" , __lowerCAmelCase : str="ade20k_panoptic.json" , __lowerCAmelCase : Dict=1_0 , ): """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : int = batch_size _lowerCamelCase : List[str] = num_channels _lowerCamelCase : int = min_resolution _lowerCamelCase : Tuple = max_resolution _lowerCamelCase : Dict = do_resize _lowerCamelCase : Dict = {'''shortest_edge''': 3_2, '''longest_edge''': 1_3_3_3} if size is None else size _lowerCamelCase : List[str] = do_normalize _lowerCamelCase : Optional[Any] = image_mean _lowerCamelCase : Optional[int] = image_std _lowerCamelCase : Any = class_info_file _lowerCamelCase : Any = prepare_metadata(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Tuple = num_text _lowerCamelCase : int = repo_path # for the post_process_functions _lowerCamelCase : int = 2 _lowerCamelCase : Union[str, Any] = 1_0 _lowerCamelCase : str = 1_0 _lowerCamelCase : Union[str, Any] = 3 _lowerCamelCase : List[Any] = 4 _lowerCamelCase : str = num_labels _lowerCamelCase : Any = do_reduce_labels _lowerCamelCase : Tuple = ignore_index def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int]=False ): """simple docstring""" if not batched: _lowerCamelCase : Tuple = image_inputs[0] if isinstance(__lowerCAmelCase , Image.Image ): _lowerCamelCase , _lowerCamelCase : List[str] = image.size else: _lowerCamelCase , _lowerCamelCase : int = image.shape[1], image.shape[2] if w < h: _lowerCamelCase : Any = int(self.size['''shortest_edge'''] * h / w ) _lowerCamelCase : Union[str, Any] = self.size['''shortest_edge'''] elif w > h: _lowerCamelCase : Union[str, Any] = self.size['''shortest_edge'''] _lowerCamelCase : Dict = int(self.size['''shortest_edge'''] * w / h ) else: _lowerCamelCase : int = self.size['''shortest_edge'''] _lowerCamelCase : Optional[Any] = self.size['''shortest_edge'''] else: _lowerCamelCase : Optional[Any] = [] for image in image_inputs: _lowerCamelCase , _lowerCamelCase : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCamelCase : Tuple = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[0] )[0] _lowerCamelCase : Optional[int] = max(__lowerCAmelCase , key=lambda __lowerCAmelCase : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : List[str] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string snake_case__ : List[str] = image_processing_class def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''ignore_index''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''class_info_file''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''num_text''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''repo_path''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''metadata''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_reduce_labels''' ) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : str = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _lowerCamelCase : Optional[int] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase : Any = self.image_processing_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase : Dict = self.image_processing_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _lowerCamelCase : int = image_processor( __lowerCAmelCase , ['''semantic'''] * len(__lowerCAmelCase ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : Any = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _lowerCamelCase : Optional[int] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase : Optional[Any] = self.image_processing_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase : Tuple = self.image_processing_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _lowerCamelCase : List[Any] = image_processor( __lowerCAmelCase , ['''semantic'''] * len(__lowerCAmelCase ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _lowerCamelCase : Union[str, Any] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.image_processing_tester.get_expected_values(__lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.image_processing_tester.get_expected_values(__lowerCAmelCase , batched=__lowerCAmelCase ) _lowerCamelCase : int = image_processor( __lowerCAmelCase , ['''semantic'''] * len(__lowerCAmelCase ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[Any]="np" ): """simple docstring""" _lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _lowerCamelCase : Optional[Any] = self.image_processing_tester.num_labels _lowerCamelCase : List[str] = None _lowerCamelCase : Dict = None _lowerCamelCase : Any = prepare_image_inputs(self.image_processing_tester , equal_resolution=__lowerCAmelCase ) if with_segmentation_maps: _lowerCamelCase : int = num_labels if is_instance_map: _lowerCamelCase : List[Any] = list(range(__lowerCAmelCase ) ) * 2 _lowerCamelCase : Dict = dict(enumerate(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _lowerCamelCase : str = [Image.fromarray(__lowerCAmelCase ) for annotation in annotations] _lowerCamelCase : List[str] = image_processor( __lowerCAmelCase , ['''semantic'''] * len(__lowerCAmelCase ) , __lowerCAmelCase , return_tensors='''pt''' , instance_id_to_semantic_id=__lowerCAmelCase , pad_and_return_pixel_mask=__lowerCAmelCase , ) return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" def common(__lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[str]=None ): _lowerCamelCase : Dict = self.comm_get_image_processor_inputs( with_segmentation_maps=__lowerCAmelCase , is_instance_map=__lowerCAmelCase , segmentation_type=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = inputs['''mask_labels'''] _lowerCamelCase : Union[str, Any] = inputs['''class_labels'''] _lowerCamelCase : Dict = inputs['''pixel_values'''] _lowerCamelCase : int = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(__lowerCAmelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=__lowerCAmelCase ) common(is_instance_map=__lowerCAmelCase , segmentation_type='''pil''' ) common(is_instance_map=__lowerCAmelCase , segmentation_type='''pil''' ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[int] = np.zeros((2_0, 5_0) ) _lowerCamelCase : Tuple = 1 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Tuple = 1 _lowerCamelCase : int = binary_mask_to_rle(__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) , 4 ) self.assertEqual(rle[0] , 2_1 ) self.assertEqual(rle[1] , 4_5 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) _lowerCamelCase : Any = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCamelCase : int = fature_extractor.post_process_semantic_segmentation(__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _lowerCamelCase : Any = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _lowerCamelCase : Dict = fature_extractor.post_process_semantic_segmentation(__lowerCAmelCase , target_sizes=__lowerCAmelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) _lowerCamelCase : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCamelCase : Optional[Any] = image_processor.post_process_instance_segmentation(__lowerCAmelCase , threshold=0 ) self.assertTrue(len(__lowerCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __lowerCAmelCase ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Dict = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) _lowerCamelCase : Union[str, Any] = self.image_processing_tester.get_fake_oneformer_outputs() _lowerCamelCase : Optional[Any] = image_processor.post_process_panoptic_segmentation(__lowerCAmelCase , threshold=0 ) self.assertTrue(len(__lowerCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __lowerCAmelCase ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
598
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _a ( __lowerCamelCase ): '''simple docstring''' lowerCamelCase_ : Any = """marian""" lowerCamelCase_ : Optional[Any] = ["""past_key_values"""] lowerCamelCase_ : str = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __UpperCAmelCase=58_101 , __UpperCAmelCase=None , __UpperCAmelCase=1_024 , __UpperCAmelCase=12 , __UpperCAmelCase=4_096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4_096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="gelu" , __UpperCAmelCase=1_024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=58_100 , __UpperCAmelCase=False , __UpperCAmelCase=58_100 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=True , **__UpperCAmelCase , ): __A : str = vocab_size __A : Optional[Any] = decoder_vocab_size or vocab_size __A : List[Any] = max_position_embeddings __A : Optional[Any] = d_model __A : List[Any] = encoder_ffn_dim __A : Dict = encoder_layers __A : str = encoder_attention_heads __A : Optional[Any] = decoder_ffn_dim __A : Union[str, Any] = decoder_layers __A : int = decoder_attention_heads __A : int = dropout __A : Dict = attention_dropout __A : List[str] = activation_dropout __A : List[str] = activation_function __A : List[Any] = init_std __A : Union[str, Any] = encoder_layerdrop __A : Any = decoder_layerdrop __A : List[str] = use_cache __A : List[Any] = encoder_layers __A : Any = scale_embedding # scale factor will be sqrt(d_model) if True __A : List[Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , ) class _a ( __lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __UpperCAmelCase( self ): if self.task in ["default", "seq2seq-lm"]: __A : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __A : List[Any] = {0: '''batch'''} __A : Dict = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __A : Dict = {0: '''batch''', 1: '''decoder_sequence'''} __A : str = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowercase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. __A : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __A : Any = self.num_layers for i in range(__lowercase ): __A : Dict = {0: '''batch''', 2: '''past_sequence + sequence'''} __A : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __A : Dict = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __UpperCAmelCase( self ): if self.task in ["default", "seq2seq-lm"]: __A : Optional[Any] = super().outputs else: __A : List[Any] = super(__lowercase , self ).outputs if self.use_past: __A : List[str] = self.num_layers for i in range(__lowercase ): __A : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} __A : Dict = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ): __A : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Generate decoder inputs __A : List[Any] = seq_length if not self.use_past else 1 __A : Dict = self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __A : Dict = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __A : Optional[Any] = dict(**__lowercase , **__lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __A : Optional[int] = common_inputs['''input_ids'''].shape __A : Optional[Any] = common_inputs['''decoder_input_ids'''].shape[1] __A : int = self.num_attention_heads __A : List[str] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __A : Optional[Any] = decoder_seq_length + 3 __A : List[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __A : List[str] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__lowercase , __lowercase )] , dim=1 ) __A : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __A : Optional[Any] = self.num_layers __A : Optional[int] = min(__lowercase , __lowercase ) __A : Optional[int] = max(__lowercase , __lowercase ) - min_num_layers __A : List[Any] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), ) ) # TODO: test this. __A : Dict = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__lowercase , __lowercase ): common_inputs["past_key_values"].append((torch.zeros(__lowercase ), torch.zeros(__lowercase )) ) return common_inputs def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ): __A : Tuple = self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __A : Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __A : Tuple = seqlen + 2 __A : List[str] = self.num_layers __A : List[Any] = self.num_attention_heads __A : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __A : List[Any] = common_inputs['''attention_mask'''].dtype __A : int = torch.cat( [common_inputs["attention_mask"], torch.ones(__lowercase , __lowercase , dtype=__lowercase )] , dim=1 ) __A : Tuple = [ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(__lowercase ) ] return common_inputs def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __A : Tuple = compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __A : str = tokenizer.num_special_tokens_to_add(__lowercase ) __A : Tuple = compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence __A : str = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __A : Optional[int] = dict(tokenizer(__lowercase , return_tensors=__lowercase ) ) return common_inputs def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: __A : Optional[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) else: __A : Tuple = self._generate_dummy_inputs_for_causal_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) return common_inputs def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if self.task in ["default", "seq2seq-lm"]: __A : Dict = super()._flatten_past_key_values_(__lowercase , __lowercase , __lowercase , __lowercase ) else: __A : Optional[int] = super(__lowercase , self )._flatten_past_key_values_( __lowercase , __lowercase , __lowercase , __lowercase ) @property def __UpperCAmelCase( self ): return 1e-4
520
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer A__ = logging.get_logger(__name__) A__ = {'''vocab_file''': '''vocab.txt'''} A__ = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } A__ = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } A__ = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class a ( __lowerCamelCase ): __lowerCAmelCase : List[str] = VOCAB_FILES_NAMES __lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[Any] = ConvBertTokenizer def __init__( self :Any ,__lowercase :Optional[int]=None ,__lowercase :str=None ,__lowercase :Union[str, Any]=True ,__lowercase :Dict="[UNK]" ,__lowercase :List[Any]="[SEP]" ,__lowercase :int="[PAD]" ,__lowercase :Union[str, Any]="[CLS]" ,__lowercase :List[str]="[MASK]" ,__lowercase :List[Any]=True ,__lowercase :List[str]=None ,**__lowercase :List[str] ,): super().__init__( __lowercase ,tokenizer_file=__lowercase ,do_lower_case=__lowercase ,unk_token=__lowercase ,sep_token=__lowercase ,pad_token=__lowercase ,cls_token=__lowercase ,mask_token=__lowercase ,tokenize_chinese_chars=__lowercase ,strip_accents=__lowercase ,**__lowercase ,) snake_case__ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,__lowercase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,__lowercase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,__lowercase ) != tokenize_chinese_chars ): snake_case__ : Union[str, Any] = getattr(__lowercase ,normalizer_state.pop('''type''' ) ) snake_case__ : int = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : List[str] = tokenize_chinese_chars snake_case__ : Tuple = normalizer_class(**__lowercase ) snake_case__ : Any = do_lower_case def __lowerCamelCase ( self :int ,__lowercase :Union[str, Any] ,__lowercase :List[Any]=None ): snake_case__ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self :List[Any] ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : str = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ,__lowercase :Optional[str] = None ): snake_case__ : Optional[int] = self._tokenizer.model.save(__lowercase ,name=__lowercase ) return tuple(__lowercase )
252
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Union[str, Any] = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
705
'''simple docstring''' from typing import Any class lowerCAmelCase : def __init__( self , snake_case__ ): lowerCAmelCase : Optional[int] = data lowerCAmelCase : Optional[Any] = None def __repr__( self ): return f"Node({self.data})" class lowerCAmelCase : def __init__( self ): lowerCAmelCase : Dict = None def __iter__( self ): lowerCAmelCase : Optional[Any] = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase : Any = self.head for _ in range(snake_case__ ): lowerCAmelCase : List[str] = current.next lowerCAmelCase : int = data def lowercase ( self , snake_case__ ): self.insert_nth(len(self ) , snake_case__ ) def lowercase ( self , snake_case__ ): self.insert_nth(0 , snake_case__ ) def lowercase ( self , snake_case__ , snake_case__ ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase : List[str] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : int = new_node elif index == 0: lowerCAmelCase : List[Any] = self.head # link new_node to head lowerCAmelCase : List[Any] = new_node else: lowerCAmelCase : List[Any] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Any = temp.next lowerCAmelCase : str = new_node def lowercase ( self ): # print every node data print(self ) def lowercase ( self ): return self.delete_nth(0 ) def lowercase ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def lowercase ( self , snake_case__ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase : List[str] = self.head # default first node if index == 0: lowerCAmelCase : Tuple = self.head.next else: lowerCAmelCase : Dict = self.head for _ in range(index - 1 ): lowerCAmelCase : Tuple = temp.next lowerCAmelCase : Dict = temp.next lowerCAmelCase : Tuple = temp.next.next return delete_node.data def lowercase ( self ): return self.head is None def lowercase ( self ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Any = self.head while current: # Store the current node's next node. lowerCAmelCase : List[str] = current.next # Make the current node's next point backwards lowerCAmelCase : int = prev # Make the previous node be the current node lowerCAmelCase : int = current # Make the current node the next node (to progress iteration) lowerCAmelCase : Optional[Any] = next_node # Return prev in order to put the head at the end lowerCAmelCase : List[Any] = prev def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(_A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_A ) == i linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_A ) == 9 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_A ) == "->".join(str(_A ) for i in range(-8 , 1 ) ) def __UpperCamelCase ( ) -> None: """simple docstring""" lowerCAmelCase : Optional[int] = [ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -1_92.5_55_55, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : Optional[Any] = linked_list.delete_head() assert result == -9 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(_A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_A ) assert ( str(_A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> List[Any]: """simple docstring""" from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_A ) print('\nReading/changing Node data using indexing:' ) print(F"Element at Position 1: {linked_list[1]}" ) lowerCAmelCase : Tuple = input('Enter New Value: ' ).strip() print('New list:' ) print(_A ) print(F"length of linked_list is : {len(_A )}" ) if __name__ == "__main__": main()
646
0
def a(lowercase__ ): '''simple docstring''' snake_case_ = len(lowercase__ ) snake_case_ = sum(lowercase__ ) snake_case_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): snake_case_ = True for i in range(1 , s + 1 ): snake_case_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): snake_case_ = dp[i][j - 1] if arr[i - 1] <= j: snake_case_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: snake_case_ = s - 2 * j break return diff
187
def a(lowercase__ ): '''simple docstring''' snake_case_ = len(lowercase__ ) for _ in range(lowercase__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: snake_case_ , snake_case_ = arr[i + 1], arr[i] return arr if __name__ == "__main__": A = list(range(10, 0, -1)) print(f"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
187
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCAmelCase = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } __UpperCAmelCase = { """gpt-neox-20b""": 2048, } class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Optional[Any] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , __SCREAMING_SNAKE_CASE) != add_prefix_space: UpperCamelCase__ : int =getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop("type")) UpperCamelCase__ : List[Any] =add_prefix_space UpperCamelCase__ : List[str] =pre_tok_class(**__SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[Any] =add_prefix_space def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None) -> Tuple[str]: """simple docstring""" UpperCamelCase__ : Tuple =self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE) return tuple(__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE) -> List[int]: """simple docstring""" UpperCamelCase__ : Union[str, Any] =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE) + [self.eos_token_id]) if len(__SCREAMING_SNAKE_CASE) > self.model_max_length: UpperCamelCase__ : Optional[Any] =input_ids[-self.model_max_length :] return input_ids
582
def _lowerCamelCase ( A_ : int , A_ : int ) -> int: '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def _lowerCamelCase ( ) -> None: '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
582
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=99 , lowercase=13 , lowercase=16 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=2 , lowercase=32 , lowercase=4 , lowercase=4 , lowercase=30 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=None , ) -> Optional[int]: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = decoder_seq_length # For common tests lowerCamelCase_ = self.decoder_seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_attention_mask lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = d_model lowerCamelCase_ = d_model lowerCamelCase_ = decoder_layers lowerCamelCase_ = decoder_layers lowerCamelCase_ = decoder_ffn_dim lowerCamelCase_ = decoder_attention_heads lowerCamelCase_ = decoder_attention_heads lowerCamelCase_ = eos_token_id lowerCamelCase_ = bos_token_id lowerCamelCase_ = pad_token_id lowerCamelCase_ = decoder_start_token_id lowerCamelCase_ = use_cache lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = None lowerCamelCase_ = decoder_seq_length lowerCamelCase_ = 2 lowerCamelCase_ = 1 def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_attention_mask: lowerCamelCase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowerCamelCase_ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , ) -> Any: lowerCamelCase_ = True lowerCamelCase_ = TrOCRDecoder(config=lowercase ).to(lowercase ).eval() lowerCamelCase_ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowerCamelCase_ = model(lowercase , use_cache=lowercase ) lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = model(lowercase , use_cache=lowercase ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) + 1 ) lowerCamelCase_ = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowerCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ = model(lowercase )["last_hidden_state"] lowerCamelCase_ = model(lowercase , past_key_values=lowercase )["last_hidden_state"] # select random slice lowerCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowerCamelCase_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowercase , lowercase , atol=1e-3 ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ = True lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = TrOCRStandaloneDecoderModelTester(self , is_training=lowercase ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE_( self ) -> str: pass def SCREAMING_SNAKE_CASE_( self ) -> int: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def SCREAMING_SNAKE_CASE_( self ) -> str: pass
463
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE_( self ) -> int: torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowerCamelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowerCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase_ = CLIPTextModel(lowercase ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase_ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=0 ) -> int: if str(lowercase ).startswith("mps" ): lowerCamelCase_ = torch.manual_seed(lowercase ) else: lowerCamelCase_ = torch.Generator(device=lowercase ).manual_seed(lowercase ) lowerCamelCase_ = 2 lowerCamelCase_ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase , device=torch.device(lowercase ) , ) lowerCamelCase_ = floats_tensor(control_image.shape , rng=random.Random(lowercase ) ).to(lowercase ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(lowercase ) ).convert("RGB" ).resize((64, 64) ) lowerCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def SCREAMING_SNAKE_CASE_( self ) -> Any: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def SCREAMING_SNAKE_CASE_( self ) -> Dict: torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowercase ): if isinstance(lowercase , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowerCamelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowercase ) torch.manual_seed(0 ) lowerCamelCase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowercase ) torch.manual_seed(0 ) lowerCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase_ = CLIPTextModel(lowercase ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase_ = MultiControlNetModel([controlneta, controlneta] ) lowerCamelCase_ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=0 ) -> List[Any]: if str(lowercase ).startswith("mps" ): lowerCamelCase_ = torch.manual_seed(lowercase ) else: lowerCamelCase_ = torch.Generator(device=lowercase ).manual_seed(lowercase ) lowerCamelCase_ = 2 lowerCamelCase_ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase , device=torch.device(lowercase ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase , device=torch.device(lowercase ) , ), ] lowerCamelCase_ = floats_tensor(control_image[0].shape , rng=random.Random(lowercase ) ).to(lowercase ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(lowercase ) ).convert("RGB" ).resize((64, 64) ) lowerCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**lowercase ) pipe.to(lowercase ) lowerCamelCase_ = 1_0.0 lowerCamelCase_ = 4 lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = steps lowerCamelCase_ = scale lowerCamelCase_ = pipe(**lowercase )[0] lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = steps lowerCamelCase_ = scale lowerCamelCase_ = pipe(**lowercase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = steps lowerCamelCase_ = scale lowerCamelCase_ = pipe(**lowercase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = steps lowerCamelCase_ = scale lowerCamelCase_ = pipe(**lowercase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def SCREAMING_SNAKE_CASE_( self ) -> Dict: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowercase ) except NotImplementedError: pass @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) lowerCamelCase_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=lowercase , controlnet=lowercase ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase_ = "evil space-punk bird" lowerCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512) ) lowerCamelCase_ = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512) ) lowerCamelCase_ = pipe( lowercase , lowercase , control_image=lowercase , generator=lowercase , output_type="np" , num_inference_steps=50 , strength=0.6 , ) lowerCamelCase_ = output.images[0] assert image.shape == (512, 512, 3) lowerCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9e-2
463
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowerCamelCase_ : Optional[int] = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowerCamelCase_ : List[Any] = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' lowerCamelCase_ : Optional[int] = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def A ( self : Tuple ) -> List[Any]: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def A ( self : str , lowercase : List[Any] , lowercase : Dict , lowercase : int = CHRF.CHAR_ORDER , lowercase : int = CHRF.WORD_ORDER , lowercase : int = CHRF.BETA , lowercase : bool = False , lowercase : bool = False , lowercase : bool = False , ) -> str: '''simple docstring''' UpperCamelCase__ = len(references[0] ) if any(len(lowercase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) UpperCamelCase__ = [[refs[i] for refs in references] for i in range(lowercase )] UpperCamelCase__ = CHRF(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) UpperCamelCase__ = sb_chrf.corpus_score(lowercase , lowercase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
265
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _SCREAMING_SNAKE_CASE ( yaml.SafeLoader ): '''simple docstring''' def A ( self : List[str] , lowercase : List[Any] ) -> int: '''simple docstring''' UpperCamelCase__ = [self.constructed_objects[key_node] for key_node, _ in node.value] UpperCamelCase__ = [tuple(lowercase ) if isinstance(lowercase , lowercase ) else key for key in keys] UpperCamelCase__ = Counter(lowercase ) UpperCamelCase__ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}" ) def A ( self : List[str] , lowercase : int , lowercase : str=False ) -> Any: '''simple docstring''' UpperCamelCase__ = super().construct_mapping(lowercase , deep=lowercase ) self._check_no_duplicates_on_constructed_node(lowercase ) return mapping def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: UpperCamelCase__ = full_content[1:].index("""---""" ) + 1 UpperCamelCase__ = """\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_A ) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : Tuple = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def A ( cls : int , lowercase : Path ) -> "DatasetMetadata": '''simple docstring''' with open(lowercase , encoding="""utf-8""" ) as readme_file: UpperCamelCase__ , UpperCamelCase__ = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowercase ) else: return cls() def A ( self : int , lowercase : Path ) -> Dict: '''simple docstring''' if path.exists(): with open(lowercase , encoding="""utf-8""" ) as readme_file: UpperCamelCase__ = readme_file.read() else: UpperCamelCase__ = None UpperCamelCase__ = self._to_readme(lowercase ) with open(lowercase , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(lowercase ) def A ( self : Any , lowercase : Optional[str] = None ) -> str: '''simple docstring''' if readme_content is not None: UpperCamelCase__ , UpperCamelCase__ = _split_yaml_from_readme(lowercase ) UpperCamelCase__ = """---\n""" + self.to_yaml_string() + """---\n""" + content else: UpperCamelCase__ = """---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def A ( cls : Tuple , lowercase : str ) -> "DatasetMetadata": '''simple docstring''' UpperCamelCase__ = yaml.load(lowercase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields UpperCamelCase__ = { (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowercase ) def A ( self : Dict ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowercase , allow_unicode=lowercase , encoding="""utf-8""" , ).decode("""utf-8""" ) lowerCamelCase_ : str = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser lowerCamelCase_ : Tuple = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') lowerCamelCase_ : str = ap.parse_args() lowerCamelCase_ : List[str] = Path(args.readme_filepath) lowerCamelCase_ : Tuple = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
265
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''xlm''' UpperCamelCase = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self : List[str] , _UpperCAmelCase : Tuple=30145 , _UpperCAmelCase : List[Any]=2048 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : str=16 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=512 , _UpperCAmelCase : Dict=2048**-0.5 , _UpperCAmelCase : List[Any]=1e-12 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Any="first" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=None , _UpperCAmelCase : int=True , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=0 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : str , ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = vocab_size UpperCAmelCase_ = emb_dim UpperCAmelCase_ = n_layers UpperCAmelCase_ = n_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = gelu_activation UpperCAmelCase_ = sinusoidal_embeddings UpperCAmelCase_ = causal UpperCAmelCase_ = asm UpperCAmelCase_ = n_langs UpperCAmelCase_ = use_lang_emb UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = bos_index UpperCAmelCase_ = eos_index UpperCAmelCase_ = pad_index UpperCAmelCase_ = unk_index UpperCAmelCase_ = mask_index UpperCAmelCase_ = is_encoder UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = embed_init_std UpperCAmelCase_ = init_std UpperCAmelCase_ = summary_type UpperCAmelCase_ = summary_use_proj UpperCAmelCase_ = summary_activation UpperCAmelCase_ = summary_proj_to_labels UpperCAmelCase_ = summary_first_dropout UpperCAmelCase_ = start_n_top UpperCAmelCase_ = end_n_top UpperCAmelCase_ = mask_token_id UpperCAmelCase_ = lang_id if "n_words" in kwargs: UpperCAmelCase_ = kwargs["n_words"] super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
82
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np lowerCamelCase = re.compile(r"""\b(a|an|the)\b""", re.UNICODE) lowerCamelCase = None def a__ ( ): UpperCAmelCase_ = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=lowerCAmelCase__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=lowerCAmelCase__ , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase_ = bool(qa["answers"]["text"] ) return qid_to_has_ans def a__ ( lowerCAmelCase__ ): def remove_articles(lowerCAmelCase__ ): return ARTICLES_REGEX.sub(" " , lowerCAmelCase__ ) def white_space_fix(lowerCAmelCase__ ): return " ".join(text.split() ) def remove_punc(lowerCAmelCase__ ): UpperCAmelCase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCAmelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCAmelCase__ ) ) ) ) def a__ ( lowerCAmelCase__ ): if not s: return [] return normalize_answer(lowerCAmelCase__ ).split() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): return int(normalize_answer(lowerCAmelCase__ ) == normalize_answer(lowerCAmelCase__ ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = get_tokens(lowerCAmelCase__ ) UpperCAmelCase_ = get_tokens(lowerCAmelCase__ ) UpperCAmelCase_ = collections.Counter(lowerCAmelCase__ ) & collections.Counter(lowerCAmelCase__ ) UpperCAmelCase_ = sum(common.values() ) if len(lowerCAmelCase__ ) == 0 or len(lowerCAmelCase__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCAmelCase_ = 1.0 * num_same / len(lowerCAmelCase__ ) UpperCAmelCase_ = 1.0 * num_same / len(lowerCAmelCase__ ) UpperCAmelCase_ = (2 * precision * recall) / (precision + recall) return fa def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = {} UpperCAmelCase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase_ = qa["id"] UpperCAmelCase_ = [t for t in qa["answers"]["text"] if normalize_answer(lowerCAmelCase__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCAmelCase_ = [""] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue UpperCAmelCase_ = preds[qid] # Take max over all gold answers UpperCAmelCase_ = max(compute_exact(lowerCAmelCase__ , lowerCAmelCase__ ) for a in gold_answers ) UpperCAmelCase_ = max(compute_fa(lowerCAmelCase__ , lowerCAmelCase__ ) for a in gold_answers ) return exact_scores, fa_scores def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = {} for qid, s in scores.items(): UpperCAmelCase_ = na_probs[qid] > na_prob_thresh if pred_na: UpperCAmelCase_ = float(not qid_to_has_ans[qid] ) else: UpperCAmelCase_ = s return new_scores def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): if not qid_list: UpperCAmelCase_ = len(lowerCAmelCase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: UpperCAmelCase_ = len(lowerCAmelCase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): for k in new_eval: UpperCAmelCase_ = new_eval[k] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): plt.step(lowerCAmelCase__ , lowerCAmelCase__ , color="b" , alpha=0.2 , where="post" ) plt.fill_between(lowerCAmelCase__ , lowerCAmelCase__ , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowerCAmelCase__ ) plt.savefig(lowerCAmelCase__ ) plt.clf() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ): UpperCAmelCase_ = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : na_probs[k] ) UpperCAmelCase_ = 0.0 UpperCAmelCase_ = 1.0 UpperCAmelCase_ = 0.0 UpperCAmelCase_ = [1.0] UpperCAmelCase_ = [0.0] UpperCAmelCase_ = 0.0 for i, qid in enumerate(lowerCAmelCase__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCAmelCase_ = true_pos / float(i + 1 ) UpperCAmelCase_ = true_pos / float(lowerCAmelCase__ ) if i == len(lowerCAmelCase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowerCAmelCase__ ) recalls.append(lowerCAmelCase__ ) if out_image: plot_pr_curve(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return {"ap": 100.0 * avg_prec} def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if out_image_dir and not os.path.exists(lowerCAmelCase__ ): os.makedirs(lowerCAmelCase__ ) UpperCAmelCase_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCAmelCase_ = make_precision_recall_eval( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , out_image=os.path.join(lowerCAmelCase__ , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) UpperCAmelCase_ = make_precision_recall_eval( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , out_image=os.path.join(lowerCAmelCase__ , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) UpperCAmelCase_ = {k: float(lowerCAmelCase__ ) for k, v in qid_to_has_ans.items()} UpperCAmelCase_ = make_precision_recall_eval( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , out_image=os.path.join(lowerCAmelCase__ , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(lowerCAmelCase__ , lowerCAmelCase__ , "pr_exact" ) merge_eval(lowerCAmelCase__ , lowerCAmelCase__ , "pr_f1" ) merge_eval(lowerCAmelCase__ , lowerCAmelCase__ , "pr_oracle" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if not qid_list: return UpperCAmelCase_ = [na_probs[k] for k in qid_list] UpperCAmelCase_ = np.ones_like(lowerCAmelCase__ ) / float(len(lowerCAmelCase__ ) ) plt.hist(lowerCAmelCase__ , weights=lowerCAmelCase__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(lowerCAmelCase__ , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCAmelCase_ = num_no_ans UpperCAmelCase_ = cur_score UpperCAmelCase_ = 0.0 UpperCAmelCase_ = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : na_probs[k] ) for i, qid in enumerate(lowerCAmelCase__ ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCAmelCase_ = scores[qid] else: if preds[qid]: UpperCAmelCase_ = -1 else: UpperCAmelCase_ = 0 cur_score += diff if cur_score > best_score: UpperCAmelCase_ = cur_score UpperCAmelCase_ = na_probs[qid] return 100.0 * best_score / len(lowerCAmelCase__ ), best_thresh def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ , UpperCAmelCase_ = find_best_thresh(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ , UpperCAmelCase_ = find_best_thresh(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = best_exact UpperCAmelCase_ = exact_thresh UpperCAmelCase_ = best_fa UpperCAmelCase_ = fa_thresh def a__ ( ): with open(OPTS.data_file ) as f: UpperCAmelCase_ = json.load(lowerCAmelCase__ ) UpperCAmelCase_ = dataset_json["data"] with open(OPTS.pred_file ) as f: UpperCAmelCase_ = json.load(lowerCAmelCase__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCAmelCase_ = json.load(lowerCAmelCase__ ) else: UpperCAmelCase_ = {k: 0.0 for k in preds} UpperCAmelCase_ = make_qid_to_has_ans(lowerCAmelCase__ ) # maps qid to True/False UpperCAmelCase_ = [k for k, v in qid_to_has_ans.items() if v] UpperCAmelCase_ = [k for k, v in qid_to_has_ans.items() if not v] UpperCAmelCase_ , UpperCAmelCase_ = get_raw_scores(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ = apply_no_ans_threshold(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , OPTS.na_prob_thresh ) UpperCAmelCase_ = apply_no_ans_threshold(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , OPTS.na_prob_thresh ) UpperCAmelCase_ = make_eval_dict(lowerCAmelCase__ , lowerCAmelCase__ ) if has_ans_qids: UpperCAmelCase_ = make_eval_dict(lowerCAmelCase__ , lowerCAmelCase__ , qid_list=lowerCAmelCase__ ) merge_eval(lowerCAmelCase__ , lowerCAmelCase__ , "HasAns" ) if no_ans_qids: UpperCAmelCase_ = make_eval_dict(lowerCAmelCase__ , lowerCAmelCase__ , qid_list=lowerCAmelCase__ ) merge_eval(lowerCAmelCase__ , lowerCAmelCase__ , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , OPTS.out_image_dir ) histogram_na_prob(lowerCAmelCase__ , lowerCAmelCase__ , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(lowerCAmelCase__ , lowerCAmelCase__ , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) else: print(json.dumps(lowerCAmelCase__ , indent=2 ) ) if __name__ == "__main__": lowerCamelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
82
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __magic_name__ ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' if "model" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.split(""".""" )[0].split("""_""" )[-1] __SCREAMING_SNAKE_CASE = orig_key.replace(f"""transformer_{layer_num}""" , f"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: __SCREAMING_SNAKE_CASE = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: __SCREAMING_SNAKE_CASE = """yoso.""" + orig_key return orig_key def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = orig_state_dict.pop(_UpperCAmelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: __SCREAMING_SNAKE_CASE = val __SCREAMING_SNAKE_CASE = orig_state_dict["""cls.predictions.decoder.bias"""] __SCREAMING_SNAKE_CASE = torch.arange(_UpperCAmelCase ).expand((1, -1) ) + 2 return orig_state_dict def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location="""cpu""" )["""model_state_dict"""] __SCREAMING_SNAKE_CASE = YosoConfig.from_json_file(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = YosoForMaskedLM(_UpperCAmelCase ) __SCREAMING_SNAKE_CASE = convert_checkpoint_helper(config.max_position_embeddings , _UpperCAmelCase ) print(model.load_state_dict(_UpperCAmelCase ) ) model.eval() model.save_pretrained(_UpperCAmelCase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
715
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a ( unittest.TestCase ): def __init__( self : Optional[int] ,lowerCamelCase : str ,lowerCamelCase : List[str]=13 ,lowerCamelCase : Optional[Any]=30 ,lowerCamelCase : Dict=2 ,lowerCamelCase : List[Any]=3 ,lowerCamelCase : List[str]=True ,lowerCamelCase : str=True ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Dict=5 ,lowerCamelCase : Optional[int]=4 ,lowerCamelCase : List[Any]=37 ,lowerCamelCase : Union[str, Any]="gelu" ,lowerCamelCase : List[Any]=0.1 ,lowerCamelCase : Any=0.1 ,lowerCamelCase : str=10 ,lowerCamelCase : Dict=0.02 ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase ,initializer_range=self.initializer_range ,) return config, pixel_values def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModel(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE = (self.patch_size, self.patch_size) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Optional[int] ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(config=lowerCamelCase ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FlaxViTForImageClassification(lowerCamelCase ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __a ( _snake_case, unittest.TestCase ): __UpperCamelCase : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase ,has_text_modality=lowerCamelCase ,hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) __SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = model_class(lowerCamelCase ) @jax.jit def model_jitted(lowerCamelCase : int ,**lowerCamelCase : Union[str, Any] ): return model(pixel_values=lowerCamelCase ,**lowerCamelCase ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ) ,len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase ,lowerCamelCase ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCamelCase )
13
0
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants A_ = 300 # TEMPERATURE (unit = K) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,): if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
29
def _lowerCamelCase ( __lowerCamelCase ) -> bool: '''simple docstring''' if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True UpperCAmelCase__ : Tuple = 4 UpperCAmelCase__ : Tuple = (1 << p) - 1 for _ in range(p - 2 ): UpperCAmelCase__ : List[str] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
79
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
708
from __future__ import annotations def a_ ( _A , _A ) -> str: """simple docstring""" # Checks if the entire collection has been sorted if len(_A ) <= 1 or n <= 1: return insert_next(_A , n - 1 ) rec_insertion_sort(_A , n - 1 ) def a_ ( _A , _A ) -> Tuple: """simple docstring""" # Checks order between adjacent elements if index >= len(_A ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order snake_case__ , snake_case__ = ( collection[index], collection[index - 1], ) insert_next(_A , index + 1 ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = input("""Enter integers separated by spaces: """) __UpperCamelCase : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
372
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' SCREAMING_SNAKE_CASE__ = Image.open(requests.get(_A , stream=_A ).raw ).convert('''RGB''' ) return image def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = dct.pop(_A ) SCREAMING_SNAKE_CASE__ = val def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) SCREAMING_SNAKE_CASE__ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict SCREAMING_SNAKE_CASE__ = torch.cat((q_bias, torch.zeros_like(_A , requires_grad=_A ), v_bias) ) SCREAMING_SNAKE_CASE__ = qkv_bias def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 3_64 if '''coco''' in model_name else 2_24 SCREAMING_SNAKE_CASE__ = BlipaVisionConfig(image_size=_A ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: SCREAMING_SNAKE_CASE__ = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=_A ).to_dict() elif "opt-6.7b" in model_name: SCREAMING_SNAKE_CASE__ = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=_A ).to_dict() elif "t5-xl" in model_name: SCREAMING_SNAKE_CASE__ = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE__ = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() SCREAMING_SNAKE_CASE__ = BlipaConfig(vision_config=_A , text_config=_A ) return config, image_size @torch.no_grad() def UpperCAmelCase_ ( _A , _A=None , _A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) SCREAMING_SNAKE_CASE__ = tokenizer('''\n''' , add_special_tokens=_A ).input_ids[0] SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = get_blipa_config(_A , eos_token_id=_A ) SCREAMING_SNAKE_CASE__ = BlipaForConditionalGeneration(_A ).eval() SCREAMING_SNAKE_CASE__ = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) SCREAMING_SNAKE_CASE__ = '''cuda''' if torch.cuda.is_available() else '''cpu''' SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = load_model_and_preprocess( name=_A , model_type=_A , is_eval=_A , device=_A ) original_model.eval() print('''Done!''' ) # update state dict keys SCREAMING_SNAKE_CASE__ = original_model.state_dict() SCREAMING_SNAKE_CASE__ = create_rename_keys(_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE__ = state_dict.pop(_A ) if key.startswith('''Qformer.bert''' ): SCREAMING_SNAKE_CASE__ = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: SCREAMING_SNAKE_CASE__ = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: SCREAMING_SNAKE_CASE__ = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: SCREAMING_SNAKE_CASE__ = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): SCREAMING_SNAKE_CASE__ = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): SCREAMING_SNAKE_CASE__ = key.replace('''t5''' , '''language''' ) SCREAMING_SNAKE_CASE__ = val # read in qv biases read_in_q_v_bias(_A , _A ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = hf_model.load_state_dict(_A , strict=_A ) assert len(_A ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] SCREAMING_SNAKE_CASE__ = load_demo_image() SCREAMING_SNAKE_CASE__ = vis_processors['''eval'''](_A ).unsqueeze(0 ).to(_A ) SCREAMING_SNAKE_CASE__ = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(_A ) # create processor SCREAMING_SNAKE_CASE__ = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=_A , image_std=_A ) SCREAMING_SNAKE_CASE__ = BlipaProcessor(image_processor=_A , tokenizer=_A ) SCREAMING_SNAKE_CASE__ = processor(images=_A , return_tensors='''pt''' ).pixel_values.to(_A ) # make sure processor creates exact same pixel values assert torch.allclose(_A , _A ) original_model.to(_A ) hf_model.to(_A ) with torch.no_grad(): if "opt" in model_name: SCREAMING_SNAKE_CASE__ = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits SCREAMING_SNAKE_CASE__ = hf_model(_A , _A ).logits else: SCREAMING_SNAKE_CASE__ = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits SCREAMING_SNAKE_CASE__ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) SCREAMING_SNAKE_CASE__ = hf_model(_A , _A , labels=_A ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": SCREAMING_SNAKE_CASE__ = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=_A ) assert torch.allclose(logits[0, :3, :3] , _A , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": SCREAMING_SNAKE_CASE__ = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=_A ) else: # cast to same type SCREAMING_SNAKE_CASE__ = logits.dtype assert torch.allclose(original_logits.to(_A ) , _A , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) SCREAMING_SNAKE_CASE__ = '''''' SCREAMING_SNAKE_CASE__ = tokenizer(_A , return_tensors='''pt''' ).input_ids.to(_A ) SCREAMING_SNAKE_CASE__ = original_model.generate({'''image''': original_pixel_values} ) SCREAMING_SNAKE_CASE__ = hf_model.generate( _A , _A , do_sample=_A , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , _A ) SCREAMING_SNAKE_CASE__ = input_ids.shape[1] SCREAMING_SNAKE_CASE__ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_A ) SCREAMING_SNAKE_CASE__ = [text.strip() for text in output_text] print('''HF generation:''' , _A ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_A ) hf_model.save_pretrained(_A ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() _SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) _SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
493
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _SCREAMING_SNAKE_CASE : str = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
493
1
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Tuple = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_UpperCamelCase, _UpperCamelCase ) def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase , __UpperCAmelCase : Dict = emb.weight.shape __UpperCAmelCase : Union[str, Any] = nn.Linear(_UpperCamelCase, _UpperCamelCase, bias=_UpperCamelCase ) __UpperCAmelCase : Optional[int] = emb.weight.data return lin_layer def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase=None ): __UpperCAmelCase : Optional[Any] = {} for old_key in state_dict.keys(): __UpperCAmelCase : str = old_key if "moe_layer.experts." in key: if expert_idx is not None: __UpperCAmelCase : Optional[Any] = key.replace("moe_layer.experts.0", F"ffn.experts.expert_{expert_idx}" ) else: __UpperCAmelCase : List[str] = key.replace("moe_layer.experts.", "ffn.experts.expert_" ) if "gate" in key: __UpperCAmelCase : List[str] = key.replace(".moe_layer.gate.wg", ".ffn.router.classifier" ) if "fc2" and "experts" not in key: __UpperCAmelCase : Any = key.replace(".fc2.", ".ffn.fc2." ) if "fc1" and "experts" not in key: __UpperCAmelCase : int = key.replace(".fc1.", ".ffn.fc1." ) if ".encoder_attn." in key: __UpperCAmelCase : Tuple = key.replace(".encoder_attn.", ".cross_attention." ) if "encoder_attn_layer_norm" in key: __UpperCAmelCase : Dict = key.replace("encoder_attn_layer_norm", "cross_attention_layer_norm" ) if "final_layer_norm" in key: __UpperCAmelCase : str = key.replace("final_layer_norm", "ff_layer_norm" ) __UpperCAmelCase : Any = state_dict[old_key] return new_dict def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = WEIGHTS_NAME ): __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Any = 0 os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) for expert in range(_UpperCamelCase ): __UpperCAmelCase : Dict = switch_checkpoint_path + F"-rank-{expert}.pt" if os.path.isfile(_UpperCamelCase ): __UpperCAmelCase : Tuple = torch.load(_UpperCamelCase )["model"] remove_ignore_keys_(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = rename_fairseq_keys(_UpperCamelCase, _UpperCamelCase ) __UpperCAmelCase : List[Any] = os.path.join( _UpperCamelCase, weights_name.replace(".bin", F"-{len(_UpperCamelCase )+1:05d}-of-???.bin" ) ) torch.save(_UpperCamelCase, _UpperCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_UpperCamelCase )[0]].dtype ) # Add the last block __UpperCAmelCase : List[str] = os.path.join(_UpperCamelCase, weights_name.replace(".bin", F"-{len(_UpperCamelCase )+1:05d}-of-???.bin" ) ) __UpperCAmelCase : Any = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = rename_fairseq_keys(_UpperCamelCase, _UpperCamelCase ) __UpperCAmelCase : Tuple = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_UpperCamelCase ) == 1: __UpperCAmelCase : Union[str, Any] = os.path.join(_UpperCamelCase, _UpperCamelCase ) torch.save(_UpperCamelCase, _UpperCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_UpperCamelCase, _UpperCamelCase ) # Otherwise, let's build the index __UpperCAmelCase : Tuple = {} for idx, shard in enumerate(_UpperCamelCase ): __UpperCAmelCase : Tuple = weights_name.replace(".bin", F"-{idx+1:05d}-of-{len(_UpperCamelCase ):05d}.bin" ) __UpperCAmelCase : List[str] = os.path.join(_UpperCamelCase, weights_name.replace(".bin", F"-{idx+1:05d}-of-???.bin" ) ) os.rename(_UpperCamelCase, os.path.join(_UpperCamelCase, _UpperCamelCase ) ) for key in shard: __UpperCAmelCase : Union[str, Any] = shard_file # Add the metadata __UpperCAmelCase : Optional[Any] = {"total_size": total_size} __UpperCAmelCase : List[str] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_UpperCamelCase, _UpperCamelCase ), "w", encoding="utf-8" ) as f: __UpperCAmelCase : List[Any] = json.dumps(_UpperCamelCase, indent=2, sort_keys=_UpperCamelCase ) + "\n" f.write(_UpperCamelCase ) return metadata, index if __name__ == "__main__": lowerCAmelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--nllb_moe_checkpoint_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", type=str, required=False, help="Path to the output pytorch model.", ) lowerCAmelCase__ : Dict = parser.parse_args() lowerCAmelCase__ : Union[str, Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) lowerCAmelCase__ : Tuple = NllbMoeConfig.from_pretrained( "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase__ : List[Any] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("Done") model.save_pretrained(args.pytorch_dump_folder_path)
721
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline lowerCAmelCase__ : str = "path-to-your-trained-model" lowerCAmelCase__ : Any = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") lowerCAmelCase__ : Tuple = "A photo of sks dog in a bucket" lowerCAmelCase__ : Any = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
329
0
"""simple docstring""" import os from distutils.util import strtobool def snake_case ( UpperCamelCase__ : int , UpperCamelCase__ : Dict ) -> Any: for e in env_keys: lowerCamelCase : Optional[int] = int(os.environ.get(UpperCamelCase__ , -1 ) ) if val >= 0: return val return default def snake_case ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=False ) -> str: lowerCamelCase : List[Any] = os.environ.get(UpperCamelCase__ , str(UpperCamelCase__ ) ) return strtobool(UpperCamelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def snake_case ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any]="no" ) -> Optional[int]: lowerCamelCase : Any = os.environ.get(UpperCamelCase__ , str(UpperCamelCase__ ) ) return value
222
"""simple docstring""" from string import ascii_uppercase __lowerCamelCase :Dict = {char: i for i, char in enumerate(ascii_uppercase)} __lowerCamelCase :str = dict(enumerate(ascii_uppercase)) def snake_case ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: lowerCamelCase : Tuple = len(UpperCamelCase__ ) lowerCamelCase : Optional[Any] = 0 while True: if x == i: lowerCamelCase : Tuple = 0 if len(UpperCamelCase__ ) == len(UpperCamelCase__ ): break key += key[i] i += 1 return key def snake_case ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: lowerCamelCase : Any = """""" lowerCamelCase : Optional[Any] = 0 for letter in message: if letter == " ": cipher_text += " " else: lowerCamelCase : Union[str, Any] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def snake_case ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: lowerCamelCase : Dict = """""" lowerCamelCase : int = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowerCamelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def snake_case ( ) -> None: lowerCamelCase : int = """THE GERMAN ATTACK""" lowerCamelCase : Union[str, Any] = """SECRET""" lowerCamelCase : Union[str, Any] = generate_key(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[int] = cipher_text(UpperCamelCase__ , UpperCamelCase__ ) print(F'Encrypted Text = {s}' ) print(F'Original Text = {original_text(UpperCamelCase__ , UpperCamelCase__ )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
222
1
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a= logging.get_logger(__name__) # pylint: disable=invalid-name a= ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def _UpperCamelCase ( _a : Optional[Any] , _a : List[Any] , _a : List[str]=8 ): """simple docstring""" __UpperCamelCase : Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __UpperCamelCase : List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): super().__init__() self.register_modules( unet=_lowerCamelCase , scheduler=_lowerCamelCase , movq=_lowerCamelCase , ) __UpperCamelCase : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if latents is None: __UpperCamelCase : Tuple = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) __UpperCamelCase : List[str] = latents.to(_lowerCamelCase ) __UpperCamelCase : Any = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase ( self , _lowerCamelCase=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __UpperCamelCase : Union[str, Any] = torch.device(f"""cuda:{gpu_id}""" ) __UpperCamelCase : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) __UpperCamelCase : Optional[int] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __UpperCamelCase : int = None for cpu_offloaded_model in [self.unet, self.movq]: __UpperCamelCase : int = cpu_offload_with_hook(_lowerCamelCase , _lowerCamelCase , prev_module_hook=_lowerCamelCase ) # We'll offload the last model manually. __UpperCamelCase : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase ( self ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCamelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 5_1_2 , _lowerCamelCase = 5_1_2 , _lowerCamelCase = 1_0_0 , _lowerCamelCase = 4.0 , _lowerCamelCase = 1 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , ): __UpperCamelCase : Dict = self._execution_device __UpperCamelCase : Optional[int] = guidance_scale > 1.0 if isinstance(_lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : List[Any] = torch.cat(_lowerCamelCase , dim=0 ) if isinstance(_lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : Tuple = torch.cat(_lowerCamelCase , dim=0 ) if isinstance(_lowerCamelCase , _lowerCamelCase ): __UpperCamelCase : Optional[int] = torch.cat(_lowerCamelCase , dim=0 ) __UpperCamelCase : Dict = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __UpperCamelCase : Optional[Any] = image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) __UpperCamelCase : Dict = negative_image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) __UpperCamelCase : Optional[Any] = hint.repeat_interleave(_lowerCamelCase , dim=0 ) __UpperCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCamelCase ) __UpperCamelCase : Union[str, Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCamelCase ) self.scheduler.set_timesteps(_lowerCamelCase , device=_lowerCamelCase ) __UpperCamelCase : Any = self.scheduler.timesteps __UpperCamelCase : int = self.movq.config.latent_channels __UpperCamelCase : Any = downscale_height_and_width(_lowerCamelCase , _lowerCamelCase , self.movq_scale_factor ) # create initial latent __UpperCamelCase : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance __UpperCamelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCamelCase : str = {'image_embeds': image_embeds, 'hint': hint} __UpperCamelCase : Union[str, Any] = self.unet( sample=_lowerCamelCase , timestep=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , added_cond_kwargs=_lowerCamelCase , return_dict=_lowerCamelCase , )[0] if do_classifier_free_guidance: __UpperCamelCase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) __UpperCamelCase : Union[str, Any] = noise_pred.chunk(2 ) __UpperCamelCase : Union[str, Any] = variance_pred.chunk(2 ) __UpperCamelCase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __UpperCamelCase : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __UpperCamelCase : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __UpperCamelCase : List[str] = self.scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase , )[0] # post-processing __UpperCamelCase : Optional[Any] = self.movq.decode(_lowerCamelCase , force_not_quantize=_lowerCamelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: __UpperCamelCase : Tuple = image * 0.5 + 0.5 __UpperCamelCase : Optional[int] = image.clamp(0 , 1 ) __UpperCamelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCamelCase : Union[str, Any] = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
721
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizer SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False def lowerCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase : List[str] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) __UpperCamelCase : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] __UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def lowerCAmelCase ( self , _lowerCamelCase ): return "lower newer", "lower newer" def lowerCAmelCase ( self ): __UpperCamelCase : Dict = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __UpperCamelCase : List[Any] = 'lower' __UpperCamelCase : Union[str, Any] = ['low', 'er</w>'] __UpperCamelCase : Tuple = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __UpperCamelCase : List[str] = tokens + ['<unk>'] __UpperCamelCase : Optional[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # Simple input __UpperCamelCase : int = 'This is a simple input' __UpperCamelCase : Any = ['This is a simple input 1', 'This is a simple input 2'] __UpperCamelCase : Union[str, Any] = ('This is a simple input', 'This is a pair') __UpperCamelCase : Any = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) def lowerCAmelCase ( self ): pass @require_ftfy @require_spacy @require_tokenizers class __lowercase ( _lowerCamelCase ): """simple docstring""" pass
287
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( _A ): __lowerCamelCase : Dict =(DDIMParallelScheduler,) __lowerCamelCase : Optional[int] =(("eta", 0.0), ("num_inference_steps", 50)) def UpperCamelCase_ ( self : str , **__lowercase : Optional[int] ): '''simple docstring''' __a = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**__lowercase ) return config def UpperCamelCase_ ( self : Optional[int] , **__lowercase : str ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__lowercase ) __a = scheduler_class(**__lowercase ) __a = 10, 0.0 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__lowercase ) for t in scheduler.timesteps: __a = model(__lowercase , __lowercase ) __a = scheduler.step(__lowercase , __lowercase , __lowercase , __lowercase ).prev_sample return sample def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowercase ) __a = self.scheduler_classes[0] __a = self.get_scheduler_config(steps_offset=1 ) __a = scheduler_class(**__lowercase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowercase , beta_end=__lowercase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowercase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowercase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.check_over_configs(thresholding=__lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowercase , prediction_type=__lowercase , sample_max_value=__lowercase , ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowercase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__lowercase , num_inference_steps=__lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowercase , eta=__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**__lowercase ) __a = 10, 0.0 scheduler.set_timesteps(__lowercase ) __a = self.dummy_model() __a = self.dummy_sample_deter __a = self.dummy_sample_deter + 0.1 __a = self.dummy_sample_deter - 0.1 __a = samplea.shape[0] __a = torch.stack([samplea, samplea, samplea] , dim=0 ) __a = torch.arange(__lowercase )[0:3, None].repeat(1 , __lowercase ) __a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __a = scheduler.batch_step_no_noise(__lowercase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __lowercase ) __a = torch.sum(torch.abs(__lowercase ) ) __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.full_loop() __a = torch.sum(torch.abs(__lowercase ) ) __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' __a = self.full_loop(prediction_type="""v_prediction""" ) __a = torch.sum(torch.abs(__lowercase ) ) __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 __a = self.full_loop(set_alpha_to_one=__lowercase , beta_start=0.01 ) __a = torch.sum(torch.abs(__lowercase ) ) __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 __a = self.full_loop(set_alpha_to_one=__lowercase , beta_start=0.01 ) __a = torch.sum(torch.abs(__lowercase ) ) __a = torch.mean(torch.abs(__lowercase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
225
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowercase ( __snake_case : List[str] , __snake_case : Any=False ): lowercase_ : List[str] = OmegaConf.load(__snake_case ) if display: print(yaml.dump(OmegaConf.to_container(__snake_case ) ) ) return config def lowercase ( __snake_case : Optional[int] , __snake_case : Dict=None , __snake_case : Optional[Any]=None ): if conf_path is None: lowercase_ : str = '''./model_checkpoints/vqgan_only.yaml''' lowercase_ : str = load_config(__snake_case , display=__snake_case ) lowercase_ : Optional[int] = VQModel(**config.model.params ) if ckpt_path is None: lowercase_ : List[str] = '''./model_checkpoints/vqgan_only.pt''' lowercase_ : Optional[Any] = torch.load(__snake_case , map_location=__snake_case ) if ".ckpt" in ckpt_path: lowercase_ : List[Any] = sd['''state_dict'''] model.load_state_dict(__snake_case , strict=__snake_case ) model.to(__snake_case ) del sd return model def lowercase ( __snake_case : Tuple , __snake_case : int ): lowercase_ , lowercase_ , lowercase_ : List[Any] = model.encode(__snake_case ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) lowercase_ : Optional[int] = model.decode(__snake_case ) return xrec def lowercase ( __snake_case : Any , __snake_case : List[str]=False ): lowercase_ , lowercase_ : Optional[Any] = string.rsplit('''.''' , 1 ) if reload: lowercase_ : Union[str, Any] = importlib.import_module(__snake_case ) importlib.reload(__snake_case ) return getattr(importlib.import_module(__snake_case , package=__snake_case ) , cls ) def lowercase ( __snake_case : List[Any] ): if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def lowercase ( __snake_case : Any , __snake_case : List[str] , __snake_case : Tuple=True , __snake_case : Dict=True ): lowercase_ : str = instantiate_from_config(__snake_case ) if sd is not None: model.load_state_dict(__snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowercase ( __snake_case : int , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : str ): # load the specified checkpoint if ckpt: lowercase_ : Optional[Any] = torch.load(__snake_case , map_location='''cpu''' ) lowercase_ : Any = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: lowercase_ : Optional[Any] = {'''state_dict''': None} lowercase_ : Dict = None lowercase_ : Union[str, Any] = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=__snake_case , eval_mode=__snake_case )['''model'''] return model, global_step
231
0
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__: List[str] = logging.get_logger(__name__) UpperCamelCase__: Dict = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """xlm-prophetnet""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self : Any , __snake_case : Optional[float] = 0.1 , __snake_case : Optional[Union[str, Callable]] = "gelu" , __snake_case : Optional[int] = 30522 , __snake_case : Optional[int] = 1024 , __snake_case : Optional[int] = 4096 , __snake_case : Optional[int] = 12 , __snake_case : Optional[int] = 16 , __snake_case : Optional[int] = 4096 , __snake_case : Optional[int] = 12 , __snake_case : Optional[int] = 16 , __snake_case : Optional[float] = 0.1 , __snake_case : Optional[float] = 0.1 , __snake_case : Optional[int] = 512 , __snake_case : Optional[float] = 0.02 , __snake_case : Optional[bool] = True , __snake_case : Optional[bool] = True , __snake_case : Optional[int] = 0 , __snake_case : Optional[int] = 2 , __snake_case : Optional[int] = 32 , __snake_case : Optional[int] = 128 , __snake_case : Optional[bool] = False , __snake_case : Optional[float] = 0.0 , __snake_case : Optional[bool] = True , __snake_case : Optional[int] = 0 , __snake_case : Optional[int] = 1 , __snake_case : Optional[int] = 2 , **__snake_case : Dict , ) -> Union[str, Any]: UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : str = hidden_size UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = num_encoder_layers UpperCAmelCase : Tuple = num_encoder_attention_heads UpperCAmelCase : Dict = decoder_ffn_dim UpperCAmelCase : str = num_decoder_layers UpperCAmelCase : Optional[int] = num_decoder_attention_heads UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : str = init_std # Normal(0, this parameter) UpperCAmelCase : Optional[Any] = activation_function # parameters for xlmprophetnet UpperCAmelCase : Union[str, Any] = ngram UpperCAmelCase : List[Any] = num_buckets UpperCAmelCase : int = relative_max_distance UpperCAmelCase : List[str] = disable_ngram_loss UpperCAmelCase : int = eps # 3 Types of Dropout UpperCAmelCase : Any = attention_dropout UpperCAmelCase : int = activation_dropout UpperCAmelCase : Any = dropout UpperCAmelCase : Tuple = use_cache super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , add_cross_attention=__snake_case , decoder_start_token_id=__snake_case , **__snake_case , ) @property def A ( self : List[Any] ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def A ( self : Any , __snake_case : Optional[Any] ) -> List[Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
528
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record UpperCamelCase__: int = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" UpperCamelCase__: Dict = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" UpperCamelCase__: str = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ) -> Dict: return float((preds == labels).mean() ) def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict="binary" ) -> Any: UpperCAmelCase : str = simple_accuracy(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : str = float(fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase , average=_lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : str ) -> List[str]: UpperCAmelCase : Optional[int] = {} for id_pred, label in zip(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = f"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}""" UpperCAmelCase : List[str] = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCAmelCase : Union[str, Any] = [(pred, label)] UpperCAmelCase , UpperCAmelCase : Dict = [], [] for question, preds_labels in question_map.items(): UpperCAmelCase , UpperCAmelCase : List[Any] = zip(*_lowerCAmelCase ) UpperCAmelCase : int = fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase , average='''macro''' ) fas.append(_lowerCAmelCase ) UpperCAmelCase : Dict = int(sum(pred == label for pred, label in preds_labels ) == len(_lowerCAmelCase ) ) ems.append(_lowerCAmelCase ) UpperCAmelCase : int = float(sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) ) UpperCAmelCase : Optional[int] = sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) UpperCAmelCase : str = float(fa_score(y_true=_lowerCAmelCase , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE( datasets.Metric ): """simple docstring""" def A ( self : Optional[Any] ) -> Dict: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def A ( self : Union[str, Any] ) -> Dict: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def A ( self : Dict , __snake_case : str , __snake_case : str ) -> Optional[int]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__snake_case , __snake_case )} elif self.config_name == "cb": return acc_and_fa(__snake_case , __snake_case , fa_avg='''macro''' ) elif self.config_name == "record": UpperCAmelCase : Tuple = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] UpperCAmelCase : int = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(__snake_case , __snake_case )[0] elif self.config_name == "multirc": return evaluate_multirc(__snake_case , __snake_case ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__snake_case , __snake_case )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
528
1
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def a__ ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : int ): UpperCAmelCase__ :Any = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def a__ ( UpperCamelCase_ : List[Any], UpperCamelCase_ : str ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) UpperCAmelCase__ :Union[str, Any] = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase__ :Optional[int] = in_proj_weight[ : encoder_config.hidden_size, : ] UpperCAmelCase__ :Optional[int] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] UpperCAmelCase__ :Dict = in_proj_weight[ -encoder_config.hidden_size :, : ] def a__ ( UpperCamelCase_ : List[Any], UpperCamelCase_ : Tuple, UpperCamelCase_ : List[Any] ): UpperCAmelCase__ :int = dct.pop(UpperCamelCase_ ) UpperCAmelCase__ :List[Any] = val def a__ ( UpperCamelCase_ : Dict ): if "handwritten" in checkpoint_url: UpperCAmelCase__ :Optional[Any] = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase__ :int = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' UpperCAmelCase__ :Union[str, Any] = Image.open(requests.get(UpperCamelCase_, stream=UpperCamelCase_ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def a__ ( UpperCamelCase_ : Optional[Any], UpperCamelCase_ : Optional[int] ): UpperCAmelCase__ :Optional[int] = ViTConfig(image_size=384, qkv_bias=UpperCamelCase_ ) UpperCAmelCase__ :Union[str, Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: UpperCAmelCase__ :Optional[int] = 768 elif "large" in checkpoint_url: # use ViT-large encoder UpperCAmelCase__ :Dict = 1_024 UpperCAmelCase__ :Optional[int] = 4_096 UpperCAmelCase__ :str = 24 UpperCAmelCase__ :List[Any] = 16 UpperCAmelCase__ :List[str] = 1_024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase__ :str = False UpperCAmelCase__ :List[str] = '''relu''' UpperCAmelCase__ :Optional[Any] = 1_024 UpperCAmelCase__ :Optional[Any] = True UpperCAmelCase__ :Tuple = False UpperCAmelCase__ :Union[str, Any] = False # load HuggingFace model UpperCAmelCase__ :Any = ViTModel(UpperCamelCase_, add_pooling_layer=UpperCamelCase_ ) UpperCAmelCase__ :Dict = TrOCRForCausalLM(UpperCamelCase_ ) UpperCAmelCase__ :List[Any] = VisionEncoderDecoderModel(encoder=UpperCamelCase_, decoder=UpperCamelCase_ ) model.eval() # load state_dict of original model, rename some keys UpperCAmelCase__ :Optional[Any] = torch.hub.load_state_dict_from_url(UpperCamelCase_, map_location='''cpu''', check_hash=UpperCamelCase_ )['''model'''] UpperCAmelCase__ :Tuple = create_rename_keys(UpperCamelCase_, UpperCamelCase_ ) for src, dest in rename_keys: rename_key(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ) read_in_q_k_v(UpperCamelCase_, UpperCamelCase_ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): UpperCAmelCase__ :Dict = state_dict.pop(UpperCamelCase_ ) if key.startswith('''decoder''' ) and "output_projection" not in key: UpperCAmelCase__ :Optional[Any] = val else: UpperCAmelCase__ :str = val # load state dict model.load_state_dict(UpperCamelCase_ ) # Check outputs on an image UpperCAmelCase__ :Any = ViTImageProcessor(size=encoder_config.image_size ) UpperCAmelCase__ :str = RobertaTokenizer.from_pretrained('''roberta-large''' ) UpperCAmelCase__ :int = TrOCRProcessor(UpperCamelCase_, UpperCamelCase_ ) UpperCAmelCase__ :Dict = processor(images=prepare_img(UpperCamelCase_ ), return_tensors='''pt''' ).pixel_values # verify logits UpperCAmelCase__ :List[Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) UpperCAmelCase__ :Optional[int] = model(pixel_values=UpperCamelCase_, decoder_input_ids=UpperCamelCase_ ) UpperCAmelCase__ :List[Any] = outputs.logits UpperCAmelCase__ :Union[str, Any] = torch.Size([1, 1, 50_265] ) if "trocr-base-handwritten" in checkpoint_url: UpperCAmelCase__ :List[str] = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: UpperCAmelCase__ :Optional[int] = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: UpperCAmelCase__ :List[str] = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: UpperCAmelCase__ :Dict = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10], UpperCamelCase_, atol=1e-3 ), "First elements of logits not as expected" Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __lowerCamelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
467
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=_snake_case ): UpperCAmelCase = ["speech"] def __init__( self : List[Any] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ): requires_backends(self , ['''speech'''] ) class UpperCAmelCase ( metaclass=_snake_case ): UpperCAmelCase = ["speech"] def __init__( self : int , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ): requires_backends(self , ['''speech'''] )
467
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def A__ ( self )-> str: '''simple docstring''' __UpperCamelCase = 0 @slow def A__ ( self )-> Tuple: '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE_ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE_ ) , 0 ) def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check that tokenizer_type ≠ model_type __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def A__ ( self )-> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(SCREAMING_SNAKE_CASE_ , '''vocab.txt''' ) ) __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , tokenizer_type='''bert''' , use_fast=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(SCREAMING_SNAKE_CASE_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(SCREAMING_SNAKE_CASE_ , '''merges.txt''' ) ) __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , tokenizer_type='''gpt2''' , use_fast=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @require_tokenizers def A__ ( self )-> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(SCREAMING_SNAKE_CASE_ , '''vocab.txt''' ) ) __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , tokenizer_type='''bert''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(SCREAMING_SNAKE_CASE_ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(SCREAMING_SNAKE_CASE_ , '''merges.txt''' ) ) __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , tokenizer_type='''gpt2''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> int: '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE_ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def A__ ( self )-> Union[str, Any]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __UpperCamelCase = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , (BertTokenizer, BertTokenizerFast) ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , SCREAMING_SNAKE_CASE_ ) else: self.assertEqual(tokenizer.do_lower_case , SCREAMING_SNAKE_CASE_ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def A__ ( self )-> int: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): __UpperCamelCase = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def A__ ( self )-> Dict: '''simple docstring''' __UpperCamelCase = TOKENIZER_MAPPING.values() __UpperCamelCase = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(SCREAMING_SNAKE_CASE_ ) @require_tokenizers def A__ ( self )-> Tuple: '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , SCREAMING_SNAKE_CASE_ ) @require_tokenizers def A__ ( self )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = '''Hello, world. How are you?''' __UpperCamelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertEqual('''[UNK]''' , tokens[0] ) __UpperCamelCase = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' __UpperCamelCase = get_tokenizer_config('''bert-base-cased''' ) __UpperCamelCase = config.pop('''_commit_hash''' , SCREAMING_SNAKE_CASE_ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(SCREAMING_SNAKE_CASE_ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. __UpperCamelCase = get_tokenizer_config(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = get_tokenizer_config(SCREAMING_SNAKE_CASE_ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def A__ ( self )-> List[Any]: '''simple docstring''' try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE_ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE_ , slow_tokenizer_class=SCREAMING_SNAKE_CASE_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE_ ): AutoTokenizer.register(SCREAMING_SNAKE_CASE_ , slow_tokenizer_class=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = CustomTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def A__ ( self )-> Union[str, Any]: '''simple docstring''' try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE_ ) # Can register in two steps AutoTokenizer.register(SCREAMING_SNAKE_CASE_ , slow_tokenizer_class=SCREAMING_SNAKE_CASE_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(SCREAMING_SNAKE_CASE_ , fast_tokenizer_class=SCREAMING_SNAKE_CASE_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( SCREAMING_SNAKE_CASE_ , slow_tokenizer_class=SCREAMING_SNAKE_CASE_ , fast_tokenizer_class=SCREAMING_SNAKE_CASE_ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE_ ): AutoTokenizer.register(SCREAMING_SNAKE_CASE_ , fast_tokenizer_class=SCREAMING_SNAKE_CASE_ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = BertTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE_ ) bert_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = CustomTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def A__ ( self )-> Tuple: '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version __UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , trust_remote_code=SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def A__ ( self )-> int: '''simple docstring''' class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = False class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = NewTokenizer _snake_case = False try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE_ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE_ , slow_tokenizer_class=SCREAMING_SNAKE_CASE_ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE_ , fast_tokenizer_class=SCREAMING_SNAKE_CASE_ ) # If remote code is not set, the default is to use local __UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) __UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=SCREAMING_SNAKE_CASE_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) __UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) __UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=SCREAMING_SNAKE_CASE_ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version __UpperCamelCase = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , '''bert-base is not a local folder and is not a valid model identifier''' ): __UpperCamelCase = AutoTokenizer.from_pretrained('''bert-base''' ) def A__ ( self )-> Tuple: '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __UpperCamelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , revision='''aaaaaa''' ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: __UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
451
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys lowercase__ : List[str] = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
451
1
__lowerCAmelCase = 2_5_6 # Modulus to hash a string __lowerCAmelCase = 1_0_0_0_0_0_3 def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> bool: _UpperCAmelCase = len(_lowerCAmelCase ) _UpperCAmelCase = len(_lowerCAmelCase ) if p_len > t_len: return False _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1 # Calculating the hash of pattern and substring of text for i in range(_lowerCAmelCase ): _UpperCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _UpperCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _UpperCAmelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _UpperCAmelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __lowerCamelCase ( ) -> None: _UpperCAmelCase = "abc1abc12" _UpperCAmelCase = "alskfjaldsabc1abc1abc12k23adsfabcabc" _UpperCAmelCase = "alskfjaldsk23adsfabcabc" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) and not rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 2) _UpperCAmelCase = "ABABX" _UpperCAmelCase = "ABABZABABYABABX" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 3) _UpperCAmelCase = "AAAB" _UpperCAmelCase = "ABAAAAAB" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 4) _UpperCAmelCase = "abcdabcy" _UpperCAmelCase = "abcxabcdabxabcdabcdabcy" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 5) _UpperCAmelCase = "Lü" _UpperCAmelCase = "Lüsai" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase = "Lue" assert not rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
684
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __lowerCAmelCase = get_tests_dir("fixtures") class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : Dict ): # A mock response for an HTTP head request to emulate server down _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 500 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__UpperCamelCase ) as mock_head: _UpperCAmelCase = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self : List[Any] ): # This test is for deprecated behavior and can be removed in v5 _UpperCAmelCase = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def UpperCAmelCase__ ( self : Dict ): with self.assertRaises(__UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(__UpperCamelCase ) @is_staging_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @classmethod def UpperCAmelCase__ ( cls : str ): _UpperCAmelCase = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase , repo_id="test-image-processor" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase , repo_id="valid_org/test-image-processor-org" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase__ ( self : int ): CustomImageProcessor.register_for_auto_class() _UpperCAmelCase = CustomImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( F'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
684
1
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values snake_case__ : Tuple = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") snake_case__ : str = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") snake_case__ : Dict = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: snake_case__ : Optional[Any] = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) snake_case__ : Dict = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'pip install -r transformers/examples/{example_dir}/requirements.txt']) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
704
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = parent def _UpperCAmelCase ( self ) -> Optional[Any]: return {} def _snake_case (): UpperCamelCase_ = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' UpperCamelCase_ = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class _a ( UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = MarkupLMFeatureExtractor if is_bsa_available() else None def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = MarkupLMFeatureExtractionTester(self ) @property def _UpperCAmelCase ( self ) -> Any: return self.feature_extract_tester.prepare_feat_extract_dict() def _UpperCAmelCase ( self ) -> Dict: # Initialize feature_extractor UpperCamelCase_ = self.feature_extraction_class() # Test not batched input UpperCamelCase_ = get_html_strings()[0] UpperCamelCase_ = feature_extractor(_UpperCAmelCase ) # fmt: off UpperCamelCase_ = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] UpperCamelCase_ = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , _UpperCAmelCase ) self.assertEqual(encoding.xpaths , _UpperCAmelCase ) # Test batched UpperCamelCase_ = get_html_strings() UpperCamelCase_ = feature_extractor(_UpperCAmelCase ) # fmt: off UpperCamelCase_ = expected_nodes + [['My First Heading', 'My first paragraph.']] UpperCamelCase_ = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , _UpperCAmelCase ) self.assertEqual(encoding.xpaths , _UpperCAmelCase )
618
0
"""simple docstring""" def _a ( UpperCAmelCase__ = 2_00_00_00 ) -> str: __SCREAMING_SNAKE_CASE = [0 for i in range(n + 1 )] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , _SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 0 for i in range(_SCREAMING_SNAKE_CASE ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
482
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __A : List[str] = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __A : List[Any] = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __A : int = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' def remove_articles(_SCREAMING_SNAKE_CASE : Optional[int] ): _UpperCAmelCase = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ''' ''' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 100 def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = [rgram for rgrams in rgramslist for rgram in rgrams] _UpperCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Counter() for sgram, scount in sgramcounter.items(): _UpperCAmelCase = scount * numref _UpperCAmelCase = Counter(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Counter() for cgram, ccount in cgramcounter.items(): _UpperCAmelCase = ccount * numref # KEEP _UpperCAmelCase = sgramcounter_rep & cgramcounter_rep _UpperCAmelCase = keepgramcounter_rep & rgramcounter _UpperCAmelCase = sgramcounter_rep & rgramcounter _UpperCAmelCase = 0 _UpperCAmelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase = 1 _UpperCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _UpperCAmelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _UpperCAmelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: _UpperCAmelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _UpperCAmelCase = sgramcounter_rep - cgramcounter_rep _UpperCAmelCase = delgramcounter_rep - rgramcounter _UpperCAmelCase = sgramcounter_rep - rgramcounter _UpperCAmelCase = 0 _UpperCAmelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase = 1 _UpperCAmelCase = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = addtmpscore / len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0 if addscore_precision > 0 or addscore_recall > 0: _UpperCAmelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ssent.split(''' ''' ) _UpperCAmelCase = csent.split(''' ''' ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for rsent in rsents: _UpperCAmelCase = rsent.split(''' ''' ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _UpperCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _UpperCAmelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _UpperCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _UpperCAmelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: _UpperCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: _UpperCAmelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _UpperCAmelCase = sum([delascore, delascore, delascore, delascore] ) / 4 _UpperCAmelCase = sum([addascore, addascore, addascore, addascore] ) / 4 _UpperCAmelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True ): '''simple docstring''' if lowercase: _UpperCAmelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _UpperCAmelCase = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": _UpperCAmelCase = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": _UpperCAmelCase = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = sentence if not return_str: _UpperCAmelCase = normalized_sent.split() return normalized_sent def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _UpperCAmelCase = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) _UpperCAmelCase = sari_score / len(_SCREAMING_SNAKE_CASE ) return 100 * sari_score def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str="exp" , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : List[str]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : int=False , ): '''simple docstring''' _UpperCAmelCase = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _UpperCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def lowercase__ ( self : Dict )->Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def lowercase__ ( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] )->Any: _UpperCAmelCase = {} result.update({'''sari''': compute_sari(sources=__UpperCamelCase , predictions=__UpperCamelCase , references=__UpperCamelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCamelCase , references=__UpperCamelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCamelCase , references=__UpperCamelCase )} ) return result
602
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowercase = logging.get_logger(__name__) _lowercase = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCAmelCase_ ( _UpperCAmelCase ): '''simple docstring''' _lowercase : List[Any] = '''dpt''' def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=384 , _lowercase=16 , _lowercase=3 , _lowercase=False , _lowercase=True , _lowercase=[2, 5, 8, 11] , _lowercase="project" , _lowercase=[4, 2, 1, 0.5] , _lowercase=[96, 192, 384, 768] , _lowercase=256 , _lowercase=-1 , _lowercase=False , _lowercase=True , _lowercase=0.4 , _lowercase=255 , _lowercase=0.1 , _lowercase=[1, 1_024, 24, 24] , _lowercase=[0, 1] , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(**lowercase__ ) _lowerCAmelCase = hidden_size _lowerCAmelCase = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) _lowerCAmelCase = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } _lowerCAmelCase = BitConfig(**lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): logger.info("""Initializing the config with a `BiT` backbone.""" ) _lowerCAmelCase = BitConfig(**lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): _lowerCAmelCase = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) _lowerCAmelCase = backbone_featmap_shape _lowerCAmelCase = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = [] _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = qkv_bias _lowerCAmelCase = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) _lowerCAmelCase = readout_type _lowerCAmelCase = reassemble_factors _lowerCAmelCase = neck_hidden_sizes _lowerCAmelCase = fusion_hidden_size _lowerCAmelCase = head_in_index _lowerCAmelCase = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _lowerCAmelCase = use_auxiliary_head _lowerCAmelCase = auxiliary_loss_weight _lowerCAmelCase = semantic_loss_ignore_index _lowerCAmelCase = semantic_classifier_dropout def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowerCAmelCase = self.backbone_config.to_dict() _lowerCAmelCase = self.__class__.model_type return output
702
'''simple docstring''' def A (__lowerCamelCase :int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
162
0
import re def A ( snake_case__ : str ) -> bool: '''simple docstring''' __snake_case = re.compile(r'^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$' ) if match := re.search(snake_case__ , snake_case__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
313
import fire from utils import calculate_rouge, save_json def A ( snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : str=None , **snake_case__ : Union[str, Any] ) -> int: '''simple docstring''' __snake_case = [x.strip() for x in open(snake_case__ ).readlines()] __snake_case = [x.strip() for x in open(snake_case__ ).readlines()][: len(snake_case__ )] __snake_case = calculate_rouge(snake_case__ , snake_case__ , **snake_case__ ) if save_path is not None: save_json(snake_case__ , snake_case__ , indent=snake_case__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
313
1
'''simple docstring''' def __a ( __lowerCamelCase : str ) -> list: '''simple docstring''' if n_term == "": return [] lowercase_ = [] for temp in range(int(__lowerCamelCase ) ): series.append(f'1/{temp + 1}' if series else "1" ) return series if __name__ == "__main__": lowerCAmelCase_ : Dict = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
461
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowercase ( unittest.TestCase ): def __UpperCAmelCase ( self : int) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def __UpperCAmelCase ( self : Dict) -> Any: lowercase_ , lowercase_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=__lowerCAmelCase , dtype=jnp.bfloataa) lowercase_ , lowercase_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=__lowerCAmelCase , from_pt=__lowerCAmelCase , dtype=jnp.bfloataa) lowercase_ = controlnet_params lowercase_ = "bird" lowercase_ = jax.device_count() lowercase_ = pipe.prepare_text_inputs([prompts] * num_samples) lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png") lowercase_ = pipe.prepare_image_inputs([canny_image] * num_samples) lowercase_ = jax.random.PRNGKey(0) lowercase_ = jax.random.split(__lowerCAmelCase , jax.device_count()) lowercase_ = replicate(__lowerCAmelCase) lowercase_ = shard(__lowerCAmelCase) lowercase_ = shard(__lowerCAmelCase) lowercase_ = pipe( prompt_ids=__lowerCAmelCase , image=__lowerCAmelCase , params=__lowerCAmelCase , prng_seed=__lowerCAmelCase , num_inference_steps=50 , jit=__lowerCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) lowercase_ = images[0, 253:256, 253:256, -1] lowercase_ = jnp.asarray(jax.device_get(image_slice.flatten())) lowercase_ = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078]) print(F'output_slice: {output_slice}') assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def __UpperCAmelCase ( self : Tuple) -> List[str]: lowercase_ , lowercase_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=__lowerCAmelCase , dtype=jnp.bfloataa) lowercase_ , lowercase_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=__lowerCAmelCase , from_pt=__lowerCAmelCase , dtype=jnp.bfloataa) lowercase_ = controlnet_params lowercase_ = "Chef in the kitchen" lowercase_ = jax.device_count() lowercase_ = pipe.prepare_text_inputs([prompts] * num_samples) lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png") lowercase_ = pipe.prepare_image_inputs([pose_image] * num_samples) lowercase_ = jax.random.PRNGKey(0) lowercase_ = jax.random.split(__lowerCAmelCase , jax.device_count()) lowercase_ = replicate(__lowerCAmelCase) lowercase_ = shard(__lowerCAmelCase) lowercase_ = shard(__lowerCAmelCase) lowercase_ = pipe( prompt_ids=__lowerCAmelCase , image=__lowerCAmelCase , params=__lowerCAmelCase , prng_seed=__lowerCAmelCase , num_inference_steps=50 , jit=__lowerCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) lowercase_ = images[0, 253:256, 253:256, -1] lowercase_ = jnp.asarray(jax.device_get(image_slice.flatten())) lowercase_ = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]]) print(F'output_slice: {output_slice}') assert jnp.abs(output_slice - expected_slice).max() < 1e-2
461
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowercase : Tuple = KandinskyVaaControlnetImgaImgPipeline lowercase : Union[str, Any] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowercase : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowercase : Any = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase : Any = False @property def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' return 32 @property def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def __lowerCamelCase ( self ) -> Any: '''simple docstring''' return self.time_input_dim @property def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim * 4 @property def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' return 1_00 @property def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase : Any = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __UpperCamelCase : Optional[Any] = UNetaDConditionModel(**__UpperCamelCase ) return model @property def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __lowerCamelCase ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase : int = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : str = self.dummy_unet __UpperCamelCase : Dict = self.dummy_movq __UpperCamelCase : Union[str, Any] = { "num_train_timesteps": 10_00, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } __UpperCamelCase : List[str] = DDIMScheduler(**__UpperCamelCase ) __UpperCamelCase : Optional[int] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> int: '''simple docstring''' __UpperCamelCase : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) __UpperCamelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCamelCase ) # create init_image __UpperCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) __UpperCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase : Any = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert("RGB" ).resize((2_56, 2_56) ) # create hint __UpperCamelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith("mps" ): __UpperCamelCase : int = torch.manual_seed(__UpperCamelCase ) else: __UpperCamelCase : List[str] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) __UpperCamelCase : Optional[int] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Optional[int] = "cpu" __UpperCamelCase : Union[str, Any] = self.get_dummy_components() __UpperCamelCase : Optional[Any] = self.pipeline_class(**__UpperCamelCase ) __UpperCamelCase : Tuple = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __UpperCamelCase : Tuple = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) __UpperCamelCase : List[Any] = output.images __UpperCamelCase : Optional[Any] = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] __UpperCamelCase : Optional[Any] = image[0, -3:, -3:, -1] __UpperCamelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase : Dict = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' __UpperCamelCase : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) __UpperCamelCase : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __UpperCamelCase : str = init_image.resize((5_12, 5_12) ) __UpperCamelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) __UpperCamelCase : List[Any] = torch.from_numpy(np.array(__UpperCamelCase ) ).float() / 255.0 __UpperCamelCase : str = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __UpperCamelCase : Optional[int] = "A robot, 4k photo" __UpperCamelCase : List[Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) __UpperCamelCase : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) __UpperCamelCase : List[str] = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) __UpperCamelCase : str = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase , __UpperCamelCase : int = pipe_prior( __UpperCamelCase , image=__UpperCamelCase , strength=0.85 , generator=__UpperCamelCase , negative_prompt="" , ).to_tuple() __UpperCamelCase : Optional[Any] = pipeline( image=__UpperCamelCase , image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , hint=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="np" , ) __UpperCamelCase : str = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
327
from ... import PretrainedConfig lowercase : Dict = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : List[str] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowercase : Union[str, Any] = 'nezha' def __init__( self , __UpperCamelCase=2_11_28 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=64 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=0.1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , **__UpperCamelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) __UpperCamelCase : int = vocab_size __UpperCamelCase : int = hidden_size __UpperCamelCase : Tuple = num_hidden_layers __UpperCamelCase : Tuple = num_attention_heads __UpperCamelCase : Optional[int] = hidden_act __UpperCamelCase : List[str] = intermediate_size __UpperCamelCase : Union[str, Any] = hidden_dropout_prob __UpperCamelCase : Tuple = attention_probs_dropout_prob __UpperCamelCase : Optional[int] = max_position_embeddings __UpperCamelCase : str = max_relative_position __UpperCamelCase : List[str] = type_vocab_size __UpperCamelCase : Dict = initializer_range __UpperCamelCase : Optional[int] = layer_norm_eps __UpperCamelCase : int = classifier_dropout __UpperCamelCase : List[str] = use_cache
327
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = XGLMTokenizer lowerCAmelCase = XGLMTokenizerFast lowerCAmelCase = True lowerCAmelCase = True def a__ ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : str = XGLMTokenizer(_SCREAMING_SNAKE_CASE ,keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Any = '''<pad>''' UpperCAmelCase_ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<s>''' ) self.assertEqual(vocab_keys[1] ,'''<pad>''' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) ,1_008 ) def a__ ( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size ,1_008 ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Dict = XGLMTokenizer(_SCREAMING_SNAKE_CASE ,keep_accents=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) UpperCAmelCase_ : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _SCREAMING_SNAKE_CASE ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) UpperCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) UpperCAmelCase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] ,) @cached_property def a__ ( self ) -> Tuple: return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def a__ ( self ) -> List[str]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_SCREAMING_SNAKE_CASE ,f.name ) UpperCAmelCase_ : int = XGLMTokenizer(f.name ,keep_accents=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = pickle.dumps(_SCREAMING_SNAKE_CASE ) pickle.loads(_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: if not self.test_rust_tokenizer: return UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : int = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ : Any = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = self.get_rust_tokenizer() UpperCAmelCase_ : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) @slow def a__ ( self ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = '''Hello World!''' UpperCAmelCase_ : Optional[int] = [2, 31_227, 4_447, 35] self.assertListEqual(_SCREAMING_SNAKE_CASE ,self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ : str = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(_SCREAMING_SNAKE_CASE ,self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def a__ ( self ) -> Any: # fmt: off UpperCAmelCase_ : Optional[Any] = { '''input_ids''': [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE ,model_name='''facebook/xglm-564M''' ,padding=_SCREAMING_SNAKE_CASE ,)
715
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.txt'} __a = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ConvBertTokenizer def __init__( self ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE="[UNK]" ,_SCREAMING_SNAKE_CASE="[SEP]" ,_SCREAMING_SNAKE_CASE="[PAD]" ,_SCREAMING_SNAKE_CASE="[CLS]" ,_SCREAMING_SNAKE_CASE="[MASK]" ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=None ,**_SCREAMING_SNAKE_CASE ,) -> Tuple: super().__init__( _SCREAMING_SNAKE_CASE ,tokenizer_file=_SCREAMING_SNAKE_CASE ,do_lower_case=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,sep_token=_SCREAMING_SNAKE_CASE ,pad_token=_SCREAMING_SNAKE_CASE ,cls_token=_SCREAMING_SNAKE_CASE ,mask_token=_SCREAMING_SNAKE_CASE ,tokenize_chinese_chars=_SCREAMING_SNAKE_CASE ,strip_accents=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,_SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('''strip_accents''' ,_SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,_SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCAmelCase_ : Optional[int] = getattr(_SCREAMING_SNAKE_CASE ,normalizer_state.pop('''type''' ) ) UpperCAmelCase_ : int = do_lower_case UpperCAmelCase_ : Dict = strip_accents UpperCAmelCase_ : Optional[Any] = tokenize_chinese_chars UpperCAmelCase_ : Union[str, Any] = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = do_lower_case def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> Dict: UpperCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> List[int]: UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: UpperCAmelCase_ : Any = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE ,name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
300
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCAmelCase__ ( __lowercase , __lowercase ): @register_to_config def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int = 1_28 , SCREAMING_SNAKE_CASE__ : int = 2_56 , SCREAMING_SNAKE_CASE__ : float = 2000.0 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : int = 20_48 , SCREAMING_SNAKE_CASE__ : float = 0.1 , ) -> Any: super().__init__() __lowerCamelCase = nn.Sequential( nn.Linear(SCREAMING_SNAKE_CASE__ , d_model * 4 , bias=SCREAMING_SNAKE_CASE__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=SCREAMING_SNAKE_CASE__ ) , nn.SiLU() , ) __lowerCamelCase = nn.Embedding(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = False __lowerCamelCase = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = nn.Dropout(p=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = nn.ModuleList() for lyr_num in range(SCREAMING_SNAKE_CASE__ ): # FiLM conditional T5 decoder __lowerCamelCase = DecoderLayer(d_model=SCREAMING_SNAKE_CASE__ , d_kv=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , d_ff=SCREAMING_SNAKE_CASE__ , dropout_rate=SCREAMING_SNAKE_CASE__ ) self.decoders.append(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = TaLayerNorm(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = nn.Dropout(p=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]: __lowerCamelCase = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowerCamelCase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) __lowerCamelCase = self.conditioning_emb(SCREAMING_SNAKE_CASE__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowerCamelCase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowerCamelCase = torch.broadcast_to( torch.arange(SCREAMING_SNAKE_CASE__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) __lowerCamelCase = self.position_encoding(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.continuous_inputs_projection(SCREAMING_SNAKE_CASE__ ) inputs += position_encodings __lowerCamelCase = self.dropout(SCREAMING_SNAKE_CASE__ ) # decoder: No padding present. __lowerCamelCase = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __lowerCamelCase = [(x, self.encoder_decoder_mask(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowerCamelCase = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) __lowerCamelCase = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: __lowerCamelCase = lyr( SCREAMING_SNAKE_CASE__ , conditioning_emb=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , encoder_attention_mask=SCREAMING_SNAKE_CASE__ , )[0] __lowerCamelCase = self.decoder_norm(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.post_dropout(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.spec_out(SCREAMING_SNAKE_CASE__ ) return spec_out class lowerCAmelCase__ ( nn.Module ): def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-6 ) -> List[Any]: super().__init__() __lowerCamelCase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=SCREAMING_SNAKE_CASE__ , d_kv=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , dropout_rate=SCREAMING_SNAKE_CASE__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=SCREAMING_SNAKE_CASE__ , d_kv=SCREAMING_SNAKE_CASE__ , num_heads=SCREAMING_SNAKE_CASE__ , dropout_rate=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=SCREAMING_SNAKE_CASE__ , d_ff=SCREAMING_SNAKE_CASE__ , dropout_rate=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ ) ) def __A ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> List[str]: __lowerCamelCase = self.layer[0]( SCREAMING_SNAKE_CASE__ , conditioning_emb=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , ) if encoder_hidden_states is not None: __lowerCamelCase = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) __lowerCamelCase = self.layer[1]( SCREAMING_SNAKE_CASE__ , key_value_states=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , ) # Apply Film Conditional Feed Forward layer __lowerCamelCase = self.layer[-1](SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return (hidden_states,) class lowerCAmelCase__ ( nn.Module ): def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: super().__init__() __lowerCamelCase = TaLayerNorm(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = Attention(query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , out_bias=SCREAMING_SNAKE_CASE__ , scale_qk=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = nn.Dropout(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Any=None , ) -> str: # pre_self_attention_layer_norm __lowerCamelCase = self.layer_norm(SCREAMING_SNAKE_CASE__ ) if conditioning_emb is not None: __lowerCamelCase = self.FiLMLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Self-attention block __lowerCamelCase = self.attention(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: super().__init__() __lowerCamelCase = Attention(query_dim=SCREAMING_SNAKE_CASE__ , heads=SCREAMING_SNAKE_CASE__ , dim_head=SCREAMING_SNAKE_CASE__ , out_bias=SCREAMING_SNAKE_CASE__ , scale_qk=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = TaLayerNorm(SCREAMING_SNAKE_CASE__ , eps=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = nn.Dropout(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ) -> Union[str, Any]: __lowerCamelCase = self.layer_norm(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.attention( SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , attention_mask=attention_mask.squeeze(1 ) , ) __lowerCamelCase = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__ ) return layer_output class lowerCAmelCase__ ( nn.Module ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: super().__init__() __lowerCamelCase = TaDenseGatedActDense(d_model=SCREAMING_SNAKE_CASE__ , d_ff=SCREAMING_SNAKE_CASE__ , dropout_rate=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = TaLayerNorm(SCREAMING_SNAKE_CASE__ , eps=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = nn.Dropout(SCREAMING_SNAKE_CASE__ ) def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> Dict: __lowerCamelCase = self.layer_norm(SCREAMING_SNAKE_CASE__ ) if conditioning_emb is not None: __lowerCamelCase = self.film(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.DenseReluDense(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_states + self.dropout(SCREAMING_SNAKE_CASE__ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: super().__init__() __lowerCamelCase = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = nn.Dropout(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = NewGELUActivation() def __A ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: __lowerCamelCase = self.act(self.wi_a(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = self.wi_a(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_gelu * hidden_linear __lowerCamelCase = self.dropout(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.wo(SCREAMING_SNAKE_CASE__ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any]=1e-6 ) -> List[str]: super().__init__() __lowerCamelCase = nn.Parameter(torch.ones(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = eps def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 __lowerCamelCase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowerCamelCase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCAmelCase__ ( nn.Module ): def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(SCREAMING_SNAKE_CASE__ , 3.0 )) )) class lowerCAmelCase__ ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: super().__init__() __lowerCamelCase = nn.Linear(SCREAMING_SNAKE_CASE__ , out_features * 2 , bias=SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: __lowerCamelCase = self.scale_bias(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase = torch.chunk(SCREAMING_SNAKE_CASE__ , 2 , -1 ) __lowerCamelCase = x * (1 + scale) + shift return x
298
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] ) -> Optional[Any]: __lowerCamelCase = [1] for i in range(2 , __lowerCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __lowerCamelCase = [] __lowerCamelCase = list(range(__lowerCAmelCase ) ) # Find permutation while factorials: __lowerCamelCase = factorials.pop() __lowerCamelCase , __lowerCamelCase = divmod(__lowerCAmelCase , __lowerCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
298
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Union[str, Any] =logging.get_logger(__name__) A__ : Union[str, Any] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase ='''transfo-xl''' lowerCamelCase =['''mems'''] lowerCamelCase ={ '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Dict , lowerCamelCase : int=26_77_35 , lowerCamelCase : List[str]=[2_00_00, 4_00_00, 20_00_00] , lowerCamelCase : Tuple=10_24 , lowerCamelCase : Union[str, Any]=10_24 , lowerCamelCase : Any=16 , lowerCamelCase : str=64 , lowerCamelCase : str=40_96 , lowerCamelCase : Dict=4 , lowerCamelCase : List[str]=False , lowerCamelCase : Optional[Any]=18 , lowerCamelCase : Any=16_00 , lowerCamelCase : Dict=10_00 , lowerCamelCase : Dict=True , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : str=0 , lowerCamelCase : Union[str, Any]=-1 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : Tuple=0.0 , lowerCamelCase : Optional[Any]=True , lowerCamelCase : List[Any]="normal" , lowerCamelCase : Optional[int]=0.01 , lowerCamelCase : Dict=0.01 , lowerCamelCase : int=0.02 , lowerCamelCase : Dict=1e-5 , lowerCamelCase : str=0 , **lowerCamelCase : Any , ): """simple docstring""" __A : Any = vocab_size __A : Optional[int] = [] self.cutoffs.extend(lowerCamelCase ) if proj_share_all_but_first: __A : List[Any] = [False] + [True] * len(self.cutoffs ) else: __A : List[Any] = [False] + [False] * len(self.cutoffs ) __A : Union[str, Any] = d_model __A : Optional[Any] = d_embed __A : int = d_head __A : int = d_inner __A : Any = div_val __A : Optional[Any] = pre_lnorm __A : int = n_layer __A : Optional[int] = n_head __A : Optional[int] = mem_len __A : List[str] = same_length __A : int = attn_type __A : Any = clamp_len __A : Optional[Any] = sample_softmax __A : Tuple = adaptive __A : List[str] = dropout __A : str = dropatt __A : Optional[Any] = untie_r __A : Tuple = init __A : str = init_range __A : Any = proj_init_std __A : Any = init_std __A : int = layer_norm_epsilon super().__init__(eos_token_id=lowerCamelCase , **lowerCamelCase ) @property def lowercase_( self : Dict ): """simple docstring""" logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def lowercase_( self : List[Any] , lowerCamelCase : Optional[Any] ): """simple docstring""" raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
707
'''simple docstring''' import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def A_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: """simple docstring""" __A : Optional[int] = RemBertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print("""Building PyTorch model from configuration: {}""".format(str(__SCREAMING_SNAKE_CASE ) ) ) __A : str = RemBertModel(__SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model print("""Save PyTorch model to {}""".format(__SCREAMING_SNAKE_CASE ) ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": A__ : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A__ : Dict =parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
499
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def a ( A__ ) -> float: '''simple docstring''' return np.dot(A__ , A__ ) class lowercase : def __init__( self : List[Any] , *, _lowercase : float = np.inf , _lowercase : str = "linear" , _lowercase : float = 0.0 , ): SCREAMING_SNAKE_CASE__ : List[Any] = regularization SCREAMING_SNAKE_CASE__ : int = gamma if kernel == "linear": SCREAMING_SNAKE_CASE__ : Dict = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) SCREAMING_SNAKE_CASE__ : Any = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: SCREAMING_SNAKE_CASE__ : List[str] = f"""Unknown kernel: {kernel}""" raise ValueError(_lowercase ) def lowercase__ ( self : Optional[int] , _lowercase : ndarray , _lowercase : ndarray ): return np.dot(_lowercase , _lowercase ) def lowercase__ ( self : Any , _lowercase : ndarray , _lowercase : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowercase__ ( self : Any , _lowercase : list[ndarray] , _lowercase : ndarray ): SCREAMING_SNAKE_CASE__ : List[str] = observations SCREAMING_SNAKE_CASE__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((SCREAMING_SNAKE_CASE__) , ) : int = np.shape(_lowercase ) def to_minimize(_lowercase : ndarray ) -> float: SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 ((SCREAMING_SNAKE_CASE__) , ) : int = np.shape(_lowercase ) for i in range(_lowercase ): for j in range(_lowercase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = LinearConstraint(_lowercase , 0 , 0 ) SCREAMING_SNAKE_CASE__ : int = Bounds(0 , self.regularization ) SCREAMING_SNAKE_CASE__ : Dict = minimize( _lowercase , np.ones(_lowercase ) , bounds=_lowercase , constraints=[ly_contraint] ).x SCREAMING_SNAKE_CASE__ : Dict = l_star # calculating mean offset of separation plane to points SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 for i in range(_lowercase ): for j in range(_lowercase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) SCREAMING_SNAKE_CASE__ : Tuple = s / n def lowercase__ ( self : Tuple , _lowercase : ndarray ): SCREAMING_SNAKE_CASE__ : List[str] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowercase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) snake_case_ : Optional[Any] = 'pytorch_model.bin' snake_case_ : Union[str, Any] = 'pytorch_model.bin.index.json' snake_case_ : Optional[Any] = 'adapter_config.json' snake_case_ : List[str] = 'adapter_model.bin' snake_case_ : Any = 'adapter_model.safetensors' snake_case_ : Optional[int] = 'tf_model.h5' snake_case_ : List[Any] = 'tf_model.h5.index.json' snake_case_ : Any = 'model.ckpt' snake_case_ : Optional[Any] = 'flax_model.msgpack' snake_case_ : List[str] = 'flax_model.msgpack.index.json' snake_case_ : List[str] = 'model.safetensors' snake_case_ : Any = 'model.safetensors.index.json' snake_case_ : Any = 'config.json' snake_case_ : Optional[Any] = 'preprocessor_config.json' snake_case_ : List[Any] = FEATURE_EXTRACTOR_NAME snake_case_ : Optional[int] = 'generation_config.json' snake_case_ : Any = 'modelcard.json' snake_case_ : Optional[int] = '▁' snake_case_ : Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility snake_case_ : Union[str, Any] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. snake_case_ : Union[str, Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] snake_case_ : Union[str, Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __snake_case ( _UpperCAmelCase : int): if version.parse(_UpperCAmelCase) < version.parse(_UpperCAmelCase): if "dev" in min_version: UpperCamelCase = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: UpperCamelCase = f'This example requires a minimum version of {min_version},' error_message += f' but the version found is {__version__}.\n' raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''')
212
0
from collections import defaultdict class _UpperCAmelCase : def __init__( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int): SCREAMING_SNAKE_CASE_ :Dict = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 SCREAMING_SNAKE_CASE_ :Optional[int] = [ [-1 for i in range(total + 1)] for j in range(2 ** len(UpperCAmelCase)) ] SCREAMING_SNAKE_CASE_ :Tuple = defaultdict(UpperCAmelCase) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 SCREAMING_SNAKE_CASE_ :Tuple = (1 << len(UpperCAmelCase)) - 1 def _snake_case ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Dict): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement SCREAMING_SNAKE_CASE_ :Optional[int] = self.count_ways_until(UpperCAmelCase , task_no + 1) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1) # save the value. SCREAMING_SNAKE_CASE_ :Union[str, Any] = total_ways_util return self.dp[mask][task_no] def _snake_case ( self : str , UpperCAmelCase : Optional[int]): # Store the list of persons for each task for i in range(len(UpperCAmelCase)): for j in task_performed[i]: self.task[j].append(UpperCAmelCase) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. SCREAMING_SNAKE_CASE__ = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
140
from collections import defaultdict class _UpperCAmelCase : def __init__( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int): SCREAMING_SNAKE_CASE_ :Dict = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 SCREAMING_SNAKE_CASE_ :Optional[int] = [ [-1 for i in range(total + 1)] for j in range(2 ** len(UpperCAmelCase)) ] SCREAMING_SNAKE_CASE_ :Tuple = defaultdict(UpperCAmelCase) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 SCREAMING_SNAKE_CASE_ :Tuple = (1 << len(UpperCAmelCase)) - 1 def _snake_case ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Dict): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement SCREAMING_SNAKE_CASE_ :Optional[int] = self.count_ways_until(UpperCAmelCase , task_no + 1) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1) # save the value. SCREAMING_SNAKE_CASE_ :Union[str, Any] = total_ways_util return self.dp[mask][task_no] def _snake_case ( self : str , UpperCAmelCase : Optional[int]): # Store the list of persons for each task for i in range(len(UpperCAmelCase)): for j in task_performed[i]: self.task[j].append(UpperCAmelCase) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. SCREAMING_SNAKE_CASE__ = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
140
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
232
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Optional[int] = "perceiver" def __init__( self , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=1280 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=26 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="kv" , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1e-12 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=262 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=56 , SCREAMING_SNAKE_CASE__=[368, 496] , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=1920 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=[1, 16, 224, 224] , **SCREAMING_SNAKE_CASE__ , ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE__ ) A__ = num_latents A__ = d_latents A__ = d_model A__ = num_blocks A__ = num_self_attends_per_block A__ = num_self_attention_heads A__ = num_cross_attention_heads A__ = qk_channels A__ = v_channels A__ = cross_attention_shape_for_attention A__ = self_attention_widening_factor A__ = cross_attention_widening_factor A__ = hidden_act A__ = attention_probs_dropout_prob A__ = initializer_range A__ = layer_norm_eps A__ = use_query_residual # masked language modeling attributes A__ = vocab_size A__ = max_position_embeddings # image classification attributes A__ = image_size # flow attributes A__ = train_size # multimodal autoencoding attributes A__ = num_frames A__ = audio_samples_per_frame A__ = samples_per_patch A__ = output_shape class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" @property def snake_case__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A__ = {0: "batch", 1: "choice", 2: "sequence"} else: A__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def snake_case__ ( self ) -> float: return 1e-4 def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 3 , SCREAMING_SNAKE_CASE__ = 40 , SCREAMING_SNAKE_CASE__ = 40 , ) -> Mapping[str, Any]: # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A__ = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ = preprocessor.num_special_tokens_to_add(SCREAMING_SNAKE_CASE__ ) A__ = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE__ ) # Generate dummy inputs according to compute batch and sequence A__ = [" ".join(["a"] ) * seq_length] * batch_size A__ = dict(preprocessor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) ) A__ = inputs.pop("input_ids" ) return inputs elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A__ = compute_effective_axis_dimension(SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch ) A__ = self._generate_dummy_images(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = dict(preprocessor(images=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) ) A__ = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
104
0
from jiwer import compute_measures import datasets lowercase_ : Union[str, Any] = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowercase_ : Any = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' lowercase_ : Optional[int] = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Dict=False ): '''simple docstring''' if concatenate_texts: return compute_measures(lowerCamelCase_ , lowerCamelCase_ )["wer"] else: _snake_case : str = 0 _snake_case : Dict = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : List[Any] = compute_measures(lowerCamelCase_ , lowerCamelCase_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
652
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase_ : List[str] = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase_ : Optional[int] = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase_ : Any = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' _snake_case : str = len(references[0] ) if any(len(lowerCamelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : int = [[refs[i] for refs in references] for i in range(lowerCamelCase_ )] _snake_case : Optional[int] = TER( normalized=lowerCamelCase_ , no_punct=lowerCamelCase_ , asian_support=lowerCamelCase_ , case_sensitive=lowerCamelCase_ , ) _snake_case : Optional[Any] = sb_ter.corpus_score(lowerCamelCase_ , lowerCamelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
652
1