code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : Any = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Tuple = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
447
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : Dict = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
447
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Optional[int] = tempfile.mkdtemp() A__ : Optional[int] = BlipImageProcessor() A__ : Union[str, Any] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) A__ : List[str] = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) A__ : Union[str, Any] = InstructBlipProcessor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).qformer_tokenizer def __snake_case ( self ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self ): A__ : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ : Any = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self ): A__ : List[str] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) A__ : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A__ : Dict = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) A__ : Tuple = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase__ ) def __snake_case ( self ): A__ : Dict = self.get_image_processor() A__ : Any = self.get_tokenizer() A__ : Optional[int] = self.get_qformer_tokenizer() A__ : List[str] = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : List[Any] = self.prepare_image_inputs() A__ : List[Any] = image_processor(UpperCamelCase__ , return_tensors='''np''' ) A__ : List[str] = processor(images=UpperCamelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self ): A__ : Optional[int] = self.get_image_processor() A__ : str = self.get_tokenizer() A__ : List[Any] = self.get_qformer_tokenizer() A__ : Union[str, Any] = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : List[Any] = '''lower newer''' A__ : Union[str, Any] = processor(text=UpperCamelCase__ ) A__ : List[Any] = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) A__ : Dict = qformer_tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __snake_case ( self ): A__ : List[str] = self.get_image_processor() A__ : Optional[Any] = self.get_tokenizer() A__ : List[Any] = self.get_qformer_tokenizer() A__ : int = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : Optional[int] = '''lower newer''' A__ : Optional[int] = self.prepare_image_inputs() A__ : Any = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def __snake_case ( self ): A__ : List[str] = self.get_image_processor() A__ : Tuple = self.get_tokenizer() A__ : str = self.get_qformer_tokenizer() A__ : Any = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ : Optional[int] = processor.batch_decode(UpperCamelCase__ ) A__ : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[int] = self.get_image_processor() A__ : Optional[int] = self.get_tokenizer() A__ : str = self.get_qformer_tokenizer() A__ : Optional[int] = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : Optional[Any] = '''lower newer''' A__ : Any = self.prepare_image_inputs() A__ : Dict = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
55
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
1
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker snake_case_ = 'CompVis/stable-diffusion-v1-1' snake_case_ = 'CompVis/stable-diffusion-v1-2' snake_case_ = 'CompVis/stable-diffusion-v1-3' snake_case_ = 'CompVis/stable-diffusion-v1-4' class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True , ): """simple docstring""" super()._init_() SCREAMING_SNAKE_CASE_ : Any = StableDiffusionPipeline.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionPipeline.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = StableDiffusionPipeline.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = StableDiffusionPipeline( vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , unet=lowercase__ , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , requires_safety_checker=lowercase__ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCamelCase ( self ): """simple docstring""" return {k: getattr(self , lowercase__ ) for k in self.config.keys() if not k.startswith("_" )} def __lowerCamelCase ( self , lowercase__ = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE_ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase__ ) def __lowerCamelCase ( self ): """simple docstring""" self.enable_attention_slicing(lowercase__ ) @torch.no_grad() def __lowerCamelCase ( self , lowercase__ , lowercase__ = 512 , lowercase__ = 512 , lowercase__ = 50 , lowercase__ = 7.5 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , **lowercase__ , ): """simple docstring""" return self.pipea( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) @torch.no_grad() def __lowerCamelCase ( self , lowercase__ , lowercase__ = 512 , lowercase__ = 512 , lowercase__ = 50 , lowercase__ = 7.5 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , **lowercase__ , ): """simple docstring""" return self.pipea( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) @torch.no_grad() def __lowerCamelCase ( self , lowercase__ , lowercase__ = 512 , lowercase__ = 512 , lowercase__ = 50 , lowercase__ = 7.5 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , **lowercase__ , ): """simple docstring""" return self.pipea( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) @torch.no_grad() def __lowerCamelCase ( self , lowercase__ , lowercase__ = 512 , lowercase__ = 512 , lowercase__ = 50 , lowercase__ = 7.5 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , **lowercase__ , ): """simple docstring""" return self.pipea( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) @torch.no_grad() def __lowerCamelCase ( self , lowercase__ , lowercase__ = 512 , lowercase__ = 512 , lowercase__ = 50 , lowercase__ = 7.5 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , **lowercase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = "cuda" if torch.cuda.is_available() else "cpu" self.to(lowercase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE_ : List[str] = self.textaimg_sda_a( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE_ : str = self.textaimg_sda_a( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE_ : Tuple = self.textaimg_sda_a( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.textaimg_sda_a( prompt=lowercase__ , height=lowercase__ , width=lowercase__ , num_inference_steps=lowercase__ , guidance_scale=lowercase__ , negative_prompt=lowercase__ , num_images_per_prompt=lowercase__ , eta=lowercase__ , generator=lowercase__ , latents=lowercase__ , output_type=lowercase__ , return_dict=lowercase__ , callback=lowercase__ , callback_steps=lowercase__ , **lowercase__ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
421
'''simple docstring''' from jiwer import compute_measures import datasets snake_case_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' snake_case_ = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' snake_case_ = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def __lowerCamelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def __lowerCamelCase ( self , lowercase__=None , lowercase__=None , lowercase__=False ): """simple docstring""" if concatenate_texts: return compute_measures(lowercase__ , lowercase__ )["wer"] else: SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : List[str] = 0 for prediction, reference in zip(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : List[str] = compute_measures(lowercase__ , lowercase__ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
421
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
712
from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ (snake_case__ ): """simple docstring""" lowerCamelCase : Tuple = 'speech_to_text_2' lowerCamelCase : int = ['past_key_values'] lowerCamelCase : int = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self: Optional[Any] , _UpperCAmelCase: Optional[Any]=1_0000 , _UpperCAmelCase: Union[str, Any]=6 , _UpperCAmelCase: Optional[int]=2048 , _UpperCAmelCase: Optional[Any]=4 , _UpperCAmelCase: Any=0.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Any="relu" , _UpperCAmelCase: Dict=256 , _UpperCAmelCase: int=0.1 , _UpperCAmelCase: List[str]=0.0 , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: List[Any]=0.0_2 , _UpperCAmelCase: int=2 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=1 , _UpperCAmelCase: Dict=0 , _UpperCAmelCase: Optional[Any]=2 , _UpperCAmelCase: Tuple=1024 , **_UpperCAmelCase: str , ): _lowerCAmelCase :List[Any] = vocab_size _lowerCAmelCase :Tuple = d_model _lowerCAmelCase :Any = decoder_ffn_dim _lowerCAmelCase :List[str] = decoder_layers _lowerCAmelCase :Optional[int] = decoder_attention_heads _lowerCAmelCase :List[str] = dropout _lowerCAmelCase :Optional[int] = attention_dropout _lowerCAmelCase :Tuple = activation_dropout _lowerCAmelCase :List[Any] = activation_function _lowerCAmelCase :List[str] = init_std _lowerCAmelCase :Dict = decoder_layerdrop _lowerCAmelCase :List[Any] = use_cache _lowerCAmelCase :List[Any] = decoder_layers _lowerCAmelCase :Any = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase :Tuple = max_target_positions super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
382
0
from heapq import heappop, heappush import numpy as np def a__ ( snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = grid.shape __SCREAMING_SNAKE_CASE : List[str] = [-1, 1, 0, 0] __SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __SCREAMING_SNAKE_CASE : List[Any] = [(0, source)], set() __SCREAMING_SNAKE_CASE : Optional[int] = np.full((rows, cols) , np.inf ) __SCREAMING_SNAKE_CASE : Tuple = 0 __SCREAMING_SNAKE_CASE : Dict = np.empty((rows, cols) , dtype=snake_case ) __SCREAMING_SNAKE_CASE : int = None while queue: (__SCREAMING_SNAKE_CASE) : Optional[Any] = heappop(snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __SCREAMING_SNAKE_CASE : Union[str, Any] = [] while (x, y) != source: path.append((x, y) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = predecessors[x, y] path.append(snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __SCREAMING_SNAKE_CASE : str = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case , (dist + 1, (nx, ny)) ) __SCREAMING_SNAKE_CASE : Dict = dist + 1 __SCREAMING_SNAKE_CASE : Dict = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
74
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowercase__ ( lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Any ) -> Any: # Initialise PyTorch model lowerCAmelCase__ : Any = MobileBertConfig.from_json_file(lowerCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) lowerCAmelCase__ : str = MobileBertForPreTraining(lowerCamelCase ) # Load weights from tf checkpoint lowerCAmelCase__ : Union[str, Any] = load_tf_weights_in_mobilebert(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowerCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
308
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : List[Any] = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } snake_case__ : List[Any] = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } snake_case__ : int = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } snake_case__ : List[str] = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } snake_case__ : Any = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } snake_case__ : str = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } snake_case__ : Any = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } snake_case__ : int = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } snake_case__ : List[str] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Dict = VOCAB_FILES_NAMES lowerCamelCase_ :Any = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ :Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ :Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ :Dict = DPRContextEncoderTokenizer class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :str = VOCAB_FILES_NAMES lowerCamelCase_ :Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ :Tuple = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ :str = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ :Any = DPRQuestionEncoderTokenizer snake_case__ : Union[str, Any] = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) snake_case__ : Union[str, Any] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) snake_case__ : Optional[int] = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(lowerCamelCase_ ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = None , **snake_case_ , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) elif titles is None or texts is None: UpperCAmelCase_ : Optional[Any] = titles if texts is None else texts return super().__call__( snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) UpperCAmelCase_ : Union[str, Any] = titles if not isinstance(snake_case_ , snake_case_ ) else [titles] UpperCAmelCase_ : Dict = texts if not isinstance(snake_case_ , snake_case_ ) else [texts] UpperCAmelCase_ : Optional[Any] = len(snake_case_ ) UpperCAmelCase_ : Dict = questions if not isinstance(snake_case_ , snake_case_ ) else [questions] * n_passages assert len(snake_case_ ) == len( snake_case_ ), F'''There should be as many titles than texts but got {len(snake_case_ )} titles and {len(snake_case_ )} texts.''' UpperCAmelCase_ : List[Any] = super().__call__(snake_case_ , snake_case_ , padding=snake_case_ , truncation=snake_case_ )['input_ids'] UpperCAmelCase_ : int = super().__call__(snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ )['input_ids'] UpperCAmelCase_ : Tuple = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case_ , snake_case_ ) ] } if return_attention_mask is not False: UpperCAmelCase_ : Dict = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase_ : Optional[Any] = attention_mask return self.pad(snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_tensors=snake_case_ ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ = 1_6 , snake_case_ = 6_4 , snake_case_ = 4 , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = reader_input['input_ids'] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = reader_output[:3] UpperCAmelCase_ : Optional[Any] = len(snake_case_ ) UpperCAmelCase_ : Dict = sorted(range(snake_case_ ) , reverse=snake_case_ , key=relevance_logits.__getitem__ ) UpperCAmelCase_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: UpperCAmelCase_ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase_ : List[str] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase_ : Optional[int] = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase_ : Union[str, Any] = len(snake_case_ ) UpperCAmelCase_ : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case_ , top_spans=snake_case_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case_ , start_index=snake_case_ , end_index=snake_case_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(snake_case_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : int = [] for start_index, start_score in enumerate(snake_case_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase_ : str = sorted(snake_case_ , key=lambda snake_case_ : x[1] , reverse=snake_case_ ) UpperCAmelCase_ : str = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'''Wrong span indices: [{start_index}:{end_index}]''' UpperCAmelCase_ : int = end_index - start_index + 1 assert length <= max_answer_length, F'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCamelCase_ ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase_ :Optional[Any] = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ :Optional[int] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ :Dict = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ :Optional[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase_ :List[Any] = DPRReaderTokenizer
389
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 3_2 , snake_case_ = 6_4 , snake_case_ = 2_0 , snake_case_ = 7_6_8 , snake_case_=7_7 , snake_case_=4 , snake_case_ = 0.0 , snake_case_ = "silu" , snake_case_ = None , snake_case_ = None , snake_case_ = "linear" , snake_case_ = "prd" , snake_case_ = None , snake_case_ = None , snake_case_ = None , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Dict = attention_head_dim UpperCAmelCase_ : int = num_attention_heads * attention_head_dim UpperCAmelCase_ : str = additional_embeddings UpperCAmelCase_ : List[Any] = time_embed_dim or inner_dim UpperCAmelCase_ : Tuple = embedding_proj_dim or embedding_dim UpperCAmelCase_ : Union[str, Any] = clip_embed_dim or embedding_dim UpperCAmelCase_ : Tuple = Timesteps(snake_case_ , snake_case_ , 0 ) UpperCAmelCase_ : Tuple = TimestepEmbedding(snake_case_ , snake_case_ , out_dim=snake_case_ , act_fn=snake_case_ ) UpperCAmelCase_ : Union[str, Any] = nn.Linear(snake_case_ , snake_case_ ) if embedding_proj_norm_type is None: UpperCAmelCase_ : Optional[Any] = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ : Dict = nn.LayerNorm(snake_case_ ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ : Tuple = nn.Linear(snake_case_ , snake_case_ ) if encoder_hid_proj_type is None: UpperCAmelCase_ : List[Any] = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ : Tuple = nn.Linear(snake_case_ , snake_case_ ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ : Dict = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case_ ) ) if added_emb_type == "prd": UpperCAmelCase_ : Tuple = nn.Parameter(torch.zeros(1 , 1 , snake_case_ ) ) elif added_emb_type is None: UpperCAmelCase_ : str = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ : Dict = nn.ModuleList( [ BasicTransformerBlock( snake_case_ , snake_case_ , snake_case_ , dropout=snake_case_ , activation_fn='gelu' , attention_bias=snake_case_ , ) for d in range(snake_case_ ) ] ) if norm_in_type == "layer": UpperCAmelCase_ : int = nn.LayerNorm(snake_case_ ) elif norm_in_type is None: UpperCAmelCase_ : List[str] = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ : int = nn.LayerNorm(snake_case_ ) UpperCAmelCase_ : int = nn.Linear(snake_case_ , snake_case_ ) UpperCAmelCase_ : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ : Tuple = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , snake_case_ , persistent=snake_case_ ) UpperCAmelCase_ : List[Any] = nn.Parameter(torch.zeros(1 , snake_case_ ) ) UpperCAmelCase_ : Any = nn.Parameter(torch.zeros(1 , snake_case_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = {} def fn_recursive_add_processors(snake_case_ , snake_case_ , snake_case_ ): if hasattr(snake_case_ , 'set_processor' ): UpperCAmelCase_ : Any = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , snake_case_ , snake_case_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case_ , snake_case_ , snake_case_ ) return processors def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = len(self.attn_processors.keys() ) if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(snake_case_ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(snake_case_ , snake_case_ , snake_case_ ): if hasattr(snake_case_ , 'set_processor' ): if not isinstance(snake_case_ , snake_case_ ): module.set_processor(snake_case_ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , snake_case_ , snake_case_ ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case_ , snake_case_ , snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = True , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = hidden_states.shape[0] UpperCAmelCase_ : Any = timestep if not torch.is_tensor(snake_case_ ): UpperCAmelCase_ : Any = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(snake_case_ ) and len(timesteps.shape ) == 0: UpperCAmelCase_ : Union[str, Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ : Optional[Any] = timesteps * torch.ones(snake_case_ , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ : List[str] = self.time_proj(snake_case_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ : List[str] = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ : List[Any] = self.time_embedding(snake_case_ ) if self.embedding_proj_norm is not None: UpperCAmelCase_ : Union[str, Any] = self.embedding_proj_norm(snake_case_ ) UpperCAmelCase_ : Tuple = self.embedding_proj(snake_case_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ : Tuple = self.encoder_hidden_states_proj(snake_case_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) UpperCAmelCase_ : Optional[int] = self.proj_in(snake_case_ ) UpperCAmelCase_ : Tuple = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Tuple = 0 if encoder_hidden_states is not None: additional_embeds.append(snake_case_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ : Dict = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ : str = hidden_states[:, None, :] UpperCAmelCase_ : Optional[Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ : Dict = self.prd_embedding.to(hidden_states.dtype ).expand(snake_case_ , -1 , -1 ) additional_embeds.append(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = torch.cat( snake_case_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ : Union[str, Any] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ : Optional[int] = F.pad( snake_case_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ : List[Any] = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 UpperCAmelCase_ : Dict = F.pad(snake_case_ , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ : List[str] = self.norm_in(snake_case_ ) for block in self.transformer_blocks: UpperCAmelCase_ : List[str] = block(snake_case_ , attention_mask=snake_case_ ) UpperCAmelCase_ : Dict = self.norm_out(snake_case_ ) if self.prd_embedding is not None: UpperCAmelCase_ : Optional[Any] = hidden_states[:, -1] else: UpperCAmelCase_ : List[Any] = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ : List[Any] = self.proj_to_clip_embeddings(snake_case_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=snake_case_ ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Any = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
389
1
'''simple docstring''' import os def A_( A : Optional[Any] = "matrix.txt"): with open(os.path.join(os.path.dirname(UpperCamelCase__) , UpperCamelCase__)) as in_file: UpperCamelCase = in_file.read() UpperCamelCase = [[int(UpperCamelCase__) for cell in row.split(',')] for row in data.strip().splitlines()] UpperCamelCase = [[0 for cell in row] for row in grid] UpperCamelCase = len(grid[0]) UpperCamelCase = [[0 for i in range(UpperCamelCase__)] for j in range(UpperCamelCase__)] UpperCamelCase = grid[0][0] for i in range(1 , UpperCamelCase__): UpperCamelCase = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCamelCase__): UpperCamelCase = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCamelCase__): for j in range(1 , UpperCamelCase__): UpperCamelCase = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1]) return dp[-1][-1] if __name__ == "__main__": print(f"""{solution() = }""")
3
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __UpperCAmelCase =object() # For specifying empty leaf dict `{}` __UpperCAmelCase =object() def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: __lowerCamelCase = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(UpperCamelCase__ ) - len(UpperCamelCase__ ) + 1 ): __lowerCamelCase = [x.match(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , ks[i:] )] if matches and all(UpperCamelCase__ ): return True return False def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[int]: def replace(UpperCamelCase__ , UpperCamelCase__ ): for rule, replacement in rules: if _match(UpperCamelCase__ , UpperCamelCase__ ): return replacement return val return replace def __lowerCAmelCase ( ) -> Dict: return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , UpperCamelCase__ )), (("transformer", "wte", "embedding"), P('''mp''' , UpperCamelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase__ , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , UpperCamelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase__ , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , UpperCamelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __lowerCAmelCase ( UpperCamelCase__ ) -> int: __lowerCamelCase = _get_partition_rules() __lowerCamelCase = _replacement_rules(UpperCamelCase__ ) __lowerCamelCase = {k: _unmatched for k in flatten_dict(UpperCamelCase__ )} __lowerCamelCase = {k: replace(UpperCamelCase__ , UpperCamelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase__ ) )
546
0
'''simple docstring''' from datetime import datetime import requests def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' _UpperCAmelCase : Optional[Any] ='https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' _UpperCAmelCase : Optional[int] =requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(__lowerCamelCase ).content if __name__ == "__main__": lowercase =input('Enter Video/IGTV url: ').strip() lowercase =F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F"""Done. Video saved to disk as {file_name}.""")
721
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers lowercase =[int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : int =os.path.dirname(os.path.realpath(__lowerCamelCase ) ) _UpperCAmelCase : List[Any] =os.path.join(__lowerCamelCase , 'words.txt' ) _UpperCAmelCase : int ='' with open(__lowerCamelCase ) as f: _UpperCAmelCase : Tuple =f.readline() _UpperCAmelCase : List[str] =[word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _UpperCAmelCase : Dict =[ word for word in [sum(ord(__lowerCamelCase ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__lowerCamelCase ) if __name__ == "__main__": print(solution())
331
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = (CMStochasticIterativeScheduler,) __magic_name__ = 10 def lowerCAmelCase__ ( self , **snake_case_ ): _A = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } config.update(**snake_case_ ) return config def lowerCAmelCase__ ( self ): _A = 10 _A = self.get_scheduler_config() _A = self.scheduler_classes[0](**snake_case_ ) scheduler.set_timesteps(snake_case_ ) _A = scheduler.timesteps[0] _A = scheduler.timesteps[1] _A = self.dummy_sample _A = 0.1 * sample _A = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample _A = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase__ ( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def lowerCAmelCase__ ( self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**snake_case_ ) _A = 1 scheduler.set_timesteps(snake_case_ ) _A = scheduler.timesteps _A = torch.manual_seed(0 ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(snake_case_ ): # 1. scale model input _A = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual _A = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 _A = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample _A = pred_prev_sample _A = torch.sum(torch.abs(snake_case_ ) ) _A = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def lowerCAmelCase__ ( self ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**snake_case_ ) _A = [106, 0] scheduler.set_timesteps(timesteps=snake_case_ ) _A = scheduler.timesteps _A = torch.manual_seed(0 ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _A = scheduler.scale_model_input(snake_case_ , snake_case_ ) # 2. predict noise residual _A = model(snake_case_ , snake_case_ ) # 3. predict previous sample x_t-1 _A = scheduler.step(snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ ).prev_sample _A = pred_prev_sample _A = torch.sum(torch.abs(snake_case_ ) ) _A = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def lowerCAmelCase__ ( self ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**snake_case_ ) _A = [39, 30, 12, 15, 0] with self.assertRaises(snake_case_ , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**snake_case_ ) _A = [39, 30, 12, 1, 0] _A = len(snake_case_ ) with self.assertRaises(snake_case_ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=snake_case_ , timesteps=snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**snake_case_ ) _A = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=snake_case_ )
27
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] ): lowercase = model.config lowercase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase = MBartConfig( is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase_ , add_final_layer_norm=lowercase_ , ) return encoder_config, decoder_config def SCREAMING_SNAKE_CASE ( lowercase_ : Dict ): if "encoder.model" in name: lowercase = name.replace("""encoder.model""" , """encoder""" ) if "decoder.model" in name: lowercase = name.replace("""decoder.model""" , """decoder""" ) if "patch_embed.proj" in name: lowercase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowercase = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: lowercase = """encoder.""" + name if "attn.proj" in name: lowercase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "mask" not in name: lowercase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": lowercase = """encoder.layernorm.weight""" if name == "encoder.norm.bias": lowercase = """encoder.layernorm.bias""" return name def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Dict ): for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[3] ) lowercase = int(key_split[5] ) lowercase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : str=None , lowercase_ : Optional[Any]=False ): # load original model lowercase = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model lowercase , lowercase = get_configs(lowercase_ ) lowercase = DonutSwinModel(lowercase_ ) lowercase = MBartForCausalLM(lowercase_ ) lowercase = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() lowercase = original_model.state_dict() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document lowercase = load_dataset("""hf-internal-testing/example-documents""" ) lowercase = dataset["""test"""][0]["""image"""].convert("""RGB""" ) lowercase = XLMRobertaTokenizerFast.from_pretrained(lowercase_ , from_slow=lowercase_ ) lowercase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase = DonutProcessor(lowercase_ , lowercase_ ) lowercase = processor(lowercase_ , return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase = """When is the coffee break?""" lowercase = task_prompt.replace("""{user_input}""" , lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase = """hello world""" else: raise ValueError("""Model name not supported""" ) lowercase = original_model.decoder.tokenizer(lowercase_ , add_special_tokens=lowercase_ , return_tensors="""pt""" )[ """input_ids""" ] lowercase = original_model.encoder.model.patch_embed(lowercase_ ) lowercase , lowercase = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) # verify encoder hidden states lowercase = original_model.encoder(lowercase_ ) lowercase = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) # verify decoder hidden states lowercase = original_model(lowercase_ , lowercase_ , lowercase_ ).logits lowercase = model(lowercase_ , decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" ) if __name__ == "__main__": lowercase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) lowercase_ : Dict = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
588
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_1_2, """facebook/dpr-ctx_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": 5_1_2, """facebook/dpr-question_encoder-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": 5_1_2, """facebook/dpr-reader-multiset-base""": 5_1_2, } _lowerCAmelCase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowerCAmelCase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowerCAmelCase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowerCAmelCase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(a__ ) class __UpperCamelCase : def __call__( self ,_A ,_A = None ,_A = None ,_A = False ,_A = False ,_A = None ,_A = None ,_A = None ,**_A ,): '''simple docstring''' if titles is None and texts is None: return super().__call__( _A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) elif titles is None or texts is None: _lowerCAmelCase : Optional[int] = titles if texts is None else texts return super().__call__( _A ,_A ,padding=_A ,truncation=_A ,max_length=_A ,return_tensors=_A ,return_attention_mask=_A ,**_A ,) _lowerCAmelCase : str = titles if not isinstance(_A ,_A ) else [titles] _lowerCAmelCase : List[str] = texts if not isinstance(_A ,_A ) else [texts] _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : Optional[Any] = questions if not isinstance(_A ,_A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( F"""There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.""" ) _lowerCAmelCase : Union[str, Any] = super().__call__(_A ,_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Tuple = super().__call__(_A ,add_special_tokens=_A ,padding=_A ,truncation=_A )['input_ids'] _lowerCAmelCase : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A ,_A ) ] } if return_attention_mask is not False: _lowerCAmelCase : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase : List[Any] = attention_mask return self.pad(_A ,padding=_A ,max_length=_A ,return_tensors=_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = 16 ,_A = 64 ,_A = 4 ,): '''simple docstring''' _lowerCAmelCase : int = reader_input['input_ids'] _lowerCAmelCase : int = reader_output[:3] _lowerCAmelCase : Optional[Any] = len(_A ) _lowerCAmelCase : Any = sorted(range(_A ) ,reverse=_A ,key=relevance_logits.__getitem__ ) _lowerCAmelCase : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _lowerCAmelCase : int = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase : Any = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase : List[str] = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase : Optional[int] = len(_A ) _lowerCAmelCase : Optional[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=_A ,top_spans=_A ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=_A ,start_index=_A ,end_index=_A ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCamelCase ( self ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : List[Any] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase : Tuple = sorted(_A ,key=lambda _A : x[1] ,reverse=_A ) _lowerCAmelCase : int = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) _lowerCAmelCase : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __UpperCamelCase ( a__ , a__ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase = ["input_ids", "attention_mask"]
702
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( a__ , a__ ): @register_to_config def __init__( self ,_A = 128 ,_A = 256 ,_A = 2_0_0_0.0 ,_A = 768 ,_A = 12 ,_A = 12 ,_A = 64 ,_A = 2048 ,_A = 0.1 ,): '''simple docstring''' super().__init__() _lowerCAmelCase : int = nn.Sequential( nn.Linear(_A ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_A ) ,nn.SiLU() ,) _lowerCAmelCase : Any = nn.Embedding(_A ,_A ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : int = nn.Dropout(p=_A ) _lowerCAmelCase : int = nn.ModuleList() for lyr_num in range(_A ): # FiLM conditional T5 decoder _lowerCAmelCase : Any = DecoderLayer(d_model=_A ,d_kv=_A ,num_heads=_A ,d_ff=_A ,dropout_rate=_A ) self.decoders.append(_A ) _lowerCAmelCase : Optional[Any] = TaLayerNorm(_A ) _lowerCAmelCase : List[str] = nn.Dropout(p=_A ) _lowerCAmelCase : Optional[Any] = nn.Linear(_A ,_A ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCamelCase ( self ,_A ,_A ,_A ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _lowerCAmelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) _lowerCAmelCase : Union[str, Any] = self.conditioning_emb(_A ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _lowerCAmelCase : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _lowerCAmelCase : Union[str, Any] = torch.broadcast_to( torch.arange(_A ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) _lowerCAmelCase : Any = self.position_encoding(_A ) _lowerCAmelCase : str = self.continuous_inputs_projection(_A ) inputs += position_encodings _lowerCAmelCase : int = self.dropout(_A ) # decoder: No padding present. _lowerCAmelCase : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _lowerCAmelCase : Optional[Any] = [(x, self.encoder_decoder_mask(_A ,_A )) for x, y in encodings_and_masks] # cross attend style: concat encodings _lowerCAmelCase : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) _lowerCAmelCase : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: _lowerCAmelCase : Tuple = lyr( _A ,conditioning_emb=_A ,encoder_hidden_states=_A ,encoder_attention_mask=_A ,)[0] _lowerCAmelCase : Any = self.decoder_norm(_A ) _lowerCAmelCase : List[Any] = self.post_dropout(_A ) _lowerCAmelCase : int = self.spec_out(_A ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_A ,d_kv=_A ,num_heads=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_A ,d_ff=_A ,dropout_rate=_A ,layer_norm_epsilon=_A ) ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,_A=None ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Any = self.layer[0]( _A ,conditioning_emb=_A ,attention_mask=_A ,) if encoder_hidden_states is not None: _lowerCAmelCase : Any = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) _lowerCAmelCase : str = self.layer[1]( _A ,key_value_states=_A ,attention_mask=_A ,) # Apply Film Conditional Feed Forward layer _lowerCAmelCase : Optional[Any] = self.layer[-1](_A ,_A ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = TaLayerNorm(_A ) _lowerCAmelCase : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Dict = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.FiLMLayer(_A ,_A ) # Self-attention block _lowerCAmelCase : Union[str, Any] = self.attention(_A ) _lowerCAmelCase : Optional[Any] = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = Attention(query_dim=_A ,heads=_A ,dim_head=_A ,out_bias=_A ,scale_qk=_A ) _lowerCAmelCase : Optional[int] = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Tuple = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ,_A=None ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.layer_norm(_A ) _lowerCAmelCase : str = self.attention( _A ,encoder_hidden_states=_A ,attention_mask=attention_mask.squeeze(1 ) ,) _lowerCAmelCase : Any = hidden_states + self.dropout(_A ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = TaDenseGatedActDense(d_model=_A ,d_ff=_A ,dropout_rate=_A ) _lowerCAmelCase : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_A ) _lowerCAmelCase : Any = TaLayerNorm(_A ,eps=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) def __lowerCamelCase ( self ,_A ,_A=None ): '''simple docstring''' _lowerCAmelCase : int = self.layer_norm(_A ) if conditioning_emb is not None: _lowerCAmelCase : Union[str, Any] = self.film(_A ,_A ) _lowerCAmelCase : str = self.DenseReluDense(_A ) _lowerCAmelCase : Tuple = hidden_states + self.dropout(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Any = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Linear(_A ,_A ,bias=_A ) _lowerCAmelCase : Union[str, Any] = nn.Dropout(_A ) _lowerCAmelCase : int = NewGELUActivation() def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.act(self.wi_a(_A ) ) _lowerCAmelCase : Optional[int] = self.wi_a(_A ) _lowerCAmelCase : Union[str, Any] = hidden_gelu * hidden_linear _lowerCAmelCase : Dict = self.dropout(_A ) _lowerCAmelCase : Dict = self.wo(_A ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A=1E-6 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.ones(_A ) ) _lowerCAmelCase : Optional[int] = eps def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_A ) _lowerCAmelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _lowerCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def __lowerCamelCase ( self ,_A ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_A ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self ,_A ,_A ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(_A ,out_features * 2 ,bias=_A ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.scale_bias(_A ) _lowerCAmelCase, _lowerCAmelCase : List[Any] = torch.chunk(_A ,2 ,-1 ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
16
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _UpperCAmelCase ( a : Tuple = "" ): snake_case__ = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" snake_case__ = BeautifulSoup(requests.get(__A ).text , """html.parser""" ) snake_case__ = soup.find_all("""td""" , attrs="""titleColumn""" ) snake_case__ = soup.find_all("""td""" , class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__A , __A ) } def _UpperCAmelCase ( a : Any = "IMDb_Top_250_Movies.csv" ): snake_case__ = get_imdb_top_aaa_movies() with open(__A , """w""" , newline="""""" ) as out_file: snake_case__ = csv.writer(__A ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
654
"""simple docstring""" import qiskit def __snake_case ( __A ,__A ) -> qiskit.result.counts.Counts: lowercase : List[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) lowercase : int = qiskit.QuantumCircuit(4 ,2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 ,2 ) qc_ha.cx(1 ,2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 ,1 ,3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 ,0 ) # extract XOR value qc_ha.measure(3 ,1 ) # extract AND value # Execute the circuit on the qasm simulator lowercase : Any = qiskit.execute(__A ,__A ,shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__A ) if __name__ == "__main__": lowerCAmelCase: Optional[Any] =half_adder(1, 1) print(F'Half Adder Output Qubit Counts: {counts}')
607
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> int: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowerCAmelCase__ = [[1, 2, 4], [1, 2, 3, 4]] lowerCAmelCase__ = DisjunctiveConstraint(lowerCamelCase_ ) self.assertTrue(isinstance(dc.token_ids , lowerCamelCase_ ) ) with self.assertRaises(lowerCamelCase_ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCamelCase_ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowerCAmelCase__ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCamelCase_ ): DisjunctiveConstraint(lowerCamelCase_ ) # fails here def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = [[1, 2, 3], [1, 2, 4]] lowerCAmelCase__ = DisjunctiveConstraint(lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = dc.update(1 ) lowerCAmelCase__ = stepped is True and completed is False and reset is False self.assertTrue(lowerCamelCase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = dc.update(2 ) lowerCAmelCase__ = stepped is True and completed is False and reset is False self.assertTrue(lowerCamelCase_ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = dc.update(3 ) lowerCAmelCase__ = stepped is True and completed is True and reset is False self.assertTrue(lowerCamelCase_ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCAmelCase__ = DisjunctiveConstraint(lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
98
'''simple docstring''' from math import pi, sqrt, tan def _snake_case ( A ) -> float: if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _snake_case ( A , A , A ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _snake_case ( A ) -> float: if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _snake_case ( A ) -> float: if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _snake_case ( A , A ) -> float: if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _snake_case ( A , A , A ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) lowerCAmelCase__ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _snake_case ( A , A ) -> float: if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _snake_case ( A , A ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(A , 2 ) * torus_radius * tube_radius def _snake_case ( A , A ) -> float: if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _snake_case ( A ) -> float: if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _snake_case ( A , A ) -> float: if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _snake_case ( A , A , A ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) lowerCAmelCase__ = (sidea + sidea + sidea) / 2 lowerCAmelCase__ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _snake_case ( A , A ) -> float: if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _snake_case ( A , A , A ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _snake_case ( A ) -> float: if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _snake_case ( A , A ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _snake_case ( A , A ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _snake_case ( A , A ) -> float: if not isinstance(A , A ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f"""Rectangle: {area_rectangle(10, 20) = }""") print(f"""Square: {area_square(10) = }""") print(f"""Triangle: {area_triangle(10, 10) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(f"""Parallelogram: {area_parallelogram(10, 20) = }""") print(f"""Rhombus: {area_rhombus(10, 20) = }""") print(f"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(f"""Circle: {area_circle(20) = }""") print(f"""Ellipse: {area_ellipse(10, 20) = }""") print('''\nSurface Areas of various geometric shapes: \n''') print(f"""Cube: {surface_area_cube(20) = }""") print(f"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(f"""Sphere: {surface_area_sphere(20) = }""") print(f"""Hemisphere: {surface_area_hemisphere(20) = }""") print(f"""Cone: {surface_area_cone(10, 20) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(f"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(f"""Torus: {surface_area_torus(20, 10) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(f"""Square: {area_reg_polygon(4, 10) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
98
1
import random def _lowerCamelCase ( a_ : int): lowerCamelCase :Union[str, Any] = num - 1 lowerCamelCase :Dict = 0 while s % 2 == 0: lowerCamelCase :Union[str, Any] = s // 2 t += 1 for _ in range(5): lowerCamelCase :List[Any] = random.randrange(2 , num - 1) lowerCamelCase :Tuple = pow(__A , __A , __A) if v != 1: lowerCamelCase :Tuple = 0 while v != (num - 1): if i == t - 1: return False else: lowerCamelCase :int = i + 1 lowerCamelCase :Union[str, Any] = (v**2) % num return True def _lowerCamelCase ( a_ : int): if num < 2: return False lowerCamelCase :List[str] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__A) def _lowerCamelCase ( a_ : int = 10_24): while True: lowerCamelCase :Optional[int] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize)) if is_prime_low_num(__A): return num if __name__ == "__main__": A__ = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
166
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowerCamelCase__ ( __A :str ,__A :str ): """simple docstring""" __snake_case = len([g for position, g in enumerate(__A ) if g == main_target[position]] ) return (item, float(__A )) def lowerCamelCase__ ( __A :str ,__A :str ): """simple docstring""" __snake_case = random.randint(0 ,len(__A ) - 1 ) __snake_case = parent_a[:random_slice] + parent_a[random_slice:] __snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase__ ( __A :str ,__A :list[str] ): """simple docstring""" __snake_case = list(__A ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: __snake_case = random.choice(__A ) return "".join(__A ) def lowerCamelCase__ ( __A :tuple[str, float] ,__A :list[tuple[str, float]] ,__A :list[str] ,): """simple docstring""" __snake_case = [] # Generate more children proportionally to the fitness score. __snake_case = int(parent_a[1] * 1_0_0 ) + 1 __snake_case = 1_0 if child_n >= 1_0 else child_n for _ in range(__A ): __snake_case = population_score[random.randint(0 ,__A )][0] __snake_case , __snake_case = crossover(parent_a[0] ,__A ) # Append new string to the population list. pop.append(mutate(__A ,__A ) ) pop.append(mutate(__A ,__A ) ) return pop def lowerCamelCase__ ( __A :str ,__A :list[str] ,__A :bool = True ): """simple docstring""" if N_POPULATION < N_SELECTED: __snake_case = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(__A ) # Verify that the target contains no genes besides the ones inside genes variable. __snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __snake_case = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(__A ) # Generate random starting population. __snake_case = [] for _ in range(__A ): population.append("""""".join([random.choice(__A ) for i in range(len(__A ) )] ) ) # Just some logs to know what the algorithms is doing. __snake_case , __snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__A ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __snake_case = [evaluate(__A ,__A ) for item in population] # Check if there is a matching evolution. __snake_case = sorted(__A ,key=lambda __A : x[1] ,reverse=__A ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__A ) # Normalize population score to be between 0 and 1. __snake_case = [ (item, score / len(__A )) for item, score in population_score ] # This is selection for i in range(__A ): population.extend(select(population_score[int(__A )] ,__A ,__A ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__A ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase__ = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) UpperCamelCase__ = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
268
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCamelCase : Tuple = logging.get_logger(__name__) class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' UpperCamelCase__ =["pixel_values"] def __init__( self : int , lowerCamelCase_ : Dict = True , lowerCamelCase_ : str = None , lowerCamelCase_ : str = PILImageResampling.BICUBIC , lowerCamelCase_ : Optional[int] = True , lowerCamelCase_ : Tuple = True , lowerCamelCase_ : str = 1 / 255 , lowerCamelCase_ : Any = None , lowerCamelCase_ : List[Any] = True , lowerCamelCase_ : Dict = None , lowerCamelCase_ : Dict = None , **lowerCamelCase_ : Optional[Any] , ) -> None: super().__init__(**_lowerCamelCase ) __magic_name__ : Tuple = size if size is not None else {'''height''': 224, '''width''': 224} __magic_name__ : Optional[Any] = get_size_dict(_lowerCamelCase ) __magic_name__ : Optional[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __magic_name__ : Tuple = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase , param_name='''crop_size''' ) __magic_name__ : Optional[Any] = do_resize __magic_name__ : int = do_rescale __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : Optional[Any] = do_center_crop __magic_name__ : Optional[int] = crop_size __magic_name__ : List[str] = size __magic_name__ : List[str] = resample __magic_name__ : int = rescale_factor __magic_name__ : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __magic_name__ : Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase__ ( self : str , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] = PILImageResampling.BILINEAR , lowerCamelCase_ : List[Any] = None , **lowerCamelCase_ : int , ) -> np.ndarray: __magic_name__ : List[Any] = get_size_dict(_lowerCamelCase ) if "shortest_edge" in size: __magic_name__ : Optional[int] = get_resize_output_image_size(_lowerCamelCase , size=size['''shortest_edge'''] , default_to_square=_lowerCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __magic_name__ : Optional[Any] = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] = None , **lowerCamelCase_ : List[Any] , ) -> np.ndarray: __magic_name__ : List[Any] = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] = None , **lowerCamelCase_ : Dict ) -> np.ndarray: return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : str , ) -> np.ndarray: return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase__ ( self : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : List[Any] = None , lowerCamelCase_ : int = None , lowerCamelCase_ : Union[str, Any] = None , lowerCamelCase_ : int = None , lowerCamelCase_ : Any = None , lowerCamelCase_ : List[Any] = None , lowerCamelCase_ : Any = None , lowerCamelCase_ : List[Any] = None , lowerCamelCase_ : int = None , lowerCamelCase_ : int = None , lowerCamelCase_ : Optional[int] = ChannelDimension.FIRST , **lowerCamelCase_ : Optional[int] , ) -> BatchFeature: __magic_name__ : Tuple = do_resize if do_resize is not None else self.do_resize __magic_name__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale __magic_name__ : str = do_normalize if do_normalize is not None else self.do_normalize __magic_name__ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __magic_name__ : str = crop_size if crop_size is not None else self.crop_size __magic_name__ : Union[str, Any] = get_size_dict(_lowerCamelCase , param_name='''crop_size''' , default_to_square=_lowerCamelCase ) __magic_name__ : Optional[int] = resample if resample is not None else self.resample __magic_name__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __magic_name__ : str = image_mean if image_mean is not None else self.image_mean __magic_name__ : Dict = image_std if image_std is not None else self.image_std __magic_name__ : Optional[Any] = size if size is not None else self.size __magic_name__ : int = get_size_dict(_lowerCamelCase ) if not is_batched(_lowerCamelCase ): __magic_name__ : Union[str, Any] = [images] if not valid_images(_lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. __magic_name__ : str = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: __magic_name__ : Dict = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: __magic_name__ : int = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: __magic_name__ : List[str] = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: __magic_name__ : Dict = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] __magic_name__ : str = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] __magic_name__ : Dict = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
712
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' UpperCamelCase__ =inspect.getfile(accelerate.test_utils ) UpperCamelCase__ =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) UpperCamelCase__ =['''accelerate''', '''launch'''] UpperCamelCase__ =Path.home() / '''.cache/huggingface/accelerate''' UpperCamelCase__ ='''default_config.yaml''' UpperCamelCase__ =config_folder / config_file UpperCamelCase__ =config_folder / '''_default_config.yaml''' UpperCamelCase__ =Path('''tests/test_configs''' ) @classmethod def UpperCAmelCase__ ( cls : Optional[int] ) -> int: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCAmelCase__ ( cls : Dict ) -> List[str]: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: __magic_name__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=lowerCamelCase_ ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(lowerCamelCase_ ), self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' UpperCamelCase__ ='''test-tpu''' UpperCamelCase__ ='''us-central1-a''' UpperCamelCase__ ='''ls''' UpperCamelCase__ =['''accelerate''', '''tpu-config'''] UpperCamelCase__ ='''cd /usr/share''' UpperCamelCase__ ='''tests/test_samples/test_command_file.sh''' UpperCamelCase__ ='''Running gcloud compute tpus tpu-vm ssh''' def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: __magic_name__ : int = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: __magic_name__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=lowerCamelCase_ ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: __magic_name__ : Tuple = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : List[Any] ) -> Dict: __magic_name__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : int ) -> List[Any]: __magic_name__ : List[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : str ) -> Dict: __magic_name__ : Tuple = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Any ) -> Tuple: __magic_name__ : Tuple = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , )
501
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __a :Optional[int] = logging.get_logger(__name__) __a :Optional[int] = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = 'detr' _lowerCamelCase : Union[str, Any] = ['past_key_values'] _lowerCamelCase : Optional[int] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Dict=3 , UpperCAmelCase : List[Any]=100 , UpperCAmelCase : Union[str, Any]=6 , UpperCAmelCase : Optional[int]=2048 , UpperCAmelCase : str=8 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : List[Any]=2048 , UpperCAmelCase : Tuple=8 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[str]="relu" , UpperCAmelCase : List[str]=256 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Tuple=1.0 , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]="sine" , UpperCAmelCase : str="resnet50" , UpperCAmelCase : List[Any]=True , UpperCAmelCase : int=False , UpperCAmelCase : Dict=1 , UpperCAmelCase : Tuple=5 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Dict=1 , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : Tuple=5 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Dict=0.1 , **UpperCAmelCase : int , ): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) A_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = backbone_config.get("model_type" ) A_ = CONFIG_MAPPING[backbone_model_type] A_ = config_class.from_dict(UpperCAmelCase ) # set timm attributes to None A_ , A_ , A_ = None, None, None A_ = use_timm_backbone A_ = backbone_config A_ = num_channels A_ = num_queries A_ = d_model A_ = encoder_ffn_dim A_ = encoder_layers A_ = encoder_attention_heads A_ = decoder_ffn_dim A_ = decoder_layers A_ = decoder_attention_heads A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = init_xavier_std A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = encoder_layers A_ = auxiliary_loss A_ = position_embedding_type A_ = backbone A_ = use_pretrained_backbone A_ = dilation # Hungarian matcher A_ = class_cost A_ = bbox_cost A_ = giou_cost # Loss coefficients A_ = mask_loss_coefficient A_ = dice_loss_coefficient A_ = bbox_loss_coefficient A_ = giou_loss_coefficient A_ = eos_coefficient super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def __A ( self : Dict ): return self.encoder_attention_heads @property def __A ( self : List[Any] ): return self.d_model @classmethod def __A ( cls : Dict , UpperCAmelCase : PretrainedConfig , **UpperCAmelCase : Any ): return cls(backbone_config=UpperCAmelCase , **UpperCAmelCase ) def __A ( self : int ): A_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A_ = self.backbone_config.to_dict() A_ = self.__class__.model_type return output class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = version.parse('1.11' ) @property def __A ( self : List[str] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __A ( self : Tuple ): return 1E-5 @property def __A ( self : Union[str, Any] ): return 12
86
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _A = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _A = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _A = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def __a ( self ) -> str: if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , ) -> Any: lowerCAmelCase_ = len(references[0] ) if any(len(_UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) lowerCAmelCase_ = [[refs[i] for refs in references] for i in range(_UpperCamelCase )] lowerCAmelCase_ = TER( normalized=_UpperCamelCase , no_punct=_UpperCamelCase , asian_support=_UpperCamelCase , case_sensitive=_UpperCamelCase , ) lowerCAmelCase_ = sb_ter.corpus_score(_UpperCamelCase , _UpperCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
290
0
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase__ ( A ): '''simple docstring''' A_ = (DDIMParallelScheduler,) A_ = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def __UpperCAmelCase ( self : Any , **UpperCamelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' _lowercase : Tuple = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**UpperCamelCase_ ) return config def __UpperCAmelCase ( self : List[str] , **UpperCamelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' _lowercase : List[str] = self.scheduler_classes[0] _lowercase : List[str] = self.get_scheduler_config(**UpperCamelCase_ ) _lowercase : Optional[Any] = scheduler_class(**UpperCamelCase_ ) _lowercase , _lowercase : Dict = 10, 0.0 _lowercase : Any = self.dummy_model() _lowercase : Any = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_ ) for t in scheduler.timesteps: _lowercase : List[Any] = model(UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample return sample def __UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ) -> Any: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase_ ) _lowercase : List[str] = self.scheduler_classes[0] _lowercase : List[Any] = self.get_scheduler_config(steps_offset=1 ) _lowercase : str = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __UpperCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict ) -> List[Any]: '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=UpperCamelCase_ , eta=UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Optional[Any] = self.scheduler_classes[0] _lowercase : List[Any] = self.get_scheduler_config() _lowercase : str = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def __UpperCAmelCase ( self : int ) -> Dict: '''simple docstring''' _lowercase : Any = self.scheduler_classes[0] _lowercase : Optional[Any] = self.get_scheduler_config() _lowercase : List[Any] = scheduler_class(**UpperCamelCase_ ) _lowercase , _lowercase : Tuple = 10, 0.0 scheduler.set_timesteps(UpperCamelCase_ ) _lowercase : List[str] = self.dummy_model() _lowercase : List[str] = self.dummy_sample_deter _lowercase : Optional[Any] = self.dummy_sample_deter + 0.1 _lowercase : str = self.dummy_sample_deter - 0.1 _lowercase : str = samplea.shape[0] _lowercase : Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowercase : str = torch.arange(UpperCamelCase_ )[0:3, None].repeat(1 , UpperCamelCase_ ) _lowercase : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowercase : List[str] = scheduler.batch_step_no_noise(UpperCamelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , UpperCamelCase_ ) _lowercase : Dict = torch.sum(torch.abs(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' _lowercase : Any = self.full_loop() _lowercase : Optional[Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) _lowercase : Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def __UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' _lowercase : int = self.full_loop(prediction_type='v_prediction' ) _lowercase : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) ) _lowercase : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _lowercase : List[Any] = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01 ) _lowercase : Union[str, Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' _lowercase : Optional[int] = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01 ) _lowercase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) _lowercase : Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
4
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple: '''simple docstring''' _lowercase : int = parent _lowercase : str = batch_size _lowercase : List[str] = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_attention_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Dict = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Any = hidden_act _lowercase : List[str] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Any = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : str = num_choices def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : int = None if self.use_attention_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Any = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : Dict = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs _lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = True A_ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Tuple = FlaxRoFormerModelTester(self ) @slow def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ ) _lowercase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' _lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] ) _lowercase : int = model(UpperCamelCase_ )[0] _lowercase : Union[str, Any] = 5_0000 _lowercase : str = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCamelCase_ ) _lowercase : int = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
4
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _lowerCamelCase : Optional[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _lowerCamelCase : Dict = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") _lowerCamelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") _lowerCamelCase : List[str] = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") _lowerCamelCase : str = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") _lowerCamelCase : str = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
429
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __snake_case : lowerCAmelCase__ = 42 lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default="Translation" , init=_a , repr=_a ) def __call__( self : Tuple ) -> Optional[int]: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __snake_case : lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default="TranslationVariableLanguages" , init=_a , repr=_a ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = sorted(set(self.languages ) ) if self.languages else None _lowerCAmelCase : Optional[int] = len(self.languages ) if self.languages else None def __call__( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(_UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCAmelCase , _lowerCAmelCase : int = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
429
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class snake_case_ ( a, unittest.TestCase ): '''simple docstring''' __UpperCamelCase = VideoToVideoSDPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} __UpperCamelCase = PipelineTesterMixin.required_optional_params - {'latents'} __UpperCamelCase = False # No `output_type`. __UpperCamelCase = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def __UpperCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase__ =UNetaDConditionModel( block_out_channels=(32, 64, 64, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D"), up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"), cross_attention_dim=32, attention_head_dim=4, ) UpperCAmelCase__ =DDIMScheduler( beta_start=0.0_00_85, beta_end=0.0_12, beta_schedule="scaled_linear", clip_sample=lowercase_, set_alpha_to_one=lowercase_, ) torch.manual_seed(0 ) UpperCAmelCase__ =AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) UpperCAmelCase__ =CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=512, ) UpperCAmelCase__ =CLIPTextModel(lowercase_ ) UpperCAmelCase__ =CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase__ ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def __UpperCAmelCase ( self, A_, A_=0 ) -> Optional[int]: UpperCAmelCase__ =floats_tensor((1, 3, 3, 32, 32), rng=random.Random(lowercase_ ) ).to(lowercase_ ) if str(lowercase_ ).startswith("mps" ): UpperCAmelCase__ =torch.manual_seed(lowercase_ ) else: UpperCAmelCase__ =torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase__ ={ "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase__ ="cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ =self.get_dummy_components() UpperCAmelCase__ =VideoToVideoSDPipeline(**lowercase_ ) UpperCAmelCase__ =sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase__ =self.get_dummy_inputs(lowercase_ ) UpperCAmelCase__ ="np" UpperCAmelCase__ =sd_pipe(**lowercase_ ).frames UpperCAmelCase__ =frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCAmelCase__ =np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def __UpperCAmelCase ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase_, expected_max_diff=5E-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def __UpperCAmelCase ( self ) -> Union[str, Any]: pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def __UpperCAmelCase ( self ) -> Dict: pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def __UpperCAmelCase ( self ) -> int: pass def __UpperCAmelCase ( self ) -> Union[str, Any]: return super().test_progress_bar() @slow @skip_mps class snake_case_ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL", torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCAmelCase__ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ =torch.randn((1, 10, 3, 1024, 576), generator=lowercase_ ) UpperCAmelCase__ =video.to("cuda" ) UpperCAmelCase__ ="Spiderman is surfing" UpperCAmelCase__ =pipe(lowercase_, video=lowercase_, generator=lowercase_, num_inference_steps=3, output_type="pt" ).frames UpperCAmelCase__ =np.array([-1.0_45_89_84, -1.1_27_92_97, -0.9_66_30_86, -0.91_50_39_06, -0.75_09_76_56] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
716
def _UpperCAmelCase ( A , A ): '''simple docstring''' _validate_point(A ) _validate_point(A ) if len(A ) != len(A ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(A , A ) ) ) def _UpperCAmelCase ( A ): '''simple docstring''' if point: if isinstance(A , A ): for item in point: if not isinstance(A , (int, float) ): UpperCAmelCase__ =( "Expected a list of numbers as input, found " F"""{type(A ).__name__}""" ) raise TypeError(A ) else: UpperCAmelCase__ =F"""Expected a list of numbers as input, found {type(A ).__name__}""" raise TypeError(A ) else: raise ValueError("Missing an input" ) def _UpperCAmelCase ( A , A ): '''simple docstring''' _validate_point(A ) _validate_point(A ) if len(A ) != len(A ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(A , A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
510
0
def __UpperCAmelCase ( __a : List[Any] ,__a : int ,__a : List[Any] ,__a : List[Any] ) -> int: """simple docstring""" if height >= 1: move_tower(height - 1 ,__a ,__a ,__a ) move_disk(__a ,__a ) move_tower(height - 1 ,__a ,__a ,__a ) def __UpperCAmelCase ( __a : List[Any] ,__a : List[Any] ) -> Tuple: """simple docstring""" print('''moving disk from''' ,__a ,'''to''' ,__a ) def __UpperCAmelCase ( ) -> int: """simple docstring""" _a : List[str] = int(input('''Height of hanoi: ''' ).strip() ) move_tower(__a ,'''A''' ,'''B''' ,'''C''' ) if __name__ == "__main__": main()
14
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowercase ( a , a ): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer SCREAMING_SNAKE_CASE_ :List[Any] = flax_key_tuple[:-1] + ("weight",) SCREAMING_SNAKE_CASE_ :Any = torch.permute(a , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(a ): # linear layer SCREAMING_SNAKE_CASE_ :str = flax_key_tuple[:-1] + ("weight",) SCREAMING_SNAKE_CASE_ :Optional[int] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: SCREAMING_SNAKE_CASE_ :Union[str, Any] = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def lowercase ( a , a , a ): '''simple docstring''' if "metadata" in layer: SCREAMING_SNAKE_CASE_ :Dict = layer.split("metadata" ) SCREAMING_SNAKE_CASE_ :Optional[int] = "".join(split_layer[0] )[:-1] SCREAMING_SNAKE_CASE_ :str = [tuple(("metadata" + split_layer[1]).split("/" ) )] elif "kvstore" in layer: SCREAMING_SNAKE_CASE_ :str = layer.split("kvstore" ) SCREAMING_SNAKE_CASE_ :str = "".join(split_layer[0] )[:-1] SCREAMING_SNAKE_CASE_ :str = [tuple(("kvstore" + split_layer[1]).split("/" ) )] else: SCREAMING_SNAKE_CASE_ :Union[str, Any] = layer.split("/" ) SCREAMING_SNAKE_CASE_ :Optional[int] = "/".join(split_layer[:-1] ) SCREAMING_SNAKE_CASE_ :int = (split_layer[-1],) if "kvstore/path" in layer: SCREAMING_SNAKE_CASE_ :Union[str, Any] = F"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: SCREAMING_SNAKE_CASE_ :Tuple = "file" else: SCREAMING_SNAKE_CASE_ :str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = rename_keys(a ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = {} for k, v in current_block.items(): SCREAMING_SNAKE_CASE_ :List[str] = v SCREAMING_SNAKE_CASE_ :Optional[Any] = new_current_block torch.save(a , a ) def lowercase ( a , a , a , a , a = WEIGHTS_NAME ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Optional[int] = convert_file_size_to_int(a ) SCREAMING_SNAKE_CASE_ :int = [] SCREAMING_SNAKE_CASE_ :str = {} SCREAMING_SNAKE_CASE_ :List[str] = 0 SCREAMING_SNAKE_CASE_ :Optional[int] = 0 os.makedirs(a , exist_ok=a ) with gfile.GFile(switch_checkpoint_path + "/checkpoint" , "rb" ) as fp: SCREAMING_SNAKE_CASE_ :int = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] SCREAMING_SNAKE_CASE_ :Any = flatten_dict(a , sep="/" ) SCREAMING_SNAKE_CASE_ :Optional[Any] = {} for layer in checkpoint_info.keys(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :List[Any] = get_key_and_tensorstore_dict( a , a , a ) if curr_real_layer_name in all_layers: SCREAMING_SNAKE_CASE_ :str = content else: SCREAMING_SNAKE_CASE_ :Optional[Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file SCREAMING_SNAKE_CASE_ :Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() SCREAMING_SNAKE_CASE_ :List[Any] = torch.tensor(a ) SCREAMING_SNAKE_CASE_ :str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[Any] = rename_base_flax_keys(tuple(key.split("/" ) ) , a ) SCREAMING_SNAKE_CASE_ :Any = "/".join(a ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: SCREAMING_SNAKE_CASE_ :str = os.path.join( a , weights_name.replace(".bin" , F"-{len(a )+1:05d}-of-???.bin" ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) del current_block SCREAMING_SNAKE_CASE_ :Tuple = {} SCREAMING_SNAKE_CASE_ :Dict = 0 SCREAMING_SNAKE_CASE_ :Optional[int] = raw_weights.to(getattr(a , a ) ) current_block_size += weight_size total_size += weight_size # Add the last block SCREAMING_SNAKE_CASE_ :Dict = os.path.join(a , weights_name.replace(".bin" , F"-{len(a )+1:05d}-of-???.bin" ) ) rename_and_save_block(a , a ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(a ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index SCREAMING_SNAKE_CASE_ :Optional[int] = {} SCREAMING_SNAKE_CASE_ :int = {} for idx, shard in enumerate(a ): SCREAMING_SNAKE_CASE_ :Optional[Any] = weights_name.replace( ".bin" , F"-{idx+1:05d}-of-{len(a ):05d}.bin" ) # len(sharded_state_dicts):05d} SCREAMING_SNAKE_CASE_ :Any = os.path.join(a , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) ) os.rename(a , os.path.join(a , a ) ) SCREAMING_SNAKE_CASE_ :List[Any] = shard for key in shard: SCREAMING_SNAKE_CASE_ :str = shard_file # Add the metadata SCREAMING_SNAKE_CASE_ :List[str] = {"total_size": total_size} SCREAMING_SNAKE_CASE_ :Optional[int] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(a , a ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_ :Optional[int] = json.dumps(a , indent=2 , sort_keys=a ) + "\n" f.write(a ) return metadata, index if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowercase ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer SCREAMING_SNAKE_CASE_ :Dict = SwitchTransformersConfig.from_pretrained("google/switch-base-8" ) config.save_pretrained("/home/arthur_huggingface_co/transformers/switch_converted" ) SCREAMING_SNAKE_CASE_ :str = SwitchTransformersForConditionalGeneration.from_pretrained( "/home/arthur_huggingface_co/transformers/switch_converted" , device_map="auto" ) SCREAMING_SNAKE_CASE_ :List[Any] = TaTokenizer.from_pretrained("t5-small" ) SCREAMING_SNAKE_CASE_ :Optional[int] = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." SCREAMING_SNAKE_CASE_ :List[Any] = tokenizer(a , return_tensors="pt" ).input_ids SCREAMING_SNAKE_CASE_ :List[str] = model.generate(a , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
631
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase : pyspark.sql.DataFrame , lowerCamelCase : Optional[NamedSplit] = None , lowerCamelCase : Optional[Features] = None , lowerCamelCase : bool = True , lowerCamelCase : str = None , lowerCamelCase : bool = False , lowerCamelCase : str = None , lowerCamelCase : bool = True , lowerCamelCase : str = "arrow" , **lowerCamelCase : int , ) -> Union[str, Any]: super().__init__( split=lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase , streaming=lowerCamelCase , **lowerCamelCase , ) __snake_case : int = load_from_cache_file __snake_case : int = file_format __snake_case : int = Spark( df=lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase , working_dir=lowerCamelCase , **lowerCamelCase , ) def __snake_case ( self : Any ) -> Dict: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) __snake_case : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
203
import unittest import numpy as np def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , ): __snake_case : List[str] = np.shape(__lowerCamelCase ) __snake_case : Optional[Any] = np.shape(__lowerCamelCase ) __snake_case : List[str] = np.shape(__lowerCamelCase ) if shape_a[0] != shape_b[0]: __snake_case : Any = ( "Expected the same number of rows for A and B. " F'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(__lowerCamelCase ) if shape_b[1] != shape_c[1]: __snake_case : int = ( "Expected the same number of columns for B and C. " F'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(__lowerCamelCase ) __snake_case : str = pseudo_inv if a_inv is None: try: __snake_case : Optional[Any] = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Tuple ) -> None: __snake_case : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __snake_case : str = np.array([[0, 3], [3, 0], [2, 3]] ) __snake_case : Dict = np.array([[2, 1], [6, 3]] ) __snake_case : Dict = schur_complement(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __snake_case : int = np.block([[a, b], [b.T, c]] ) __snake_case : Optional[int] = np.linalg.det(lowerCamelCase ) __snake_case : Any = np.linalg.det(lowerCamelCase ) __snake_case : Tuple = np.linalg.det(lowerCamelCase ) self.assertAlmostEqual(lowerCamelCase , det_a * det_s ) def __snake_case ( self : int ) -> None: __snake_case : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __snake_case : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) __snake_case : Tuple = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCamelCase ): schur_complement(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __snake_case ( self : List[Any] ) -> None: __snake_case : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __snake_case : Tuple = np.array([[0, 3], [3, 0], [2, 3]] ) __snake_case : List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCamelCase ): schur_complement(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
203
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="blip_text_model" def __init__( self , UpperCamelCase_=3_05_24 , UpperCamelCase_=7_68 , UpperCamelCase_=7_68 , UpperCamelCase_=30_72 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=8 , UpperCamelCase_=5_12 , UpperCamelCase_="gelu" , UpperCamelCase_=1E-12 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3_05_22 , UpperCamelCase_=2 , UpperCamelCase_=0 , UpperCamelCase_=1_02 , UpperCamelCase_=True , UpperCamelCase_=True , **UpperCamelCase_ , ) -> Dict: super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , sep_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) __lowercase : Dict = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : List[str] = encoder_hidden_size __lowercase : Optional[Any] = intermediate_size __lowercase : str = projection_dim __lowercase : List[str] = hidden_dropout_prob __lowercase : Tuple = num_hidden_layers __lowercase : Optional[int] = num_attention_heads __lowercase : Tuple = max_position_embeddings __lowercase : List[str] = layer_norm_eps __lowercase : List[str] = hidden_act __lowercase : List[Any] = initializer_range __lowercase : str = attention_probs_dropout_prob __lowercase : Union[str, Any] = is_decoder __lowercase : Optional[Any] = use_cache @classmethod def _lowerCamelCase ( cls , UpperCamelCase_ , **UpperCamelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase_ ) __lowercase ,__lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": __lowercase : Tuple = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="blip_vision_model" def __init__( self , UpperCamelCase_=7_68 , UpperCamelCase_=30_72 , UpperCamelCase_=5_12 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=3_84 , UpperCamelCase_=16 , UpperCamelCase_="gelu" , UpperCamelCase_=1E-5 , UpperCamelCase_=0.0 , UpperCamelCase_=1E-10 , **UpperCamelCase_ , ) -> int: super().__init__(**UpperCamelCase_ ) __lowercase : Dict = hidden_size __lowercase : Tuple = intermediate_size __lowercase : Any = projection_dim __lowercase : Tuple = num_hidden_layers __lowercase : List[Any] = num_attention_heads __lowercase : Union[str, Any] = patch_size __lowercase : Tuple = image_size __lowercase : Optional[int] = initializer_range __lowercase : int = attention_dropout __lowercase : List[Any] = layer_norm_eps __lowercase : List[str] = hidden_act @classmethod def _lowerCamelCase ( cls , UpperCamelCase_ , **UpperCamelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCamelCase_ ) __lowercase ,__lowercase : Optional[Any] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": __lowercase : List[str] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="blip" UpperCamelCase =True def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=5_12 , UpperCamelCase_=2.6_5_9_2 , UpperCamelCase_=2_56 , **UpperCamelCase_ , ) -> Optional[Any]: super().__init__(**UpperCamelCase_ ) if text_config is None: __lowercase : Tuple = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: __lowercase : Optional[Any] = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) __lowercase : Tuple = BlipTextConfig(**UpperCamelCase_ ) __lowercase : Optional[int] = BlipVisionConfig(**UpperCamelCase_ ) __lowercase : str = self.vision_config.hidden_size __lowercase : List[str] = projection_dim __lowercase : Optional[Any] = logit_scale_init_value __lowercase : Any = 1.0 __lowercase : str = 0.0_2 __lowercase : int = image_text_hidden_size @classmethod def _lowerCamelCase ( cls , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Optional[Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : str = copy.deepcopy(self.__dict__ ) __lowercase : Union[str, Any] = self.text_config.to_dict() __lowercase : Tuple = self.vision_config.to_dict() __lowercase : List[Any] = self.__class__.model_type return output
76
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Any = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class __snake_case ( __magic_name__ ): __lowerCAmelCase = '''xlm''' __lowerCAmelCase = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , UpperCamelCase_=3_0145 , UpperCamelCase_=2048 , UpperCamelCase_=12 , UpperCamelCase_=16 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=1 , UpperCamelCase_=True , UpperCamelCase_=512 , UpperCamelCase_=2048**-0.5 , UpperCamelCase_=1E-1_2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=5 , UpperCamelCase_=True , UpperCamelCase_="first" , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=0.1 , UpperCamelCase_=5 , UpperCamelCase_=5 , UpperCamelCase_=0 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=0 , **UpperCamelCase_ , ) -> List[str]: snake_case__ = vocab_size snake_case__ = emb_dim snake_case__ = n_layers snake_case__ = n_heads snake_case__ = dropout snake_case__ = attention_dropout snake_case__ = gelu_activation snake_case__ = sinusoidal_embeddings snake_case__ = causal snake_case__ = asm snake_case__ = n_langs snake_case__ = use_lang_emb snake_case__ = layer_norm_eps snake_case__ = bos_index snake_case__ = eos_index snake_case__ = pad_index snake_case__ = unk_index snake_case__ = mask_index snake_case__ = is_encoder snake_case__ = max_position_embeddings snake_case__ = embed_init_std snake_case__ = init_std snake_case__ = summary_type snake_case__ = summary_use_proj snake_case__ = summary_activation snake_case__ = summary_proj_to_labels snake_case__ = summary_first_dropout snake_case__ = start_n_top snake_case__ = end_n_top snake_case__ = mask_token_id snake_case__ = lang_id if "n_words" in kwargs: snake_case__ = kwargs['n_words'] super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) class __snake_case ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
368
0
"""simple docstring""" import logging import os from .state import PartialState class a__ ( logging.LoggerAdapter ): @staticmethod def lowerCamelCase_ ( _lowerCamelCase :Dict ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] =PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowerCamelCase_ ( self :Union[str, Any] , _lowerCamelCase :List[Any] , _lowerCamelCase :Tuple , *_lowerCamelCase :Tuple , **_lowerCamelCase :int ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) UpperCamelCase_ : List[str] =kwargs.pop('main_process_only' , _lowerCamelCase ) UpperCamelCase_ : Tuple =kwargs.pop('in_order' , _lowerCamelCase ) if self.isEnabledFor(_lowerCamelCase ): if self._should_log(_lowerCamelCase ): UpperCamelCase_ : Optional[Any] =self.process(_lowerCamelCase , _lowerCamelCase ) self.logger.log(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) elif in_order: UpperCamelCase_ : Any =PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCamelCase_ : str =self.process(_lowerCamelCase , _lowerCamelCase ) self.logger.log(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) state.wait_for_everyone() def A_ ( __lowercase , __lowercase = None ): if log_level is None: UpperCamelCase_ : Any =os.environ.get('ACCELERATE_LOG_LEVEL' , __lowercase ) UpperCamelCase_ : List[str] =logging.getLogger(__lowercase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__lowercase , {} )
709
"""simple docstring""" import requests from bsa import BeautifulSoup def A_ ( __lowercase = "https://www.worldometers.info/coronavirus" ): UpperCamelCase_ : Dict =BeautifulSoup(requests.get(__lowercase ).text , 'html.parser' ) UpperCamelCase_ : List[Any] =soup.findAll('h1' ) UpperCamelCase_ : List[str] =soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowercase , __lowercase )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
395
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['''YolosFeatureExtractor'''] UpperCAmelCase_ = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
271
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
271
1
"""simple docstring""" # Imports import numpy as np class A__ : def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): self.set_matricies(red=_SCREAMING_SNAKE_CASE , green=_SCREAMING_SNAKE_CASE , blue=_SCREAMING_SNAKE_CASE , red_edge=_SCREAMING_SNAKE_CASE , nir=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): if red is not None: __lowerCAmelCase : Optional[int] = red if green is not None: __lowerCAmelCase : Any = green if blue is not None: __lowerCAmelCase : str = blue if red_edge is not None: __lowerCAmelCase : Dict = red_edge if nir is not None: __lowerCAmelCase : Dict = nir return True def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE="" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): self.set_matricies(red=_SCREAMING_SNAKE_CASE , green=_SCREAMING_SNAKE_CASE , blue=_SCREAMING_SNAKE_CASE , red_edge=_SCREAMING_SNAKE_CASE , nir=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def __lowerCamelCase ( self ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def __lowerCamelCase ( self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def __lowerCamelCase ( self ): return self.nir * (self.red / (self.green**2)) def __lowerCamelCase ( self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def __lowerCamelCase ( self ): return (self.nir - self.red) / (self.nir + self.red) def __lowerCamelCase ( self ): return (self.nir - self.blue) / (self.nir + self.blue) def __lowerCamelCase ( self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def __lowerCamelCase ( self ): return (self.nir - self.green) / (self.nir + self.green) def __lowerCamelCase ( self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def __lowerCamelCase ( self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def __lowerCamelCase ( self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def __lowerCamelCase ( self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0.08 , _SCREAMING_SNAKE_CASE=1.22 , _SCREAMING_SNAKE_CASE=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def __lowerCamelCase ( self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def __lowerCamelCase ( self ): return (self.nir / self.green) - 1 def __lowerCamelCase ( self ): return (self.nir / self.redEdge) - 1 def __lowerCamelCase ( self ): return (self.red - self.blue) / self.red def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def __lowerCamelCase ( self ): return self.nir - self.green def __lowerCamelCase ( self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def __lowerCamelCase ( self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): return (self.nir - b) / (a * self.red) def __lowerCamelCase ( self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def __lowerCamelCase ( self ): return (self.red + self.green + self.blue) / 30.5 def __lowerCamelCase ( self ): return self.nir / self.red def __lowerCamelCase ( self ): return (self.rvi() - 1) / (self.rvi() + 1) def __lowerCamelCase ( self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def __lowerCamelCase ( self ): return self.green / (self.nir + self.red + self.green) def __lowerCamelCase ( self ): return self.nir / (self.nir + self.red + self.green) def __lowerCamelCase ( self ): return self.red / (self.nir + self.red + self.green) def __lowerCamelCase ( self ): return (self.green - self.red) / (self.green + self.red) def __lowerCamelCase ( self ): return (self.red - self.green) / (self.red + self.green) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase : Dict = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def __lowerCamelCase ( self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def __lowerCamelCase ( self ): return self.nir / self.red def __lowerCamelCase ( self ): return (self.ndvi() + 0.5) ** (1 / 2) def __lowerCamelCase ( self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
549
"""simple docstring""" from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
549
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = StableDiffusionXLImgaImgPipeline __UpperCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} __UpperCAmelCase : int = PipelineTesterMixin.required_optional_params - {'latents'} __UpperCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCAmelCase : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=_a , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __a = EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=32 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=_a ) __a = CLIPTextModelWithProjection(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=_a ) __a = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image / 2 + 0.5 if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def __UpperCAmelCase ( self ): __a = """cpu""" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionXLImgaImgPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a = self.get_dummy_components() __a = StableDiffusionXLImgaImgPipeline(**_a ) __a = sd_pipe.to(_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) # forward without prompt embeds __a = self.get_dummy_inputs(_a ) __a = 3 * ["""this is a negative prompt"""] __a = negative_prompt __a = 3 * [inputs["""prompt"""]] __a = sd_pipe(**_a ) __a = output.images[0, -3:, -3:, -1] # forward with prompt embeds __a = self.get_dummy_inputs(_a ) __a = 3 * ["""this is a negative prompt"""] __a = 3 * [inputs.pop('''prompt''' )] ( __a ) = sd_pipe.encode_prompt(_a , negative_prompt=_a ) __a = sd_pipe( **_a , prompt_embeds=_a , negative_prompt_embeds=_a , pooled_prompt_embeds=_a , negative_pooled_prompt_embeds=_a , ) __a = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ): __a = torch.Generator(device=_a ).manual_seed(_a ) __a = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) __a = torch.from_numpy(_a ).to(device=_a , dtype=_a ) __a = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def __UpperCAmelCase ( self ): __a = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __a = self.get_inputs(_a ) __a = pipe(**_a ).images __a = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __a = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
695
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase : List[Any] = 'CompVis/stable-diffusion-v1-1' lowerCamelCase : Union[str, Any] = 'CompVis/stable-diffusion-v1-2' lowerCamelCase : List[str] = 'CompVis/stable-diffusion-v1-3' lowerCamelCase : Any = 'CompVis/stable-diffusion-v1-4' class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A , A , A , A , A , A , A = True , ) -> List[str]: super()._init_() snake_case : List[Any] = StableDiffusionPipeline.from_pretrained(A ) snake_case : str = StableDiffusionPipeline.from_pretrained(A ) snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained(A ) snake_case : Dict = StableDiffusionPipeline( vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , safety_checker=A , feature_extractor=A , requires_safety_checker=A , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCAmelCase ( self ) -> Dict[str, Any]: return {k: getattr(self , A ) for k in self.config.keys() if not k.startswith("""_""" )} def UpperCAmelCase ( self , A = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def UpperCAmelCase ( self ) -> Dict: self.enable_attention_slicing(A ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Optional[Any]: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Optional[Any]: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Any: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Optional[int]: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> List[Any]: snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(A ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 snake_case : Tuple = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get first result from Stable Diffusion Checkpoint v1.2 snake_case : Tuple = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get first result from Stable Diffusion Checkpoint v1.3 snake_case : List[Any] = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get first result from Stable Diffusion Checkpoint v1.4 snake_case : Dict = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
587
0
"""simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' SCREAMING_SNAKE_CASE_ : Any = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] SCREAMING_SNAKE_CASE_ : List[str] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
274
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE_ : List[Any] = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : str = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys SCREAMING_SNAKE_CASE_ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
274
1
def A ( snake_case__ : str ) -> Optional[Any]: '''simple docstring''' __snake_case = 0 # if input_string is "aba" than new_input_string become "a|b|a" __snake_case = '' __snake_case = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __snake_case , __snake_case = 0, 0 # length[i] shows the length of palindromic substring with center i __snake_case = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string __snake_case = 0 for j in range(len(__a ) ): __snake_case = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __snake_case = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __snake_case = j - k + 1 # noqa: E741 __snake_case = j + k - 1 # update max_length and start position if max_length < length[j]: __snake_case = length[j] __snake_case = j # create that string __snake_case = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
313
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __magic_name__ (unittest.TestCase ): lowerCamelCase__ = StableDiffusionLDMaDPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def __a ( self ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase_ = CLIPTextModel(_a ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __a ( self , _a , _a=0 ) -> Any: if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __a ( self ) -> List[str]: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionLDMaDPipeline(**_a ) lowerCAmelCase_ = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb[0, -3:, -3:, -1] lowerCAmelCase_ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) lowerCAmelCase_ = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def __a ( self ) -> Tuple: lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionLDMaDPipeline(**_a ) lowerCAmelCase_ = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = 3 * [inputs["prompt"]] # forward lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ = depth_slice_a[0, -3:, -1] lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = 3 * [inputs.pop("prompt" )] lowerCAmelCase_ = ldmad_pipe.tokenizer( _a , padding="max_length" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_a , return_tensors="pt" , ) lowerCAmelCase_ = text_inputs["input_ids"].to(_a ) lowerCAmelCase_ = ldmad_pipe.text_encoder(_a )[0] lowerCAmelCase_ = prompt_embeds # forward lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb_slice_a[0, -3:, -3:, -1] lowerCAmelCase_ = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def __a ( self ) -> Optional[int]: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a ) lowerCAmelCase_ = StableDiffusionLDMaDPipeline(**_a ) lowerCAmelCase_ = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = "french fries" lowerCAmelCase_ = ldmad_pipe(**_a , negative_prompt=_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb[0, -3:, -3:, -1] lowerCAmelCase_ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) lowerCAmelCase_ = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) lowerCAmelCase_ = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ) -> Dict: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ = torch.from_numpy(_a ).to(device=_a , dtype=_a ) lowerCAmelCase_ = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) lowerCAmelCase_ = ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_inputs(_a ) lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = rgb[0, -3:, -3:, -1].flatten() lowerCAmelCase_ = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) lowerCAmelCase_ = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) lowerCAmelCase_ = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ) -> Union[str, Any]: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ = torch.from_numpy(_a ).to(device=_a , dtype=_a ) lowerCAmelCase_ = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __a ( self ) -> str: lowerCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_inputs(_a ) lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = 0.4_9_5_5_8_6 lowerCAmelCase_ = 0.3_3_7_9_5_5_1_5 lowerCAmelCase_ = 1_1_2.4_8_5_1_8 lowerCAmelCase_ = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def __a ( self ) -> Dict: lowerCAmelCase_ = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_inputs(_a ) lowerCAmelCase_ = ldmad_pipe(**_a ) lowerCAmelCase_ , lowerCAmelCase_ = output.rgb, output.depth lowerCAmelCase_ = 0.4_1_9_4_1_2_7 lowerCAmelCase_ = 0.3_5_3_7_5_5_8_6 lowerCAmelCase_ = 0.5_6_3_8_5_0_2 lowerCAmelCase_ = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
122
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class lowercase__ ( _snake_case , _snake_case ): A__ : str ="""pixel_values""" A__ : Tuple =False A__ : Optional[int] =TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , 'timm' ) super().__init__(snake_case_ ) SCREAMING_SNAKE_CASE__ = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(snake_case_ , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) SCREAMING_SNAKE_CASE__ = getattr(snake_case_ , 'use_pretrained_backbone' , snake_case_ ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. SCREAMING_SNAKE_CASE__ = config.out_indices if getattr(snake_case_ , 'out_indices' , snake_case_ ) is not None else (-1,) SCREAMING_SNAKE_CASE__ = timm.create_model( config.backbone , pretrained=snake_case_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=snake_case_ , **snake_case_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. SCREAMING_SNAKE_CASE__ = self._backbone.return_layers SCREAMING_SNAKE_CASE__ = {layer["module"]: str(snake_case_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(snake_case_ ) @classmethod def A_ ( cls : Any , UpperCAmelCase_ : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig SCREAMING_SNAKE_CASE__ = kwargs.pop('config' , TimmBackboneConfig() ) SCREAMING_SNAKE_CASE__ = kwargs.pop('use_timm_backbone' , snake_case_ ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) SCREAMING_SNAKE_CASE__ = kwargs.pop('num_channels' , config.num_channels ) SCREAMING_SNAKE_CASE__ = kwargs.pop('features_only' , config.features_only ) SCREAMING_SNAKE_CASE__ = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) SCREAMING_SNAKE_CASE__ = kwargs.pop('out_indices' , config.out_indices ) SCREAMING_SNAKE_CASE__ = TimmBackboneConfig( backbone=snake_case_ , num_channels=snake_case_ , features_only=snake_case_ , use_pretrained_backbone=snake_case_ , out_indices=snake_case_ , ) return super()._from_config(snake_case_ , **snake_case_ ) def A_ ( self : str , UpperCAmelCase_ : int ): pass def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone SCREAMING_SNAKE_CASE__ = self._all_layers SCREAMING_SNAKE_CASE__ = self._backbone(snake_case_ , **snake_case_ ) SCREAMING_SNAKE_CASE__ = self._return_layers SCREAMING_SNAKE_CASE__ = tuple(hidden_states[i] for i in self.out_indices ) else: SCREAMING_SNAKE_CASE__ = self._backbone(snake_case_ , **snake_case_ ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = tuple(snake_case_ ) SCREAMING_SNAKE_CASE__ = tuple(snake_case_ ) if hidden_states is not None else None if not return_dict: SCREAMING_SNAKE_CASE__ = (feature_maps,) if output_hidden_states: SCREAMING_SNAKE_CASE__ = output + (hidden_states,) return output return BackboneOutput(feature_maps=snake_case_ , hidden_states=snake_case_ , attentions=snake_case_ )
721
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __snake_case = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""DeiTFeatureExtractor"""] __snake_case = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
400
0
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _lowerCAmelCase :Dict = logging.get_logger(__name__) def __lowerCAmelCase ( a_ , a_ , a_ ) -> List[str]: '''simple docstring''' return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __lowerCAmelCase ( a_ , a_ , a_ ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = to_pil_image(a_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = pil_image.size SCREAMING_SNAKE_CASE : Dict = pytesseract.image_to_data(a_ , lang=a_ , output_type='dict' , config=a_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE : str = [idx for idx, word in enumerate(a_ ) if not word.strip()] SCREAMING_SNAKE_CASE : int = [word for idx, word in enumerate(a_ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE : Union[str, Any] = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE : List[str] = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE : List[Any] = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE : List[Any] = [coord for idx, coord in enumerate(a_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE : List[str] = [] for x, y, w, h in zip(a_ , a_ , a_ , a_ ): SCREAMING_SNAKE_CASE : Tuple = [x, y, x + w, y + h] actual_boxes.append(a_ ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE : Any = [] for box in actual_boxes: normalized_boxes.append(normalize_box(a_ , a_ , a_ ) ) assert len(a_ ) == len(a_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : List[str] = ["pixel_values"] def __init__( self , lowercase__ = True , lowercase__ = None , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = True , lowercase__ = 1 / 255 , lowercase__ = True , lowercase__ = None , lowercase__ = None , lowercase__ = True , lowercase__ = None , lowercase__ = "" , **lowercase__ , ) -> None: super().__init__(**lowercase__ ) SCREAMING_SNAKE_CASE : Any = size if size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(lowercase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_resize SCREAMING_SNAKE_CASE : int = size SCREAMING_SNAKE_CASE : str = resample SCREAMING_SNAKE_CASE : int = do_rescale SCREAMING_SNAKE_CASE : Tuple = rescale_value SCREAMING_SNAKE_CASE : List[Any] = do_normalize SCREAMING_SNAKE_CASE : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD SCREAMING_SNAKE_CASE : Optional[int] = apply_ocr SCREAMING_SNAKE_CASE : Optional[Any] = ocr_lang SCREAMING_SNAKE_CASE : List[str] = tesseract_config def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ = PILImageResampling.BILINEAR , lowercase__ = None , **lowercase__ , ) -> np.ndarray: SCREAMING_SNAKE_CASE : List[str] = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE : Optional[int] = (size['height'], size['width']) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ) -> np.ndarray: return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , **lowercase__ , ) -> np.ndarray: return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def _UpperCamelCase ( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__=None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = ChannelDimension.FIRST , **lowercase__ , ) -> PIL.Image.Image: SCREAMING_SNAKE_CASE : Optional[int] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(lowercase__ ) SCREAMING_SNAKE_CASE : int = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : Any = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : List[str] = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : Any = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Optional[int] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : List[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE : List[str] = ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE : Any = tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE : List[Any] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Union[str, Any] = [to_numpy_array(lowercase__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract' ) SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : str = [] for image in images: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = apply_tesseract(lowercase__ , lowercase__ , lowercase__ ) words_batch.append(lowercase__ ) boxes_batch.append(lowercase__ ) if do_resize: SCREAMING_SNAKE_CASE : int = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : List[str] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Any = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] SCREAMING_SNAKE_CASE : int = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] SCREAMING_SNAKE_CASE : List[Any] = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase__ ) if apply_ocr: SCREAMING_SNAKE_CASE : Optional[int] = words_batch SCREAMING_SNAKE_CASE : str = boxes_batch return data
251
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _lowerCAmelCase :str = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ) -> Union[str, Any]: super().__init__() self.register_modules( vae=lowercase__ , text_encoder=lowercase__ , tokenizer=lowercase__ , unet=lowercase__ , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , ) def _UpperCamelCase ( self , lowercase__ = "auto" ) -> Optional[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase__ ) def _UpperCamelCase ( self ) -> str: self.enable_attention_slicing(lowercase__ ) @torch.no_grad() def __call__( self , lowercase__ , lowercase__ = 512 , lowercase__ = 512 , lowercase__ = 50 , lowercase__ = 7.5 , lowercase__ = None , lowercase__ = 1 , lowercase__ = 0.0 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , lowercase__ = None , lowercase__ = 1 , lowercase__ = None , **lowercase__ , ) -> Union[str, Any]: if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE : Dict = 1 elif isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE : int = len(lowercase__ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(lowercase__ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase__ , lowercase__ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(lowercase__ )}.""" ) # get prompt text embeddings SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( lowercase__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) SCREAMING_SNAKE_CASE : Optional[int] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE : Dict = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: SCREAMING_SNAKE_CASE : Optional[int] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = text_embeddings.shape SCREAMING_SNAKE_CASE : List[Any] = text_embeddings.repeat(1 , lowercase__ , 1 ) SCREAMING_SNAKE_CASE : str = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. SCREAMING_SNAKE_CASE : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : List[str] if negative_prompt is None: SCREAMING_SNAKE_CASE : str = [''] elif type(lowercase__ ) is not type(lowercase__ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(lowercase__ )} !=""" F""" {type(lowercase__ )}.""" ) elif isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE : int = [negative_prompt] elif batch_size != len(lowercase__ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(lowercase__ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: SCREAMING_SNAKE_CASE : int = negative_prompt SCREAMING_SNAKE_CASE : int = text_input_ids.shape[-1] SCREAMING_SNAKE_CASE : str = self.tokenizer( lowercase__ , padding='max_length' , max_length=lowercase__ , truncation=lowercase__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE : Optional[Any] = uncond_embeddings.shape[1] SCREAMING_SNAKE_CASE : Optional[Any] = uncond_embeddings.repeat(lowercase__ , lowercase__ , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. SCREAMING_SNAKE_CASE : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) SCREAMING_SNAKE_CASE : Dict = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) SCREAMING_SNAKE_CASE : Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps SCREAMING_SNAKE_CASE : Optional[Any] = torch.randn( lowercase__ , generator=lowercase__ , device='cpu' , dtype=lowercase__ ).to(self.device ) SCREAMING_SNAKE_CASE : Dict = torch.randn(lowercase__ , generator=lowercase__ , device='cpu' , dtype=lowercase__ ).to( self.device ) else: SCREAMING_SNAKE_CASE : Optional[int] = torch.randn( lowercase__ , generator=lowercase__ , device=self.device , dtype=lowercase__ ) SCREAMING_SNAKE_CASE : int = torch.randn(lowercase__ , generator=lowercase__ , device=self.device , dtype=lowercase__ ) else: if latents_reference.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) SCREAMING_SNAKE_CASE : Optional[Any] = latents_reference.to(self.device ) SCREAMING_SNAKE_CASE : Union[str, Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images SCREAMING_SNAKE_CASE : List[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 SCREAMING_SNAKE_CASE : int = (latents_shape[2] - latents_shape_reference[2]) // 2 SCREAMING_SNAKE_CASE : Tuple = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx SCREAMING_SNAKE_CASE : Any = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy SCREAMING_SNAKE_CASE : Optional[Any] = 0 if dx < 0 else dx SCREAMING_SNAKE_CASE : Union[str, Any] = 0 if dy < 0 else dy SCREAMING_SNAKE_CASE : List[str] = max(-dx , 0 ) SCREAMING_SNAKE_CASE : Optional[int] = max(-dy , 0 ) # import pdb # pdb.set_trace() SCREAMING_SNAKE_CASE : Optional[int] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowercase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE : int = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE : str = {} if accepts_eta: SCREAMING_SNAKE_CASE : Dict = eta for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.scale_model_input(lowercase__ , lowercase__ ) # predict the noise residual SCREAMING_SNAKE_CASE : int = self.unet(lowercase__ , lowercase__ , encoder_hidden_states=lowercase__ ).sample # perform guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = 1 / 0.1_8_2_1_5 * latents SCREAMING_SNAKE_CASE : Tuple = self.vae.decode(lowercase__ ).sample SCREAMING_SNAKE_CASE : int = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: SCREAMING_SNAKE_CASE : List[str] = self.feature_extractor(self.numpy_to_pil(lowercase__ ) , return_tensors='pt' ).to( self.device ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.safety_checker( images=lowercase__ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: SCREAMING_SNAKE_CASE : str = None if output_type == "pil": SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowercase__ , nsfw_content_detected=lowercase__ )
251
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ : Any = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
0
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __magic_name__ : Any = { """n_samples""": 6_4, """horizon""": 3_2, """num_inference_steps""": 2_0, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": __magic_name__ : Any = """hopper-medium-v2""" __magic_name__ : Optional[Any] = gym.make(env_name) __magic_name__ : List[Any] = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) __magic_name__ : List[Any] = env.reset() __magic_name__ : Optional[Any] = 0 __magic_name__ : Optional[int] = 0 __magic_name__ : List[str] = 1_0_0_0 __magic_name__ : str = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __magic_name__ : str = pipeline(obs, planning_horizon=3_2) # execute action in environment __magic_name__ : List[str] = env.step(denorm_actions) __magic_name__ : Union[str, Any] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" f""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) __magic_name__ : Tuple = next_observation except KeyboardInterrupt: pass print(f"""Total reward: {total_reward}""")
281
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCamelCase__ : Any = datasets.utils.logging.get_logger(__name__) class _snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCAmelCase : bool = None __lowerCAmelCase : bool = None class _snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCAmelCase : Optional[Any] = datasets.Audio() __lowerCAmelCase : Union[str, Any] = 'audio' __lowerCAmelCase : str = AudioFolderConfig __lowerCAmelCase : List[str] # definition at the bottom of the script __lowerCAmelCase : Optional[int] = AudioClassification(audio_column='audio' , label_column='label' ) lowerCamelCase__ : int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] lowerCamelCase__ : int = AUDIO_EXTENSIONS
12
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase : List[Any] = data_utils.TransfoXLTokenizer lowercase : Tuple = data_utils.TransfoXLCorpus lowercase : str = data_utils lowercase : Any = data_utils def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Tuple) -> Dict: '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowerCamelCase , "rb") as fp: __UpperCamelCase : str = pickle.load(_lowerCamelCase , encoding="latin1") # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __UpperCamelCase : Optional[int] = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F'Save vocabulary to {pytorch_vocab_dump_path}') __UpperCamelCase : Optional[Any] = corpus.vocab.__dict__ torch.save(_lowerCamelCase , _lowerCamelCase) __UpperCamelCase : List[Any] = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , _lowerCamelCase) __UpperCamelCase : int = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}') torch.save(_lowerCamelCase , _lowerCamelCase) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __UpperCamelCase : str = os.path.abspath(_lowerCamelCase) __UpperCamelCase : List[Any] = os.path.abspath(_lowerCamelCase) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.') # Initialise PyTorch model if transfo_xl_config_file == "": __UpperCamelCase : List[str] = TransfoXLConfig() else: __UpperCamelCase : str = TransfoXLConfig.from_json_file(_lowerCamelCase) print(F'Building PyTorch model from configuration: {config}') __UpperCamelCase : int = TransfoXLLMHeadModel(_lowerCamelCase) __UpperCamelCase : Dict = load_tf_weights_in_transfo_xl(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Save pytorch-model __UpperCamelCase : Tuple = os.path.join(_lowerCamelCase , _lowerCamelCase) __UpperCamelCase : int = os.path.join(_lowerCamelCase , _lowerCamelCase) print(F'Save PyTorch model to {os.path.abspath(_lowerCamelCase)}') torch.save(model.state_dict() , _lowerCamelCase) print(F'Save configuration file to {os.path.abspath(_lowerCamelCase)}') with open(_lowerCamelCase , "w" , encoding="utf-8") as f: f.write(config.to_json_string()) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) lowercase : Optional[int] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
94
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = 'facebook/bart-large-mnli' _A = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) _A = 'text_classifier' _A = AutoTokenizer _A = AutoModelForSequenceClassification _A = ['text', ['text']] _A = ['text'] def _lowerCamelCase ( self :str ) -> Tuple: super().setup() __UpperCamelCase : Any = self.model.config __UpperCamelCase : List[Any] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): __UpperCamelCase : Optional[Any] = int(a ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def _lowerCamelCase ( self :Optional[int] , a :Dict , a :Optional[Any] ) -> Optional[int]: __UpperCamelCase : str = labels return self.pre_processor( [text] * len(a ) , [f'This example is {label}' for label in labels] , return_tensors="pt" , padding="max_length" , ) def _lowerCamelCase ( self :Any , a :Any ) -> Optional[int]: __UpperCamelCase : Optional[int] = outputs.logits __UpperCamelCase : Dict = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
94
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = CTRLTokenizer UpperCamelCase__ : List[Any] = False UpperCamelCase__ : Dict = False def _A ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __SCREAMING_SNAKE_CASE = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] __SCREAMING_SNAKE_CASE = dict(zip(_A , range(len(_A ) ) ) ) __SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] __SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) def _A ( self , **_A ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_A ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """adapt react readapt apt""" __SCREAMING_SNAKE_CASE = """adapt react readapt apt""" return input_text, output_text def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE = """adapt react readapt apt""" __SCREAMING_SNAKE_CASE = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() __SCREAMING_SNAKE_CASE = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
148
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : List[str] = ['image_processor', 'tokenizer'] __SCREAMING_SNAKE_CASE : Any = 'LayoutLMv3ImageProcessor' __SCREAMING_SNAKE_CASE : Any = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__(self , lowercase=None , lowercase=None , **lowercase ): A_ : Dict = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowercase , ) A_ : List[str] = kwargs.pop("""feature_extractor""" ) A_ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowercase , lowercase ) def __call__(self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor A_ : Optional[int] = self.image_processor(images=lowercase , return_tensors=lowercase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase , lowercase ): A_ : Union[str, Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) A_ : Dict = features["""words"""] A_ : Optional[int] = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_token_type_ids=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) # add pixel values A_ : List[Any] = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: A_ : List[str] = self.get_overflowing_images(lowercase , encoded_inputs["""overflow_to_sample_mapping"""] ) A_ : Optional[int] = images return encoded_inputs def _a (self , lowercase , lowercase ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image A_ : str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowercase ) != len(lowercase ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" F' {len(lowercase )} and {len(lowercase )}' ) return images_with_overflow def _a (self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def _a (self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property def _a (self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _a (self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowercase , ) return self.image_processor_class @property def _a (self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowercase , ) return self.image_processor
667
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case : str ={ 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any =[ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] =[ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __snake_case : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase ,'''width_multiplier''' ) ) class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=13 ,__lowerCamelCase=64 ,__lowerCamelCase=2 ,__lowerCamelCase=3 ,__lowerCamelCase="swish" ,__lowerCamelCase=3 ,__lowerCamelCase=32 ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.02 ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=10 ,__lowerCamelCase=None ,__lowerCamelCase=0.25 ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.0 ,) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Dict = parent lowerCAmelCase__ : List[str] = batch_size lowerCAmelCase__ : Dict = image_size lowerCAmelCase__ : Tuple = patch_size lowerCAmelCase__ : List[Any] = num_channels lowerCAmelCase__ : Tuple = make_divisible(5_12 * width_multiplier ,divisor=8 ) lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Optional[int] = conv_kernel_size lowerCAmelCase__ : int = output_stride lowerCAmelCase__ : List[Any] = classifier_dropout_prob lowerCAmelCase__ : Dict = use_labels lowerCAmelCase__ : Tuple = is_training lowerCAmelCase__ : str = num_labels lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : Tuple = scope lowerCAmelCase__ : Tuple = width_multiplier lowerCAmelCase__ : Optional[int] = ffn_dropout lowerCAmelCase__ : Dict = attn_dropout def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] ,self.num_labels ) lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) lowerCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,width_multiplier=self.width_multiplier ,ffn_dropout=self.ffn_dropout_prob ,attn_dropout=self.attn_dropout_prob ,) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : int = MobileViTVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : Dict = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[str] = self.num_labels lowerCAmelCase__ : Union[str, Any] = MobileViTVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : Dict = model(__lowerCamelCase ,labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Any = self.num_labels lowerCAmelCase__ : Optional[int] = MobileViTVaForSemanticSegmentation(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) lowerCAmelCase__ : List[str] = model(__lowerCamelCase ,labels=__lowerCamelCase ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = config_and_inputs lowerCAmelCase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) snake_case_ =( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) snake_case_ =False snake_case_ =False snake_case_ =False snake_case_ =False def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Dict = MobileViTVaModelTester(self ) lowerCAmelCase__ : Optional[int] = MobileViTVaConfigTester(self ,config_class=__lowerCamelCase ,has_text_modality=__lowerCamelCase ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Union[str, Any] = model_class(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : str = [*signature.parameters.keys()] lowerCAmelCase__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" def check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase__ : Union[str, Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) ) lowerCAmelCase__ : Dict = outputs.hidden_states lowerCAmelCase__ : Any = 5 self.assertEqual(len(__lowerCamelCase ) ,__lowerCamelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCAmelCase__ : Optional[Any] = 2 for i in range(len(__lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Any = True check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : Tuple = True check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase ) @slow def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[int] = MobileViTVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @cached_property def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : str = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( __lowerCamelCase ) lowerCAmelCase__ : str = self.default_image_processor lowerCAmelCase__ : Union[str, Any] = prepare_img() lowerCAmelCase__ : int = image_processor(images=__lowerCamelCase ,return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(**__lowerCamelCase ) # verify the logits lowerCAmelCase__ : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,__lowerCamelCase ) lowerCAmelCase__ : Dict = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__lowerCamelCase ,atol=1e-4 ) ) @slow def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase__ : Optional[Any] = model.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase__ : Optional[Any] = prepare_img() lowerCAmelCase__ : Union[str, Any] = image_processor(images=__lowerCamelCase ,return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**__lowerCamelCase ) lowerCAmelCase__ : Tuple = outputs.logits # verify the logits lowerCAmelCase__ : Optional[int] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] ,device=__lowerCamelCase ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,__lowerCamelCase ,atol=1e-4 ) ) @slow def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase__ : Dict = model.to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase__ : int = prepare_img() lowerCAmelCase__ : Any = image_processor(images=__lowerCamelCase ,return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = outputs.logits.detach().cpu() lowerCAmelCase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__lowerCamelCase ,target_sizes=[(50, 60)] ) lowerCAmelCase__ : Tuple = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape ,__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape ,__lowerCamelCase )
90
0
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __magic_name__ ( _lowerCamelCase : bytes , _lowerCamelCase : int ): __a : Optional[int] = F'''{sampling_rate}''' __a : str = """1""" __a : Union[str, Any] = """f32le""" __a : str = [ """ffmpeg""", """-i""", """pipe:0""", """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] try: with subprocess.Popen(_lowerCamelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __a : List[Any] = ffmpeg_process.communicate(_lowerCamelCase ) except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to load audio files from filename""" ) from error __a : Optional[Any] = output_stream[0] __a : Dict = np.frombuffer(_lowerCamelCase , np.floataa ) if audio.shape[0] == 0: raise ValueError("""Malformed soundfile""" ) return audio def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : float , _lowerCamelCase : str = "f32le" , ): __a : Union[str, Any] = F'''{sampling_rate}''' __a : str = """1""" if format_for_conversion == "s16le": __a : Optional[Any] = 2 elif format_for_conversion == "f32le": __a : int = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) __a : int = platform.system() if system == "Linux": __a : Dict = """alsa""" __a : str = """default""" elif system == "Darwin": __a : Dict = """avfoundation""" __a : Union[str, Any] = """:0""" elif system == "Windows": __a : Tuple = """dshow""" __a : Optional[int] = """default""" __a : int = [ """ffmpeg""", """-f""", format_, """-i""", input_, """-ac""", ac, """-ar""", ar, """-f""", format_for_conversion, """-fflags""", """nobuffer""", """-hide_banner""", """-loglevel""", """quiet""", """pipe:1""", ] __a : str = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __a : List[Any] = _ffmpeg_stream(_lowerCamelCase , _lowerCamelCase ) for item in iterator: yield item def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : float , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[Union[Tuple[float, float], float]] = None , _lowerCamelCase : str = "f32le" , ): if stream_chunk_s is not None: __a : Optional[Any] = stream_chunk_s else: __a : Union[str, Any] = chunk_length_s __a : Optional[Any] = ffmpeg_microphone(_lowerCamelCase , _lowerCamelCase , format_for_conversion=_lowerCamelCase ) if format_for_conversion == "s16le": __a : Optional[int] = np.intaa __a : Optional[Any] = 2 elif format_for_conversion == "f32le": __a : Any = np.floataa __a : List[Any] = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: __a : int = chunk_length_s / 6 __a : Dict = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_lowerCamelCase , (int, float) ): __a : List[Any] = [stride_length_s, stride_length_s] __a : Dict = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __a : Tuple = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __a : Any = datetime.datetime.now() __a : int = datetime.timedelta(seconds=_lowerCamelCase ) for item in chunk_bytes_iter(_lowerCamelCase , _lowerCamelCase , stride=(stride_left, stride_right) , stream=_lowerCamelCase ): # Put everything back in numpy scale __a : Any = np.frombuffer(item["""raw"""] , dtype=_lowerCamelCase ) __a : Any = ( item["""stride"""][0] // size_of_sample, item["""stride"""][1] // size_of_sample, ) __a : Tuple = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def __magic_name__ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : Tuple[int, int] , _lowerCamelCase : bool = False ): __a : Any = b"""""" __a , __a : Dict = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) __a : Tuple = 0 for raw in iterator: acc += raw if stream and len(_lowerCamelCase ) < chunk_len: __a : int = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_lowerCamelCase ) >= chunk_len: # We are flushing the accumulator __a : int = (_stride_left, stride_right) __a : Union[str, Any] = {"""raw""": acc[:chunk_len], """stride""": stride} if stream: __a : List[Any] = False yield item __a : str = stride_left __a : Any = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_lowerCamelCase ) > stride_left: __a : Optional[Any] = {"""raw""": acc, """stride""": (_stride_left, 0)} if stream: __a : Optional[Any] = False yield item def __magic_name__ ( _lowerCamelCase : Dict , _lowerCamelCase : int ): __a : str = 2**2_4 # 16Mo try: with subprocess.Popen(_lowerCamelCase , stdout=subprocess.PIPE , bufsize=_lowerCamelCase ) as ffmpeg_process: while True: __a : str = ffmpeg_process.stdout.read(_lowerCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("""ffmpeg was not found but is required to stream audio files from filename""" ) from error
581
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } __a : List[Any] = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_lowercase ) , _lowercase ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_lowercase ) , x.transpose() ) ) __a : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : int = np.random.randn(3 , 4 ) __a : Optional[Any] = torch.tensor(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase ) , transpose(_lowercase ).numpy() ) ) __a : Optional[Any] = np.random.randn(3 , 4 , 5 ) __a : Any = torch.tensor(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , transpose(_lowercase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = np.random.randn(3 , 4 ) __a : int = tf.constant(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase ) , transpose(_lowercase ).numpy() ) ) __a : Any = np.random.randn(3 , 4 , 5 ) __a : List[str] = tf.constant(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , transpose(_lowercase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = np.random.randn(3 , 4 ) __a : Union[str, Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase ) , np.asarray(transpose(_lowercase ) ) ) ) __a : Optional[int] = np.random.randn(3 , 4 , 5 ) __a : Union[str, Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(transpose(_lowercase , axes=(1, 2, 0) ) , np.asarray(transpose(_lowercase , axes=(1, 2, 0) ) ) ) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , np.reshape(_lowercase , (4, 3) ) ) ) __a : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_lowercase , (12, 5) ) , np.reshape(_lowercase , (12, 5) ) ) ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = np.random.randn(3 , 4 ) __a : List[Any] = torch.tensor(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , reshape(_lowercase , (4, 3) ).numpy() ) ) __a : List[str] = np.random.randn(3 , 4 , 5 ) __a : Any = torch.tensor(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (12, 5) ) , reshape(_lowercase , (12, 5) ).numpy() ) ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : str = np.random.randn(3 , 4 ) __a : Dict = tf.constant(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , reshape(_lowercase , (4, 3) ).numpy() ) ) __a : Tuple = np.random.randn(3 , 4 , 5 ) __a : Optional[Any] = tf.constant(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (12, 5) ) , reshape(_lowercase , (12, 5) ).numpy() ) ) @require_flax def lowerCAmelCase__(self ): '''simple docstring''' __a : str = np.random.randn(3 , 4 ) __a : Tuple = jnp.array(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (4, 3) ) , np.asarray(reshape(_lowercase , (4, 3) ) ) ) ) __a : Tuple = np.random.randn(3 , 4 , 5 ) __a : Optional[int] = jnp.array(_lowercase ) self.assertTrue(np.allclose(reshape(_lowercase , (12, 5) ) , np.asarray(reshape(_lowercase , (12, 5) ) ) ) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_lowercase ) , np.squeeze(_lowercase ) ) ) __a : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , np.squeeze(_lowercase , axis=2 ) ) ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[int] = np.random.randn(1 , 3 , 4 ) __a : List[Any] = torch.tensor(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase ) , squeeze(_lowercase ).numpy() ) ) __a : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) __a : str = torch.tensor(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , squeeze(_lowercase , axis=2 ).numpy() ) ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : int = np.random.randn(1 , 3 , 4 ) __a : Tuple = tf.constant(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase ) , squeeze(_lowercase ).numpy() ) ) __a : Any = np.random.randn(1 , 4 , 1 , 5 ) __a : List[str] = tf.constant(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , squeeze(_lowercase , axis=2 ).numpy() ) ) @require_flax def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = np.random.randn(1 , 3 , 4 ) __a : Union[str, Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase ) , np.asarray(squeeze(_lowercase ) ) ) ) __a : Any = np.random.randn(1 , 4 , 1 , 5 ) __a : Optional[Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(squeeze(_lowercase , axis=2 ) , np.asarray(squeeze(_lowercase , axis=2 ) ) ) ) def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , np.expand_dims(_lowercase , axis=1 ) ) ) @require_torch def lowerCAmelCase__(self ): '''simple docstring''' __a : Any = np.random.randn(3 , 4 ) __a : Any = torch.tensor(_lowercase ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , expand_dims(_lowercase , axis=1 ).numpy() ) ) @require_tf def lowerCAmelCase__(self ): '''simple docstring''' __a : int = np.random.randn(3 , 4 ) __a : str = tf.constant(_lowercase ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , expand_dims(_lowercase , axis=1 ).numpy() ) ) @require_flax def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = np.random.randn(3 , 4 ) __a : Optional[Any] = jnp.array(_lowercase ) self.assertTrue(np.allclose(expand_dims(_lowercase , axis=1 ) , np.asarray(expand_dims(_lowercase , axis=1 ) ) ) )
581
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __SCREAMING_SNAKE_CASE ( __lowercase): _SCREAMING_SNAKE_CASE : Union[str, Any] = '''gpt_neox''' def __init__( self , _UpperCamelCase=5_04_32 , _UpperCamelCase=61_44 , _UpperCamelCase=44 , _UpperCamelCase=64 , _UpperCamelCase=2_45_76 , _UpperCamelCase="gelu" , _UpperCamelCase=0.25 , _UpperCamelCase=1_00_00 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.1 , _UpperCamelCase=20_48 , _UpperCamelCase=0.02 , _UpperCamelCase=1E-5 , _UpperCamelCase=True , _UpperCamelCase=0 , _UpperCamelCase=2 , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ): """simple docstring""" super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = rotary_pct lowerCAmelCase__ = rotary_emb_base lowerCAmelCase__ = attention_dropout lowerCAmelCase__ = hidden_dropout lowerCAmelCase__ = classifier_dropout lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = use_cache lowerCAmelCase__ = tie_word_embeddings lowerCAmelCase__ = use_parallel_residual lowerCAmelCase__ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def UpperCamelCase__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"got {self.rope_scaling}" ) lowerCAmelCase__ = self.rope_scaling.get('type' , _UpperCamelCase ) lowerCAmelCase__ = self.rope_scaling.get('factor' , _UpperCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(_UpperCamelCase , _UpperCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
704
def _UpperCamelCase ( UpperCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError('multiplicative_persistence() only accepts integral values' ) if num < 0: raise ValueError('multiplicative_persistence() does not accept negative values' ) lowerCAmelCase__ = 0 lowerCAmelCase__ = str(UpperCamelCase_ ) while len(UpperCamelCase_ ) != 1: lowerCAmelCase__ = [int(UpperCamelCase_ ) for i in num_string] lowerCAmelCase__ = 1 for i in range(0 , len(UpperCamelCase_ ) ): total *= numbers[i] lowerCAmelCase__ = str(UpperCamelCase_ ) steps += 1 return steps def _UpperCamelCase ( UpperCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError('additive_persistence() only accepts integral values' ) if num < 0: raise ValueError('additive_persistence() does not accept negative values' ) lowerCAmelCase__ = 0 lowerCAmelCase__ = str(UpperCamelCase_ ) while len(UpperCamelCase_ ) != 1: lowerCAmelCase__ = [int(UpperCamelCase_ ) for i in num_string] lowerCAmelCase__ = 0 for i in range(0 , len(UpperCamelCase_ ) ): total += numbers[i] lowerCAmelCase__ = str(UpperCamelCase_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
365
0
from itertools import permutations def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False a__ : Union[str, Any] = [7, 11, 13, 17] for i, test in enumerate(__UpperCamelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE( __UpperCamelCase = 10 ) -> int: return sum( int("".join(map(__UpperCamelCase , __UpperCamelCase ) ) ) for num in permutations(range(__UpperCamelCase ) ) if is_substring_divisible(__UpperCamelCase ) ) if __name__ == "__main__": print(F'{solution() = }')
191
import operator as op lowerCamelCase = """scaler.pt""" lowerCamelCase = """pytorch_model""" lowerCamelCase = """random_states""" lowerCamelCase = """optimizer""" lowerCamelCase = """scheduler""" lowerCamelCase = """pytorch_model.bin""" lowerCamelCase = """pytorch_model.bin.index.json""" lowerCamelCase = """model.safetensors""" lowerCamelCase = """model.safetensors.index.json""" lowerCamelCase = """1.10.2""" lowerCamelCase = """py38""" lowerCamelCase = """4.17.0""" lowerCamelCase = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] lowerCamelCase = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] lowerCamelCase = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] lowerCamelCase = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] lowerCamelCase = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] lowerCamelCase = """2.0.1""" lowerCamelCase = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] lowerCamelCase = ["""default""", """reduce-overhead""", """max-autotune"""] lowerCamelCase = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 lowerCamelCase = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] lowerCamelCase = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] lowerCamelCase = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
191
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "blip_2_vision_model" def __init__( self : int , _UpperCAmelCase : Dict=14_08 , _UpperCAmelCase : Union[str, Any]=61_44 , _UpperCAmelCase : List[Any]=39 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=2_24 , _UpperCAmelCase : int=14 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : str=0.00_001 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : Any=1e-1_0 , _UpperCAmelCase : Dict=True , **_UpperCAmelCase : int , ) -> Optional[int]: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = patch_size __lowercase = image_size __lowercase = initializer_range __lowercase = attention_dropout __lowercase = layer_norm_eps __lowercase = hidden_act __lowercase = qkv_bias @classmethod def a__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) __lowercase , __lowercase = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": __lowercase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "blip_2_qformer" def __init__( self : Dict , _UpperCAmelCase : Optional[int]=3_05_22 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : int=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Any=5_12 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-1_2 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Any=2 , _UpperCAmelCase : str=14_08 , **_UpperCAmelCase : Dict , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = cross_attention_frequency __lowercase = encoder_hidden_size @classmethod def a__ ( cls : Optional[int] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Any ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) __lowercase , __lowercase = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": __lowercase = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "blip-2" lowerCAmelCase__ : int = True def __init__( self : int , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[int]=32 , **_UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" super().__init__(**_UpperCAmelCase ) if vision_config is None: __lowercase = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: __lowercase = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: __lowercase = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __lowercase = BlipaVisionConfig(**_UpperCAmelCase ) __lowercase = BlipaQFormerConfig(**_UpperCAmelCase ) __lowercase = text_config['model_type'] if 'model_type' in text_config else 'opt' __lowercase = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __lowercase = self.text_config.tie_word_embeddings __lowercase = self.text_config.is_encoder_decoder __lowercase = num_query_tokens __lowercase = self.vision_config.hidden_size __lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __lowercase = 1.0 __lowercase = 0.02 @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : BlipaVisionConfig , _UpperCAmelCase : BlipaQFormerConfig , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : List[Any] , ) -> str: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.vision_config.to_dict() __lowercase = self.qformer_config.to_dict() __lowercase = self.text_config.to_dict() __lowercase = self.__class__.model_type return output
711
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
0
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
185
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __a ( A__ ): def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "num_attention_heads" ) ) class __a : def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple=13 , SCREAMING_SNAKE_CASE : List[Any]=64 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : Optional[Any]=2 , SCREAMING_SNAKE_CASE : List[Any]=1 , SCREAMING_SNAKE_CASE : List[Any]=16 , SCREAMING_SNAKE_CASE : Tuple=[1_28, 2_56, 3_84] , SCREAMING_SNAKE_CASE : Tuple=[4, 6, 8] , SCREAMING_SNAKE_CASE : Dict=[2, 3, 4] , SCREAMING_SNAKE_CASE : Any=[16, 16, 16] , SCREAMING_SNAKE_CASE : List[str]=0 , SCREAMING_SNAKE_CASE : List[Any]=[2, 2, 2] , SCREAMING_SNAKE_CASE : int=[2, 2, 2] , SCREAMING_SNAKE_CASE : str=0.0_2 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : int=2 , ): '''simple docstring''' UpperCamelCase__ : Dict = parent UpperCamelCase__ : Any = batch_size UpperCamelCase__ : str = image_size UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : str = kernel_size UpperCamelCase__ : str = stride UpperCamelCase__ : int = padding UpperCamelCase__ : int = hidden_sizes UpperCamelCase__ : Dict = num_attention_heads UpperCamelCase__ : int = depths UpperCamelCase__ : Optional[Any] = key_dim UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : List[str] = patch_size UpperCamelCase__ : str = attention_ratio UpperCamelCase__ : int = mlp_ratio UpperCamelCase__ : Optional[int] = initializer_range UpperCamelCase__ : Union[str, Any] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCamelCase__ : str = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : List[str] = num_labels UpperCamelCase__ : int = initializer_range def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Tuple ): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = LevitModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : Any = model(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = (self.image_size, self.image_size) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase__ : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCamelCase__ : int = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.num_labels UpperCamelCase__ : Optional[Any] = LevitForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : str = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Tuple = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : str = config_and_inputs UpperCamelCase__ : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __a ( A__ , A__ , unittest.TestCase ): _lowerCAmelCase : str = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) _lowerCAmelCase : List[str] = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : Any = False _lowerCAmelCase : Tuple = False _lowerCAmelCase : List[Any] = False def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : List[Any] = LevitModelTester(self ) UpperCamelCase__ : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : List[str] ): '''simple docstring''' return @unittest.skip(reason="Levit does not use inputs_embeds" ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def __lowercase ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="Levit does not output attentions" ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : int = [*signature.parameters.keys()] UpperCamelCase__ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCamelCase__ : Dict = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase__ : int = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : int = outputs.hidden_states UpperCamelCase__ : List[Any] = len(self.model_tester.depths ) + 1 self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = (self.model_tester.image_size, self.model_tester.image_size) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase__ : int = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCamelCase__ : Any = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Optional[int] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(SCREAMING_SNAKE_CASE ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCamelCase__ : Dict = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase__ : int = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase__ : Union[str, Any] = False UpperCamelCase__ : Dict = True for model_class in self.all_model_classes: if model_class in get_values(SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCamelCase__ : int = model_class(SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.to(SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Optional[int] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(SCREAMING_SNAKE_CASE ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): UpperCamelCase__ : Optional[int] = problem_type["title"] UpperCamelCase__ : Tuple = problem_type["num_labels"] UpperCamelCase__ : Tuple = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase__ : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if problem_type["num_labels"] > 1: UpperCamelCase__ : Optional[int] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCamelCase__ : Tuple = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE ) as warning_list: UpperCamelCase__ : Any = model(**SCREAMING_SNAKE_CASE ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def __lowercase ( self : Dict ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Union[str, Any] = LevitModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: UpperCamelCase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : Tuple = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase__ : List[Any] = model(**SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
228
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class __UpperCAmelCase ( _UpperCamelCase ): __lowerCamelCase : str = "roc_bert" def __init__( self : Optional[Any] , a_ : Union[str, Any]=3_05_22 , a_ : int=7_68 , a_ : int=12 , a_ : Optional[Any]=12 , a_ : Optional[int]=30_72 , a_ : List[str]="gelu" , a_ : int=0.1 , a_ : Dict=0.1 , a_ : List[str]=5_12 , a_ : int=2 , a_ : Any=0.02 , a_ : Any=1E-12 , a_ : Optional[Any]=True , a_ : Dict=0 , a_ : int="absolute" , a_ : Tuple=None , a_ : str=True , a_ : Any=True , a_ : Union[str, Any]=7_68 , a_ : List[str]=9_10 , a_ : Optional[Any]=5_12 , a_ : Optional[int]=2_48_58 , a_ : Tuple=True , **a_ : Dict , ) -> str: '''simple docstring''' a__ : Any = vocab_size a__ : Any = max_position_embeddings a__ : List[str] = hidden_size a__ : Any = num_hidden_layers a__ : List[Any] = num_attention_heads a__ : str = intermediate_size a__ : Dict = hidden_act a__ : Optional[Any] = hidden_dropout_prob a__ : List[Any] = attention_probs_dropout_prob a__ : Any = initializer_range a__ : List[Any] = type_vocab_size a__ : List[Any] = layer_norm_eps a__ : Tuple = use_cache a__ : Dict = enable_pronunciation a__ : Any = enable_shape a__ : List[str] = pronunciation_embed_dim a__ : int = pronunciation_vocab_size a__ : int = shape_embed_dim a__ : Tuple = shape_vocab_size a__ : Any = concat_input a__ : int = position_embedding_type a__ : Dict = classifier_dropout super().__init__(pad_token_id=a_ , **a_ )
251
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __UpperCAmelCase = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } __UpperCAmelCase = { '''facebook/m2m100_418M''': 1024, } # fmt: off __UpperCAmelCase = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class __UpperCAmelCase ( _UpperCamelCase ): __lowerCamelCase : str = VOCAB_FILES_NAMES __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = ["input_ids", "attention_mask"] __lowerCamelCase : List[int] = [] __lowerCamelCase : List[int] = [] def __init__( self : Any , a_ : Any , a_ : int , a_ : int=None , a_ : Union[str, Any]=None , a_ : Optional[Any]="<s>" , a_ : Tuple="</s>" , a_ : int="</s>" , a_ : Optional[int]="<pad>" , a_ : List[Any]="<unk>" , a_ : Tuple="m2m100" , a_ : Optional[Dict[str, Any]] = None , a_ : Optional[Any]=8 , **a_ : Union[str, Any] , ) -> None: '''simple docstring''' a__ : int = {} if sp_model_kwargs is None else sp_model_kwargs a__ : List[str] = language_codes a__ : int = FAIRSEQ_LANGUAGE_CODES[language_codes] a__ : Tuple = {lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} a__ : Optional[Any] = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(a_ ) for lang_code in fairseq_language_code if self.get_lang_token(a_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=a_ , tgt_lang=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , unk_token=a_ , pad_token=a_ , language_codes=a_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=a_ , **a_ , ) a__ : List[str] = vocab_file a__ : Optional[int] = load_json(a_ ) a__ : List[Any] = {v: k for k, v in self.encoder.items()} a__ : List[Any] = spm_file a__ : Any = load_spm(a_ , self.sp_model_kwargs ) a__ : Tuple = len(self.encoder ) a__ : Any = { self.get_lang_token(a_ ): self.encoder_size + i for i, lang_code in enumerate(a_ ) } a__ : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(a_ )} a__ : Any = {v: k for k, v in self.lang_token_to_id.items()} a__ : Union[str, Any] = src_lang if src_lang is not None else "en" a__ : Union[str, Any] = tgt_lang a__ : List[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) a__ : Optional[int] = num_madeup_words @property def UpperCAmelCase ( self : Dict ) -> int: '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCAmelCase ( self : Any ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def UpperCAmelCase ( self : List[Any] , a_ : str ) -> None: '''simple docstring''' a__ : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase ( self : Tuple , a_ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(a_ , out_type=a_ ) def UpperCAmelCase ( self : List[Any] , a_ : Optional[int] ) -> Any: '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(a_ , self.encoder[self.unk_token] ) def UpperCAmelCase ( self : str , a_ : int ) -> str: '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(a_ , self.unk_token ) def UpperCAmelCase ( self : Dict , a_ : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] = [] a__ : Optional[int] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a_ ) + token a__ : List[str] = [] else: current_sub_tokens.append(a_ ) out_string += self.sp_model.decode(a_ ) return out_string.strip() def UpperCAmelCase ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) a__ : Any = [1] * len(self.prefix_tokens ) a__ : Optional[int] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(a_ )) + suffix_ones return prefix_ones + ([0] * len(a_ )) + ([0] * len(a_ )) + suffix_ones def UpperCAmelCase ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase ( self : str ) -> Dict: '''simple docstring''' a__ : int = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Dict: '''simple docstring''' a__ : Tuple = self.__dict__.copy() a__ : Optional[int] = None return state def __setstate__( self : List[str] , a_ : Dict ) -> None: '''simple docstring''' a__ : Tuple = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__ : List[Any] = {} a__ : Optional[int] = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCAmelCase ( self : List[Any] , a_ : str , a_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' a__ : Dict = Path(a_ ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) a__ : Union[str, Any] = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) a__ : Tuple = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , a_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(a_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , a_ ) elif not os.path.isfile(self.spm_file ): with open(a_ , "wb" ) as fi: a__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (str(a_ ), str(a_ )) def UpperCAmelCase ( self : Any , a_ : List[str] , a_ : str = "en" , a_ : Optional[List[str]] = None , a_ : str = "ro" , **a_ : Dict , ) -> BatchEncoding: '''simple docstring''' a__ : str = src_lang a__ : Any = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def UpperCAmelCase ( self : Optional[Any] , a_ : Dict , a_ : Optional[str] , a_ : Optional[str] , **a_ : Tuple ) -> str: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) a__ : List[Any] = src_lang a__ : Optional[int] = self(a_ , add_special_tokens=a_ , **a_ ) a__ : Any = self.get_lang_id(a_ ) a__ : int = tgt_lang_id return inputs def UpperCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase ( self : Union[str, Any] , a_ : str ) -> None: '''simple docstring''' a__ : Optional[int] = self.get_lang_token(a_ ) a__ : Tuple = self.lang_token_to_id[lang_token] a__ : List[str] = [self.cur_lang_id] a__ : Optional[int] = [self.eos_token_id] def UpperCAmelCase ( self : List[str] , a_ : str ) -> None: '''simple docstring''' a__ : Optional[int] = self.get_lang_token(a_ ) a__ : int = self.lang_token_to_id[lang_token] a__ : Tuple = [self.cur_lang_id] a__ : Optional[int] = [self.eos_token_id] def UpperCAmelCase ( self : Any , a_ : str ) -> str: '''simple docstring''' return self.lang_code_to_token[lang] def UpperCAmelCase ( self : List[str] , a_ : str ) -> int: '''simple docstring''' a__ : List[str] = self.get_lang_token(a_ ) return self.lang_token_to_id[lang_token] def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' a__ : Any = sentencepiece.SentencePieceProcessor(**lowerCAmelCase__ ) spm.Load(str(lowerCAmelCase__ ) ) return spm def lowercase__ ( lowerCAmelCase__ : str ) -> Union[Dict, List]: '''simple docstring''' with open(lowerCAmelCase__ , "r" ) as f: return json.load(lowerCAmelCase__ ) def lowercase__ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ) -> None: '''simple docstring''' with open(lowerCAmelCase__ , "w" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , indent=2 )
251
1
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __SCREAMING_SNAKE_CASE ( _UpperCAmelCase): def __init__( self : List[Any] , *__UpperCamelCase : List[str] , **__UpperCamelCase : Dict ): super().__init__(*A_ , **A_ ) requires_backends(self , "decord" ) self.check_model_type(A_ ) def UpperCAmelCase__ ( self : int , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[int]=None ): _UpperCAmelCase = {} if frame_sampling_rate is not None: _UpperCAmelCase = frame_sampling_rate if num_frames is not None: _UpperCAmelCase = num_frames _UpperCAmelCase = {} if top_k is not None: _UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , __UpperCamelCase : Union[str, List[str]] , **__UpperCamelCase : List[str] ): return super().__call__(A_ , **A_ ) def UpperCAmelCase__ ( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Union[str, Any]=1 ): if num_frames is None: _UpperCAmelCase = self.model.config.num_frames if video.startswith("http://" ) or video.startswith("https://" ): _UpperCAmelCase = BytesIO(requests.get(A_ ).content ) _UpperCAmelCase = VideoReader(A_ ) videoreader.seek(0 ) _UpperCAmelCase = 0 _UpperCAmelCase = num_frames * frame_sampling_rate - 1 _UpperCAmelCase = np.linspace(A_ , A_ , num=A_ , dtype=np.intaa ) _UpperCAmelCase = videoreader.get_batch(A_ ).asnumpy() _UpperCAmelCase = list(A_ ) _UpperCAmelCase = self.image_processor(A_ , return_tensors=self.framework ) return model_inputs def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : List[Any] ): _UpperCAmelCase = self.model(**A_ ) return model_outputs def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : Dict=5 ): if top_k > self.model.config.num_labels: _UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": _UpperCAmelCase = model_outputs.logits.softmax(-1 )[0] _UpperCAmelCase , _UpperCAmelCase = probs.topk(A_ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _UpperCAmelCase = scores.tolist() _UpperCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(A_ , A_ )]
684
"""simple docstring""" import argparse from collections import defaultdict def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case, snake_case): __snake_case = f"{file}_{class_name}_{test_name}" done_test[_id] += 1 with open(snake_case, '''r''') as f: __snake_case = f.readlines() __snake_case = f"class {class_name}(" __snake_case = f"{4 * ' '}def {test_name}(" __snake_case = f"{8 * ' '}{correct_line.split()[0]}" __snake_case = f"{16 * ' '}{correct_line.split()[0]}" __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = 0 __snake_case = 0 __snake_case = [] for line in lines: if line.startswith(snake_case): __snake_case = True elif in_class and line.startswith(snake_case): __snake_case = True elif in_class and in_func and (line.startswith(snake_case) or line.startswith(snake_case)): __snake_case = len(line.split(correct_line.split()[0])[0]) count += 1 if count == done_test[_id]: __snake_case = True if in_class and in_func and in_line: if ")" not in line: continue else: __snake_case = True if in_class and in_func and in_line and insert_line: new_lines.append(f"{spaces * ' '}{correct_line}") __snake_case = __snake_case = __snake_case = __snake_case = False else: new_lines.append(snake_case) with open(snake_case, '''w''') as f: for line in new_lines: f.write(snake_case) def SCREAMING_SNAKE_CASE ( snake_case, snake_case=None): if fail is not None: with open(snake_case, '''r''') as f: __snake_case = {l.strip() for l in f.readlines()} else: __snake_case = None with open(snake_case, '''r''') as f: __snake_case = f.readlines() __snake_case = defaultdict(snake_case) for line in correct_lines: __snake_case , __snake_case , __snake_case , __snake_case = line.split(''';''') if test_failures is None or "::".join([file, class_name, test_name]) in test_failures: overwrite_file(snake_case, snake_case, snake_case, snake_case, snake_case) if __name__ == "__main__": __lowercase : Tuple = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) __lowercase : Union[str, Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
564
0
from __future__ import annotations class __lowercase : '''simple docstring''' def __init__( self : Tuple , _a : Dict=None ): UpperCamelCase__ = data UpperCamelCase__ = None def __repr__( self : List[Any] ): UpperCamelCase__ = [] UpperCamelCase__ = self while temp: string_rep.append(F"""{temp.data}""" ) UpperCamelCase__ = temp.next return "->".join(_a ) def lowerCamelCase_ ( UpperCamelCase__ : list ): '''simple docstring''' if not elements_list: raise Exception('''The Elements List is empty''' ) UpperCamelCase__ = UpperCamelCase__ = Node(elements_list[0] ) for i in range(1, len(UpperCamelCase__ ) ): UpperCamelCase__ = Node(elements_list[i] ) UpperCamelCase__ = current.next return head def lowerCamelCase_ ( UpperCamelCase__ : Node ): '''simple docstring''' if head_node is not None and isinstance(UpperCamelCase__, UpperCamelCase__ ): print_reverse(head_node.next ) print(head_node.data ) def lowerCamelCase_ ( ): '''simple docstring''' from doctest import testmod testmod() UpperCamelCase__ = make_linked_list([14, 52, 14, 12, 43] ) print('''Linked List:''' ) print(UpperCamelCase__ ) print('''Elements in Reverse:''' ) print_reverse(UpperCamelCase__ ) if __name__ == "__main__": main()
702
from string import ascii_uppercase lowercase = {str(ord(c) - 5_5): c for c in ascii_uppercase} def lowerCamelCase_ ( UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' if isinstance(UpperCamelCase__, UpperCamelCase__ ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(UpperCamelCase__, UpperCamelCase__ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(UpperCamelCase__, UpperCamelCase__ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) UpperCamelCase__ = '''''' UpperCamelCase__ = 0 UpperCamelCase__ = 0 while div != 1: UpperCamelCase__ , UpperCamelCase__ = divmod(UpperCamelCase__, UpperCamelCase__ ) if base >= 11 and 9 < mod < 36: UpperCamelCase__ = ALPHABET_VALUES[str(UpperCamelCase__ )] else: UpperCamelCase__ = str(UpperCamelCase__ ) new_value += actual_value UpperCamelCase__ = num // base UpperCamelCase__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(UpperCamelCase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 3_7): for num in range(1_0_0_0): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
591
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class snake_case_ ( _UpperCamelCase ): '''simple docstring''' lowerCamelCase = CustomTokenizer pass
488
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
112
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): lowerCamelCase__ = list(range(len(lowercase__))) lowerCamelCase__ = [v / w for v, w in zip(lowercase__ , lowercase__)] index.sort(key=lambda lowercase__: ratio[i] , reverse=lowercase__) lowerCamelCase__ = 0 lowerCamelCase__ = [0] * len(lowercase__) for i in index: if weight[i] <= capacity: lowerCamelCase__ = 1 max_value += value[i] capacity -= weight[i] else: lowerCamelCase__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
187
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): lowerCamelCase__ = cva.getAffineTransform(lowercase__ , lowercase__) return cva.warpAffine(lowercase__ , lowercase__ , (rows, cols)) if __name__ == "__main__": # read original image __A : Any = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value __A : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A , __A : Dict = gray_img.shape # set different points to rotate image __A : int = np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa) __A : Any = np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa) __A : str = np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa) __A : Optional[int] = np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa) # add all rotated images in a list __A : List[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A : int = plt.figure(1) __A : int = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
187
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : List[str] ={ "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict =["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple =[ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
440
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = ["""image_processor""", """tokenizer"""] __lowercase = """CLIPImageProcessor""" __lowercase = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self :List[Any] , lowercase_ :List[str]=None , lowercase_ :Any=None , **lowercase_ :Union[str, Any] )-> Optional[Any]: A__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) A__ = kwargs.pop("feature_extractor" ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase_ , lowercase_ ) def __call__( self :Optional[Any] , lowercase_ :Optional[int]=None , lowercase_ :Dict=None , lowercase_ :List[Any]=None , **lowercase_ :Optional[Any] )-> Union[str, Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: A__ = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: A__ = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: A__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def UpperCAmelCase_ ( self :int , *lowercase_ :Tuple , **lowercase_ :Any )-> Dict: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self :Any , *lowercase_ :Any , **lowercase_ :Any )-> List[str]: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def UpperCAmelCase_ ( self :Union[str, Any] )-> Optional[int]: A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase_ ( self :List[Any] )-> str: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , ) return self.image_processor_class @property def UpperCAmelCase_ ( self :List[str] )-> List[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase_ , ) return self.image_processor
440
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal A_ : int = datasets.utils.logging.get_logger(__name__) A_ : str = ['names', 'prefix'] A_ : List[Any] = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] A_ : List[Any] = ['encoding_errors', 'on_bad_lines'] A_ : Optional[int] = ['date_format'] @dataclass class _a (datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__: str = "," UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: Optional[Union[int, List[int], str]] = "infer" UpperCAmelCase__: Optional[List[str]] = None UpperCAmelCase__: Optional[List[str]] = None UpperCAmelCase__: Optional[Union[int, str, List[int], List[str]]] = None UpperCAmelCase__: Optional[Union[List[int], List[str]]] = None UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: bool = True UpperCAmelCase__: Optional[Literal["c", "python", "pyarrow"]] = None UpperCAmelCase__: Dict[Union[int, str], Callable[[Any], Any]] = None UpperCAmelCase__: Optional[list] = None UpperCAmelCase__: Optional[list] = None UpperCAmelCase__: bool = False UpperCAmelCase__: Optional[Union[int, List[int]]] = None UpperCAmelCase__: Optional[int] = None UpperCAmelCase__: Optional[Union[str, List[str]]] = None UpperCAmelCase__: bool = True UpperCAmelCase__: bool = True UpperCAmelCase__: bool = False UpperCAmelCase__: bool = True UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: str = "." UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: str = '"' UpperCAmelCase__: int = 0 UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: bool = True UpperCAmelCase__: bool = True UpperCAmelCase__: int = 0 UpperCAmelCase__: bool = True UpperCAmelCase__: bool = False UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: int = 1_00_00 UpperCAmelCase__: Optional[datasets.Features] = None UpperCAmelCase__: Optional[str] = "strict" UpperCAmelCase__: Literal["error", "warn", "skip"] = "error" UpperCAmelCase__: Optional[str] = None def __A ( self ): if self.delimiter is not None: A__ : Any = self.delimiter if self.column_names is not None: A__ : Optional[Any] = self.column_names @property def __A ( self ): A__ : Tuple = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , A__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _a (datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__: Tuple = CsvConfig def __A ( self ): return datasets.DatasetInfo(features=self.config.features ) def __A ( self , A__ ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) A__ : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A__ , (str, list, tuple) ): A__ : Dict = data_files if isinstance(A__ , A__ ): A__ : Any = [files] A__ : Dict = [dl_manager.iter_files(A__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] A__ : List[Any] = [] for split_name, files in data_files.items(): if isinstance(A__ , A__ ): A__ : Dict = [files] A__ : int = [dl_manager.iter_files(A__ ) for file in files] splits.append(datasets.SplitGenerator(name=A__ , gen_kwargs={"""files""": files} ) ) return splits def __A ( self , A__ ): if self.config.features is not None: A__ : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(A__ ) for feature in self.config.features.values() ): # cheaper cast A__ : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=A__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example A__ : Optional[int] = table_cast(A__ , A__ ) return pa_table def __A ( self , A__ ): A__ : Any = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str A__ : Optional[int] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(A__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(A__ ) ): A__ : Union[str, Any] = pd.read_csv(A__ , iterator=A__ , dtype=A__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(A__ ): A__ : Optional[int] = pa.Table.from_pandas(A__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise
64
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _a (__magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase__: str = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self , A__ , A__ , A__ = None , A__ = 5_0257 , A__ = 1024 , A__ = 768 , A__ = 12 , A__ = 12 , A__ = None , A__ = "gelu_new" , A__ = 0.1 , A__ = 0.1 , A__ = 0.1 , A__ = 1e-5 , A__ = 0.0_2 , A__ = True , A__ = True , A__ = False , A__ = False , ): super().__init__() A__ : Union[str, Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""" ) A__ : str = prefix_inner_dim A__ : Optional[Any] = prefix_hidden_dim A__ : Tuple = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A__ : int = ( nn.Linear(self.prefix_hidden_dim , A__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) A__ : Tuple = GPTaConfig( vocab_size=A__ , n_positions=A__ , n_embd=A__ , n_layer=A__ , n_head=A__ , n_inner=A__ , activation_function=A__ , resid_pdrop=A__ , embd_pdrop=A__ , attn_pdrop=A__ , layer_norm_epsilon=A__ , initializer_range=A__ , scale_attn_weights=A__ , use_cache=A__ , scale_attn_by_inverse_layer_idx=A__ , reorder_and_upcast_attn=A__ , ) A__ : int = GPTaLMHeadModel(A__ ) def __A ( self , A__ , A__ , A__ = None , A__ = None , ): A__ : List[str] = self.transformer.transformer.wte(A__ ) A__ : int = self.encode_prefix(A__ ) A__ : int = self.decode_prefix(A__ ) A__ : Optional[Any] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A__ : Any = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A__ : List[Any] = torch.cat((dummy_token, input_ids) , dim=1 ) A__ : List[str] = self.transformer(inputs_embeds=A__ , labels=A__ , attention_mask=A__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __A ( self , A__ , A__ ): return torch.zeros(A__ , self.prefix_length , dtype=torch.intaa , device=A__ ) def __A ( self , A__ ): return self.encode_prefix(A__ ) @torch.no_grad() def __A ( self , A__ , A__ , A__ ): A__ : List[Any] = torch.split(A__ , 1 , dim=0 ) A__ : Optional[int] = [] A__ : str = [] for feature in features: A__ : Dict = self.decode_prefix(feature.to(A__ ) ) # back to the clip feature # Only support beam search for now A__ , A__ : Union[str, Any] = self.generate_beam( input_embeds=A__ , device=A__ , eos_token_id=A__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A__ : int = torch.stack(A__ ) A__ : List[Any] = torch.stack(A__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __A ( self , A__=None , A__=None , A__=None , A__ = 5 , A__ = 67 , A__ = 1.0 , A__ = None , ): A__ : Any = eos_token_id A__ : Any = None A__ : Optional[int] = None A__ : Optional[Any] = torch.ones(A__ , device=A__ , dtype=torch.int ) A__ : Any = torch.zeros(A__ , device=A__ , dtype=torch.bool ) if input_embeds is not None: A__ : Dict = input_embeds else: A__ : str = self.transformer.transformer.wte(A__ ) for i in range(A__ ): A__ : Dict = self.transformer(inputs_embeds=A__ ) A__ : str = outputs.logits A__ : Union[str, Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A__ : Any = logits.softmax(-1 ).log() if scores is None: A__ , A__ : Optional[int] = logits.topk(A__ , -1 ) A__ : List[Any] = generated.expand(A__ , *generated.shape[1:] ) A__ , A__ : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A__ : Optional[Any] = next_tokens else: A__ : List[Any] = tokens.expand(A__ , *tokens.shape[1:] ) A__ : int = torch.cat((tokens, next_tokens) , dim=1 ) else: A__ : Optional[int] = -float(np.inf ) A__ : List[Any] = 0 A__ : str = scores[:, None] + logits seq_lengths[~is_stopped] += 1 A__ : Dict = scores_sum / seq_lengths[:, None] A__ , A__ : List[Any] = scores_sum_average.view(-1 ).topk(A__ , -1 ) A__ : Tuple = next_tokens // scores_sum.shape[1] A__ : Optional[Any] = seq_lengths[next_tokens_source] A__ : List[str] = next_tokens % scores_sum.shape[1] A__ : Optional[int] = next_tokens.unsqueeze(1 ) A__ : int = tokens[next_tokens_source] A__ : List[Any] = torch.cat((tokens, next_tokens) , dim=1 ) A__ : str = generated[next_tokens_source] A__ : Optional[Any] = scores_sum_average * seq_lengths A__ : Union[str, Any] = is_stopped[next_tokens_source] A__ : str = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A__ : Optional[int] = torch.cat((generated, next_token_embed) , dim=1 ) A__ : List[str] = is_stopped + next_tokens.eq(A__ ).squeeze() if is_stopped.all(): break A__ : Dict = scores / seq_lengths A__ : Dict = scores.argsort(descending=A__ ) # tokens tensors are already padded to max_seq_length A__ : Union[str, Any] = [tokens[i] for i in order] A__ : Any = torch.stack(A__ , dim=0 ) A__ : Dict = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
64
1
"""simple docstring""" import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever _lowerCAmelCase = logging.getLogger(__name__) class UpperCamelCase (__snake_case ): def __init__( self :Tuple , __magic_name__ :str , __magic_name__ :List[Any] , __magic_name__ :Dict , __magic_name__ :int=None ) ->Optional[Any]: super().__init__( __magic_name__ , question_encoder_tokenizer=__magic_name__ , generator_tokenizer=__magic_name__ , index=__magic_name__ , init_retrieval=__magic_name__ , ) lowercase : str = None def __snake_case ( self :Dict , __magic_name__ :int ) ->Union[str, Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually lowercase : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port lowercase : List[str] = str(distributed_port + 1 ) lowercase : str = dist.new_group(ranks=__magic_name__ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def __snake_case ( self :List[Any] ) ->Optional[int]: return dist.get_rank(group=self.process_group ) == 0 def __snake_case ( self :Tuple , __magic_name__ :List[Any] , __magic_name__ :Dict , __magic_name__ :Dict=torch.floataa ) ->List[str]: lowercase : int = torch.empty(__magic_name__ , dtype=__magic_name__ ) dist.scatter(__magic_name__ , src=0 , scatter_list=__magic_name__ , group=self.process_group ) return target_tensor def __snake_case ( self :Optional[Any] ) ->List[str]: lowercase : List[str] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names lowercase : Tuple = next((addr for addr in addrs if addr.startswith("""e""" )) , __magic_name__ ) return ifname def __snake_case ( self :Optional[Any] , __magic_name__ :np.ndarray , __magic_name__ :int ) ->Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): lowercase , lowercase : Optional[Any] = self._main_retrieve(__magic_name__ , __magic_name__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__magic_name__ ) # distributed training lowercase : List[str] = dist.get_world_size(group=self.process_group ) # gather logic lowercase : List[str] = None if self._is_main(): lowercase : int = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__magic_name__ )] dist.gather(torch.tensor(__magic_name__ ) , dst=0 , gather_list=__magic_name__ , group=self.process_group ) # scatter logic lowercase : Dict = question_hidden_states.shape[0] lowercase : str = [] lowercase : List[str] = [] if self._is_main(): assert len(__magic_name__ ) == world_size lowercase , lowercase : Tuple = self._main_retrieve(torch.cat(__magic_name__ ).numpy() , __magic_name__ ) lowercase , lowercase : Tuple = torch.tensor(__magic_name__ ), torch.tensor(__magic_name__ ) lowercase : Any = self._chunk_tensor(__magic_name__ , __magic_name__ ) lowercase : List[Any] = self._chunk_tensor(__magic_name__ , __magic_name__ ) lowercase : int = self._scattered(__magic_name__ , [n_queries, n_docs] , target_type=torch.intaa ) lowercase : Optional[int] = self._scattered(__magic_name__ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__magic_name__ )
264
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCAmelCase = logging.getLogger(__name__) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser( description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)' ) parser.add_argument( '--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.' ) parser.add_argument( '--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.' ) parser.add_argument('--vocab_size', default=3_05_22, type=int) _lowerCAmelCase = parser.parse_args() logger.info(F'Loading data from {args.data_file}') with open(args.data_file, 'rb') as fp: _lowerCAmelCase = pickle.load(fp) logger.info('Counting occurrences for MLM.') _lowerCAmelCase = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCAmelCase = [0] * args.vocab_size for k, v in counter.items(): _lowerCAmelCase = v logger.info(F'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, 'wb') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
264
1
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports A__: Union[str, Any] = ''' import os ''' A__: List[Any] = ''' def foo(): import os return False ''' A__: List[str] = ''' def foo(): def bar(): if True: import os return False return bar() ''' A__: Tuple = ''' import os try: import bar except ImportError: raise ValueError() ''' A__: List[Any] = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' A__: Dict = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' A__: Optional[int] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' A__: str = ''' import os try: import bar except: raise ValueError() ''' A__: Union[str, Any] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' A__: Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' A__: str = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" ,_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : List[str] ) -> int: _a : Optional[Any] =os.path.join(_UpperCAmelCase ,"""test_file.py""" ) with open(_UpperCAmelCase ,"""w""" ) as _tmp_file: _tmp_file.write(_UpperCAmelCase ) _a : Union[str, Any] =get_imports(_UpperCAmelCase ) assert parsed_imports == ["os"]
506
'''simple docstring''' from functools import lru_cache def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> set: _a : Any =2 _a : Tuple =set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_UpperCAmelCase ) if n > 1: factors.add(_UpperCAmelCase ) return factors @lru_cache def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: return len(unique_prime_factors(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ) -> bool: return len(set(_UpperCAmelCase ) ) in (0, 1) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> list: _a : int =2 while True: # Increment each value of a generated range _a : str =[base + i for i in range(_UpperCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. _a : List[Any] =[upf_len(_UpperCAmelCase ) for x in group] checker.append(_UpperCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(_UpperCAmelCase ): return group # Increment our base variable by 1 base += 1 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4 ) -> int: _a : Optional[int] =run(_UpperCAmelCase ) return results[0] if len(_UpperCAmelCase ) else None if __name__ == "__main__": print(solution())
506
1
def _lowercase ( a__ : int = 10_00 ) -> int: """simple docstring""" _UpperCamelCase = 3 _UpperCamelCase = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
147
from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=lowercase ): __lowercase : str = ["note_seq"] def __init__( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> List[str]: """simple docstring""" requires_backends(self , ["note_seq"] ) @classmethod def lowercase ( cls , *lowerCamelCase_ , **lowerCamelCase_ ) -> List[str]: """simple docstring""" requires_backends(cls , ["note_seq"] ) @classmethod def lowercase ( cls , *lowerCamelCase_ , **lowerCamelCase_ ) -> str: """simple docstring""" requires_backends(cls , ["note_seq"] )
147
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case__ = logging.get_logger(__name__) class lowerCAmelCase_ ( _a): lowerCamelCase_ = ['pixel_values'] def __init__( self : List[Any] , __A : bool = True , __A : Dict[str, int] = None , __A : PILImageResampling = PIL.Image.BICUBIC , __A : bool = True , __A : Dict[str, int] = None , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : Tuple , ) ->None: """simple docstring""" super().__init__(**__A ) a__ :Any = size if size is not None else {"height": 256, "width": 256} a__ :Optional[Any] = get_size_dict(__A ) a__ :Optional[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} a__ :Optional[Any] = get_size_dict(__A , param_name="crop_size" ) a__ :List[Any] = do_resize a__ :Dict = size a__ :Union[str, Any] = resample a__ :Optional[int] = do_center_crop a__ :List[str] = crop_size a__ :Dict = do_rescale a__ :List[str] = rescale_factor a__ :List[str] = do_normalize a__ :Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ :Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self : Any , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PIL.Image.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] , ) ->np.ndarray: """simple docstring""" a__ :Dict = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( __A , size=(size["height"], size["width"]) , resample=__A , data_format=__A , **__A ) def _snake_case ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Union[str, Any] , ) ->np.ndarray: """simple docstring""" a__ :Optional[Any] = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(__A , size=(size["height"], size["width"]) , data_format=__A , **__A ) def _snake_case ( self : Optional[int] , __A : np.ndarray , __A : Union[int, float] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : int , ) ->Union[str, Any]: """simple docstring""" return rescale(__A , scale=__A , data_format=__A , **__A ) def _snake_case ( self : List[str] , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[Any] , ) ->np.ndarray: """simple docstring""" return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def _snake_case ( self : Optional[int] , __A : ImageInput , __A : bool = None , __A : Dict[str, int] = None , __A : Any=None , __A : bool = None , __A : Dict[str, int] = None , __A : bool = None , __A : float = None , __A : bool = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : ChannelDimension = ChannelDimension.FIRST , **__A : str , ) ->PIL.Image.Image: """simple docstring""" a__ :List[Any] = do_resize if do_resize is not None else self.do_resize a__ :Any = resample if resample is not None else self.resample a__ :int = do_center_crop if do_center_crop is not None else self.do_center_crop a__ :str = do_rescale if do_rescale is not None else self.do_rescale a__ :Any = rescale_factor if rescale_factor is not None else self.rescale_factor a__ :List[Any] = do_normalize if do_normalize is not None else self.do_normalize a__ :Any = image_mean if image_mean is not None else self.image_mean a__ :List[str] = image_std if image_std is not None else self.image_std a__ :Tuple = size if size is not None else self.size a__ :Optional[int] = get_size_dict(__A ) a__ :str = crop_size if crop_size is not None else self.crop_size a__ :List[Any] = get_size_dict(__A , param_name="crop_size" ) a__ :Optional[int] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. a__ :Optional[Any] = [to_numpy_array(__A ) for image in images] if do_resize: a__ :Any = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: a__ :Dict = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: a__ :Optional[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: a__ :List[str] = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] a__ :str = [to_channel_dimension_format(__A , __A ) for image in images] a__ :List[Any] = {"pixel_values": images} return BatchFeature(data=__A , tensor_type=__A )
710
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput snake_case__ = '''scheduler_config.json''' class lowerCAmelCase_ ( _a): lowerCamelCase_ = 1 lowerCamelCase_ = 2 lowerCamelCase_ = 3 lowerCamelCase_ = 4 lowerCamelCase_ = 5 lowerCamelCase_ = 6 lowerCamelCase_ = 7 lowerCamelCase_ = 8 lowerCamelCase_ = 9 lowerCamelCase_ = 10 lowerCamelCase_ = 11 lowerCamelCase_ = 12 lowerCamelCase_ = 13 lowerCamelCase_ = 14 @dataclass class lowerCAmelCase_ ( _a): lowerCamelCase_ = 42 class lowerCAmelCase_ : lowerCamelCase_ = SCHEDULER_CONFIG_NAME lowerCamelCase_ = [] lowerCamelCase_ = True @classmethod def _snake_case ( cls : Union[str, Any] , __A : Dict[str, Any] = None , __A : Optional[str] = None , __A : Optional[int]=False , **__A : Union[str, Any] , ) ->List[Any]: """simple docstring""" a__ , a__ , a__ :List[Any] = cls.load_config( pretrained_model_name_or_path=__A , subfolder=__A , return_unused_kwargs=__A , return_commit_hash=__A , **__A , ) return cls.from_config(__A , return_unused_kwargs=__A , **__A ) def _snake_case ( self : str , __A : Union[str, os.PathLike] , __A : bool = False , **__A : Optional[Any] ) ->str: """simple docstring""" self.save_config(save_directory=__A , push_to_hub=__A , **__A ) @property def _snake_case ( self : List[Any] ) ->Dict: """simple docstring""" return self._get_compatibles() @classmethod def _snake_case ( cls : Dict ) ->int: """simple docstring""" a__ :Optional[int] = list(set([cls.__name__] + cls._compatibles ) ) a__ :Union[str, Any] = importlib.import_module(__name__.split("." )[0] ) a__ :Optional[int] = [ getattr(__A , __A ) for c in compatible_classes_str if hasattr(__A , __A ) ] return compatible_classes
373
0
def UpperCamelCase (lowercase_: list ) -> list: A__ : int = len(lowercase_ ) for i in range(1 , lowercase_ ): A__ : List[Any] = collection[i] A__ : Optional[int] = 0 A__ : Tuple = i - 1 while low <= high: A__ : int = (low + high) // 2 if val < collection[mid]: A__ : List[Any] = mid - 1 else: A__ : Tuple = mid + 1 for j in range(lowercase_ , lowercase_ , -1 ): A__ : Tuple = collection[j - 1] A__ : str = val return collection if __name__ == "__main__": A_ : int = input('Enter numbers separated by a comma:\n').strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
456
import argparse import copy def UpperCamelCase (lowercase_: Any ) -> Union[str, Any]: A__ : int = {} with open(lowercase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: A__ : int = [] _list.append([line.split()[1], line.split()[2]] ) A__ : Any = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: A__ : Optional[int] = [] _list.append([line.split()[0], line.split()[2]] ) A__ : Any = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCamelCase (lowercase_: Tuple , lowercase_: List[str] ) -> Tuple: with open(lowercase_ ) as f: A__ : List[Any] = f.read(1 ) A__ : Union[str, Any] = start_node A__ : List[Any] = [] A__ : str = start_node A__ : List[str] = 0 while visiting not in first_solution: A__ : Dict = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowercase_ ) and k[0] not in first_solution: A__ : Tuple = k[1] A__ : Optional[Any] = k[0] first_solution.append(lowercase_ ) A__ : Optional[int] = distance_of_first_solution + int(lowercase_ ) A__ : str = best_node first_solution.append(lowercase_ ) A__ : Any = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 A__ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def UpperCamelCase (lowercase_: Any , lowercase_: str ) -> Any: A__ : int = [] for n in solution[1:-1]: A__ : Union[str, Any] = solution.index(lowercase_ ) for kn in solution[1:-1]: A__ : List[Any] = solution.index(lowercase_ ) if n == kn: continue A__ : Union[str, Any] = copy.deepcopy(lowercase_ ) A__ : int = kn A__ : Optional[int] = n A__ : Dict = 0 for k in _tmp[:-1]: A__ : Dict = _tmp[_tmp.index(lowercase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: A__ : List[Any] = distance + int(i[1] ) _tmp.append(lowercase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) A__ : Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowercase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCamelCase (lowercase_: List[str] , lowercase_: Tuple , lowercase_: Dict , lowercase_: Dict , lowercase_: Tuple ) -> Union[str, Any]: A__ : Union[str, Any] = 1 A__ : List[str] = first_solution A__ : Dict = [] A__ : Union[str, Any] = distance_of_first_solution A__ : Any = solution while count <= iters: A__ : Optional[int] = find_neighborhood(lowercase_ , lowercase_ ) A__ : Union[str, Any] = 0 A__ : str = neighborhood[index_of_best_solution] A__ : int = len(lowercase_ ) - 1 A__ : List[str] = False while not found: A__ : Dict = 0 while i < len(lowercase_ ): if best_solution[i] != solution[i]: A__ : Any = best_solution[i] A__ : Optional[int] = solution[i] break A__ : Any = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) A__ : List[str] = True A__ : List[Any] = best_solution[:-1] A__ : Optional[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: A__ : Tuple = cost A__ : int = solution else: A__ : List[Any] = index_of_best_solution + 1 A__ : Tuple = neighborhood[index_of_best_solution] if len(lowercase_ ) >= size: tabu_list.pop(0 ) A__ : Any = count + 1 return best_solution_ever, best_cost def UpperCamelCase (lowercase_: Union[str, Any]=None ) -> List[str]: A__ : Union[str, Any] = generate_neighbours(args.File ) A__ , A__ : int = generate_first_solution( args.File , lowercase_ ) A__ , A__ : str = tabu_search( lowercase_ , lowercase_ , lowercase_ , args.Iterations , args.Size , ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
456
1
from torch import nn class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): super().__init__() __lowercase = class_size __lowercase = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __lowercase = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case__ ( self , lowerCAmelCase_ ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) __lowercase = self.mlp(lowerCAmelCase_ ) return logits
576
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case ( __snake_case ,unittest.TestCase ): """simple docstring""" __lowerCAmelCase = PhobertTokenizer __lowerCAmelCase = False def snake_case__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = ["T@@", "i", "I", "R@@", "r", "e@@"] __lowercase = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) __lowercase = ["#version: 0.2", "l à</w>"] __lowercase = {"unk_token": "<unk>"} __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase_ ) ) def snake_case__ ( self , **lowerCAmelCase_ ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def snake_case__ ( self , lowerCAmelCase_ ): __lowercase = "Tôi là VinAI Research" __lowercase = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def snake_case__ ( self ): __lowercase = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase = "Tôi là VinAI Research" __lowercase = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() __lowercase = tokenizer.tokenize(lowerCAmelCase_ ) print(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ )
576
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__=None ) -> Optional[Any]: if subparsers is not None: __lowerCamelCase : Dict = subparsers.add_parser('env' ) else: __lowerCamelCase : List[Any] = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file' , default=lowerCamelCase__ , help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase__ ) return parser def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any: __lowerCamelCase : Optional[Any] = torch.__version__ __lowerCamelCase : Union[str, Any] = torch.cuda.is_available() __lowerCamelCase : Tuple = is_xpu_available() __lowerCamelCase : str = is_npu_available() __lowerCamelCase : List[str] = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCamelCase__ ): __lowerCamelCase : str = load_config_from_file(args.config_file ).to_dict() __lowerCamelCase : str = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F"{pt_version} ({pt_cuda_available})", 'PyTorch XPU available': str(lowerCamelCase__ ), 'PyTorch NPU available': str(lowerCamelCase__ ), 'System RAM': F"{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB", } if pt_cuda_available: __lowerCamelCase : Union[str, Any] = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F"- {prop}: {val}" for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __lowerCamelCase : Union[str, Any] = ( '\n'.join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else F"\t{accelerate_config}" ) print(lowerCamelCase__ ) __lowerCamelCase : Any = accelerate_config return info def SCREAMING_SNAKE_CASE__ ( ) -> int: __lowerCamelCase : List[str] = env_command_parser() __lowerCamelCase : Tuple = parser.parse_args() env_command(lowerCamelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
652
from ...configuration_utils import PretrainedConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[int] = '''swin2sr''' _UpperCAmelCase : Any = { '''hidden_size''': '''embed_dim''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any]=6_4 ,SCREAMING_SNAKE_CASE__ : Optional[int]=1 ,SCREAMING_SNAKE_CASE__ : List[Any]=3 ,SCREAMING_SNAKE_CASE__ : Tuple=1_8_0 ,SCREAMING_SNAKE_CASE__ : Any=[6, 6, 6, 6, 6, 6] ,SCREAMING_SNAKE_CASE__ : int=[6, 6, 6, 6, 6, 6] ,SCREAMING_SNAKE_CASE__ : Optional[Any]=8 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=2.0 ,SCREAMING_SNAKE_CASE__ : Optional[int]=True ,SCREAMING_SNAKE_CASE__ : Any=0.0 ,SCREAMING_SNAKE_CASE__ : Any=0.0 ,SCREAMING_SNAKE_CASE__ : List[str]=0.1 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" ,SCREAMING_SNAKE_CASE__ : Any=False ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.02 ,SCREAMING_SNAKE_CASE__ : Dict=1E-5 ,SCREAMING_SNAKE_CASE__ : Dict=2 ,SCREAMING_SNAKE_CASE__ : Tuple=1.0 ,SCREAMING_SNAKE_CASE__ : int="1conv" ,SCREAMING_SNAKE_CASE__ : Optional[int]="pixelshuffle" ,**SCREAMING_SNAKE_CASE__ : Optional[int] ,): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = image_size __lowerCamelCase : str = patch_size __lowerCamelCase : List[Any] = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : Dict = depths __lowerCamelCase : Any = len(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = num_heads __lowerCamelCase : Tuple = window_size __lowerCamelCase : Dict = mlp_ratio __lowerCamelCase : str = qkv_bias __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Optional[Any] = attention_probs_dropout_prob __lowerCamelCase : List[Any] = drop_path_rate __lowerCamelCase : Optional[int] = hidden_act __lowerCamelCase : Dict = use_absolute_embeddings __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : str = initializer_range __lowerCamelCase : List[Any] = upscale __lowerCamelCase : List[Any] = img_range __lowerCamelCase : List[str] = resi_connection __lowerCamelCase : Union[str, Any] = upsampler
652
1
from __future__ import annotations class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ = 0 ) -> Any: '''simple docstring''' __lowercase = key def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> list[str]: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCAmelCase__ ) ^ key ) for ch in content] def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> list[str]: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(lowerCAmelCase__ ) ^ key ) for ch in content] def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ = 0 ) -> str: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned __lowercase = '''''' for ch in content: ans += chr(ord(lowerCAmelCase__ ) ^ key ) return ans def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ = 0 ) -> str: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned __lowercase = '''''' for ch in content: ans += chr(ord(lowerCAmelCase__ ) ^ key ) return ans def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ = 0 ) -> bool: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) try: with open(lowerCAmelCase__ ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCAmelCase__ , lowerCAmelCase__ ) ) except OSError: return False return True def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> bool: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) try: with open(lowerCAmelCase__ ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCAmelCase__ , lowerCAmelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
522
from __future__ import annotations def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase ): # noqa: E741 """simple docstring""" while r - l > 1: __lowercase = (l + r) // 2 if v[m] >= key: __lowercase = m else: __lowercase = m # noqa: E741 return r def UpperCAmelCase ( lowercase ): """simple docstring""" if len(lowercase ) == 0: return 0 __lowercase = [0] * len(lowercase ) __lowercase = 1 __lowercase = v[0] for i in range(1 , len(lowercase ) ): if v[i] < tail[0]: __lowercase = v[i] elif v[i] > tail[length - 1]: __lowercase = v[i] length += 1 else: __lowercase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
522
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class A__ : """simple docstring""" def __init__( self : str , lowerCamelCase__ : str , lowerCamelCase__ : str=2 , lowerCamelCase__ : Dict=True , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Tuple=10 , lowerCamelCase__ : int=3 , lowerCamelCase__ : Tuple=32 * 8 , lowerCamelCase__ : Union[str, Any]=32 * 8 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Optional[int]=64 , ): a__ : List[str] = parent a__ : List[Any] = batch_size a__ : Any = is_training a__ : Optional[Any] = use_auxiliary_loss a__ : Dict = num_queries a__ : Any = num_channels a__ : List[Any] = min_size a__ : Dict = max_size a__ : Dict = num_labels a__ : str = hidden_dim a__ : int = hidden_dim def _UpperCamelCase( self : Union[str, Any] ): a__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) a__ : List[str] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) a__ : List[str] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() a__ : Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() a__ : Tuple = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCamelCase( self : Union[str, Any] ): a__ : Dict = MaskaFormerConfig( hidden_size=self.hidden_dim , ) a__ : str = self.num_queries a__ : Tuple = self.num_labels a__ : Optional[int] = [1, 1, 1, 1] a__ : Dict = self.num_channels a__ : int = 64 a__ : Optional[Any] = 128 a__ : Optional[int] = self.hidden_dim a__ : Dict = self.hidden_dim a__ : Optional[Any] = self.hidden_dim return config def _UpperCamelCase( self : Optional[Any] ): a__, a__, a__, a__, a__ : Union[str, Any] = self.prepare_config_and_inputs() a__ : Dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ): a__ : Any = output.encoder_hidden_states a__ : Optional[Any] = output.pixel_decoder_hidden_states a__ : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def _UpperCamelCase( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]=False ): with torch.no_grad(): a__ : List[str] = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : int = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) a__ : List[str] = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict ): a__ : str = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ : Optional[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): a__ : Tuple = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) a__ : int = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) a__ : Optional[Any] = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowercase = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} _lowercase = False _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : List[Any] ): a__ : Dict = MaskaFormerModelTester(self ) a__ : List[str] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): self.config_tester.run_common_tests() def _UpperCamelCase( self : int ): a__, a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def _UpperCamelCase( self : List[str] ): a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def _UpperCamelCase( self : str ): pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def _UpperCamelCase( self : Optional[Any] ): pass @unittest.skip(reason="Mask2Former is not a generative model" ) def _UpperCamelCase( self : Dict ): pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def _UpperCamelCase( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _UpperCamelCase( self : Tuple ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _UpperCamelCase( self : int ): pass def _UpperCamelCase( self : Optional[int] ): a__, a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowerCamelCase__ ) a__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : List[str] = [*signature.parameters.keys()] a__ : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def _UpperCamelCase( self : Any ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: a__ : Union[str, Any] = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _UpperCamelCase( self : int ): a__ : int = (self.model_tester.min_size,) * 2 a__ : Tuple = { "pixel_values": torch.randn((2, 3, *size) , device=lowerCamelCase__ ), "mask_labels": torch.randn((2, 10, *size) , device=lowerCamelCase__ ), "class_labels": torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } a__ : int = self.model_tester.get_config() a__ : Any = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) a__ : Optional[int] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def _UpperCamelCase( self : Optional[Any] ): a__, a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__, a__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[Any] = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) a__ : Any = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def _UpperCamelCase( self : Optional[Any] ): if not self.model_tester.is_training: return a__ : Union[str, Any] = self.all_model_classes[1] a__, a__, a__, a__, a__ : List[str] = self.model_tester.prepare_config_and_inputs() a__ : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() a__ : int = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : Optional[int] ): a__ : str = self.all_model_classes[1] a__, a__, a__, a__, a__ : int = self.model_tester.prepare_config_and_inputs() a__ : Optional[Any] = True a__ : str = True a__ : Any = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() a__ : Union[str, Any] = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) a__ : Dict = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() a__ : Optional[Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() a__ : List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() a__ : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCamelCase : Any = 1E-4 def UpperCamelCase_ ( ) -> str: a__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : str ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCamelCase( self : str ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCamelCase( self : Dict ): a__ : Dict = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) a__ : List[Any] = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Optional[Any] = image_processor(lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) a__ : Dict = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): a__ : str = model(**lowerCamelCase__ ) a__ : str = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) a__ : List[str] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) a__ : Tuple = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def _UpperCamelCase( self : List[Any] ): a__ : str = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() a__ : List[Any] = self.default_image_processor a__ : str = prepare_img() a__ : Union[str, Any] = image_processor(lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) a__ : str = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): a__ : Union[str, Any] = model(**lowerCamelCase__ ) # masks_queries_logits a__ : Tuple = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) a__ : Optional[int] = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] a__ : int = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits a__ : Any = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) a__ : List[str] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def _UpperCamelCase( self : str ): a__ : Optional[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() a__ : List[Any] = self.default_image_processor a__ : Union[str, Any] = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) a__ : Any = inputs["pixel_values"].to(lowerCamelCase__ ) a__ : List[Any] = [el.to(lowerCamelCase__ ) for el in inputs["mask_labels"]] a__ : List[Any] = [el.to(lowerCamelCase__ ) for el in inputs["class_labels"]] with torch.no_grad(): a__ : List[Any] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
37
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCAmelCase : Union[str, Any] = 299_792_458 # Symbols __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = symbols('ct x y z') def lowerCamelCase_ ( UpperCamelCase_ ): if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def lowerCamelCase_ ( UpperCamelCase_ ): return 1 / sqrt(1 - beta(UpperCamelCase_ ) ** 2 ) def lowerCamelCase_ ( UpperCamelCase_ ): return np.array( [ [gamma(UpperCamelCase_ ), -gamma(UpperCamelCase_ ) * beta(UpperCamelCase_ ), 0, 0], [-gamma(UpperCamelCase_ ) * beta(UpperCamelCase_ ), gamma(UpperCamelCase_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ = None ): # Ensure event is not empty if event is None: _a : Dict = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(UpperCamelCase_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCAmelCase : Union[str, Any] = transform(29_979_245) print('Example of four vector: ') print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __UpperCAmelCase : Tuple = {ct: c, x: 1, y: 1, z: 1} __UpperCAmelCase : str = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
471
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : int = { "google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class UpperCAmelCase ( _lowercase ): UpperCAmelCase : int = '''pegasus''' UpperCAmelCase : Union[str, Any] = ['''past_key_values'''] UpperCAmelCase : List[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self : Tuple , A__ : Dict=5_0_2_6_5 , A__ : Dict=1_0_2_4 , A__ : int=1_2 , A__ : Dict=4_0_9_6 , A__ : Optional[Any]=1_6 , A__ : Dict=1_2 , A__ : Union[str, Any]=4_0_9_6 , A__ : str=1_6 , A__ : List[str]=0.0 , A__ : List[str]=0.0 , A__ : str=True , A__ : Any=True , A__ : List[str]="gelu" , A__ : Dict=1_0_2_4 , A__ : List[Any]=0.1 , A__ : str=0.0 , A__ : Tuple=0.0 , A__ : Union[str, Any]=0.0_2 , A__ : str=0 , A__ : Tuple=False , A__ : Union[str, Any]=0 , A__ : Any=1 , A__ : Union[str, Any]=1 , **A__ : Union[str, Any] , ) -> Optional[int]: lowercase = vocab_size lowercase = max_position_embeddings lowercase = d_model lowercase = encoder_ffn_dim lowercase = encoder_layers lowercase = encoder_attention_heads lowercase = decoder_ffn_dim lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = activation_function lowercase = init_std lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = use_cache lowercase = encoder_layers lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=A__ , eos_token_id=A__ , is_encoder_decoder=A__ , decoder_start_token_id=A__ , forced_eos_token_id=A__ , **A__ , ) @property def UpperCAmelCase__ (self : str ) -> int: return self.encoder_attention_heads @property def UpperCAmelCase__ (self : Optional[int] ) -> int: return self.d_model
721
'''simple docstring''' from functools import lru_cache def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = 2 lowercase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(lowerCAmelCase_ ) if n > 1: factors.add(lowerCAmelCase_ ) return factors @lru_cache def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return len(unique_prime_factors(lowerCAmelCase_ ) ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" return len(set(lowerCAmelCase_ ) ) in (0, 1) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = 2 while True: # Increment each value of a generated range lowercase = [base + i for i in range(lowerCAmelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase = [upf_len(lowerCAmelCase_ ) for x in group] checker.append(lowerCAmelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(lowerCAmelCase_ ): return group # Increment our base variable by 1 base += 1 def UpperCAmelCase_ ( lowerCAmelCase_ = 4 ): """simple docstring""" lowercase = run(lowerCAmelCase_ ) return results[0] if len(lowerCAmelCase_ ) else None if __name__ == "__main__": print(solution())
459
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ShapEPipeline UpperCAmelCase__ = ['''prompt'''] UpperCAmelCase__ = ['''prompt'''] UpperCAmelCase__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCAmelCase__ = False @property def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->int: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' return 8 @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: '''simple docstring''' A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') return tokenizer @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' torch.manual_seed(0) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : Tuple) ->Union[str, Any]: '''simple docstring''' torch.manual_seed(0) A__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } A__ = PriorTransformer(**UpperCAmelCase__) return model @property def SCREAMING_SNAKE_CASE ( self : str) ->List[str]: '''simple docstring''' torch.manual_seed(0) A__ = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } A__ = ShapERenderer(**UpperCAmelCase__) return model def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' A__ = self.dummy_prior A__ = self.dummy_text_encoder A__ = self.dummy_tokenizer A__ = self.dummy_renderer A__ = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=UpperCAmelCase__ , clip_sample=UpperCAmelCase__ , clip_sample_range=1.0 , ) A__ = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any]=0) ->Union[str, Any]: '''simple docstring''' if str(UpperCAmelCase__).startswith('''mps'''): A__ = torch.manual_seed(UpperCAmelCase__) else: A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__) A__ = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: '''simple docstring''' A__ = '''cpu''' A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__) A__ = pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = pipe(**self.get_dummy_inputs(UpperCAmelCase__)) A__ = output.images[0] A__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A__ = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Any) ->int: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2]) def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[str]: '''simple docstring''' A__ = torch_device == '''cpu''' A__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCAmelCase__ , relax_max_difference=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: '''simple docstring''' A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__) A__ = pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = 1 A__ = 2 A__ = self.get_dummy_inputs(UpperCAmelCase__) for key in inputs.keys(): if key in self.batch_params: A__ = batch_size * [inputs[key]] A__ = pipe(**UpperCAmelCase__ , num_images_per_prompt=UpperCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Dict) ->Optional[int]: '''simple docstring''' A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''') A__ = ShapEPipeline.from_pretrained('''openai/shap-e''') A__ = pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(0) A__ = pipe( '''a shark''' , generator=UpperCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__)
87
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __a ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[int]=30 , UpperCAmelCase_ : Any=400 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=0.9 , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , )-> List[str]: """simple docstring""" UpperCamelCase = size if size is not None else {"shortest_edge": 30} UpperCamelCase = crop_size if crop_size is not None else {"height": 30, "width": 30} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize_and_center_crop UpperCamelCase = size UpperCamelCase = crop_pct UpperCamelCase = crop_size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> str: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : List[Any] = PoolFormerImageProcessor if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> str: """simple docstring""" UpperCamelCase = PoolFormerImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : Dict )-> Optional[int]: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize_and_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "crop_pct" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std" ) ) def _SCREAMING_SNAKE_CASE ( self : int )-> List[Any]: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Any: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Dict: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> List[str]: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _SCREAMING_SNAKE_CASE ( self : str )-> str: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
554
0
import sys a_ : Tuple = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def __lowerCAmelCase ( _UpperCamelCase : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 1 for digit in s: product *= int(_UpperCamelCase ) return product def __lowerCAmelCase ( _UpperCamelCase : str = N ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = -sys.maxsize - 1 SCREAMING_SNAKE_CASE = n[:13] SCREAMING_SNAKE_CASE = 13 while cur_index < len(_UpperCamelCase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): SCREAMING_SNAKE_CASE = substr[1:] + n[cur_index] cur_index += 1 else: SCREAMING_SNAKE_CASE = max(_UpperCamelCase , str_eval(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
673
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
673
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE__ (__UpperCamelCase ): __lowerCamelCase : Any = """deit""" def __init__( self , a=768 , a=12 , a=12 , a=3072 , a="gelu" , a=0.0 , a=0.0 , a=0.02 , a=1e-12 , a=224 , a=16 , a=3 , a=True , a=16 , **a , ): super().__init__(**__snake_case) lowercase__ : Optional[int] = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : List[str] = intermediate_size lowercase__ : int = hidden_act lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : Union[str, Any] = attention_probs_dropout_prob lowercase__ : Union[str, Any] = initializer_range lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : List[Any] = num_channels lowercase__ : Union[str, Any] = qkv_bias lowercase__ : int = encoder_stride class SCREAMING_SNAKE_CASE__ (__UpperCamelCase ): __lowerCamelCase : str = version.parse("""1.11""" ) @property def snake_case_ ( self): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def snake_case_ ( self): return 1e-4
164
from math import factorial def a_ ( UpperCamelCase_ : int = 1_0_0 ) -> int: """simple docstring""" return sum(int(UpperCamelCase_ ) for x in str(factorial(UpperCamelCase_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
246
0
def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = word.split() def justify(__snake_case , __snake_case , __snake_case ) -> str: _UpperCamelCase = max_width - width _UpperCamelCase = len(__UpperCamelCase ) if len(__UpperCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _UpperCamelCase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _UpperCamelCase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _UpperCamelCase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__UpperCamelCase ): num_spaces_between_words_list[i] += 1 _UpperCamelCase = [] for i in range(__UpperCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__UpperCamelCase ) _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = 0 for word in words: if width + len(__UpperCamelCase ) + len(__UpperCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__UpperCamelCase ) width += len(__UpperCamelCase ) else: # justify the line and add it to result answer.append(justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) # reset new line and new width _UpperCamelCase = [word], len(__UpperCamelCase ) _UpperCamelCase = max_width - width - len(__UpperCamelCase ) answer.append(''' '''.join(__UpperCamelCase ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
721
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCAmelCase = logging.get_logger(__name__) # General docstring _lowerCAmelCase = "RegNetConfig" # Base docstring _lowerCAmelCase = "facebook/regnet-y-040" _lowerCAmelCase = [1, 1_088, 7, 7] # Image classification docstring _lowerCAmelCase = "facebook/regnet-y-040" _lowerCAmelCase = "tabby, tabby cat" _lowerCAmelCase = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self : str , _A : int , _A : int = 3 , _A : int = 1 , _A : int = 1 , _A : Optional[str] = "relu" , **_A : Any , ): super().__init__(**_A ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb _UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) _UpperCamelCase = tf.keras.layers.ConvaD( filters=_A , kernel_size=_A , strides=_A , padding='''VALID''' , groups=_A , use_bias=_A , name='''convolution''' , ) _UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) _UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity def UpperCamelCase_ ( self : Any , _A : Any ): _UpperCamelCase = self.convolution(self.padding(_A ) ) _UpperCamelCase = self.normalization(_A ) _UpperCamelCase = self.activation(_A ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] , _A : RegNetConfig , **_A : Any ): super().__init__(**_A ) _UpperCamelCase = config.num_channels _UpperCamelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] ): _UpperCamelCase = shape_list(_A )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) _UpperCamelCase = tf.transpose(_A , perm=(0, 2, 3, 1) ) _UpperCamelCase = self.embedder(_A ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self : str , _A : int , _A : int = 2 , **_A : Optional[Any] ): super().__init__(**_A ) _UpperCamelCase = tf.keras.layers.ConvaD( filters=_A , kernel_size=1 , strides=_A , use_bias=_A , name='''convolution''' ) _UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) def UpperCamelCase_ ( self : str , _A : tf.Tensor , _A : bool = False ): return self.normalization(self.convolution(_A ) , training=_A ) class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self : Dict , _A : int , _A : int , **_A : Dict ): super().__init__(**_A ) _UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_A , name='''pooler''' ) _UpperCamelCase = [ tf.keras.layers.ConvaD(filters=_A , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=_A , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def UpperCamelCase_ ( self : List[str] , _A : List[Any] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] _UpperCamelCase = self.pooler(_A ) for layer_module in self.attention: _UpperCamelCase = layer_module(_A ) _UpperCamelCase = hidden_state * pooled return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , _A : RegNetConfig , _A : int , _A : int , _A : int = 1 , **_A : str ): super().__init__(**_A ) _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = max(1 , out_channels // config.groups_width ) _UpperCamelCase = ( TFRegNetShortCut(_A , stride=_A , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. _UpperCamelCase = [ TFRegNetConvLayer(_A , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( _A , stride=_A , groups=_A , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(_A , kernel_size=1 , activation=_A , name='''layer.2''' ), ] _UpperCamelCase = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Dict , _A : Tuple ): _UpperCamelCase = hidden_state for layer_module in self.layers: _UpperCamelCase = layer_module(_A ) _UpperCamelCase = self.shortcut(_A ) hidden_state += residual _UpperCamelCase = self.activation(_A ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , _A : RegNetConfig , _A : int , _A : int , _A : int = 1 , **_A : int ): super().__init__(**_A ) _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = max(1 , out_channels // config.groups_width ) _UpperCamelCase = ( TFRegNetShortCut(_A , stride=_A , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) _UpperCamelCase = [ TFRegNetConvLayer(_A , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( _A , stride=_A , groups=_A , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(_A , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(_A , kernel_size=1 , activation=_A , name='''layer.3''' ), ] _UpperCamelCase = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Tuple , _A : List[Any] ): _UpperCamelCase = hidden_state for layer_module in self.layers: _UpperCamelCase = layer_module(_A ) _UpperCamelCase = self.shortcut(_A ) hidden_state += residual _UpperCamelCase = self.activation(_A ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self : Tuple , _A : RegNetConfig , _A : int , _A : int , _A : int = 2 , _A : int = 2 , **_A : Union[str, Any] ): super().__init__(**_A ) _UpperCamelCase = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer _UpperCamelCase = [ # downsampling is done in the first layer with stride of 2 layer(_A , _A , _A , stride=_A , name='''layers.0''' ), *[layer(_A , _A , _A , name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def UpperCamelCase_ ( self : Union[str, Any] , _A : Optional[int] ): for layer_module in self.layers: _UpperCamelCase = layer_module(_A ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[Any] , _A : RegNetConfig , **_A : List[str] ): super().__init__(**_A ) _UpperCamelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _A , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) _UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_A , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_A , _A , _A , depth=_A , name=F"""stages.{i+1}""" ) ) def UpperCamelCase_ ( self : Optional[int] , _A : tf.Tensor , _A : bool = False , _A : bool = True ): _UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) _UpperCamelCase = stage_module(_A ) if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_A , hidden_states=_A ) @keras_serializable class lowerCAmelCase_ ( tf.keras.layers.Layer ): UpperCAmelCase = RegNetConfig def __init__( self : int , _A : Tuple , **_A : int ): super().__init__(**_A ) _UpperCamelCase = config _UpperCamelCase = TFRegNetEmbeddings(_A , name='''embedder''' ) _UpperCamelCase = TFRegNetEncoder(_A , name='''encoder''' ) _UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_A , name='''pooler''' ) @unpack_inputs def UpperCamelCase_ ( self : Optional[int] , _A : tf.Tensor , _A : Optional[bool] = None , _A : Optional[bool] = None , _A : bool = False , ): _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.embedder(_A , training=_A ) _UpperCamelCase = self.encoder( _A , output_hidden_states=_A , return_dict=_A , training=_A ) _UpperCamelCase = encoder_outputs[0] _UpperCamelCase = self.pooler(_A ) # Change to NCHW output format have uniformity in the modules _UpperCamelCase = tf.transpose(_A , perm=(0, 3, 1, 2) ) _UpperCamelCase = tf.transpose(_A , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: _UpperCamelCase = tuple([tf.transpose(_A , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_A , pooler_output=_A , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = RegNetConfig UpperCAmelCase = "regnet" UpperCAmelCase = "pixel_values" @property def UpperCamelCase_ ( self : Tuple ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} _lowerCAmelCase = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" _lowerCAmelCase = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top.", __lowercase, ) class lowerCAmelCase_ ( __lowercase ): def __init__( self : List[Any] , _A : RegNetConfig , *_A : Optional[int] , **_A : Tuple ): super().__init__(_A , *_A , **_A ) _UpperCamelCase = TFRegNetMainLayer(_A , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_A , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Any , _A : tf.Tensor , _A : Optional[bool] = None , _A : Optional[bool] = None , _A : Optional[int]=False , ): _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.regnet( pixel_values=_A , output_hidden_states=_A , return_dict=_A , training=_A , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ", __lowercase, ) class lowerCAmelCase_ ( __lowercase, __lowercase ): def __init__( self : List[Any] , _A : RegNetConfig , *_A : Any , **_A : int ): super().__init__(_A , *_A , **_A ) _UpperCamelCase = config.num_labels _UpperCamelCase = TFRegNetMainLayer(_A , name='''regnet''' ) # classification head _UpperCamelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : str , _A : tf.Tensor = None , _A : tf.Tensor = None , _A : bool = None , _A : bool = None , _A : Any=False , ): _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.regnet( _A , output_hidden_states=_A , return_dict=_A , training=_A ) _UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] _UpperCamelCase = self.classifier[0](_A ) _UpperCamelCase = self.classifier[1](_A ) _UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=_A , logits=_A ) if not return_dict: _UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_A , logits=_A , hidden_states=outputs.hidden_states )
71
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=3 ,snake_case__=30 ,snake_case__=400 ,snake_case__=True ,snake_case__=None ,snake_case__=True ,snake_case__=[0.5, 0.5, 0.5] ,snake_case__=[0.5, 0.5, 0.5] ,snake_case__=True ,snake_case__=1 / 255 ,snake_case__=True ,): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_ : List[str] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_ : Tuple = min_resolution SCREAMING_SNAKE_CASE_ : Any = max_resolution SCREAMING_SNAKE_CASE_ : str = do_resize SCREAMING_SNAKE_CASE_ : Union[str, Any] = size SCREAMING_SNAKE_CASE_ : Tuple = do_normalize SCREAMING_SNAKE_CASE_ : Optional[int] = image_mean SCREAMING_SNAKE_CASE_ : Optional[Any] = image_std SCREAMING_SNAKE_CASE_ : Tuple = do_rescale SCREAMING_SNAKE_CASE_ : Any = rescale_factor SCREAMING_SNAKE_CASE_ : Any = do_pad def snake_case ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case ( self ,snake_case__ ,snake_case__=False ): if not batched: SCREAMING_SNAKE_CASE_ : List[str] = image_inputs[0] if isinstance(snake_case__ ,Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ : Dict = int(self.size['shortest_edge'] * h / w ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.size['shortest_edge'] elif w > h: SCREAMING_SNAKE_CASE_ : str = self.size['shortest_edge'] SCREAMING_SNAKE_CASE_ : Optional[int] = int(self.size['shortest_edge'] * w / h ) else: SCREAMING_SNAKE_CASE_ : int = self.size['shortest_edge'] SCREAMING_SNAKE_CASE_ : List[Any] = self.size['shortest_edge'] else: SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = max(snake_case__ ,key=lambda snake_case__ : item[0] )[0] SCREAMING_SNAKE_CASE_ : Optional[int] = max(snake_case__ ,key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = DetaImageProcessor if is_vision_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = DetaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'image_mean' ) ) self.assertTrue(hasattr(snake_case__ ,'image_std' ) ) self.assertTrue(hasattr(snake_case__ ,'do_normalize' ) ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'do_rescale' ) ) self.assertTrue(hasattr(snake_case__ ,'do_pad' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad ,snake_case__ ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.image_processor_tester.get_expected_values(snake_case__ ,batched=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ ,batched=snake_case__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = self.image_processor_tester.get_expected_values(snake_case__ ,batched=snake_case__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def snake_case ( self ): # prepare image and target SCREAMING_SNAKE_CASE_ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' ,'r' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Any = {'image_id': 39769, 'annotations': target} # encode them SCREAMING_SNAKE_CASE_ : int = DetaImageProcessor() SCREAMING_SNAKE_CASE_ : int = image_processing(images=snake_case__ ,annotations=snake_case__ ,return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE_ : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,snake_case__ ,atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,snake_case__ ) ) # verify boxes SCREAMING_SNAKE_CASE_ : int = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,snake_case__ ,atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : int = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,snake_case__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,snake_case__ ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,snake_case__ ) ) # verify orig_size SCREAMING_SNAKE_CASE_ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,snake_case__ ) ) # verify size SCREAMING_SNAKE_CASE_ : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,snake_case__ ) ) @slow def snake_case ( self ): # prepare image, target and masks_path SCREAMING_SNAKE_CASE_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' ,'r' ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} SCREAMING_SNAKE_CASE_ : List[str] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them SCREAMING_SNAKE_CASE_ : Any = DetaImageProcessor(format='coco_panoptic' ) SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(images=snake_case__ ,annotations=snake_case__ ,masks_path=snake_case__ ,return_tensors='pt' ) # verify pixel values SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,snake_case__ ,atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,snake_case__ ) ) # verify boxes SCREAMING_SNAKE_CASE_ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,snake_case__ ,atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,snake_case__ ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,snake_case__ ) ) # verify class_labels SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,snake_case__ ) ) # verify masks SCREAMING_SNAKE_CASE_ : Any = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() ,snake_case__ ) # verify orig_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,snake_case__ ) ) # verify size SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,snake_case__ ) )
105
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : int = TypeVar('''DatasetType''', Dataset, IterableDataset) def __UpperCAmelCase ( lowerCamelCase_ : List[DatasetType] , lowerCamelCase_ : Optional[List[float]] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[DatasetInfo] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(lowerCamelCase_ ): if not isinstance(lowerCamelCase_ , (Dataset, IterableDataset) ): if isinstance(lowerCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(lowerCamelCase_ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowerCamelCase_ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase_ ).__name__}.' ) if i == 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = ( (Dataset, IterableDataset) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , info=lowerCamelCase_ , split=lowerCamelCase_ , stopping_strategy=lowerCamelCase_ ) else: return _interleave_iterable_datasets( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , info=lowerCamelCase_ , split=lowerCamelCase_ , stopping_strategy=lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[DatasetType] , lowerCamelCase_ : Optional[DatasetInfo] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(lowerCamelCase_ ): if not isinstance(lowerCamelCase_ , (Dataset, IterableDataset) ): if isinstance(lowerCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(lowerCamelCase_ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowerCamelCase_ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase_ ).__name__}.' ) if i == 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = ( (Dataset, IterableDataset) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowerCamelCase_ , info=lowerCamelCase_ , split=lowerCamelCase_ , axis=lowerCamelCase_ ) else: return _concatenate_iterable_datasets(lowerCamelCase_ , info=lowerCamelCase_ , split=lowerCamelCase_ , axis=lowerCamelCase_ )
105
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class a ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = parent __SCREAMING_SNAKE_CASE: int = batch_size __SCREAMING_SNAKE_CASE: Tuple = num_channels __SCREAMING_SNAKE_CASE: Union[str, Any] = image_size __SCREAMING_SNAKE_CASE: int = min_resolution __SCREAMING_SNAKE_CASE: Optional[Any] = max_resolution __SCREAMING_SNAKE_CASE: int = do_resize __SCREAMING_SNAKE_CASE: int = size if size is not None else {'''height''': 18, '''width''': 20} __SCREAMING_SNAKE_CASE: Tuple = do_thumbnail __SCREAMING_SNAKE_CASE: List[Any] = do_align_axis __SCREAMING_SNAKE_CASE: Tuple = do_pad __SCREAMING_SNAKE_CASE: List[str] = do_normalize __SCREAMING_SNAKE_CASE: int = image_mean __SCREAMING_SNAKE_CASE: Tuple = image_std def snake_case_ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a ( __lowercase ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ : int = DonutImageProcessor if is_vision_available() else None def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = DonutImageProcessingTester(self ) @property def snake_case_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_thumbnail''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) __SCREAMING_SNAKE_CASE: Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order __SCREAMING_SNAKE_CASE: Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def snake_case_ ( self ): """simple docstring""" pass @is_flaky() def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE: int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE: Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE: Optional[Any] = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE: Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE: List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE: Optional[Any] = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE: Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE: List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE: List[str] = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
146
from manim import * class a ( __lowercase ): def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = Rectangle(height=0.5 , width=0.5 ) __SCREAMING_SNAKE_CASE: Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __SCREAMING_SNAKE_CASE: Tuple = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE: Optional[int] = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE: Optional[int] = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __SCREAMING_SNAKE_CASE: Union[str, Any] = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __SCREAMING_SNAKE_CASE: Optional[int] = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __SCREAMING_SNAKE_CASE: List[str] = Text('''CPU''' , font_size=24 ) __SCREAMING_SNAKE_CASE: List[str] = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[Any] = [mem.copy() for i in range(4 )] __SCREAMING_SNAKE_CASE: Tuple = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __SCREAMING_SNAKE_CASE: Optional[Any] = Text('''GPU''' , font_size=24 ) __SCREAMING_SNAKE_CASE: Union[str, Any] = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[int] = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE: str = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __SCREAMING_SNAKE_CASE: Any = Text('''Model''' , font_size=24 ) __SCREAMING_SNAKE_CASE: List[str] = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = [] for i, rect in enumerate(_lowerCAmelCase ): rect.set_stroke(_lowerCAmelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) __SCREAMING_SNAKE_CASE: int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowerCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=_lowerCAmelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=_lowerCAmelCase , buff=0.0 ) self.add(_lowerCAmelCase ) cpu_targs.append(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Dict = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE: Union[str, Any] = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __SCREAMING_SNAKE_CASE: str = Text('''Loaded Checkpoint''' , font_size=24 ) __SCREAMING_SNAKE_CASE: Dict = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , aligned_edge=_lowerCAmelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) __SCREAMING_SNAKE_CASE: Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __SCREAMING_SNAKE_CASE: Optional[int] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowerCAmelCase , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[int] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(_lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) __SCREAMING_SNAKE_CASE: Optional[int] = MarkupText( f"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ) , Write(_lowerCAmelCase ) ) self.play(Write(_lowerCAmelCase , run_time=1 ) , Create(_lowerCAmelCase , run_time=1 ) ) __SCREAMING_SNAKE_CASE: List[str] = [] __SCREAMING_SNAKE_CASE: Tuple = [] for i, rect in enumerate(_lowerCAmelCase ): __SCREAMING_SNAKE_CASE: int = fill.copy().set_fill(_lowerCAmelCase , opacity=0.7 ) target.move_to(_lowerCAmelCase ) first_animations.append(GrowFromCenter(_lowerCAmelCase , run_time=1 ) ) __SCREAMING_SNAKE_CASE: List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(_lowerCAmelCase , run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(*_lowerCAmelCase ) self.wait()
146
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable lowerCAmelCase_ : List[str] = list[list[float | int]] def UpperCAmelCase ( A : List[Any] , A : List[str] ): SCREAMING_SNAKE_CASE : int = len(_a ) SCREAMING_SNAKE_CASE : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_a )] SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float for row in range(_a ): for col in range(_a ): SCREAMING_SNAKE_CASE : List[Any] = matrix[row][col] SCREAMING_SNAKE_CASE : int = vector[row][0] SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : List[str] = 0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE : List[str] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_a , _a ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE : int = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _a ): SCREAMING_SNAKE_CASE : Dict = augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE : int = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _a ): for row in range(_a ): SCREAMING_SNAKE_CASE : List[Any] = augmented[row][col] / augmented[col][col] for cola in range(_a , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_a ) ] def UpperCAmelCase ( A : int ): SCREAMING_SNAKE_CASE : int = len(_a ) SCREAMING_SNAKE_CASE : Matrix = [[0 for _ in range(_a )] for _ in range(_a )] SCREAMING_SNAKE_CASE : Matrix = [[0] for _ in range(_a )] SCREAMING_SNAKE_CASE : Matrix SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int for x_val, y_val in enumerate(_a ): for col in range(_a ): SCREAMING_SNAKE_CASE : Any = (x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE : Tuple = y_val SCREAMING_SNAKE_CASE : Any = solve(_a , _a ) def interpolated_func(A : Tuple ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_a ) ) return interpolated_func def UpperCAmelCase ( A : List[str] ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCAmelCase ( A : str = question_function , A : Optional[int] = 10 ): SCREAMING_SNAKE_CASE : list[int] = [func(_a ) for x_val in range(1 , order + 1 )] SCREAMING_SNAKE_CASE : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Callable[[int], int] SCREAMING_SNAKE_CASE : int for poly in polynomials: SCREAMING_SNAKE_CASE : Union[str, Any] = 1 while func(_a ) == poly(_a ): x_val += 1 ret += poly(_a ) return ret if __name__ == "__main__": print(f'{solution() = }')
527
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE : Union[str, Any] = False return options def __UpperCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Optional[int] = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Union[str, Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe( prompt=a , image=a , mask_image=a , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
25
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : def __init__( self , a__ , a__=13 , a__=30 , a__=2 , a__=3 , a__=True , a__=True , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.02 , a__=3 , a__=0.6 , a__=None , ): A_ : int = parent A_ : Optional[int] = batch_size A_ : Any = image_size A_ : Optional[int] = patch_size A_ : int = num_channels A_ : str = is_training A_ : str = use_labels A_ : str = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : Tuple = num_attention_heads A_ : Any = intermediate_size A_ : List[Any] = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : str = type_sequence_label_size A_ : int = initializer_range A_ : List[Any] = mask_ratio A_ : str = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ : Optional[Any] = (image_size // patch_size) ** 2 A_ : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowerCamelCase ( self ): A_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : int = None if self.use_labels: A_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Any = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowerCamelCase ( self , a__ , a__ , a__ ): A_ : Optional[int] = ViTMAEModel(config=a__ ) model.to(a__ ) model.eval() A_ : int = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , a__ , a__ , a__ ): A_ : int = ViTMAEForPreTraining(a__ ) model.to(a__ ) model.eval() A_ : Optional[Any] = model(a__ ) A_ : Dict = (self.image_size // self.patch_size) ** 2 A_ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ : Optional[int] = 1 A_ : Any = ViTMAEForPreTraining(a__ ) model.to(a__ ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : List[Any] = model(a__ ) A_ : Optional[int] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowerCamelCase ( self ): A_ : Optional[Any] = self.prepare_config_and_inputs() A_ , A_ , A_ : Any = config_and_inputs A_ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): a = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () a = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} a = False a = False a = False a = False def _lowerCamelCase ( self ): A_ : int = ViTMAEModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): A_ , A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Dict = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def _lowerCamelCase ( self ): A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Any = model_class(a__ ) A_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Dict = [*signature.parameters.keys()] A_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def _lowerCamelCase ( self ): A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def _lowerCamelCase ( self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) def _lowerCamelCase ( self , a__ , a__ , a__ ): # make masks reproducible np.random.seed(2 ) A_ : Optional[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ : Optional[Any] = torch.from_numpy(a__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ : Any = pt_noise super().check_pt_tf_models(a__ , a__ , a__ ) def _lowerCamelCase ( self ): A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[Any] = model_class(a__ ) model.to(a__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(a__ , a__ ) ) A_ : int = outputs[0].cpu().numpy() A_ : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__ ) A_ : Union[str, Any] = model_class.from_pretrained(a__ ) model.to(a__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ : Optional[int] = model(**self._prepare_for_class(a__ , a__ ) ) # Make sure we don't have nans A_ : Optional[int] = after_outputs[0].cpu().numpy() A_ : str = 0 A_ : Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowerCamelCase ( self ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowerCamelCase ( self ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _lowerCamelCase ( self ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _lowerCamelCase ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCamelCase ( self ): pass @slow def _lowerCamelCase ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Union[str, Any] = ViTMAEModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def _lowerCAmelCase ( ): '''simple docstring''' A_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _lowerCamelCase ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(a__ ) A_ : Optional[Any] = self.default_image_processor A_ : Union[str, Any] = prepare_img() A_ : Union[str, Any] = image_processor(images=a__ , return_tensors="""pt""" ).to(a__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ : Optional[int] = ViTMAEConfig() A_ : Tuple = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ : Tuple = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ : Dict = model(**a__ , noise=torch.from_numpy(a__ ).to(device=a__ ) ) # verify the logits A_ : Tuple = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , a__ ) A_ : List[str] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(a__ ) , atol=1E-4 ) )
481
0
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase_ = parser.parse_args() lowercase_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase_ = CLIPImageProcessor() lowercase_ = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
11
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''data2vec-vision''' def __init__( self : Optional[int] , _A : List[Any]=768 , _A : Any=12 , _A : str=12 , _A : Union[str, Any]=3072 , _A : Union[str, Any]="gelu" , _A : List[Any]=0.0 , _A : Dict=0.0 , _A : Dict=0.02 , _A : Any=1e-12 , _A : Optional[Any]=224 , _A : Union[str, Any]=16 , _A : Tuple=3 , _A : List[Any]=False , _A : List[str]=False , _A : Dict=False , _A : Dict=False , _A : Any=0.1 , _A : List[str]=0.1 , _A : Dict=True , _A : Dict=[3, 5, 7, 11] , _A : Union[str, Any]=[1, 2, 3, 6] , _A : Optional[Any]=True , _A : Any=0.4 , _A : List[str]=256 , _A : Any=1 , _A : Any=False , _A : Union[str, Any]=255 , **_A : Tuple , ): """simple docstring""" super().__init__(**_A ) __SCREAMING_SNAKE_CASE : Any = hidden_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = initializer_range __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : Any = image_size __SCREAMING_SNAKE_CASE : Optional[int] = patch_size __SCREAMING_SNAKE_CASE : Any = num_channels __SCREAMING_SNAKE_CASE : List[str] = use_mask_token __SCREAMING_SNAKE_CASE : List[Any] = use_absolute_position_embeddings __SCREAMING_SNAKE_CASE : Dict = use_relative_position_bias __SCREAMING_SNAKE_CASE : str = use_shared_relative_position_bias __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_scale_init_value __SCREAMING_SNAKE_CASE : str = drop_path_rate __SCREAMING_SNAKE_CASE : Tuple = use_mean_pooling # decode head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE : str = out_indices __SCREAMING_SNAKE_CASE : List[str] = pool_scales # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE : Tuple = use_auxiliary_head __SCREAMING_SNAKE_CASE : Optional[Any] = auxiliary_loss_weight __SCREAMING_SNAKE_CASE : Union[str, Any] = auxiliary_channels __SCREAMING_SNAKE_CASE : List[Any] = auxiliary_num_convs __SCREAMING_SNAKE_CASE : Optional[Any] = auxiliary_concat_input __SCREAMING_SNAKE_CASE : Any = semantic_loss_ignore_index class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" return 1e-4
74
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if issubclass(lowercase , lowercase ): UpperCamelCase = parquet_path elif issubclass(lowercase , lowercase ): UpperCamelCase = [parquet_path] UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def A ( lowercase , lowercase , lowercase=("train",) ) -> Tuple: '''simple docstring''' assert isinstance(lowercase , lowercase ) for split in splits: UpperCamelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader( {'train': parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader({'train': parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if split: UpperCamelCase = {split: parquet_path} else: UpperCamelCase = 'train' UpperCamelCase = {'train': parquet_path, 'test': parquet_path} UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A ( lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = pq.ParquetFile(tmp_path / 'foo.parquet' ) UpperCamelCase = pf.read() assert dataset.data.table == output_table def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = str(shared_datadir / 'test_image_rgb.jpg' ) UpperCamelCase = {'image': [image_path]} UpperCamelCase = Features({'image': Image()} ) UpperCamelCase = Dataset.from_dict(lowercase , features=lowercase ) UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features UpperCamelCase = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def A ( lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' assert get_writer_batch_size(lowercase ) == expected
3
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = (DDPMScheduler,) def __UpperCamelCase ( self , **A_ ) -> Dict: """simple docstring""" UpperCamelCase = { 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**A_ ) return config def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual UpperCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(A_ ) ) UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual UpperCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(A_ ) ) UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A_ ) UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(A_ ): if i == len(A_ ) - 1: UpperCamelCase = -1 else: UpperCamelCase = timesteps[i + 1] UpperCamelCase = scheduler.previous_timestep(A_ ) UpperCamelCase = prev_t.item() self.assertEqual(A_ , A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(A_ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 1, 0] UpperCamelCase = len(A_ ) with self.assertRaises(A_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=A_ , timesteps=A_ ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( A_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=A_ )
3
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets snake_case = '''\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } ''' snake_case = '''\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. ''' snake_case = ''' Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "pearson": Pearson Correlation "spearmanr": Spearman Correlation "matthews_correlation": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)}) {\'pearson\': 1.0, \'spearmanr\': 1.0} >>> glue_metric = datasets.load_metric(\'glue\', \'cola\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" return float((preds == labels).mean() ) def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Optional[Any] = simple_accuracy(__lowercase , __lowercase ) _lowerCAmelCase : str = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : str = float(pearsonr(__lowercase , __lowercase )[0] ) _lowerCAmelCase : str = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), "references": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__A , __A )} elif self.config_name == "stsb": return pearson_and_spearman(__A , __A ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__A , __A ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__A , __A )} else: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" )
424
'''simple docstring''' def lowercase__ ( __lowercase : int , __lowercase : Tuple , __lowercase : Tuple ) -> Any: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__lowercase , n - 1 , __lowercase ) * a) % mod else: __UpperCamelCase = binary_exponentiation(__lowercase , n / 2 , __lowercase ) return (b * b) % mod # a prime number a__ : List[str] =701 a__ : Union[str, Any] =1_000_000_000 a__ : Union[str, Any] =10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
399
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = '' _UpperCAmelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , __snake_case : str = "" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , **__snake_case : Dict ): super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase :Optional[Any] = fsspec.open( __snake_case , mode='''rb''' , protocol=__snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase :List[str] = os.path.basename(self.file.path.split('''::''' )[0] ) lowerCamelCase :Dict = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) lowerCamelCase :List[str] = None @classmethod def snake_case ( cls : Any , __snake_case : Any ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__snake_case ).lstrip('''/''' ) def snake_case ( self : Any ): if self.dir_cache is None: lowerCamelCase :Optional[Any] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} lowerCamelCase :Optional[Any] = {f['''name''']: f} def snake_case ( self : Union[str, Any] , __snake_case : str ): return self.file.open().read() def snake_case ( self : Optional[int] , __snake_case : str , __snake_case : str = "rb" , __snake_case : int=None , __snake_case : Optional[int]=True , __snake_case : str=None , **__snake_case : str , ): lowerCamelCase :List[str] = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'bz2' _UpperCAmelCase = 'bz2' _UpperCAmelCase = '.bz2' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'gzip' _UpperCAmelCase = 'gzip' _UpperCAmelCase = '.gz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'lz4' _UpperCAmelCase = 'lz4' _UpperCAmelCase = '.lz4' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'xz' _UpperCAmelCase = 'xz' _UpperCAmelCase = '.xz' class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 'zstd' _UpperCAmelCase = 'zstd' _UpperCAmelCase = '.zst' def __init__( self : str , __snake_case : str , __snake_case : str = "rb" , __snake_case : Optional[str] = None , __snake_case : Optional[dict] = None , __snake_case : int = DEFAULT_BLOCK_SIZE , **__snake_case : int , ): super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase :Tuple = self.file.__enter__ class _lowerCAmelCase : def __init__( self : Dict , __snake_case : Tuple ): lowerCamelCase :Optional[int] = file_ def __enter__( self : Optional[int] ): self._file.__enter__() return self def __exit__( self : str , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Optional[Any] ): return iter(self._file ) def snake_case ( self : List[Any] ): return next(self._file ) def __getattr__( self : Any , __snake_case : str ): return getattr(self._file , __snake_case ) def fixed_enter(*__snake_case : Optional[int] , **__snake_case : str ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) lowerCamelCase :Dict = fixed_enter
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : int = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys _lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
184
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def A__ ( __A : Any , __A : str , __A : str , __A : Path , __A : str = None , __A : str = None , __A : str = None , ) ->Optional[Any]: if config_name_or_path is None: __A ='''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: __A =generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __A =question_encoder_name_or_path __A =RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. __A =RagConfig.from_pretrained(__A ) __A =AutoConfig.from_pretrained(__A ) __A =AutoConfig.from_pretrained(__A ) __A =gen_config __A =question_encoder_config __A =model_class.from_pretrained_question_encoder_generator( __A , __A , config=__A ) rag_model.save_pretrained(__A ) # Sanity check. model_class.from_pretrained(__A ) # Save tokenizers. __A =AutoTokenizer.from_pretrained(__A ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) __A =AutoTokenizer.from_pretrained(__A ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) _lowerCamelCase : str = parser.parse_args() _lowerCamelCase : Optional[int] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
184
1
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = OpenAIGPTTokenizer lowerCAmelCase = OpenAIGPTTokenizerFast lowerCAmelCase = True lowerCAmelCase = False def __A ( self : Tuple ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowerCAmelCase = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) lowerCAmelCase = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE ) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Dict: """simple docstring""" return "lower newer", "lower newer" def __A ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase = "lower" lowerCAmelCase = ["low", "er</w>"] lowerCAmelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokens + ["<unk>"] lowerCAmelCase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __A ( self : Dict , SCREAMING_SNAKE_CASE : str=1_5 ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # Simple input lowerCAmelCase = "This is a simple input" lowerCAmelCase = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase = ("This is a simple input", "This is a pair") lowerCAmelCase = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Simple input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Simple input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" , ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Pair input self.assertRaises(SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" ) # Pair input self.assertRaises( SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding="max_length" , ) def __A ( self : List[Any] ) -> int: """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" pass
159
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase : List[str] = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = ['pixel_values'] def __init__( self : Any , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : int = 8 , **SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_pad lowerCAmelCase = pad_size def __A ( self : List[Any] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : Union[str, Any] ) -> np.ndarray: """simple docstring""" return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __A ( self : int , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None ) -> int: """simple docstring""" lowerCAmelCase , lowerCAmelCase = get_image_size(SCREAMING_SNAKE_CASE ) lowerCAmelCase = (old_height // size + 1) * size - old_height lowerCAmelCase = (old_width // size + 1) * size - old_width return pad(SCREAMING_SNAKE_CASE , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=SCREAMING_SNAKE_CASE ) def __A ( self : Any , SCREAMING_SNAKE_CASE : ImageInput , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : Optional[float] = None , SCREAMING_SNAKE_CASE : Optional[bool] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE : Optional[int] , ) -> Dict: """simple docstring""" lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_pad if do_pad is not None else self.do_pad lowerCAmelCase = pad_size if pad_size is not None else self.pad_size lowerCAmelCase = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_pad: lowerCAmelCase = [self.pad(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
159
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow A__ : int = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) A__ : Union[str, Any] = logging.getLogger() def _a ( ): lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''-f''' ) lowerCAmelCase__ : List[str] = parser.parse_args() return args.f def _a ( __UpperCamelCase : int ,__UpperCamelCase : List[str]="eval" ): lowerCAmelCase__ : Optional[int] = os.path.join(__UpperCamelCase ,f'''{split}_results.json''' ) if os.path.exists(__UpperCamelCase ): with open(__UpperCamelCase ,'''r''' ) as f: return json.load(__UpperCamelCase ) raise ValueError(f'''can\'t find {path}''' ) A__ : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase ( __UpperCamelCase ): def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : Optional[int] = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__ ): run_flax_glue.main() lowerCAmelCase__ : Dict = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : Optional[Any] = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__ ): run_clm_flax.main() lowerCAmelCase__ : Optional[Any] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : str = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__ ): run_summarization_flax.main() lowerCAmelCase__ : Union[str, Any] = get_results(SCREAMING_SNAKE_CASE__ , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : str = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__ ): run_mlm_flax.main() lowerCAmelCase__ : Tuple = get_results(SCREAMING_SNAKE_CASE__ ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Any = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : int = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__ ): run_ta_mlm_flax.main() lowerCAmelCase__ : List[Any] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Dict = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase__ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : List[str] = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__ ): run_flax_ner.main() lowerCAmelCase__ : List[Any] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = self.get_auto_remove_tmp_dir() lowerCAmelCase__ : int = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(SCREAMING_SNAKE_CASE__ , '''argv''' , SCREAMING_SNAKE_CASE__ ): run_qa.main() lowerCAmelCase__ : Any = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
233
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowercase ( __UpperCamelCase ): def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : List[str] = config_class lowerCAmelCase__ : str = has_text_modality lowerCAmelCase__ : str = kwargs lowerCAmelCase__ : Optional[int] = common_properties def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Any = self.config_class(**self.inputs_dict ) lowerCAmelCase__ : List[str] = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(SCREAMING_SNAKE_CASE__ ): try: setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , msg=f'''`{name} value {idx} expected, but was {getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(SCREAMING_SNAKE_CASE__ ): try: lowerCAmelCase__ : Dict = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , msg=f'''`{name} value {idx} expected, but was {getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[int] = self.config_class(**self.inputs_dict ) lowerCAmelCase__ : Tuple = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , '''config.json''' ) config_first.to_json_file(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Optional[int] = self.config_class.from_json_file(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[int] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : List[str] = self.config_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : str = self.config_class(**self.inputs_dict ) lowerCAmelCase__ : str = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) config_first.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Tuple = self.config_class.from_pretrained(SCREAMING_SNAKE_CASE__ , subfolder=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) lowerCAmelCase__ : Optional[int] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def lowercase_ ( self ): """simple docstring""" if self.config_class.is_composition: return lowerCAmelCase__ : Union[str, Any] = self.config_class() self.parent.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Union[str, Any] = self.config_class(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) != value: wrong_values.append((key, getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), value) ) if len(SCREAMING_SNAKE_CASE__ ) > 0: lowerCAmelCase__ : Tuple = '''\n'''.join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def lowercase_ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
233
1
def _lowerCAmelCase ( A__: str ): '''simple docstring''' UpperCAmelCase = [0] * len(_snake_case ) for i in range(1 , len(_snake_case ) ): # use last results for better performance - dynamic programming UpperCAmelCase = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCAmelCase = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCAmelCase = j return prefix_result def _lowerCAmelCase ( A__: str ): '''simple docstring''' return max(prefix_function(_snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod()
708
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _lowerCAmelCase ( A__: str , A__: str , A__: str , A__: PreTrainedTokenizer , A__: int , A__: Optional[int] = None , ): '''simple docstring''' UpperCAmelCase = {} if train_file is not None: UpperCAmelCase = [train_file] if eval_file is not None: UpperCAmelCase = [eval_file] if test_file is not None: UpperCAmelCase = [test_file] UpperCAmelCase = datasets.load_dataset('''csv''' , data_files=A__ ) UpperCAmelCase = list(ds[list(files.keys() )[0]].features.keys() ) UpperCAmelCase = features_name.pop(A__ ) UpperCAmelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCAmelCase = {label: i for i, label in enumerate(A__ )} UpperCAmelCase = tokenizer.model_input_names UpperCAmelCase = {} if len(A__ ) == 1: for k in files.keys(): UpperCAmelCase = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=A__ , max_length=A__ , padding='''max_length''' ) , batched=A__ , ) elif len(A__ ) == 2: for k in files.keys(): UpperCAmelCase = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=A__ , max_length=A__ , padding='''max_length''' , ) , batched=A__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCAmelCase = {k: v for k, v in ex.items() if k in input_names} UpperCAmelCase = labelaid[ex[label_name]] yield (d, label) UpperCAmelCase = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCAmelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCAmelCase = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCAmelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCAmelCase = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCAmelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __magic_name__ = logging.getLogger(__name__) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field(metadata={"""help""": """Which column contains the label"""} ) __SCREAMING_SNAKE_CASE = field(default=A__ , metadata={"""help""": """The path of the training file"""} ) __SCREAMING_SNAKE_CASE = field(default=A__ , metadata={"""help""": """The path of the development file"""} ) __SCREAMING_SNAKE_CASE = field(default=A__ , metadata={"""help""": """The path of the test file"""} ) __SCREAMING_SNAKE_CASE = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __SCREAMING_SNAKE_CASE = field(default=A__ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __SCREAMING_SNAKE_CASE = field( default=A__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=A__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(A__ ) , labelaid=A__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='''text-classification''' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): UpperCAmelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('''.bin''' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) def compute_metrics(A__: EvalPrediction ) -> Dict: UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCAmelCase = TFTrainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) with open(A__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(A__ ) return results if __name__ == "__main__": main()
391
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = (DDPMScheduler,) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **UpperCAmelCase__ : Union[str, Any]) ->Any: '''simple docstring''' A__ = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCAmelCase__) return config def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str) ->Dict: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->List[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Tuple: '''simple docstring''' self.check_over_configs(thresholding=UpperCAmelCase__) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase__ , prediction_type=UpperCAmelCase__ , sample_max_value=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : List[str]) ->str: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Union[str, Any]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[Any]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = len(UpperCAmelCase__) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = torch.manual_seed(0) for t in reversed(range(UpperCAmelCase__)): # 1. predict noise residual A__ = model(UpperCAmelCase__ , UpperCAmelCase__) # 2. predict previous mean of sample x_t-1 A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A__ = pred_prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 258.9606) < 1e-2 assert abs(result_mean.item() - 0.3372) < 1e-3 def SCREAMING_SNAKE_CASE ( self : int) ->int: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(prediction_type='''v_prediction''') A__ = scheduler_class(**UpperCAmelCase__) A__ = len(UpperCAmelCase__) A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = torch.manual_seed(0) for t in reversed(range(UpperCAmelCase__)): # 1. predict noise residual A__ = model(UpperCAmelCase__ , UpperCAmelCase__) # 2. predict previous mean of sample x_t-1 A__ = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance A__ = pred_prev_sample A__ = torch.sum(torch.abs(UpperCAmelCase__)) A__ = torch.mean(torch.abs(UpperCAmelCase__)) assert abs(result_sum.item() - 202.0296) < 1e-2 assert abs(result_mean.item() - 0.2631) < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase__) A__ = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase__): if i == len(UpperCAmelCase__) - 1: A__ = -1 else: A__ = timesteps[i + 1] A__ = scheduler.previous_timestep(UpperCAmelCase__) A__ = prev_t.item() self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = [100, 87, 50, 51, 0] with self.assertRaises(UpperCAmelCase__ , msg='''`custom_timesteps` must be in descending order.'''): scheduler.set_timesteps(timesteps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = [100, 87, 50, 1, 0] A__ = len(UpperCAmelCase__) with self.assertRaises(UpperCAmelCase__ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.'''): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase__ , timesteps=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**UpperCAmelCase__) A__ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase__ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase__)
87
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _UpperCamelCase = get_logger(__name__) _UpperCamelCase = Path(__file__).parent / """model_card_template.md""" _UpperCamelCase = uuida().hex _UpperCamelCase = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES _UpperCamelCase = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES _UpperCamelCase = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def _a ( _snake_case = None ): """simple docstring""" UpperCAmelCase = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_snake_case , _snake_case ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(_snake_case , _snake_case ): ua += "; " + user_agent return ua def _a ( _snake_case , _snake_case = None , _snake_case = None ): """simple docstring""" if token is None: UpperCAmelCase = HfFolder.get_token() if organization is None: UpperCAmelCase = whoami(_snake_case )["""name"""] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def _a ( _snake_case , _snake_case ): """simple docstring""" if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(_snake_case , """local_rank""" ) and args.local_rank not in [-1, 0]: return UpperCAmelCase = args.hub_token if hasattr(_snake_case , """hub_token""" ) else None UpperCAmelCase = get_full_repo_name(_snake_case , token=_snake_case ) UpperCAmelCase = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_snake_case , model_name=_snake_case , repo_name=_snake_case , dataset_name=args.dataset_name if hasattr(_snake_case , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_snake_case , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(_snake_case , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(_snake_case , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_snake_case , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(_snake_case , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(_snake_case , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_snake_case , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_snake_case , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(_snake_case , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(_snake_case , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) UpperCAmelCase = os.path.join(args.output_dir , """README.md""" ) model_card.save(_snake_case ) def _a ( _snake_case , _snake_case = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash UpperCAmelCase = str(Path(_snake_case ).as_posix() ) UpperCAmelCase = re.search(R"""snapshots/([^/]+)/""" , _snake_case ) if search is None: return None UpperCAmelCase = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _UpperCamelCase = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) _UpperCamelCase = os.path.join(hf_cache_home, """diffusers""") def _a ( _snake_case = None , _snake_case = None ): """simple docstring""" if new_cache_dir is None: UpperCAmelCase = DIFFUSERS_CACHE if old_cache_dir is None: UpperCAmelCase = old_diffusers_cache UpperCAmelCase = Path(_snake_case ).expanduser() UpperCAmelCase = Path(_snake_case ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCAmelCase = new_cache_dir / old_blob_path.relative_to(_snake_case ) new_blob_path.parent.mkdir(parents=_snake_case , exist_ok=_snake_case ) os.replace(_snake_case , _snake_case ) try: os.symlink(_snake_case , _snake_case ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _UpperCamelCase = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): _UpperCamelCase = 0 else: with open(cache_version_file) as f: try: _UpperCamelCase = int(f.read()) except ValueError: _UpperCamelCase = 0 if cache_version < 1: _UpperCamelCase = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: _UpperCamelCase = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def _a ( _snake_case , _snake_case = None ): """simple docstring""" if variant is not None: UpperCAmelCase = weights_name.split(""".""" ) UpperCAmelCase = splits[:-1] + [variant] + splits[-1:] UpperCAmelCase = """.""".join(_snake_case ) return weights_name def _a ( _snake_case , *, _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , ): """simple docstring""" UpperCAmelCase = str(_snake_case ) if os.path.isfile(_snake_case ): return pretrained_model_name_or_path elif os.path.isdir(_snake_case ): if os.path.isfile(os.path.join(_snake_case , _snake_case ) ): # Load from a PyTorch checkpoint UpperCAmelCase = os.path.join(_snake_case , _snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_snake_case , _snake_case , _snake_case ) ): UpperCAmelCase = os.path.join(_snake_case , _snake_case , _snake_case ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_snake_case ).base_version ) >= version.parse("""0.20.0""" ) ): try: UpperCAmelCase = hf_hub_download( _snake_case , filename=_add_variant(_snake_case , _snake_case ) , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , use_auth_token=_snake_case , user_agent=_snake_case , subfolder=_snake_case , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , _snake_case , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_snake_case , _snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_snake_case , _snake_case )}\' so that the correct variant file can be added.''' , _snake_case , ) try: # 2. Load model file as usual UpperCAmelCase = hf_hub_download( _snake_case , filename=_snake_case , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , use_auth_token=_snake_case , user_agent=_snake_case , subfolder=_snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' """listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' """this model name. Check the model page at """ F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.""" ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' """'https://huggingface.co/models', make sure you don't have a local directory with the same name. """ F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
341
0
'''simple docstring''' import string def A_ ( __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __A : int = """""" for i in sequence: __A : Any = ord(__SCREAMING_SNAKE_CASE ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def A_ ( __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __A : Dict = string.ascii_letters __A : Dict = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(__SCREAMING_SNAKE_CASE )] if c in letters else c for c in sequence ) def A_ ( ) -> None: """simple docstring""" from timeit import timeit print("""Running performance benchmarks...""" ) __A : Any = """from string import printable ; from __main__ import atbash, atbash_slow""" print(F"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=__SCREAMING_SNAKE_CASE )} seconds" ) print(F"> atbash(): {timeit('atbash(printable)' , setup=__SCREAMING_SNAKE_CASE )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"{example} encrypted in atbash: {atbash(example)}") benchmark()
717
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A__ : List[str] ='pt' elif is_tf_available(): A__ : List[str] ='tf' else: A__ : List[str] ='jax' class __A ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCamelCase =PerceiverTokenizer lowerCamelCase =False def lowercase_( self : int ): """simple docstring""" super().setUp() __A : Optional[int] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_( self : Any ): """simple docstring""" return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def lowercase_( self : Optional[Any] , **lowerCamelCase : Union[str, Any] ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase ) def lowercase_( self : Any , lowerCamelCase : List[Any] , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=20 , lowerCamelCase : List[str]=5 ): """simple docstring""" __A : Optional[Any] = [] for i in range(len(lowerCamelCase ) ): try: __A : str = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __A : List[str] = list(filter(lambda lowerCamelCase : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , lowerCamelCase ) ) __A : List[str] = list(filter(lambda lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCamelCase ) , lowerCamelCase ) ) if max_length is not None and len(lowerCamelCase ) > max_length: __A : Optional[Any] = toks[:max_length] if min_length is not None and len(lowerCamelCase ) < min_length and len(lowerCamelCase ) > 0: while len(lowerCamelCase ) < min_length: __A : Dict = toks + toks # toks_str = [t[1] for t in toks] __A : Optional[int] = [t[0] for t in toks] # Ensure consistency __A : Optional[Any] = tokenizer.decode(lowerCamelCase , clean_up_tokenization_spaces=lowerCamelCase ) if " " not in output_txt and len(lowerCamelCase ) > 1: __A : int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase ) ) if with_prefix_space: __A : Union[str, Any] = """ """ + output_txt __A : Any = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) return output_txt, output_ids def lowercase_( self : Optional[Any] ): """simple docstring""" __A : int = self.perceiver_tokenizer __A : List[str] = """Unicode €.""" __A : Dict = tokenizer(lowerCamelCase ) __A : Any = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded["""input_ids"""] , lowerCamelCase ) # decoding __A : Dict = tokenizer.decode(lowerCamelCase ) self.assertEqual(lowerCamelCase , """[CLS]Unicode €.[SEP]""" ) __A : int = tokenizer("""e è é ê ë""" ) __A : str = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded["""input_ids"""] , lowerCamelCase ) # decoding __A : Optional[Any] = tokenizer.decode(lowerCamelCase ) self.assertEqual(lowerCamelCase , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def lowercase_( self : Union[str, Any] ): """simple docstring""" __A : Optional[Any] = self.perceiver_tokenizer __A : int = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off __A : Any = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on __A : Optional[int] = tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase ) if FRAMEWORK != "jax": __A : str = list(batch.input_ids.numpy()[0] ) else: __A : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_( self : Optional[Any] ): """simple docstring""" __A : str = self.perceiver_tokenizer __A : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __A : Optional[int] = tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , lowerCamelCase ) self.assertIn("""attention_mask""" , lowerCamelCase ) self.assertNotIn("""decoder_input_ids""" , lowerCamelCase ) self.assertNotIn("""decoder_attention_mask""" , lowerCamelCase ) def lowercase_( self : Optional[Any] ): """simple docstring""" __A : Optional[int] = self.perceiver_tokenizer __A : Optional[Any] = [ """Summary of the text.""", """Another summary.""", ] __A : Union[str, Any] = tokenizer( text_target=lowerCamelCase , max_length=32 , padding="""max_length""" , truncation=lowerCamelCase , return_tensors=lowerCamelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase_( self : Optional[Any] ): """simple docstring""" __A : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __A : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __A : Optional[int] = tempfile.mkdtemp() __A : List[str] = """ He is very happy, UNwant\u00E9d,running""" __A : str = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) __A : Optional[int] = tokenizer.__class__.from_pretrained(lowerCamelCase ) __A : Optional[int] = after_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) shutil.rmtree(lowerCamelCase ) __A : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __A : List[Any] = tempfile.mkdtemp() __A : Optional[Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) __A : str = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __A : List[Any] = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) __A : Tuple = tokenizer.__class__.from_pretrained(lowerCamelCase ) __A : Union[str, Any] = after_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __A : List[str] = tokenizer.__class__.from_pretrained(lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCamelCase ) def lowercase_( self : int ): """simple docstring""" __A : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase ) with open(os.path.join(lowerCamelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __A : int = json.load(lowerCamelCase ) with open(os.path.join(lowerCamelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __A : Any = json.load(lowerCamelCase ) __A : str = [f"<extra_id_{i}>" for i in range(1_25 )] __A : int = added_tokens_extra_ids + [ """an_additional_special_token""" ] __A : Any = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(lowerCamelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCamelCase , lowerCamelCase ) with open(os.path.join(lowerCamelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCamelCase , lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __A : int = tokenizer_class.from_pretrained( lowerCamelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __A : int = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=lowerCamelCase )] __A : str = tokenizer_class.from_pretrained( lowerCamelCase , additional_special_tokens=lowerCamelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def lowercase_( self : Union[str, Any] ): """simple docstring""" __A : Dict = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) , """�""" ) def lowercase_( self : Optional[int] ): """simple docstring""" pass def lowercase_( self : Optional[Any] ): """simple docstring""" pass def lowercase_( self : Any ): """simple docstring""" pass def lowercase_( self : Union[str, Any] ): """simple docstring""" pass def lowercase_( self : Optional[int] ): """simple docstring""" __A : Optional[int] = self.get_tokenizers(fast=lowerCamelCase , do_lower_case=lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __A : Optional[int] = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] __A : List[Any] = tokenizer.convert_tokens_to_string(lowerCamelCase ) self.assertIsInstance(lowerCamelCase , lowerCamelCase )
499
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __a = logging.get_logger(__name__) class A__ ( A__ ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , **lowerCAmelCase__ : str ) -> Dict: """simple docstring""" _UpperCAmelCase : int = feature_size _UpperCAmelCase : Optional[Any] = sampling_rate _UpperCAmelCase : int = padding_value _UpperCAmelCase : Optional[Any] = kwargs.pop("padding_side" , "right" ) _UpperCAmelCase : Optional[int] = kwargs.pop("return_attention_mask" , _snake_case ) super().__init__(**_snake_case ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] = True , lowerCAmelCase__ : Dict = None , lowerCAmelCase__ : int = False , lowerCAmelCase__ : List[Any] = None , lowerCAmelCase__ : List[str] = None , lowerCAmelCase__ : List[str] = None , ) -> BatchFeature: """simple docstring""" if isinstance(_snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _UpperCAmelCase : Optional[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) _UpperCAmelCase : Union[str, Any] = processed_features[self.model_input_names[0]] _UpperCAmelCase : Optional[Any] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_snake_case ) == 0: if return_attention_mask: _UpperCAmelCase : Optional[Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _UpperCAmelCase : Any = required_input[0] if isinstance(_snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _UpperCAmelCase : List[str] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_snake_case ): _UpperCAmelCase : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(_snake_case ): _UpperCAmelCase : int = "tf" elif is_torch_tensor(_snake_case ): _UpperCAmelCase : str = "pt" elif isinstance(_snake_case , (int, float, list, tuple, np.ndarray) ): _UpperCAmelCase : Union[str, Any] = "np" else: raise ValueError( F"""type of {first_element} unknown: {type(_snake_case )}. """ "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _UpperCAmelCase : Dict = to_numpy(_snake_case ) else: _UpperCAmelCase : Union[str, Any] = [to_numpy(_snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy _UpperCAmelCase : Optional[Any] = self._get_padding_strategies(padding=_snake_case , max_length=_snake_case ) _UpperCAmelCase : Optional[int] = processed_features[self.model_input_names[0]] _UpperCAmelCase : str = len(_snake_case ) if not all(len(_snake_case ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) _UpperCAmelCase : List[str] = [] for i in range(_snake_case ): _UpperCAmelCase : Tuple = {k: v[i] for k, v in processed_features.items()} # truncation _UpperCAmelCase : Any = self._truncate( _snake_case , max_length=_snake_case , pad_to_multiple_of=_snake_case , truncation=_snake_case , ) truncated_inputs.append(_snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _UpperCAmelCase : Optional[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _UpperCAmelCase : str = PaddingStrategy.MAX_LENGTH _UpperCAmelCase : int = {} for i in range(_snake_case ): # padding _UpperCAmelCase : Optional[Any] = self._pad( truncated_inputs[i] , max_length=_snake_case , padding_strategy=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: _UpperCAmelCase : Any = [] if value.dtype is np.dtype(np.floataa ): _UpperCAmelCase : List[str] = value.astype(np.floataa ) batch_outputs[key].append(_snake_case ) return BatchFeature(_snake_case , tensor_type=_snake_case ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any = None , lowerCAmelCase__ : List[str] = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase__ : Tuple = None , lowerCAmelCase__ : str = None , ) -> dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _UpperCAmelCase : str = len(_snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _UpperCAmelCase : str = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _UpperCAmelCase : Optional[Any] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _UpperCAmelCase : Union[str, Any] = np.ones(len(_snake_case ) , dtype=np.intaa ) if needs_to_be_padded: _UpperCAmelCase : Dict = max_length - len(_snake_case ) if self.padding_side == "right": if return_attention_mask: _UpperCAmelCase : Union[str, Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) _UpperCAmelCase : Union[str, Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _UpperCAmelCase : Optional[Any] = np.pad( _snake_case , _snake_case , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _UpperCAmelCase : Any = np.pad( processed_features["attention_mask"] , (difference, 0) ) _UpperCAmelCase : int = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _UpperCAmelCase : Any = np.pad( _snake_case , _snake_case , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any = None , lowerCAmelCase__ : str = None , lowerCAmelCase__ : List[Any] = None , ) -> Dict: """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) _UpperCAmelCase : Optional[Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _UpperCAmelCase : int = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _UpperCAmelCase : str = len(_snake_case ) > max_length if needs_to_be_truncated: _UpperCAmelCase : str = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _UpperCAmelCase : str = processed_features["attention_mask"][:max_length] return processed_features def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : List[str]=None ) -> Optional[Any]: """simple docstring""" if padding is not False: if padding is True: _UpperCAmelCase : List[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_snake_case , _snake_case ): _UpperCAmelCase : Tuple = PaddingStrategy(_snake_case ) elif isinstance(_snake_case , _snake_case ): _UpperCAmelCase : Optional[Any] = padding else: _UpperCAmelCase : str = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
494
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off __magic_name__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] __magic_name__ = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """whisper""" __SCREAMING_SNAKE_CASE = ["""past_key_values"""] __SCREAMING_SNAKE_CASE = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , _snake_case=5_1865 , _snake_case=80 , _snake_case=6 , _snake_case=4 , _snake_case=6 , _snake_case=4 , _snake_case=1536 , _snake_case=1536 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=5_0257 , _snake_case=True , _snake_case=True , _snake_case="gelu" , _snake_case=256 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=False , _snake_case=1500 , _snake_case=448 , _snake_case=5_0256 , _snake_case=5_0256 , _snake_case=5_0256 , _snake_case=None , _snake_case=[220, 5_0256] , _snake_case=False , _snake_case=256 , _snake_case=False , _snake_case=0.05 , _snake_case=10 , _snake_case=2 , _snake_case=0.0 , _snake_case=10 , _snake_case=0 , _snake_case=7 , **_snake_case , ) -> str: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = num_mel_bins UpperCAmelCase = d_model UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size UpperCAmelCase = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks UpperCAmelCase = median_filter_width super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , decoder_start_token_id=_snake_case , suppress_tokens=_snake_case , begin_suppress_tokens=_snake_case , **_snake_case , ) class lowercase ( A__ ): '''simple docstring''' @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" UpperCAmelCase = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_snake_case , direction='''inputs''' ) return common_inputs def snake_case_ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , _snake_case = 2_2050 , _snake_case = 5.0 , _snake_case = 220 , ) -> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = OrderedDict() UpperCAmelCase = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_snake_case , framework=_snake_case , sampling_rate=_snake_case , time_duration=_snake_case , frequency=_snake_case , ) UpperCAmelCase = encoder_inputs['''input_features'''].shape[2] UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase = super().generate_dummy_inputs( preprocessor.tokenizer , _snake_case , _snake_case , _snake_case , _snake_case ) UpperCAmelCase = encoder_inputs.pop('''input_features''' ) UpperCAmelCase = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: UpperCAmelCase = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def snake_case_ ( self ) -> float: """simple docstring""" return 1e-3
254
0
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __lowerCAmelCase = logging.get_logger(__name__) def _lowercase ( a__ : nn.ModuleList , a__ : nn.ModuleList , a__ : List[int] ) -> None: """simple docstring""" _UpperCamelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(a__ ) == len(a__ ), f'''{len(a__ )} != {len(a__ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __lowerCAmelCase = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __lowerCAmelCase = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def _lowercase ( a__ : List[str] , a__ : Optional[Any] ) -> Tuple: """simple docstring""" try: _UpperCamelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' f''' {n_student}''' ) return list(range(a__ ) ) def _lowercase ( a__ : Tuple , a__ : Any ) -> List[int]: """simple docstring""" if n_student > n_teacher: raise ValueError(f'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(a__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def _lowercase ( a__ : Union[str, PreTrainedModel] , a__ : Union[str, Path] = "student" , a__ : Union[int, None] = None , a__ : Union[int, None] = None , a__ : List[Any]=False , a__ : Dict=None , a__ : str=None , **a__ : Optional[int] , ) -> Tuple[PreTrainedModel, List[int], List[int]]: """simple docstring""" _UpperCamelCase = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(a__ , a__ ): AutoTokenizer.from_pretrained(a__ ).save_pretrained(a__ ) # purely for convenience _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(a__ ).eval() else: assert isinstance(a__ , a__ ), f'''teacher must be a model or string got type {type(a__ )}''' _UpperCamelCase = teacher.config.to_diff_dict() try: _UpperCamelCase , _UpperCamelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCamelCase = teacher_e if d is None: _UpperCamelCase = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): _UpperCamelCase , _UpperCamelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCamelCase , _UpperCamelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCamelCase = teacher_e if d is None: _UpperCamelCase = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(a__ ) # Copy weights _UpperCamelCase = teacher.config_class(**a__ ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_config(a__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCamelCase = student.load_state_dict(teacher.state_dict() , strict=a__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCamelCase , _UpperCamelCase = list(range(a__ ) ), list(range(a__ ) ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' f''' {save_path}''' ) student.save_pretrained(a__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCamelCase = pick_layers_to_copy(a__ , a__ ) if d_layers_to_copy is None: _UpperCamelCase = pick_layers_to_copy(a__ , a__ ) try: if hasattr( a__ , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , a__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , a__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , a__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , a__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , a__ ) copy_layers(teacher.decoder.block , student.decoder.block , a__ ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCamelCase = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(a__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
589
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase_ ( lowercase , lowercase ): @register_to_config def __init__( self , *, lowerCamelCase_ = 4 , lowerCamelCase_ = 7_68 , lowerCamelCase_ , lowerCamelCase_ , ) -> int: """simple docstring""" super().__init__() _UpperCamelCase = nn.Parameter(torch.zeros(lowerCamelCase_ ) ) # parameters for additional clip time embeddings _UpperCamelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) # parameters for encoder hidden states _UpperCamelCase = clip_extra_context_tokens _UpperCamelCase = nn.Linear( lowerCamelCase_ , self.clip_extra_context_tokens * cross_attention_dim ) _UpperCamelCase = nn.Linear(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = nn.LayerNorm(lowerCamelCase_ ) def lowercase ( self , *, lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _UpperCamelCase = image_embeddings.shape[0] _UpperCamelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _UpperCamelCase = classifier_free_guidance_embeddings.expand( lowerCamelCase_ , -1 ) _UpperCamelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _UpperCamelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _UpperCamelCase = self.embedding_proj(lowerCamelCase_ ) _UpperCamelCase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase_ ) _UpperCamelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _UpperCamelCase = self.clip_extra_context_tokens_proj(lowerCamelCase_ ) _UpperCamelCase = clip_extra_context_tokens.reshape(lowerCamelCase_ , -1 , self.clip_extra_context_tokens ) _UpperCamelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) _UpperCamelCase = self.encoder_hidden_states_proj(lowerCamelCase_ ) _UpperCamelCase = self.text_encoder_hidden_states_norm(lowerCamelCase_ ) _UpperCamelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
589
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE__ : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: snake_case__ =state_dict.pop(lowercase_ ) snake_case__ =val def a ( UpperCamelCase_ : str ) -> Union[str, Any]: snake_case__ =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case__ =key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) snake_case__ =value else: snake_case__ =value return new_state_dict def a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : str=False ) -> Dict: snake_case__ ='''''' if is_panoptic: snake_case__ ='''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ =state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case__ =state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ =in_proj_weight[:256, :] snake_case__ =in_proj_bias[:256] snake_case__ =in_proj_weight[256:512, :] snake_case__ =in_proj_bias[256:512] snake_case__ =in_proj_weight[-256:, :] snake_case__ =in_proj_bias[-256:] def a ( ) -> List[str]: snake_case__ ='''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ =Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] ) -> Any: snake_case__ =ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case__ ='''resnet101''' if "dc5" in model_name: snake_case__ =True snake_case__ ='''panoptic''' in model_name if is_panoptic: snake_case__ =250 else: snake_case__ =91 snake_case__ ='''huggingface/label-files''' snake_case__ ='''coco-detection-id2label.json''' snake_case__ =json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='dataset' ) , 'r' ) ) snake_case__ ={int(lowercase_ ): v for k, v in idalabel.items()} snake_case__ =idalabel snake_case__ ={v: k for k, v in idalabel.items()} # load image processor snake_case__ ='''coco_panoptic''' if is_panoptic else '''coco_detection''' snake_case__ =ConditionalDetrImageProcessor(format=lowercase_ ) # prepare image snake_case__ =prepare_img() snake_case__ =image_processor(images=lowercase_ , return_tensors='pt' ) snake_case__ =encoding['''pixel_values'''] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub snake_case__ =torch.hub.load('DeppMeng/ConditionalDETR' , lowercase_ , pretrained=lowercase_ ).eval() snake_case__ =conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case__ ='''conditional_detr.''' + src rename_key(lowercase_ , lowercase_ , lowercase_ ) snake_case__ =rename_backbone_keys(lowercase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase_ , is_panoptic=lowercase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ ='''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): snake_case__ =state_dict.pop(lowercase_ ) snake_case__ =val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ =state_dict.pop(lowercase_ ) snake_case__ =val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: snake_case__ =state_dict.pop(lowercase_ ) snake_case__ =val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): snake_case__ =state_dict.pop(lowercase_ ) snake_case__ =val # finally, create HuggingFace model and load state dict snake_case__ =ConditionalDetrForSegmentation(lowercase_ ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() model.push_to_hub(repo_id=lowercase_ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion snake_case__ =conditional_detr(lowercase_ ) snake_case__ =model(lowercase_ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
538
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : UNetaDModel _lowerCAmelCase : ScoreSdeVeScheduler def __init__( self , lowercase__ , lowercase__): super().__init__() self.register_modules(unet=lowercase__ , scheduler=lowercase__) @torch.no_grad() def __call__( self , lowercase__ = 1 , lowercase__ = 2_0_0_0 , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , **lowercase__ , ): __UpperCAmelCase : int = self.unet.config.sample_size __UpperCAmelCase : Optional[int] = (batch_size, 3, img_size, img_size) __UpperCAmelCase : int = self.unet __UpperCAmelCase : Tuple = randn_tensor(lowercase__ , generator=lowercase__) * self.scheduler.init_noise_sigma __UpperCAmelCase : List[str] = sample.to(self.device) self.scheduler.set_timesteps(lowercase__) self.scheduler.set_sigmas(lowercase__) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): __UpperCAmelCase : List[str] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device) # correction step for _ in range(self.scheduler.config.correct_steps): __UpperCAmelCase : int = self.unet(lowercase__ , lowercase__).sample __UpperCAmelCase : str = self.scheduler.step_correct(lowercase__ , lowercase__ , generator=lowercase__).prev_sample # prediction step __UpperCAmelCase : Tuple = model(lowercase__ , lowercase__).sample __UpperCAmelCase : Dict = self.scheduler.step_pred(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean __UpperCAmelCase : List[str] = sample_mean.clamp(0 , 1) __UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __UpperCAmelCase : List[Any] = self.numpy_to_pil(lowercase__) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowercase__)
462
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging snake_case_ : str = logging.get_logger(__name__) class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = ['''input_features''', '''is_longer'''] def __init__( self , lowerCamelCase__=6_4 , lowerCamelCase__=4_8_0_0_0 , lowerCamelCase__=4_8_0 , lowerCamelCase__=1_0 , lowerCamelCase__=1_0_2_4 , lowerCamelCase__=0.0 , lowerCamelCase__=False , lowerCamelCase__ = 0 , lowerCamelCase__ = 1_4_0_0_0 , lowerCamelCase__ = None , lowerCamelCase__ = "fusion" , lowerCamelCase__ = "repeatpad" , **lowerCamelCase__ , ): '''simple docstring''' super().__init__( feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) UpperCamelCase = top_db UpperCamelCase = truncation UpperCamelCase = padding UpperCamelCase = fft_window_size UpperCamelCase = (fft_window_size >> 1) + 1 UpperCamelCase = hop_length UpperCamelCase = max_length_s UpperCamelCase = max_length_s * sampling_rate UpperCamelCase = sampling_rate UpperCamelCase = frequency_min UpperCamelCase = frequency_max UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm=lowerCamelCase__ , mel_scale='''htk''' , ) UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm='''slaney''' , mel_scale='''slaney''' , ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' UpperCamelCase = spectrogram( lowerCamelCase__ , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCamelCase__ , log_mel='''dB''' , ) return log_mel_spectrogram.T def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase = [0] # randomly choose index for each part UpperCamelCase = np.random.choice(ranges[0] ) UpperCamelCase = np.random.choice(ranges[1] ) UpperCamelCase = np.random.choice(ranges[2] ) UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] UpperCamelCase = torch.tensor(mel[None, None, :] ) UpperCamelCase = torch.nn.functional.interpolate( lowerCamelCase__ , size=[chunk_frames, 6_4] , mode='''bilinear''' , align_corners=lowerCamelCase__ ) UpperCamelCase = mel_shrink[0][0].numpy() UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCamelCase = len(lowerCamelCase__ ) - max_length UpperCamelCase = np.random.randint(0 , overflow + 1 ) UpperCamelCase = waveform[idx : idx + max_length] UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) UpperCamelCase = False else: UpperCamelCase = self._random_mel_fusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = True else: raise NotImplementedError(f'data_truncating {truncation} not implemented' ) else: UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCamelCase = int(max_length / len(lowerCamelCase__ ) ) UpperCamelCase = np.stack(np.tile(lowerCamelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCamelCase = int(max_length / len(lowerCamelCase__ ) ) UpperCamelCase = np.stack(np.tile(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCamelCase = np.pad(lowerCamelCase__ , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = truncation if truncation is not None else self.truncation UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase = isinstance(lowerCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) UpperCamelCase = is_batched_numpy or ( isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ): UpperCamelCase = np.asarray(lowerCamelCase__ , dtype=np.floataa ) elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase = [np.asarray(lowerCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. UpperCamelCase = [ self._get_input_mel(lowerCamelCase__ , max_length if max_length else self.nb_max_samples , lowerCamelCase__ , lowerCamelCase__ ) for waveform in raw_speech ] UpperCamelCase = [] UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase__ ) is_longer.append(lowerCamelCase__ ) if truncation == "fusion" and sum(lowerCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCamelCase = np.random.randint(0 , len(lowerCamelCase__ ) ) UpperCamelCase = True if isinstance(input_mel[0] , lowerCamelCase__ ): UpperCamelCase = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCamelCase = [[longer] for longer in is_longer] UpperCamelCase = {'''input_features''': input_mel, '''is_longer''': is_longer} UpperCamelCase = BatchFeature(lowerCamelCase__ ) if return_tensors is not None: UpperCamelCase = input_features.convert_to_tensors(lowerCamelCase__ ) return input_features
350
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets snake_case_ : int = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' snake_case_ : Optional[int] = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' snake_case_ : Optional[Any] = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def __snake_case ( _UpperCAmelCase : Optional[Any]): def remove_articles(_UpperCAmelCase : str): UpperCamelCase = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) return re.sub(_UpperCAmelCase, ''' ''', _UpperCAmelCase) def white_space_fix(_UpperCAmelCase : Union[str, Any]): return " ".join(text.split()) def remove_punc(_UpperCAmelCase : Dict): UpperCamelCase = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(_UpperCAmelCase : List[str]): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase)))) def __snake_case ( _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[str]): return int(normalize_answer(_UpperCAmelCase) == normalize_answer(_UpperCAmelCase)) def __snake_case ( _UpperCAmelCase : int, _UpperCAmelCase : Optional[int]): UpperCamelCase = [any(compute_exact(_UpperCAmelCase, _UpperCAmelCase) for ref in refs) for pred, refs in zip(_UpperCAmelCase, _UpperCAmelCase)] return (sum(_UpperCAmelCase) / len(_UpperCAmelCase)) * 100 def __snake_case ( _UpperCAmelCase : Any, _UpperCAmelCase : Optional[int], _UpperCAmelCase : int, _UpperCAmelCase : List[str]): UpperCamelCase = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCamelCase = Counter(_UpperCAmelCase) UpperCamelCase = Counter(_UpperCAmelCase) UpperCamelCase = Counter() for sgram, scount in sgramcounter.items(): UpperCamelCase = scount * numref UpperCamelCase = Counter(_UpperCAmelCase) UpperCamelCase = Counter() for cgram, ccount in cgramcounter.items(): UpperCamelCase = ccount * numref # KEEP UpperCamelCase = sgramcounter_rep & cgramcounter_rep UpperCamelCase = keepgramcounter_rep & rgramcounter UpperCamelCase = sgramcounter_rep & rgramcounter UpperCamelCase = 0 UpperCamelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase = 1 UpperCamelCase = 1 if len(_UpperCAmelCase) > 0: UpperCamelCase = keeptmpscorea / len(_UpperCAmelCase) if len(_UpperCAmelCase) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCamelCase = keeptmpscorea / sum(keepgramcounterall_rep.values()) UpperCamelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCamelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCamelCase = sgramcounter_rep - cgramcounter_rep UpperCamelCase = delgramcounter_rep - rgramcounter UpperCamelCase = sgramcounter_rep - rgramcounter UpperCamelCase = 0 UpperCamelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase = 1 if len(_UpperCAmelCase) > 0: UpperCamelCase = deltmpscorea / len(_UpperCAmelCase) # ADDITION UpperCamelCase = set(_UpperCAmelCase) - set(_UpperCAmelCase) UpperCamelCase = set(_UpperCAmelCase) & set(_UpperCAmelCase) UpperCamelCase = set(_UpperCAmelCase) - set(_UpperCAmelCase) UpperCamelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase = 1 UpperCamelCase = 1 if len(_UpperCAmelCase) > 0: UpperCamelCase = addtmpscore / len(_UpperCAmelCase) if len(_UpperCAmelCase) > 0: UpperCamelCase = addtmpscore / len(_UpperCAmelCase) UpperCamelCase = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCamelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __snake_case ( _UpperCAmelCase : str, _UpperCAmelCase : Tuple, _UpperCAmelCase : str): UpperCamelCase = len(_UpperCAmelCase) UpperCamelCase = ssent.split(''' ''') UpperCamelCase = csent.split(''' ''') UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for rsent in rsents: UpperCamelCase = rsent.split(''' ''') UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] ragramslist.append(_UpperCAmelCase) for i in range(0, len(_UpperCAmelCase) - 1): if i < len(_UpperCAmelCase) - 1: UpperCamelCase = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_UpperCAmelCase) if i < len(_UpperCAmelCase) - 2: UpperCamelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_UpperCAmelCase) if i < len(_UpperCAmelCase) - 3: UpperCamelCase = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_UpperCAmelCase) ragramslist.append(_UpperCAmelCase) ragramslist.append(_UpperCAmelCase) ragramslist.append(_UpperCAmelCase) for i in range(0, len(_UpperCAmelCase) - 1): if i < len(_UpperCAmelCase) - 1: UpperCamelCase = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_UpperCAmelCase) if i < len(_UpperCAmelCase) - 2: UpperCamelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_UpperCAmelCase) if i < len(_UpperCAmelCase) - 3: UpperCamelCase = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_UpperCAmelCase) for i in range(0, len(_UpperCAmelCase) - 1): if i < len(_UpperCAmelCase) - 1: UpperCamelCase = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_UpperCAmelCase) if i < len(_UpperCAmelCase) - 2: UpperCamelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_UpperCAmelCase) if i < len(_UpperCAmelCase) - 3: UpperCamelCase = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_UpperCAmelCase) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = SARIngram(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = SARIngram(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = SARIngram(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = SARIngram(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = sum([keepascore, keepascore, keepascore, keepascore]) / 4 UpperCamelCase = sum([delascore, delascore, delascore, delascore]) / 4 UpperCamelCase = sum([addascore, addascore, addascore, addascore]) / 4 UpperCamelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __snake_case ( _UpperCAmelCase : List[str], _UpperCAmelCase : bool = True, _UpperCAmelCase : str = "13a", _UpperCAmelCase : bool = True): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCamelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__).major >= 2: UpperCamelCase = sacrebleu.metrics.bleu._get_tokenizer(_UpperCAmelCase)()(_UpperCAmelCase) else: UpperCamelCase = sacrebleu.TOKENIZERS[tokenizer]()(_UpperCAmelCase) elif tokenizer == "moses": UpperCamelCase = sacremoses.MosesTokenizer().tokenize(_UpperCAmelCase, return_str=_UpperCAmelCase, escape=_UpperCAmelCase) elif tokenizer == "penn": UpperCamelCase = sacremoses.MosesTokenizer().penn_tokenize(_UpperCAmelCase, return_str=_UpperCAmelCase) else: UpperCamelCase = sentence if not return_str: UpperCamelCase = normalized_sent.split() return normalized_sent def __snake_case ( _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : Optional[Any]): if not (len(_UpperCAmelCase) == len(_UpperCAmelCase) == len(_UpperCAmelCase)): raise ValueError('''Sources length must match predictions and references lengths.''') UpperCamelCase = 0 for src, pred, refs in zip(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase): sari_score += SARIsent(normalize(_UpperCAmelCase), normalize(_UpperCAmelCase), [normalize(_UpperCAmelCase) for sent in refs]) UpperCamelCase = sari_score / len(_UpperCAmelCase) return 100 * sari_score def __snake_case ( _UpperCAmelCase : str, _UpperCAmelCase : Dict, _UpperCAmelCase : Any="exp", _UpperCAmelCase : str=None, _UpperCAmelCase : Optional[Any]=False, _UpperCAmelCase : Union[str, Any]=False, _UpperCAmelCase : List[Any]=False, ): UpperCamelCase = len(references[0]) if any(len(_UpperCAmelCase) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') UpperCamelCase = [[refs[i] for refs in references] for i in range(_UpperCAmelCase)] UpperCamelCase = sacrebleu.corpus_bleu( _UpperCAmelCase, _UpperCAmelCase, smooth_method=_UpperCAmelCase, smooth_value=_UpperCAmelCase, force=_UpperCAmelCase, lowercase=_UpperCAmelCase, use_effective_order=_UpperCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = {} result.update({'''sari''': compute_sari(sources=lowerCamelCase__ , predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) result.update({'''exact''': compute_em(predictions=lowerCamelCase__ , references=lowerCamelCase__ )} ) return result
350
1
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowerCAmelCase : Optional[int] = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : List[str] = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def a ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _lowerCAmelCase : List[str] = FlaxBertModel(snake_case__ ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) _lowerCAmelCase : str = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) _lowerCAmelCase : List[str] = flatten_dict(unfreeze(model.params ) ) _lowerCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _lowerCAmelCase : Optional[int] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case__ , 1E-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case__ , repo_id='test-model-flax' , push_to_hub=snake_case__ , use_auth_token=self._token ) _lowerCAmelCase : Tuple = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) _lowerCAmelCase : Dict = flatten_dict(unfreeze(model.params ) ) _lowerCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _lowerCAmelCase : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case__ , 1E-3 , msg=F'{key} not identical' ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _lowerCAmelCase : List[Any] = FlaxBertModel(snake_case__ ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) _lowerCAmelCase : Dict = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) _lowerCAmelCase : Any = flatten_dict(unfreeze(model.params ) ) _lowerCAmelCase : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _lowerCAmelCase : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case__ , 1E-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( snake_case__ , repo_id='valid_org/test-model-flax-org' , push_to_hub=snake_case__ , use_auth_token=self._token ) _lowerCAmelCase : Tuple = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) _lowerCAmelCase : List[str] = flatten_dict(unfreeze(model.params ) ) _lowerCAmelCase : Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _lowerCAmelCase : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case__ , 1E-3 , msg=F'{key} not identical' ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : List[Any] = True _lowerCAmelCase : List[Any] = flatten_dict(modela.params ) _lowerCAmelCase : int = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: _lowerCAmelCase : Union[str, Any] = False return models_are_equal @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) _lowerCAmelCase : Optional[Any] = FlaxBertModel(snake_case__ ) _lowerCAmelCase : str = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case__ , snake_case__ ) ) with self.assertRaises(snake_case__ ): _lowerCAmelCase : Optional[int] = FlaxBertModel.from_pretrained(snake_case__ ) _lowerCAmelCase : str = FlaxBertModel.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.assertTrue(check_models_equal(snake_case__ , snake_case__ ) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) _lowerCAmelCase : Tuple = FlaxBertModel(snake_case__ ) _lowerCAmelCase : Optional[int] = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case__ , snake_case__ ) , max_shard_size='10KB' ) with self.assertRaises(snake_case__ ): _lowerCAmelCase : Optional[int] = FlaxBertModel.from_pretrained(snake_case__ ) _lowerCAmelCase : int = FlaxBertModel.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.assertTrue(check_models_equal(snake_case__ , snake_case__ ) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 'bert' _lowerCAmelCase : Optional[int] = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(snake_case__ ): _lowerCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(snake_case__ ) _lowerCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.assertIsNotNone(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 'bert' _lowerCAmelCase : Tuple = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(snake_case__ ): _lowerCAmelCase : Tuple = FlaxBertModel.from_pretrained(snake_case__ ) _lowerCAmelCase : str = FlaxBertModel.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.assertIsNotNone(snake_case__ )
444
'''simple docstring''' from __future__ import annotations from math import gcd def lowercase (_A , _A = 2 , _A = 1 , _A = 3 , ): """simple docstring""" if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_A , _A , _A ) -> int: return (pow(_A , 2 ) + step) % modulus for _ in range(_A ): # These track the position within the cycle detection logic. _lowerCAmelCase : Dict = seed _lowerCAmelCase : int = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. _lowerCAmelCase : str = rand_fn(_A , _A , _A ) _lowerCAmelCase : Optional[int] = rand_fn(_A , _A , _A ) _lowerCAmelCase : Union[str, Any] = rand_fn(_A , _A , _A ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. _lowerCAmelCase : Optional[int] = gcd(hare - tortoise , _A ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. _lowerCAmelCase : Tuple = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) lowerCAmelCase : List[str] = parser.parse_args() lowerCAmelCase : List[str] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: lowerCAmelCase : Union[str, Any] = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
444
1
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase_ = """ Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def a__ ( snake_case , snake_case , snake_case=8 ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __SCREAMING_SNAKE_CASE : Dict = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def a__ ( snake_case , snake_case=512 , snake_case=512 ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) __SCREAMING_SNAKE_CASE : int = np.array(pil_image.convert('''RGB''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = arr.astype(np.floataa ) / 127.5 - 1 __SCREAMING_SNAKE_CASE : int = np.transpose(snake_case , [2, 0, 1] ) __SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(snake_case ).unsqueeze(0 ) return image class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : Optional[int] , _A : UNetaDConditionModel , _A : DDPMScheduler , _A : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) __SCREAMING_SNAKE_CASE : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase__ ( self : Any , _A : Dict , _A : Any , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = min(int(num_inference_steps * strength ) , _A ) __SCREAMING_SNAKE_CASE : Tuple = max(num_inference_steps - init_timestep , 0 ) __SCREAMING_SNAKE_CASE : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, Any] , _A : Tuple , _A : List[Any] , _A : Optional[int] , _A : Any , _A : Tuple , _A : List[str]=None ): """simple docstring""" if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = image.to(device=_A , dtype=_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: __SCREAMING_SNAKE_CASE : Dict = image else: if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_A ) ] __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat(_A , dim=0 ) else: __SCREAMING_SNAKE_CASE : Any = self.movq.encode(_A ).latent_dist.sample(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.movq.config.scaling_factor * init_latents __SCREAMING_SNAKE_CASE : List[str] = torch.cat([init_latents] , dim=0 ) __SCREAMING_SNAKE_CASE : Optional[int] = init_latents.shape __SCREAMING_SNAKE_CASE : Tuple = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents __SCREAMING_SNAKE_CASE : Tuple = self.scheduler.add_noise(_A , _A , _A ) __SCREAMING_SNAKE_CASE : Optional[int] = init_latents return latents def UpperCAmelCase__ ( self : str , _A : int=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __SCREAMING_SNAKE_CASE : str = torch.device(F'''cuda:{gpu_id}''' ) __SCREAMING_SNAKE_CASE : List[str] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def UpperCAmelCase__ ( self : Any , _A : Union[str, Any]=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) __SCREAMING_SNAKE_CASE : List[Any] = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __SCREAMING_SNAKE_CASE : Union[str, Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. __SCREAMING_SNAKE_CASE : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self : List[Any] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , _A : Union[torch.FloatTensor, List[torch.FloatTensor]] , _A : int = 512 , _A : int = 512 , _A : int = 100 , _A : float = 4.0 , _A : float = 0.3 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[str] = "pil" , _A : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self._execution_device __SCREAMING_SNAKE_CASE : Optional[Any] = guidance_scale > 1.0 if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat(_A , dim=0 ) __SCREAMING_SNAKE_CASE : List[str] = image_embeds.shape[0] if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Any = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE : List[Any] = image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Any = negative_image_embeds.repeat_interleave(_A , dim=0 ) __SCREAMING_SNAKE_CASE : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) if not isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Any = [image] if not all(isinstance(_A , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'''Input is in incorrect format: {[type(_A ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) __SCREAMING_SNAKE_CASE : Dict = torch.cat([prepare_image(_A , _A , _A ) for i in image] , dim=0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = image.to(dtype=image_embeds.dtype , device=_A ) __SCREAMING_SNAKE_CASE : Any = self.movq.encode(_A )['''latents'''] __SCREAMING_SNAKE_CASE : List[str] = latents.repeat_interleave(_A , dim=0 ) self.scheduler.set_timesteps(_A , device=_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = self.get_timesteps(_A , _A , _A ) __SCREAMING_SNAKE_CASE : Optional[int] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = downscale_height_and_width(_A , _A , self.movq_scale_factor ) __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_latents( _A , _A , _A , _A , image_embeds.dtype , _A , _A ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE : int = {'''image_embeds''': image_embeds} __SCREAMING_SNAKE_CASE : List[Any] = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = variance_pred.chunk(2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing __SCREAMING_SNAKE_CASE : Union[str, Any] = self.movq.decode(_A , force_not_quantize=_A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: __SCREAMING_SNAKE_CASE : str = image * 0.5 + 0.5 __SCREAMING_SNAKE_CASE : List[str] = image.clamp(0 , 1 ) __SCREAMING_SNAKE_CASE : str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE : Tuple = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
131
def a__ ( snake_case , snake_case ): """simple docstring""" return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
131
1
from math import sqrt def _UpperCamelCase (a__ :int ): """simple docstring""" assert isinstance(a__ , a__ ) and ( number >= 0 ), "'number' must been an int and positive" UpperCamelCase__ = True # 0 and 1 are none primes. if number <= 1: UpperCamelCase__ = False for divisor in range(2 , int(round(sqrt(a__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCamelCase__ = False break # precondition assert isinstance(a__ , a__ ), "'status' must been from type bool" return status def _UpperCamelCase (a__ :Tuple ): """simple docstring""" assert isinstance(a__ , a__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCamelCase__ = list(range(2 , n + 1 ) ) UpperCamelCase__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a__ ) ): for j in range(i + 1 , len(a__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCamelCase__ = 0 # filters actual prime numbers. UpperCamelCase__ = [x for x in begin_list if x != 0] # precondition assert isinstance(a__ , a__ ), "'ans' must been from type list" return ans def _UpperCamelCase (a__ :Tuple ): """simple docstring""" assert isinstance(a__ , a__ ) and (n > 2), "'N' must been an int and > 2" UpperCamelCase__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a__ ): ans.append(a__ ) # precondition assert isinstance(a__ , a__ ), "'ans' must been from type list" return ans def _UpperCamelCase (a__ :Dict ): """simple docstring""" assert isinstance(a__ , a__ ) and number >= 0, "'number' must been an int and >= 0" UpperCamelCase__ = [] # this list will be returns of the function. # potential prime number factors. UpperCamelCase__ = 2 UpperCamelCase__ = number if number == 0 or number == 1: ans.append(a__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a__ ): while quotient != 1: if is_prime(a__ ) and (quotient % factor == 0): ans.append(a__ ) quotient /= factor else: factor += 1 else: ans.append(a__ ) # precondition assert isinstance(a__ , a__ ), "'ans' must been from type list" return ans def _UpperCamelCase (a__ :Any ): """simple docstring""" assert isinstance(a__ , a__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase__ = 0 # prime factorization of 'number' UpperCamelCase__ = prime_factorization(a__ ) UpperCamelCase__ = max(a__ ) # precondition assert isinstance(a__ , a__ ), "'ans' must been from type int" return ans def _UpperCamelCase (a__ :Union[str, Any] ): """simple docstring""" assert isinstance(a__ , a__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase__ = 0 # prime factorization of 'number' UpperCamelCase__ = prime_factorization(a__ ) UpperCamelCase__ = min(a__ ) # precondition assert isinstance(a__ , a__ ), "'ans' must been from type int" return ans def _UpperCamelCase (a__ :List[str] ): """simple docstring""" assert isinstance(a__ , a__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a__ ), "compare bust been from type bool" return number % 2 == 0 def _UpperCamelCase (a__ :str ): """simple docstring""" assert isinstance(a__ , a__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a__ ), "compare bust been from type bool" return number % 2 != 0 def _UpperCamelCase (a__ :str ): """simple docstring""" assert ( isinstance(a__ , a__ ) and (number > 2) and is_even(a__ ) ), "'number' must been an int, even and > 2" UpperCamelCase__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCamelCase__ = get_prime_numbers(a__ ) UpperCamelCase__ = len(a__ ) # run variable for while-loops. UpperCamelCase__ = 0 UpperCamelCase__ = None # exit variable. for break up the loops UpperCamelCase__ = True while i < len_pn and loop: UpperCamelCase__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCamelCase__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a__ , a__ ) and (len(a__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _UpperCamelCase (a__ :Union[str, Any] , a__ :List[str] ): """simple docstring""" assert ( isinstance(a__ , a__ ) and isinstance(a__ , a__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCamelCase__ = 0 while numbera != 0: UpperCamelCase__ = numbera % numbera UpperCamelCase__ = numbera UpperCamelCase__ = rest # precondition assert isinstance(a__ , a__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _UpperCamelCase (a__ :Optional[Any] , a__ :List[Any] ): """simple docstring""" assert ( isinstance(a__ , a__ ) and isinstance(a__ , a__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCamelCase__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCamelCase__ = prime_factorization(a__ ) UpperCamelCase__ = prime_factorization(a__ ) elif numbera == 1 or numbera == 1: UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = max(a__ , a__ ) UpperCamelCase__ = 0 UpperCamelCase__ = 0 UpperCamelCase__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCamelCase__ = prime_fac_a.count(a__ ) UpperCamelCase__ = prime_fac_a.count(a__ ) for _ in range(max(a__ , a__ ) ): ans *= n else: UpperCamelCase__ = prime_fac_a.count(a__ ) for _ in range(a__ ): ans *= n done.append(a__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCamelCase__ = prime_fac_a.count(a__ ) for _ in range(a__ ): ans *= n done.append(a__ ) # precondition assert isinstance(a__ , a__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _UpperCamelCase (a__ :Optional[Any] ): """simple docstring""" assert isinstance(a__ , a__ ) and (n >= 0), "'number' must been a positive int" UpperCamelCase__ = 0 UpperCamelCase__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a__ ): ans += 1 # precondition assert isinstance(a__ , a__ ) and is_prime( a__ ), "'ans' must been a prime number and from type int" return ans def _UpperCamelCase (a__ :Optional[Any] , a__ :List[str] ): """simple docstring""" assert ( is_prime(a__ ) and is_prime(a__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCamelCase__ = p_number_a + 1 # jump to the next number UpperCamelCase__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a__ ): number += 1 while number < p_number_a: ans.append(a__ ) number += 1 # fetch the next prime number. while not is_prime(a__ ): number += 1 # precondition assert ( isinstance(a__ , a__ ) and ans[0] != p_number_a and ans[len(a__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _UpperCamelCase (a__ :Any ): """simple docstring""" assert isinstance(a__ , a__ ) and (n >= 1), "'n' must been int and >= 1" UpperCamelCase__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a__ ) # precondition assert ans[0] == 1 and ans[len(a__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _UpperCamelCase (a__ :List[Any] ): """simple docstring""" assert isinstance(a__ , a__ ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCamelCase__ = get_divisors(a__ ) # precondition assert ( isinstance(a__ , a__ ) and (divisors[0] == 1) and (divisors[len(a__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _UpperCamelCase (a__ :List[Any] , a__ :Any ): """simple docstring""" assert ( isinstance(a__ , a__ ) and isinstance(a__ , a__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCamelCase__ = gcd(abs(a__ ) , abs(a__ ) ) # precondition assert ( isinstance(a__ , a__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _UpperCamelCase (a__ :Any ): """simple docstring""" assert isinstance(a__ , a__ ) and (n >= 0), "'n' must been a int and >= 0" UpperCamelCase__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _UpperCamelCase (a__ :Tuple ): """simple docstring""" assert isinstance(a__ , a__ ) and (n >= 0), "'n' must been an int and >= 0" UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = 1 # this will be return for _ in range(n - 1 ): UpperCamelCase__ = ans ans += fiba UpperCamelCase__ = tmp return ans
619
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case : List[str] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) UpperCamelCase__ = VideoClassificationPipeline(model=__lowerCAmelCase , image_processor=__lowerCAmelCase , top_k=2 ) UpperCamelCase__ = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): for example in examples: UpperCamelCase__ = video_classifier(__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ {"""score""": ANY(__lowerCAmelCase ), """label""": ANY(__lowerCAmelCase )}, {"""score""": ANY(__lowerCAmelCase ), """label""": ANY(__lowerCAmelCase )}, ] , ) @require_torch def _lowerCamelCase ( self ): UpperCamelCase__ = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" UpperCamelCase__ = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) UpperCamelCase__ = pipeline( """video-classification""" , model=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , frame_sampling_rate=4 ) UpperCamelCase__ = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) UpperCamelCase__ = video_classifier(__lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , ) UpperCamelCase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] , ) @require_tf def _lowerCamelCase ( self ): pass
619
1
from collections.abc import Sequence def __A ( _A = None ): """simple docstring""" if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) __a = nums[0] for i in range(1 , len(_A ) ): __a = nums[i] __a = max(_A , ans + num , _A ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user SCREAMING_SNAKE_CASE : Optional[Any] = int(input("""Enter number of elements : """).strip()) SCREAMING_SNAKE_CASE : Union[str, Any] = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
701
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """xlm-roberta-xl""" def __init__( self : str , __SCREAMING_SNAKE_CASE : int=25_08_80 , __SCREAMING_SNAKE_CASE : Dict=25_60 , __SCREAMING_SNAKE_CASE : List[str]=36 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : int=1_02_40 , __SCREAMING_SNAKE_CASE : Optional[int]="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : int=5_14 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=1E-05 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]="absolute" , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : str=None , **__SCREAMING_SNAKE_CASE : str , ): super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = classifier_dropout class A_ ( a_ ): @property def _UpperCAmelCase ( self : List[str] ): if self.task == "multiple-choice": __a = {0: "batch", 1: "choice", 2: "sequence"} else: __a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
525
0
lowercase : int = 8.314_4598 def lowerCAmelCase__ ( _a : float , _a : float ): if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowercase : Optional[Any] = 3_00 lowercase : Union[str, Any] = 28 lowercase : str = rms_speed_of_molecule(temperature, molar_mass) print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
568
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "embed_dim" ) ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "num_heads" ) ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[16, 48, 96] , _SCREAMING_SNAKE_CASE=[1, 3, 6] , _SCREAMING_SNAKE_CASE=[1, 2, 10] , _SCREAMING_SNAKE_CASE=[7, 3, 3] , _SCREAMING_SNAKE_CASE=[4, 2, 2] , _SCREAMING_SNAKE_CASE=[2, 1, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 2] , _SCREAMING_SNAKE_CASE=[False, False, True] , _SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-12 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=2 , ) -> Optional[Any]: snake_case_ : List[str] = parent snake_case_ : Optional[int] = batch_size snake_case_ : Any = image_size snake_case_ : Dict = patch_sizes snake_case_ : Union[str, Any] = patch_stride snake_case_ : List[str] = patch_padding snake_case_ : str = is_training snake_case_ : Tuple = use_labels snake_case_ : Dict = num_labels snake_case_ : Tuple = num_channels snake_case_ : Tuple = embed_dim snake_case_ : str = num_heads snake_case_ : Any = stride_kv snake_case_ : Optional[int] = depth snake_case_ : Any = cls_token snake_case_ : Tuple = attention_drop_rate snake_case_ : Dict = initializer_range snake_case_ : Any = layer_norm_eps def _lowerCAmelCase ( self ) -> str: snake_case_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Optional[Any] = None if self.use_labels: snake_case_ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ : str = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ) -> Any: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ : Optional[Any] = CvtModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = (self.image_size, self.image_size) snake_case_ , snake_case_ : Any = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case_ : Optional[int] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: snake_case_ : List[Any] = self.num_labels snake_case_ : int = CvtForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : int = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self ) -> str: snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : Optional[Any] = (CvtModel, CvtForImageClassification) if is_torch_available() else () A : List[Any] = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) A : str = False A : List[Any] = False A : Union[str, Any] = False A : Optional[int] = False A : Optional[int] = False def _lowerCAmelCase ( self ) -> Dict: snake_case_ : Optional[int] = CvtModelTester(self ) snake_case_ : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowerCAmelCase ( self ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self ) -> int: return @unittest.skip(reason="Cvt does not output attentions" ) def _lowerCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def _lowerCAmelCase ( self ) -> str: pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def _lowerCAmelCase ( self ) -> Dict: pass def _lowerCAmelCase ( self ) -> List[str]: snake_case_ , snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : str = [*signature.parameters.keys()] snake_case_ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Any: snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Union[str, Any]: def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : Dict = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): snake_case_ : List[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) snake_case_ : Union[str, Any] = outputs.hidden_states snake_case_ : List[str] = len(self.model_tester.depth ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_ , snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[Any] = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ : int = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> str: snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowerCAmelCase ( self ) -> Any: pass @slow def _lowerCAmelCase ( self ) -> Optional[int]: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[Any] = CvtModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( ): snake_case_ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase ( self ) -> int: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _lowerCAmelCase ( self ) -> int: snake_case_ : Tuple = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = self.default_image_processor snake_case_ : Optional[Any] = prepare_img() snake_case_ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case_ : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits snake_case_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) snake_case_ : int = torch.tensor([0.9285, 0.9015, -0.3150] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
568
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __lowerCamelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name def A_ ( _lowerCAmelCase ) -> Any: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(_lowerCAmelCase ): return ext raise Exception( F"""Unable to determine file format from file extension {path}. """ F"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def A_ ( _lowerCAmelCase ) -> Optional[Any]: UpperCamelCase : Optional[int] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) UpperCamelCase : Optional[int] = try_infer_format_from_ext(args.input ) if args.format == "infer" else args.format UpperCamelCase : int = PipelineDataFormat.from_str( format=_lowerCAmelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(_lowerCAmelCase , _lowerCAmelCase ) class A__ ( __snake_case ): def __init__( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = nlp UpperCamelCase : Tuple = reader @staticmethod def __UpperCamelCase( A_ ): '''simple docstring''' UpperCamelCase : List[Any] = parser.add_parser("run" , help="Run a pipeline through the CLI" ) run_parser.add_argument("--task" , choices=get_supported_tasks() , help="Task to run" ) run_parser.add_argument("--input" , type=A_ , help="Path to the file to use for inference" ) run_parser.add_argument("--output" , type=A_ , help="Path to the file that will be used post to write results." ) run_parser.add_argument("--model" , type=A_ , help="Name or path to the model to instantiate." ) run_parser.add_argument("--config" , type=A_ , help="Name or path to the model's config to instantiate." ) run_parser.add_argument( "--tokenizer" , type=A_ , help="Name of the tokenizer to use. (default: same as the model name)" ) run_parser.add_argument( "--column" , type=A_ , help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)" , ) run_parser.add_argument( "--format" , type=A_ , default="infer" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="Input format to read from" , ) run_parser.add_argument( "--device" , type=A_ , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) run_parser.add_argument("--overwrite" , action="store_true" , help="Allow overwriting the output file." ) run_parser.set_defaults(func=A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : List[Any] = self._nlp, [] for entry in self._reader: UpperCamelCase : Tuple = nlp(**A_ ) if self._reader.is_multi_columns else nlp(A_ ) if isinstance(A_ , A_ ): outputs.append(A_ ) else: outputs += output # Saving data if self._nlp.binary_output: UpperCamelCase : Optional[Any] = self._reader.save_binary(A_ ) logger.warning(F"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(A_ )
38
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A_ ( ) -> Dict: UpperCamelCase : Tuple = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=_lowerCAmelCase , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=_lowerCAmelCase , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=_lowerCAmelCase ) return parser.parse_args() def A_ ( ) -> Optional[int]: UpperCamelCase : Tuple = parse_args() # Import training_script as a module. UpperCamelCase : Union[str, Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCamelCase : List[Any] = script_fpath.stem UpperCamelCase : Optional[Any] = importlib.import_module(_lowerCAmelCase ) # Patch sys.argv UpperCamelCase : List[Any] = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
38
1
import functools def _lowerCamelCase ( snake_case , snake_case ): # Validation if not isinstance(snake_case , snake_case ) or not all(isinstance(snake_case , snake_case ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(snake_case ) != 3 or not all(isinstance(snake_case , snake_case ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(snake_case ) == 0: return 0 if min(snake_case ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(snake_case ) >= 366: raise ValueError('All days elements should be less than 366' ) _lowerCAmelCase = set(snake_case ) @functools.cache def dynamic_programming(snake_case ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
192
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _lowercase: Any = logging.get_logger(__name__) # General docstring _lowercase: List[Any] = '''RegNetConfig''' # Base docstring _lowercase: List[Any] = '''facebook/regnet-y-040''' _lowercase: int = [1, 1_0_8_8, 7, 7] # Image classification docstring _lowercase: Union[str, Any] = '''facebook/regnet-y-040''' _lowercase: Tuple = '''tabby, tabby cat''' _lowercase: str = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , lowercase__ : int , lowercase__ : int , lowercase__ : int = 3 , lowercase__ : int = 1 , lowercase__ : int = 1 , lowercase__ : Optional[str] = "relu" , ): super().__init__() _lowerCAmelCase = nn.Convad( lowercase__ , lowercase__ , kernel_size=lowercase__ , stride=lowercase__ , padding=kernel_size // 2 , groups=lowercase__ , bias=lowercase__ , ) _lowerCAmelCase = nn.BatchNormad(lowercase__ ) _lowerCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self : str , lowercase__ : Union[str, Any] ): _lowerCAmelCase = self.convolution(lowercase__ ) _lowerCAmelCase = self.normalization(lowercase__ ) _lowerCAmelCase = self.activation(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : int , lowercase__ : RegNetConfig ): super().__init__() _lowerCAmelCase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) _lowerCAmelCase = config.num_channels def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : Optional[int] ): _lowerCAmelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _lowerCAmelCase = self.embedder(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Optional[Any] , lowercase__ : int , lowercase__ : int , lowercase__ : int = 2 ): super().__init__() _lowerCAmelCase = nn.Convad(lowercase__ , lowercase__ , kernel_size=1 , stride=lowercase__ , bias=lowercase__ ) _lowerCAmelCase = nn.BatchNormad(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : Tensor ): _lowerCAmelCase = self.convolution(lowercase__ ) _lowerCAmelCase = self.normalization(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Optional[Any] , lowercase__ : int , lowercase__ : int ): super().__init__() _lowerCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) _lowerCAmelCase = nn.Sequential( nn.Convad(lowercase__ , lowercase__ , kernel_size=1 ) , nn.ReLU() , nn.Convad(lowercase__ , lowercase__ , kernel_size=1 ) , nn.Sigmoid() , ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : List[Any] ): # b c h w -> b c 1 1 _lowerCAmelCase = self.pooler(lowercase__ ) _lowerCAmelCase = self.attention(lowercase__ ) _lowerCAmelCase = hidden_state * attention return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , lowercase__ : RegNetConfig , lowercase__ : int , lowercase__ : int , lowercase__ : int = 1 ): super().__init__() _lowerCAmelCase = in_channels != out_channels or stride != 1 _lowerCAmelCase = max(1 , out_channels // config.groups_width ) _lowerCAmelCase = ( RegNetShortCut(lowercase__ , lowercase__ , stride=lowercase__ ) if should_apply_shortcut else nn.Identity() ) _lowerCAmelCase = nn.Sequential( RegNetConvLayer(lowercase__ , lowercase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowercase__ , lowercase__ , stride=lowercase__ , groups=lowercase__ , activation=config.hidden_act ) , RegNetConvLayer(lowercase__ , lowercase__ , kernel_size=1 , activation=lowercase__ ) , ) _lowerCAmelCase = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : Any ): _lowerCAmelCase = hidden_state _lowerCAmelCase = self.layer(lowercase__ ) _lowerCAmelCase = self.shortcut(lowercase__ ) hidden_state += residual _lowerCAmelCase = self.activation(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Any , lowercase__ : RegNetConfig , lowercase__ : int , lowercase__ : int , lowercase__ : int = 1 ): super().__init__() _lowerCAmelCase = in_channels != out_channels or stride != 1 _lowerCAmelCase = max(1 , out_channels // config.groups_width ) _lowerCAmelCase = ( RegNetShortCut(lowercase__ , lowercase__ , stride=lowercase__ ) if should_apply_shortcut else nn.Identity() ) _lowerCAmelCase = nn.Sequential( RegNetConvLayer(lowercase__ , lowercase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowercase__ , lowercase__ , stride=lowercase__ , groups=lowercase__ , activation=config.hidden_act ) , RegNetSELayer(lowercase__ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(lowercase__ , lowercase__ , kernel_size=1 , activation=lowercase__ ) , ) _lowerCAmelCase = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Tuple ): _lowerCAmelCase = hidden_state _lowerCAmelCase = self.layer(lowercase__ ) _lowerCAmelCase = self.shortcut(lowercase__ ) hidden_state += residual _lowerCAmelCase = self.activation(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , lowercase__ : RegNetConfig , lowercase__ : int , lowercase__ : int , lowercase__ : int = 2 , lowercase__ : int = 2 , ): super().__init__() _lowerCAmelCase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer _lowerCAmelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowercase__ , lowercase__ , lowercase__ , stride=lowercase__ , ) , *[layer(lowercase__ , lowercase__ , lowercase__ ) for _ in range(depth - 1 )] , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , lowercase__ : Any ): _lowerCAmelCase = self.layers(lowercase__ ) return hidden_state class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , lowercase__ : RegNetConfig ): super().__init__() _lowerCAmelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowercase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _lowerCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase__ , config.depths[1:] ): self.stages.append(RegNetStage(lowercase__ , lowercase__ , lowercase__ , depth=lowercase__ ) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Tensor , lowercase__ : bool = False , lowercase__ : bool = True ): _lowerCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _lowerCAmelCase = hidden_states + (hidden_state,) _lowerCAmelCase = stage_module(lowercase__ ) if output_hidden_states: _lowerCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowercase__ , hidden_states=lowercase__ ) class lowerCamelCase__ ( UpperCAmelCase ): UpperCamelCase__ =RegNetConfig UpperCamelCase__ ="regnet" UpperCamelCase__ ="pixel_values" UpperCamelCase__ =True def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : List[Any] ): if isinstance(lowercase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowercase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : List[str] , lowercase__ : List[Any]=False ): if isinstance(lowercase__ , lowercase__ ): _lowerCAmelCase = value _lowercase: Optional[Any] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowercase: str = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." ,UpperCAmelCase ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : List[str] , lowercase__ : int ): super().__init__(lowercase__ ) _lowerCAmelCase = config _lowerCAmelCase = RegNetEmbeddings(lowercase__ ) _lowerCAmelCase = RegNetEncoder(lowercase__ ) _lowerCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : Tensor , lowercase__ : Optional[bool] = None , lowercase__ : Optional[bool] = None ): _lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase = self.embedder(lowercase__ ) _lowerCAmelCase = self.encoder( lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ ) _lowerCAmelCase = encoder_outputs[0] _lowerCAmelCase = self.pooler(lowercase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase__ , pooler_output=lowercase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " ,UpperCAmelCase ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : str , lowercase__ : Union[str, Any] ): super().__init__(lowercase__ ) _lowerCAmelCase = config.num_labels _lowerCAmelCase = RegNetModel(lowercase__ ) # classification head _lowerCAmelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Optional[torch.FloatTensor] = None , lowercase__ : Optional[torch.LongTensor] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[bool] = None , ): _lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase = self.regnet(lowercase__ , output_hidden_states=lowercase__ , return_dict=lowercase__ ) _lowerCAmelCase = outputs.pooler_output if return_dict else outputs[1] _lowerCAmelCase = self.classifier(lowercase__ ) _lowerCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _lowerCAmelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _lowerCAmelCase = 'single_label_classification' else: _lowerCAmelCase = 'multi_label_classification' if self.config.problem_type == "regression": _lowerCAmelCase = MSELoss() if self.num_labels == 1: _lowerCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: _lowerCAmelCase = loss_fct(lowercase__ , lowercase__ ) elif self.config.problem_type == "single_label_classification": _lowerCAmelCase = CrossEntropyLoss() _lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _lowerCAmelCase = BCEWithLogitsLoss() _lowerCAmelCase = loss_fct(lowercase__ , lowercase__ ) if not return_dict: _lowerCAmelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase__ , logits=lowercase__ , hidden_states=outputs.hidden_states )
192
1
import requests _UpperCAmelCase = "" # <-- Put your OpenWeatherMap appid here! _UpperCAmelCase = "https://api.openweathermap.org/data/2.5/" def _lowerCamelCase ( _a = "Chicago" , _a = APPID ): """simple docstring""" return requests.get(URL_BASE + '''weather''' , params=locals() ).json() def _lowerCamelCase ( _a = "Kolkata, India" , _a = APPID ): """simple docstring""" return requests.get(URL_BASE + '''forecast''' , params=locals() ).json() def _lowerCamelCase ( _a = 55.68 , _a = 12.57 , _a = APPID ): """simple docstring""" return requests.get(URL_BASE + '''onecall''' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: _UpperCAmelCase = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
297
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class __magic_name__ ( lowercase_ ): """simple docstring""" _UpperCamelCase = "xmod" def __init__( self , a__=3_05_22 , a__=7_68 , a__=12 , a__=12 , a__=30_72 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=2 , a__=0.02 , a__=1E-12 , a__=1 , a__=0 , a__=2 , a__="absolute" , a__=True , a__=None , a__=False , a__=2 , a__=False , a__=True , a__=True , a__=("en_XX",) , a__=None , **a__ , ): super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = hidden_act _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = position_embedding_type _lowerCamelCase = use_cache _lowerCamelCase = classifier_dropout _lowerCamelCase = pre_norm _lowerCamelCase = adapter_reduction_factor _lowerCamelCase = adapter_layer_norm _lowerCamelCase = adapter_reuse_layer_norm _lowerCamelCase = ln_before_adapter _lowerCamelCase = list(a__ ) _lowerCamelCase = default_language class __magic_name__ ( lowercase_ ): """simple docstring""" @property def _UpperCAmelCase ( self ): if self.task == "multiple-choice": _lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
297
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__(lowercase_ , unittest.TestCase ): """simple docstring""" lowercase_ = OpenAIGPTTokenizer lowercase_ = OpenAIGPTTokenizerFast lowercase_ = True lowercase_ = False def snake_case ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : int = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowercase__ : Dict = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) lowercase__ : Union[str, Any] = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(_lowercase ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(_lowercase ) ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : int ): return "lower newer", "lower newer" def snake_case ( self : List[Any] ): lowercase__ : str = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowercase__ : Optional[int] = "lower" lowercase__ : Union[str, Any] = ["low", "er</w>"] lowercase__ : Optional[int] = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) lowercase__ : int = tokens + ["<unk>"] lowercase__ : Optional[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Any = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) # Simple input lowercase__ : str = "This is a simple input" lowercase__ : List[Any] = ["This is a simple input 1", "This is a simple input 2"] lowercase__ : Optional[int] = ("This is a simple input", "This is a pair") lowercase__ : List[str] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding="max_length" ) # Simple input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding="max_length" ) # Simple input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding="max_length" , ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding="max_length" ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding="max_length" ) # Pair input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding="max_length" , ) def snake_case ( self : Optional[int] ): pass @require_ftfy @require_spacy @require_tokenizers class snake_case__(lowercase_ ): """simple docstring""" pass
496
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE : str = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } SCREAMING_SNAKE_CASE : Union[str, Any] = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class snake_case ( lowercase_ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["""input_ids""", """attention_mask"""] _a = BartTokenizer def __init__( self, _lowercase=None, _lowercase=None, _lowercase=None, _lowercase="replace", _lowercase="<s>", _lowercase="</s>", _lowercase="</s>", _lowercase="<s>", _lowercase="<unk>", _lowercase="<pad>", _lowercase="<mask>", _lowercase=False, _lowercase=True, **_lowercase, ) -> Dict: super().__init__( _lowercase, _lowercase, tokenizer_file=_lowercase, errors=_lowercase, bos_token=_lowercase, eos_token=_lowercase, sep_token=_lowercase, cls_token=_lowercase, unk_token=_lowercase, pad_token=_lowercase, mask_token=_lowercase, add_prefix_space=_lowercase, trim_offsets=_lowercase, **_lowercase, ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', _lowercase ) != add_prefix_space: SCREAMING_SNAKE_CASE_ = getattr(_lowercase, pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = pre_tok_class(**_lowercase ) SCREAMING_SNAKE_CASE_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE_ = 'post_processor' SCREAMING_SNAKE_CASE_ = getattr(self.backend_tokenizer, _lowercase, _lowercase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE_ = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE_ = tuple(state['cls'] ) SCREAMING_SNAKE_CASE_ = False if state.get('add_prefix_space', _lowercase ) != add_prefix_space: SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = True if state.get('trim_offsets', _lowercase ) != trim_offsets: SCREAMING_SNAKE_CASE_ = trim_offsets SCREAMING_SNAKE_CASE_ = True if changes_to_apply: SCREAMING_SNAKE_CASE_ = getattr(_lowercase, state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = component_class(**_lowercase ) setattr(self.backend_tokenizer, _lowercase, _lowercase ) @property def a__ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a__ ( self, _lowercase ) -> Dict: SCREAMING_SNAKE_CASE_ = AddedToken(_lowercase, lstrip=_lowercase, rstrip=_lowercase ) if isinstance(_lowercase, _lowercase ) else value SCREAMING_SNAKE_CASE_ = value def a__ ( self, *_lowercase, **_lowercase ) -> BatchEncoding: SCREAMING_SNAKE_CASE_ = kwargs.get('is_split_into_words', _lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*_lowercase, **_lowercase ) def a__ ( self, *_lowercase, **_lowercase ) -> BatchEncoding: SCREAMING_SNAKE_CASE_ = kwargs.get('is_split_into_words', _lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*_lowercase, **_lowercase ) def a__ ( self, _lowercase, _lowercase = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(_lowercase, name=_lowercase ) return tuple(_lowercase ) def a__ ( self, _lowercase, _lowercase=None ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self, _lowercase, _lowercase = None ) -> List[int]: SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
294
0
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
257
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase_ ( lowerCamelCase ): a__ = 42 a__ = 42 def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" super().__init__() self.register_modules(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) @torch.no_grad() def __call__( self , __lowerCAmelCase = 1 , __lowerCAmelCase = 2_0_0_0 , __lowerCAmelCase = None , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , **__lowerCAmelCase , ): """simple docstring""" __magic_name__ :int = self.unet.config.sample_size __magic_name__ :Optional[Any] = (batch_size, 3, img_size, img_size) __magic_name__ :Tuple = self.unet __magic_name__ :Dict = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase ) * self.scheduler.init_noise_sigma __magic_name__ :str = sample.to(self.device ) self.scheduler.set_timesteps(__lowerCAmelCase ) self.scheduler.set_sigmas(__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __magic_name__ :Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __magic_name__ :List[Any] = self.unet(__lowerCAmelCase , __lowerCAmelCase ).sample __magic_name__ :Tuple = self.scheduler.step_correct(__lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample # prediction step __magic_name__ :Union[str, Any] = model(__lowerCAmelCase , __lowerCAmelCase ).sample __magic_name__ :Dict = self.scheduler.step_pred(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ) __magic_name__ , __magic_name__ :List[str] = output.prev_sample, output.prev_sample_mean __magic_name__ :Tuple = sample_mean.clamp(0 , 1 ) __magic_name__ :List[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ :Union[str, Any] = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__lowerCAmelCase )
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowercase__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Optional[Any] , _lowercase : float , _lowercase : Callable , _lowercase : int , _lowercase : float = 1.0 , _lowercase : str = None , ): """simple docstring""" super().__init__() UpperCAmelCase__ = initial_learning_rate UpperCAmelCase__ = warmup_steps UpperCAmelCase__ = power UpperCAmelCase__ = decay_schedule_fn UpperCAmelCase__ = name def __call__( self : int , _lowercase : List[str] ): """simple docstring""" with tf.name_scope(self.name or "WarmUp" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCAmelCase__ = tf.cast(_lowercase , tf.floataa ) UpperCAmelCase__ = tf.cast(self.warmup_steps , tf.floataa ) UpperCAmelCase__ = global_step_float / warmup_steps_float UpperCAmelCase__ = self.initial_learning_rate * tf.math.pow(_lowercase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_lowercase , ) def _UpperCAmelCase ( self : Tuple ): """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __UpperCAmelCase ( __A , __A , __A , __A = 0.0 , __A = 0.9 , __A = 0.999 , __A = 1E-8 , __A = None , __A = None , __A = 0.0 , __A = 1.0 , __A = None , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__A , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__A , ) if num_warmup_steps: UpperCAmelCase__ = WarmUp( initial_learning_rate=__A , decay_schedule_fn=__A , warmup_steps=__A , ) if weight_decay_rate > 0.0: UpperCAmelCase__ = AdamWeightDecay( learning_rate=__A , weight_decay_rate=__A , beta_a=__A , beta_a=__A , epsilon=__A , clipnorm=__A , global_clipnorm=__A , exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"] , include_in_weight_decay=__A , ) else: UpperCAmelCase__ = tf.keras.optimizers.Adam( learning_rate=__A , beta_a=__A , beta_a=__A , epsilon=__A , clipnorm=__A , global_clipnorm=__A , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowercase__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : Dict , _lowercase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.0_0_1 , _lowercase : float = 0.9 , _lowercase : float = 0.9_9_9 , _lowercase : float = 1E-7 , _lowercase : bool = False , _lowercase : float = 0.0 , _lowercase : Optional[List[str]] = None , _lowercase : Optional[List[str]] = None , _lowercase : str = "AdamWeightDecay" , **_lowercase : int , ): """simple docstring""" super().__init__(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , **_lowercase ) UpperCAmelCase__ = weight_decay_rate UpperCAmelCase__ = include_in_weight_decay UpperCAmelCase__ = exclude_from_weight_decay @classmethod def _UpperCAmelCase ( cls : Dict , _lowercase : Dict ): """simple docstring""" UpperCAmelCase__ = {"WarmUp": WarmUp} return super(_lowercase , cls ).from_config(_lowercase , custom_objects=_lowercase ) def _UpperCAmelCase ( self : Optional[int] , _lowercase : str , _lowercase : Tuple , _lowercase : List[str] ): """simple docstring""" super(_lowercase , self )._prepare_local(_lowercase , _lowercase , _lowercase ) UpperCAmelCase__ = tf.constant( self.weight_decay_rate , name="adam_weight_decay_rate" ) def _UpperCAmelCase ( self : List[Any] , _lowercase : List[str] , _lowercase : int , _lowercase : List[Any] ): """simple docstring""" UpperCAmelCase__ = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"] , use_locking=self._use_locking , ) return tf.no_op() def _UpperCAmelCase ( self : Dict , _lowercase : List[Any] , _lowercase : Union[str, Any]=None , **_lowercase : Any ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = list(zip(*_lowercase ) ) return super(_lowercase , self ).apply_gradients(zip(_lowercase , _lowercase ) , name=_lowercase , **_lowercase ) def _UpperCAmelCase ( self : str , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int] ): """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCAmelCase__ = apply_state or {} UpperCAmelCase__ = apply_state.get((var_device, var_dtype) ) if coefficients is None: UpperCAmelCase__ = self._fallback_apply_state(_lowercase , _lowercase ) UpperCAmelCase__ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def _UpperCAmelCase ( self : Optional[Any] , _lowercase : List[str] , _lowercase : List[Any] , _lowercase : Any=None ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self._get_lr(var.device , var.dtype.base_dtype , _lowercase ) UpperCAmelCase__ = self._decay_weights_op(_lowercase , _lowercase , _lowercase ) with tf.control_dependencies([decay] ): return super(_lowercase , self )._resource_apply_dense(_lowercase , _lowercase , **_lowercase ) def _UpperCAmelCase ( self : List[str] , _lowercase : Tuple , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : List[Any]=None ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self._get_lr(var.device , var.dtype.base_dtype , _lowercase ) UpperCAmelCase__ = self._decay_weights_op(_lowercase , _lowercase , _lowercase ) with tf.control_dependencies([decay] ): return super(_lowercase , self )._resource_apply_sparse(_lowercase , _lowercase , _lowercase , **_lowercase ) def _UpperCAmelCase ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate} ) return config def _UpperCAmelCase ( self : Union[str, Any] , _lowercase : Dict ): """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_lowercase , _lowercase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_lowercase , _lowercase ) is not None: return False return True class lowercase__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : str ): """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = None @property def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" if self._accum_steps is None: UpperCAmelCase__ = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_lowercase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Any , _lowercase : List[str] ): """simple docstring""" if not self._gradients: UpperCAmelCase__ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_lowercase ) , trainable=_lowercase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_lowercase ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(_lowercase )}""" ) for accum_gradient, gradient in zip(self._gradients , _lowercase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_lowercase ) self._accum_steps.assign_add(1 ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_lowercase ) )
475
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def _lowerCamelCase( lowerCAmelCase__ : str ): '''simple docstring''' if ( (cp >= 0X4e_00 and cp <= 0X9f_ff) or (cp >= 0X34_00 and cp <= 0X4d_bf) # or (cp >= 0X2_00_00 and cp <= 0X2_a6_df) # or (cp >= 0X2_a7_00 and cp <= 0X2_b7_3f) # or (cp >= 0X2_b7_40 and cp <= 0X2_b8_1f) # or (cp >= 0X2_b8_20 and cp <= 0X2_ce_af) # or (cp >= 0Xf9_00 and cp <= 0Xfa_ff) or (cp >= 0X2_f8_00 and cp <= 0X2_fa_1f) # ): # return True return False def _lowerCamelCase( lowerCAmelCase__ : str ): '''simple docstring''' for char in word: SCREAMING_SNAKE_CASE_ : Tuple = ord(lowerCAmelCase__ ) if not _is_chinese_char(lowerCAmelCase__ ): return 0 return 1 def _lowerCamelCase( lowerCAmelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = set() for token in tokens: SCREAMING_SNAKE_CASE_ : List[Any] = len(lowerCAmelCase__ ) > 1 and is_chinese(lowerCAmelCase__ ) if chinese_word: word_set.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = list(lowerCAmelCase__ ) return word_list def _lowerCamelCase( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : set() ): '''simple docstring''' if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE_ : Any = max([len(lowerCAmelCase__ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE_ : List[str] = bert_tokens SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = 0, len(lowerCAmelCase__ ) while start < end: SCREAMING_SNAKE_CASE_ : Optional[Any] = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE_ : int = min(end - start , lowerCAmelCase__ ) for i in range(lowerCAmelCase__ , 1 , -1 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE_ : int = '##' + bert_word[j] SCREAMING_SNAKE_CASE_ : Tuple = start + i SCREAMING_SNAKE_CASE_ : Tuple = False break if single_word: start += 1 return bert_word def _lowerCamelCase( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : LTP , lowerCAmelCase__ : BertTokenizer ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for i in range(0 , len(lowerCAmelCase__ ) , 100 ): SCREAMING_SNAKE_CASE_ : Optional[int] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['cws'] ).cws SCREAMING_SNAKE_CASE_ : Union[str, Any] = [get_chinese_word(lowerCAmelCase__ ) for r in res] ltp_res.extend(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = [] for i in range(0 , len(lowerCAmelCase__ ) , 100 ): SCREAMING_SNAKE_CASE_ : List[str] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = [] for input_ids, chinese_word in zip(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : int = [] for id in input_ids: SCREAMING_SNAKE_CASE_ : List[str] = bert_tokenizer._convert_id_to_token(lowerCAmelCase__ ) input_tokens.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = add_sub_symbol(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase__ ): if token[:2] == "##": SCREAMING_SNAKE_CASE_ : int = token[2:] # save chinese tokens' pos if len(lowerCAmelCase__ ) == 1 and _is_chinese_char(ord(lowerCAmelCase__ ) ): ref_id.append(lowerCAmelCase__ ) ref_ids.append(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) return ref_ids def _lowerCamelCase( lowerCAmelCase__ : Optional[Any] ): '''simple docstring''' with open(args.file_name , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = f.readlines() SCREAMING_SNAKE_CASE_ : Tuple = [line.strip() for line in data if len(lowerCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE_ : Dict = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE_ : List[Any] = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_ref(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = [json.dumps(lowerCAmelCase__ ) + '\n' for ref in ref_ids] f.writelines(lowerCAmelCase__ ) if __name__ == "__main__": A = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) A = parser.parse_args() main(args)
97
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A = 'src/transformers' A = 'docs/source/en/tasks' def _lowerCamelCase( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ): '''simple docstring''' with open(lowerCAmelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.readlines() # Find the start prompt. SCREAMING_SNAKE_CASE_ : Optional[int] = 0 while not lines[start_index].startswith(lowerCAmelCase__ ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : int = start_index while not lines[end_index].startswith(lowerCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A = direct_transformers_import(TRANSFORMERS_PATH) A = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def _lowerCamelCase( lowerCAmelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = TASK_GUIDE_TO_MODELS[task_guide] SCREAMING_SNAKE_CASE_ : Union[str, Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(lowerCAmelCase__ , set() ) SCREAMING_SNAKE_CASE_ : Optional[int] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def _lowerCamelCase( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _find_text_in_file( filename=os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) SCREAMING_SNAKE_CASE_ : Dict = get_model_list_for_task(lowerCAmelCase__ ) if current_list != new_list: if overwrite: with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ' to fix this.' ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
97
1
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 A_ : Optional[Any] = data_utils.TransfoXLTokenizer A_ : Union[str, Any] = data_utils.TransfoXLCorpus A_ : Any = data_utils A_ : Optional[Any] = data_utils def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCAmelCase__ , 'rb' ) as fp: UpperCamelCase_: Union[str, Any] = pickle.load(UpperCAmelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCamelCase_: Union[str, Any] = corpus.vocab.__dict__ torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase__ ) UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase_: Any = os.path.abspath(UpperCAmelCase__ ) UpperCamelCase_: Dict = os.path.abspath(UpperCAmelCase__ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase_: List[str] = TransfoXLConfig() else: UpperCamelCase_: Optional[int] = TransfoXLConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Union[str, Any] = TransfoXLLMHeadModel(UpperCAmelCase__ ) UpperCamelCase_: Tuple = load_tf_weights_in_transfo_xl(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model UpperCamelCase_: str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) print(F'''Save PyTorch model to {os.path.abspath(UpperCAmelCase__ )}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) print(F'''Save configuration file to {os.path.abspath(UpperCAmelCase__ )}''' ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) A_ : Tuple = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
57
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : Optional[int] = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
419
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __snake_case ( _UpperCAmelCase ): """simple docstring""" lowercase = int(number**0.5 ) return number == sq * sq def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowercase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowercase = x_den * y_den * z_den lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) top //= hcf bottom //= hcf return top, bottom def __snake_case ( _UpperCAmelCase = 35 ): """simple docstring""" lowercase = set() lowercase = 42 lowercase = Fraction(0 ) lowercase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowercase = x_num * y_den + x_den * y_num lowercase = x_den * y_den lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=2 lowercase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowercase = x_den * x_den * y_den * y_den if is_sq(_UpperCAmelCase ) and is_sq(_UpperCAmelCase ): lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=-1 lowercase = x_num * y_num lowercase = x_den * y_num + x_num * y_den lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=2 lowercase = x_num * x_num * y_num * y_num lowercase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_UpperCAmelCase ) and is_sq(_UpperCAmelCase ): lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) for num, den in unique_s: total += Fraction(_UpperCAmelCase , _UpperCAmelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
314
1
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :Any = DebertaVaTokenizer __magic_name__ :Tuple = DebertaVaTokenizerFast __magic_name__ :Any = True __magic_name__ :Any = True def snake_case ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ :Any = DebertaVaTokenizer(__UpperCAmelCase , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = 'this is a test' lowerCAmelCase__ :Optional[int] = 'this is a test' return input_text, output_text def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = '<pad>' lowerCAmelCase__ :Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(__UpperCAmelCase ) , 3_0_0_0_1 ) def snake_case ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = ' \tHeLLo!how \n Are yoU? ' lowerCAmelCase__ :Tuple = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on lowerCAmelCase__ :Any = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase ) lowerCAmelCase__ :Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :str = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase ) lowerCAmelCase__ :str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def snake_case ( self ): '''simple docstring''' pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def snake_case ( self ): '''simple docstring''' pass def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ :Union[str, Any] = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on lowerCAmelCase__ :Optional[int] = DebertaVaTokenizer(__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :str = DebertaVaTokenizerFast(__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) lowerCAmelCase__ :Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ :Tuple = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on lowerCAmelCase__ :str = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Any = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ :Optional[int] = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on lowerCAmelCase__ :Optional[int] = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :int = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) lowerCAmelCase__ :str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ :Any = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on lowerCAmelCase__ :str = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[Any] = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = ' \tHeLLo!how \n Are yoU? ' lowerCAmelCase__ :Dict = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on lowerCAmelCase__ :List[str] = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) lowerCAmelCase__ :Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.get_tokenizer() lowerCAmelCase__ :Dict = self.get_rust_tokenizer() lowerCAmelCase__ :List[str] = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ :List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) lowerCAmelCase__ :Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Any = self.get_rust_tokenizer() lowerCAmelCase__ :Union[str, Any] = tokenizer.encode(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = 'This is a test' lowerCAmelCase__ :List[Any] = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] lowerCAmelCase__ :int = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] lowerCAmelCase__ :Optional[int] = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] lowerCAmelCase__ :Any = DebertaVaTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = DebertaVaTokenizerFast(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Any = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :str = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Dict = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Any = rust_tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # fmt: off lowerCAmelCase__ :Any = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ :Optional[int] = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] lowerCAmelCase__ :Optional[int] = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] lowerCAmelCase__ :Any = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on lowerCAmelCase__ :int = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :List[str] = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Dict = rust_tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = DebertaVaTokenizer(__UpperCAmelCase ) lowerCAmelCase__ :int = tokenizer.encode('sequence builders' ) lowerCAmelCase__ :Any = tokenizer.encode('multi-sequence build' ) lowerCAmelCase__ :Dict = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __UpperCAmelCase , ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = {'input_ids': [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
93
"""simple docstring""" import csv import tweepy # Twitter API credentials __A = """""" __A = """""" __A = """""" __A = """""" def __A (_SCREAMING_SNAKE_CASE ) ->None: """simple docstring""" lowerCAmelCase__ :Any = tweepy.OAuthHandler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) auth.set_access_token(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = tweepy.API(_SCREAMING_SNAKE_CASE ) # initialize a list to hold all the tweepy Tweets lowerCAmelCase__ :Union[str, Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowerCAmelCase__ :Optional[Any] = api.user_timeline(screen_name=_SCREAMING_SNAKE_CASE , count=200 ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # save the id of the oldest tweet less one lowerCAmelCase__ :Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_SCREAMING_SNAKE_CASE ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates lowerCAmelCase__ :Union[str, Any] = api.user_timeline( screen_name=_SCREAMING_SNAKE_CASE , count=200 , max_id=_SCREAMING_SNAKE_CASE ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # update the id of the oldest tweet less one lowerCAmelCase__ :Tuple = alltweets[-1].id - 1 print(F"...{len(_SCREAMING_SNAKE_CASE )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv lowerCAmelCase__ :Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , 'w' ) as f: lowerCAmelCase__ :List[str] = csv.writer(_SCREAMING_SNAKE_CASE ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
93
1
'''simple docstring''' def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : bool = False ): """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis _lowerCamelCase : Any = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] _lowerCamelCase : Union[str, Any] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCAmelCase , 1 ): if n < _p: # then we have our last prime to check _lowerCamelCase : str = primes[:idx] break _lowerCamelCase : List[str] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: _lowerCamelCase : int = False for r in range(_lowerCAmelCase ): _lowerCamelCase : Any = pow(_lowerCAmelCase , d * 2**r , _lowerCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): _lowerCamelCase : Optional[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def A_ ( ): """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
705
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 512, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any],__A : str=None,__A : str=None,__A : int="<|endoftext|>",__A : List[str]="<|endoftext|>",__A : Optional[Any]="<|endoftext|>",__A : Union[str, Any]=False,__A : List[Any]=True,**__A : str,): super().__init__( ByteLevelBPETokenizer( vocab=__A,merges=__A,add_prefix_space=__A,trim_offsets=__A,),bos_token=__A,eos_token=__A,unk_token=__A,**__A,) _lowerCamelCase : List[Any] = add_prefix_space def lowerCamelCase_ ( self : Any,__A : Optional[Any],__A : Optional[int]=None ): _lowerCamelCase : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : List[Any],__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Any = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
11
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def A ( _lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = features[:, labels == i] _lowerCAmelCase : Tuple = data.mean(1 ) # Centralize the data of class i _lowerCAmelCase : Optional[Any] = data - column_reshape(_lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : List[Any] = np.dot(_lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = features.mean(1 ) _lowerCAmelCase : List[Any] = np.nan for i in range(_lowerCamelCase ): _lowerCAmelCase : List[Any] = features[:, labels == i] _lowerCAmelCase : Union[str, Any] = data.shape[1] _lowerCAmelCase : str = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _lowerCAmelCase : Union[str, Any] = device_data * np.dot( column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase ) , (column_reshape(_lowerCamelCase ) - column_reshape(_lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if features.any(): _lowerCAmelCase : List[Any] = features.mean(1 ) # Center the dataset _lowerCAmelCase : str = features - np.reshape(_lowerCamelCase , (data_mean.size, 1) ) _lowerCAmelCase : List[str] = np.dot(_lowerCamelCase , centered_data.T ) / features.shape[1] _lowerCAmelCase , _lowerCAmelCase : Dict = np.linalg.eigh(_lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first _lowerCAmelCase : Union[str, Any] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _lowerCAmelCase : Any = np.dot(filtered_eigenvectors.T , _lowerCamelCase ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _lowerCAmelCase , _lowerCAmelCase : List[Any] = eigh( covariance_between_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , covariance_within_classes(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , ) _lowerCAmelCase : int = eigenvectors[:, ::-1][:, :dimensions] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = np.linalg.svd(_lowerCamelCase ) _lowerCAmelCase : int = svd_matrix[:, 0:dimensions] _lowerCAmelCase : List[str] = np.dot(filtered_svd_matrix.T , _lowerCamelCase ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=_lowerCamelCase ) logging.error("Dataset empty" ) raise AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _lowerCAmelCase : Optional[Any] = np.array([0, 0, 0, 1, 1] ) _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[str] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : Optional[Any] = linear_discriminant_analysis( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if isinstance(_lowerCamelCase , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def A ( ): '''simple docstring''' _lowerCAmelCase : Any = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _lowerCAmelCase : Tuple = 2 _lowerCAmelCase : Optional[int] = np.array([[6.92_82_03_23, 8.66_02_54_04, 10.39_23_04_85], [3.0, 3.0, 3.0]] ) with pytest.raises(_lowerCamelCase ) as error_info: _lowerCAmelCase : int = principal_component_analysis(_lowerCamelCase , _lowerCamelCase ) if not np.allclose(_lowerCamelCase , _lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
500
from __future__ import annotations class UpperCAmelCase_ : def __init__( self, __a, __a): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = text, pattern _lowerCAmelCase , _lowerCAmelCase : int = len(__a), len(__a) def snake_case__ ( self, __a): '''simple docstring''' for i in range(self.patLen - 1, -1, -1): if char == self.pattern[i]: return i return -1 def snake_case__ ( self, __a): '''simple docstring''' for i in range(self.patLen - 1, -1, -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(self.textLen - self.patLen + 1): _lowerCAmelCase : Dict = self.mismatch_in_text(__a) if mismatch_index == -1: positions.append(__a) else: _lowerCAmelCase : List[str] = self.match_in_pattern(self.text[mismatch_index]) _lowerCAmelCase : Dict = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _snake_case = "ABAABA" _snake_case = "AB" _snake_case = BoyerMooreSearch(text, pattern) _snake_case = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
500
1
'''simple docstring''' import math import unittest def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __lowerCamelCase ( self ): """simple docstring""" with self.assertRaises(lowercase__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
68
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : list[int] ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = len(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if numbers[j] < numbers[i]: SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = numbers[j], numbers[i] return numbers if __name__ == "__main__": snake_case_ = input('Enter numbers separated by a comma:\n').strip() snake_case_ = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
68
1
a_ = { """joule""": 1.0, """kilojoule""": 1000, """megajoule""": 1000000, """gigajoule""": 1000000000, """wattsecond""": 1.0, """watthour""": 3600, """kilowatthour""": 3600000, """newtonmeter""": 1.0, """calorie_nutr""": 4186.8, """kilocalorie_nutr""": 4186800.00, """electronvolt""": 1.6_0_2_1_7_6_6_3_4e-1_9, """britishthermalunit_it""": 1055.05585, """footpound""": 1.355_818, } def __lowerCAmelCase ( A_ : str , A_ : Optional[int] , A_ : Any ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __UpperCAmelCase = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {", ".join(__A )}''' ) raise ValueError(__A ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
221
import os def lowerCAmelCase_ ( __A = "matrix.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__A ), __A ) ) as in_file: UpperCAmelCase__ = in_file.read() UpperCAmelCase__ = [[int(__A ) for cell in row.split("," )] for row in data.strip().splitlines()] UpperCAmelCase__ = [[0 for cell in row] for row in grid] UpperCAmelCase__ = len(grid[0] ) UpperCAmelCase__ = [[0 for i in range(__A )] for j in range(__A )] UpperCAmelCase__ = grid[0][0] for i in range(1, __A ): UpperCAmelCase__ = grid[0][i] + dp[0][i - 1] for i in range(1, __A ): UpperCAmelCase__ = grid[i][0] + dp[i - 1][0] for i in range(1, __A ): for j in range(1, __A ): UpperCAmelCase__ = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'''{solution() = }''')
486
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None) snake_case_ : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column snake_case_ : Any = df.iloc[:, 1:2] snake_case_ : str = actual_data.values.reshape(len_data, 1) snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data) snake_case_ : List[str] = 10 snake_case_ : Any = 5 snake_case_ : Any = 20 snake_case_ : Tuple = len_data - periods * look_back snake_case_ : str = actual_data[:division] snake_case_ : Optional[int] = actual_data[division - look_back :] snake_case_ : Any = [], [] snake_case_ : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) snake_case_ : Any = np.array(train_x) snake_case_ : Optional[Any] = np.array(test_x) snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y]) snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y]) snake_case_ : List[Any] = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") snake_case_ : Dict = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) snake_case_ : Optional[Any] = model.predict(x_test)
719
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[str] = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Dict = num_labels UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = range_bbox def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ : List[str] = bbox[i, j, 3] UpperCAmelCase_ : Dict = bbox[i, j, 1] UpperCAmelCase_ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ : List[str] = bbox[i, j, 2] UpperCAmelCase_ : Tuple = bbox[i, j, 0] UpperCAmelCase_ : Union[str, Any] = t UpperCAmelCase_ : int = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase_ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : int = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ ) UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.num_labels UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : List[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( __magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Tuple = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __a : Any = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __a : Union[str, Any] = False __a : int = False def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str: """simple docstring""" return True def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = LiltModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Tuple = type self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @slow def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch @slow class __a (unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ ) UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ ) UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ ) UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] ) UpperCAmelCase_ : List[str] = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , ) self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
644
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = """▁""" __UpperCamelCase : str = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } __UpperCamelCase : Optional[Any] = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } __UpperCamelCase : Union[str, Any] = { """facebook/s2t-small-librispeech-asr""": 1024, } __UpperCamelCase : Optional[int] = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] __UpperCamelCase : Tuple = {"""mustc""": MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =MAX_MODEL_INPUT_SIZES __a =["""input_ids""", """attention_mask"""] __a =[] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<pad>" , lowerCamelCase="<unk>" , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase = None , **lowerCamelCase , ) ->Tuple: '''simple docstring''' __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , pad_token=_A , do_upper_case=_A , do_lower_case=_A , tgt_lang=_A , lang_codes=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __a = do_upper_case __a = do_lower_case __a = load_json(_A ) __a = {v: k for k, v in self.encoder.items()} __a = spm_file __a = load_spm(_A , self.sp_model_kwargs ) if lang_codes is not None: __a = lang_codes __a = LANGUAGES[lang_codes] __a = [F"""<lang:{lang}>""" for lang in self.langs] __a = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __a = self.lang_tokens __a = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __a = {} @property def __UpperCamelCase ( self ) ->Any: '''simple docstring''' return len(self.encoder ) @property def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def __UpperCamelCase ( self , lowerCamelCase ) ->List[Any]: '''simple docstring''' __a = new_tgt_lang self.set_tgt_lang_special_tokens(_A ) def __UpperCamelCase ( self , lowerCamelCase ) ->List[Any]: '''simple docstring''' __a = self.lang_code_to_id[tgt_lang] __a = [lang_code_id] def __UpperCamelCase ( self , lowerCamelCase ) ->int: '''simple docstring''' return self.sp_model.encode(_A , out_type=_A ) def __UpperCamelCase ( self , lowerCamelCase ) ->Optional[Any]: '''simple docstring''' return self.encoder.get(_A , self.encoder[self.unk_token] ) def __UpperCamelCase ( self , lowerCamelCase ) ->str: '''simple docstring''' return self.decoder.get(_A , self.unk_token ) def __UpperCamelCase ( self , lowerCamelCase ) ->List[Any]: '''simple docstring''' __a = [] __a = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __a = self.sp_model.decode(_A ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __a = [] else: current_sub_tokens.append(_A ) __a = self.sp_model.decode(_A ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase=None ) ->Optional[Any]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) ->List[Any]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) __a = [1] * len(self.prefix_tokens ) __a = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def __UpperCamelCase ( self ) ->Any: '''simple docstring''' __a = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[int]: '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self , lowerCamelCase ) ->Any: '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __a = {} __a = load_spm(self.spm_file , self.sp_model_kwargs ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None ) ->Optional[Any]: '''simple docstring''' __a = Path(_A ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __a = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) __a = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , _A ) if os.path.abspath(self.spm_file ) != os.path.abspath(_A ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _A ) elif not os.path.isfile(self.spm_file ): with open(_A , 'wb' ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(_A ) return (str(_A ), str(_A )) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Any, SCREAMING_SNAKE_CASE__: int ) -> Union[str, Any]: """simple docstring""" __a = sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Optional[Any] ) -> List[str]: """simple docstring""" with open(SCREAMING_SNAKE_CASE__, 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Tuple, SCREAMING_SNAKE_CASE__: Union[str, Any] ) -> int: """simple docstring""" with open(SCREAMING_SNAKE_CASE__, 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, indent=2 )
448
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __magic_name__ : Any = logging.get_logger(__name__) __magic_name__ : int = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : str = """convnextv2""" def __init__( self , _A=3 , _A=4 , _A=4 , _A=None , _A=None , _A="gelu" , _A=0.02 , _A=1e-1_2 , _A=0.0 , _A=2_2_4 , _A=None , _A=None , **_A , ): '''simple docstring''' super().__init__(**_A ) UpperCamelCase : Optional[Any] = num_channels UpperCamelCase : int = patch_size UpperCamelCase : Dict = num_stages UpperCamelCase : Tuple = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes UpperCamelCase : str = [3, 3, 9, 3] if depths is None else depths UpperCamelCase : List[str] = hidden_act UpperCamelCase : List[str] = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : Any = drop_path_rate UpperCamelCase : Any = image_size UpperCamelCase : Union[str, Any] = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase , UpperCamelCase : Optional[int] = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names )
102
0
'''simple docstring''' def __lowerCamelCase ( _UpperCamelCase : int = 10 ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ) or n < 0: raise ValueError('''Invalid input''' ) UpperCAmelCase_ = 10**n UpperCAmelCase_ = 2_8433 * (pow(2 , 783_0457 , _UpperCamelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(10) = }''')
43
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets lowercase__ : str = datasets.logging.get_logger(__name__) lowercase__ : Dict = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" lowercase__ : str = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" lowercase__ : str = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] ) ->Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCAmelCase__ ( self : int , UpperCAmelCase__ : Union[str, Any] ) ->Any: if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCAmelCase__ ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : int=False ) ->Optional[Any]: if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(UpperCAmelCase__ , UpperCAmelCase__ ) ) for t in zip(*data.values() )] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(UpperCAmelCase__ , gpus=UpperCAmelCase__ , progress_bar=UpperCAmelCase__ ) return {"mean_score": mean_score, "scores": scores}
43
1