code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = BioGptTokenizer __magic_name__ = False def lowerCAmelCase__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _A = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _A = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(snake_case_ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(snake_case_ ) ) def lowerCAmelCase__ ( self , snake_case_ ): _A = 'lower newer' _A = 'lower newer' return input_text, output_text def lowerCAmelCase__ ( self ): _A = BioGptTokenizer(self.vocab_file , self.merges_file ) _A = 'lower' _A = ['low', 'er</w>'] _A = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _A = tokens + ['<unk>'] _A = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) @slow def lowerCAmelCase__ ( self ): _A = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _A = tokenizer.encode('sequence builders' , add_special_tokens=snake_case_ ) _A = tokenizer.encode('multi-sequence build' , add_special_tokens=snake_case_ ) _A = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _A = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
27
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
525
0
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE__) -> int: if not nums: return 0 __snake_case: List[str] = nums[0] __snake_case: List[str] = 0 for num in nums[1:]: __snake_case: List[Any] = ( max_excluding + num, max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__), ) return max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if __name__ == "__main__": import doctest doctest.testmod()
707
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[str]: # load base model __snake_case: str = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa) # load LoRA weight from .safetensors __snake_case: Dict = load_file(SCREAMING_SNAKE_CASE__) __snake_case: List[str] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __snake_case: Optional[int] = key.split(""".""")[0].split(LORA_PREFIX_TEXT_ENCODER + """_""")[-1].split("""_""") __snake_case: Union[str, Any] = pipeline.text_encoder else: __snake_case: Optional[int] = key.split(""".""")[0].split(LORA_PREFIX_UNET + """_""")[-1].split("""_""") __snake_case: List[Any] = pipeline.unet # find the target layer __snake_case: Optional[Any] = layer_infos.pop(0) while len(SCREAMING_SNAKE_CASE__) > -1: try: __snake_case: Optional[Any] = curr_layer.__getattr__(SCREAMING_SNAKE_CASE__) if len(SCREAMING_SNAKE_CASE__) > 0: __snake_case: Optional[int] = layer_infos.pop(0) elif len(SCREAMING_SNAKE_CASE__) == 0: break except Exception: if len(SCREAMING_SNAKE_CASE__) > 0: temp_name += "_" + layer_infos.pop(0) else: __snake_case: Tuple = layer_infos.pop(0) __snake_case: Any = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""")) pair_keys.append(SCREAMING_SNAKE_CASE__) else: pair_keys.append(SCREAMING_SNAKE_CASE__) pair_keys.append(key.replace("""lora_up""" , """lora_down""")) # update weight if len(state_dict[pair_keys[0]].shape) == 4: __snake_case: Union[str, Any] = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.floataa) __snake_case: Dict = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__).unsqueeze(2).unsqueeze(3) else: __snake_case: List[Any] = state_dict[pair_keys[0]].to(torch.floataa) __snake_case: Dict = state_dict[pair_keys[1]].to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # update visited list for item in pair_keys: visited.append(SCREAMING_SNAKE_CASE__) return pipeline if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") __UpperCAmelCase : str = parser.parse_args() __UpperCAmelCase : Union[str, Any] = args.base_model_path __UpperCAmelCase : str = args.checkpoint_path __UpperCAmelCase : List[str] = args.dump_path __UpperCAmelCase : Optional[int] = args.lora_prefix_unet __UpperCAmelCase : Optional[int] = args.lora_prefix_text_encoder __UpperCAmelCase : int = args.alpha __UpperCAmelCase : List[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __UpperCAmelCase : Union[str, Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
155
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' ,set() ) @pytest.fixture def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" class A__ : """simple docstring""" def __init__( self , __snake_case ): snake_case = metric_id class A__ : """simple docstring""" __magic_name__ = [MetricMock(snake_case__ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def a_ ( self ): return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' ,HfhMock() ) @pytest.mark.parametrize( '''func, args''' ,[(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if "tmp_path" in args: snake_case = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(_UpperCamelCase ,match='''https://huggingface.co/docs/evaluate''' ): func(*_UpperCamelCase )
550
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
620
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Any = 3_84 A_ : Union[str, Any] = 7 if "tiny" in model_name: A_ : Optional[int] = 96 A_ : Optional[Any] = (2, 2, 6, 2) A_ : List[Any] = (3, 6, 12, 24) elif "small" in model_name: A_ : int = 96 A_ : Optional[int] = (2, 2, 18, 2) A_ : Optional[int] = (3, 6, 12, 24) elif "base" in model_name: A_ : List[Any] = 1_28 A_ : List[Any] = (2, 2, 18, 2) A_ : Optional[Any] = (4, 8, 16, 32) A_ : List[Any] = 12 A_ : int = 5_12 elif "large" in model_name: A_ : List[Any] = 1_92 A_ : Union[str, Any] = (2, 2, 18, 2) A_ : List[Any] = (6, 12, 24, 48) A_ : int = 12 A_ : Any = 7_68 # set label information A_ : str = 1_50 A_ : Union[str, Any] = """huggingface/label-files""" A_ : Optional[int] = """ade20k-id2label.json""" A_ : str = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) A_ : Dict = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} A_ : str = {v: k for k, v in idalabel.items()} A_ : Optional[int] = SwinConfig( embed_dim=lowerCamelCase__ , depths=lowerCamelCase__ , num_heads=lowerCamelCase__ , window_size=lowerCamelCase__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) A_ : Any = UperNetConfig( backbone_config=lowerCamelCase__ , auxiliary_in_channels=lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ , ) return config def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = dct.pop(lowerCamelCase__ ) A_ : Union[str, Any] = val def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' ) A_ : Optional[Any] = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:dim, :] A_ : Optional[int] = in_proj_bias[: dim] A_ : Dict = in_proj_weight[ dim : dim * 2, : ] A_ : Optional[Any] = in_proj_bias[ dim : dim * 2 ] A_ : Tuple = in_proj_weight[ -dim :, : ] A_ : str = in_proj_bias[-dim :] # fmt: on def a ( lowerCamelCase__ ): '''simple docstring''' A_, A_ : Union[str, Any] = x.shape A_ : Dict = x.reshape(lowerCamelCase__ , 4 , in_channel // 4 ) A_ : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase__ , lowerCamelCase__ ) return x def a ( lowerCamelCase__ ): '''simple docstring''' A_, A_ : Optional[Any] = x.shape A_ : Any = x.reshape(lowerCamelCase__ , in_channel // 4 , 4 ) A_ : Optional[int] = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase__ , lowerCamelCase__ ) return x def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = x.shape[0] A_ : str = x.reshape(4 , in_channel // 4 ) A_ : List[Any] = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase__ ) return x def a ( lowerCamelCase__ ): '''simple docstring''' A_ : int = x.shape[0] A_ : List[Any] = x.reshape(in_channel // 4 , 4 ) A_ : Optional[int] = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase__ ) return x def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Dict = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } A_ : int = model_name_to_url[model_name] A_ : List[str] = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="""cpu""" , file_name=lowerCamelCase__ )[ """state_dict""" ] for name, param in state_dict.items(): print(lowerCamelCase__ , param.shape ) A_ : Union[str, Any] = get_upernet_config(lowerCamelCase__ ) A_ : List[str] = UperNetForSemanticSegmentation(lowerCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) if "bn" in key: A_ : int = key.replace("""bn""" , """batch_norm""" ) A_ : Union[str, Any] = val # rename keys A_ : List[str] = create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: A_ : List[str] = reverse_correct_unfold_reduction_order(lowerCamelCase__ ) if "norm" in key: A_ : Tuple = reverse_correct_unfold_norm_order(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # verify on image A_ : str = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" A_ : List[str] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert("""RGB""" ) A_ : List[str] = SegformerImageProcessor() A_ : Optional[int] = processor(lowerCamelCase__ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): A_ : Union[str, Any] = model(lowerCamelCase__ ) A_ : str = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": A_ : Optional[Any] = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": A_ : List[str] = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": A_ : Union[str, Any] = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": A_ : str = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": lowerCamelCase :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[F"upernet-swin-{size}" for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase :int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
686
'''simple docstring''' import pytest lowerCamelCase :Optional[Any] = '''__dummy_dataset1__''' lowerCamelCase :List[Any] = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = dataset_loading_script_name A_ : int = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCamelCase__ ) A_ : Tuple = script_dir / f'{script_name}.py' with open(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ ) return str(lowerCamelCase__ )
686
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def A__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , ) return model @property def A__ ( self ) -> Tuple: torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) __lowerCAmelCase = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def A__ ( self ) -> Optional[int]: __lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __lowerCAmelCase = DDPMScheduler() __lowerCAmelCase = AudioDiffusionPipeline(vqvae=a_ , unet=self.dummy_unet , mel=a_ , scheduler=a_ ) __lowerCAmelCase = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __lowerCAmelCase = torch.Generator(device=a_ ).manual_seed(42 ) __lowerCAmelCase = pipe(generator=a_ , steps=4 ) __lowerCAmelCase = output.audios[0] __lowerCAmelCase = output.images[0] __lowerCAmelCase = torch.Generator(device=a_ ).manual_seed(42 ) __lowerCAmelCase = pipe(generator=a_ , steps=4 , return_dict=a_ ) __lowerCAmelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __lowerCAmelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] __lowerCAmelCase = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10] __lowerCAmelCase = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __lowerCAmelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __lowerCAmelCase = DDIMScheduler() __lowerCAmelCase = self.dummy_vqvae_and_unet __lowerCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=a_ , scheduler=a_ ) __lowerCAmelCase = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) np.random.seed(0 ) __lowerCAmelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __lowerCAmelCase = torch.Generator(device=a_ ).manual_seed(42 ) __lowerCAmelCase = pipe(raw_audio=a_ , generator=a_ , start_step=5 , steps=10 ) __lowerCAmelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __lowerCAmelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] __lowerCAmelCase = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __lowerCAmelCase = self.dummy_unet_condition __lowerCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=a_ , mel=a_ , scheduler=a_ ) __lowerCAmelCase = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) np.random.seed(0 ) __lowerCAmelCase = torch.rand((1, 1, 10) ) __lowerCAmelCase = pipe(generator=a_ , encoding=a_ ) __lowerCAmelCase = output.images[0] __lowerCAmelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] __lowerCAmelCase = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[Any]: __lowerCAmelCase = torch_device __lowerCAmelCase = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) __lowerCAmelCase = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __lowerCAmelCase = torch.Generator(device=a_ ).manual_seed(42 ) __lowerCAmelCase = pipe(generator=a_ ) __lowerCAmelCase = output.audios[0] __lowerCAmelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __lowerCAmelCase = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] __lowerCAmelCase = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
465
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = '''timm_backbone''' def __init__( self , a_=None , a_=3 , a_=True , a_=True , a_=None , **a_ , ): super().__init__(**a_ ) lowerCamelCase_ : Union[str, Any] = backbone lowerCamelCase_ : str = num_channels lowerCamelCase_ : List[Any] = features_only lowerCamelCase_ : Any = use_pretrained_backbone lowerCamelCase_ : Dict = True lowerCamelCase_ : Any = out_indices if out_indices is not None else (-1,)
250
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = """realm""" def __init__( self : Tuple , _A : Any=3_0522 , _A : Tuple=768 , _A : Optional[Any]=128 , _A : Optional[int]=12 , _A : Dict=12 , _A : str=8 , _A : Optional[Any]=3072 , _A : int="gelu_new" , _A : List[Any]=0.1 , _A : List[Any]=0.1 , _A : List[str]=512 , _A : Dict=2 , _A : Dict=0.02 , _A : Dict=1e-12 , _A : Optional[Any]=256 , _A : Union[str, Any]=10 , _A : int=1e-3 , _A : Tuple=5 , _A : Any=320 , _A : Tuple=1335_3718 , _A : Tuple=5000 , _A : Tuple=1 , _A : Optional[int]=0 , _A : Optional[int]=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) # Common config __SCREAMING_SNAKE_CASE : List[Any] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Dict = hidden_size __SCREAMING_SNAKE_CASE : str = retriever_proj_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : Dict = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[int] = num_candidates __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Dict = type_vocab_size __SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps # Reader config __SCREAMING_SNAKE_CASE : str = span_hidden_size __SCREAMING_SNAKE_CASE : Tuple = max_span_width __SCREAMING_SNAKE_CASE : Dict = reader_layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = reader_beam_size __SCREAMING_SNAKE_CASE : str = reader_seq_len # Retrieval config __SCREAMING_SNAKE_CASE : Optional[Any] = num_block_records __SCREAMING_SNAKE_CASE : List[str] = searcher_beam_size
716
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , _A : Optional[int] , _A : Tuple=7 , _A : Optional[int]=3 , _A : Optional[Any]=18 , _A : Dict=30 , _A : str=400 , _A : Optional[int]=True , _A : str=None , _A : str=True , _A : str=None , _A : List[str]=True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = size if size is not None else {'''shortest_edge''': 20} __SCREAMING_SNAKE_CASE : Optional[int] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __SCREAMING_SNAKE_CASE : List[str] = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Union[str, Any] = min_resolution __SCREAMING_SNAKE_CASE : Tuple = max_resolution __SCREAMING_SNAKE_CASE : Union[str, Any] = do_resize __SCREAMING_SNAKE_CASE : int = size __SCREAMING_SNAKE_CASE : Optional[Any] = do_center_crop __SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size __SCREAMING_SNAKE_CASE : Optional[int] = do_flip_channel_order def UpperCAmelCase__ ( self : str ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = MobileViTImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_flip_channel_order''' ) ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" pass def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Any = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : int = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
131
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging snake_case : Optional[int] = logging.get_logger(__name__) class _snake_case ( snake_case__ ): SCREAMING_SNAKE_CASE__ = "linear" SCREAMING_SNAKE_CASE__ = "cosine" SCREAMING_SNAKE_CASE__ = "cosine_with_restarts" SCREAMING_SNAKE_CASE__ = "polynomial" SCREAMING_SNAKE_CASE__ = "constant" SCREAMING_SNAKE_CASE__ = "constant_with_warmup" SCREAMING_SNAKE_CASE__ = "piecewise_constant" def __lowerCamelCase ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : int = -1 ): """simple docstring""" return LambdaLR(_UpperCAmelCase , lambda UpperCAmelCase_ : 1 , last_epoch=_UpperCAmelCase ) def __lowerCamelCase ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : int , UpperCAmelCase_ : int = -1 ): """simple docstring""" def lr_lambda(UpperCAmelCase_ : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1.0 , _UpperCAmelCase ) ) return 1.0 return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , last_epoch=_UpperCAmelCase ) def __lowerCamelCase ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : str , UpperCAmelCase_ : int = -1 ): """simple docstring""" a :Optional[int] = {} a :Union[str, Any] = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: a :Tuple = rule_str.split(''':''' ) a :Dict = int(_UpperCAmelCase ) a :int = float(_UpperCAmelCase ) a :Dict = value a :List[str] = float(rule_list[-1] ) def create_rules_function(UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ): def rule_func(UpperCAmelCase_ : int ) -> float: a :Union[str, Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func a :Optional[Any] = create_rules_function(_UpperCAmelCase , _UpperCAmelCase ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , last_epoch=_UpperCAmelCase ) def __lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]=-1 ): """simple docstring""" def lr_lambda(UpperCAmelCase_ : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __lowerCamelCase ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.5 , UpperCAmelCase_ : int = -1 ): """simple docstring""" def lr_lambda(UpperCAmelCase_ : List[Any] ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) a :Union[str, Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __lowerCamelCase ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = -1 ): """simple docstring""" def lr_lambda(UpperCAmelCase_ : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) a :Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]=1E-7 , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : List[Any]=-1 ): """simple docstring""" a :Any = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(UpperCAmelCase_ : int ): if current_step < num_warmup_steps: return float(_UpperCAmelCase ) / float(max(1 , _UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: a :int = lr_init - lr_end a :Optional[Any] = num_training_steps - num_warmup_steps a :int = 1 - (current_step - num_warmup_steps) / decay_steps a :Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( UpperCAmelCase_ : Union[str, SchedulerType] , UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : int = -1 , ): """simple docstring""" a :List[str] = SchedulerType(_UpperCAmelCase ) a :str = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_UpperCAmelCase , last_epoch=_UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_UpperCAmelCase , step_rules=_UpperCAmelCase , last_epoch=_UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , last_epoch=_UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , num_training_steps=_UpperCAmelCase , num_cycles=_UpperCAmelCase , last_epoch=_UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , num_training_steps=_UpperCAmelCase , power=_UpperCAmelCase , last_epoch=_UpperCAmelCase , ) return schedule_func( _UpperCAmelCase , num_warmup_steps=_UpperCAmelCase , num_training_steps=_UpperCAmelCase , last_epoch=_UpperCAmelCase )
445
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __SCREAMING_SNAKE_CASE : int = logging.getLogger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def _A ( self : str , A : Optional[int] , A : List[str] , A : List[str]=None , A : List[Any]=None ): _UpperCAmelCase : Union[str, Any] = self.layer[current_layer](A , A , head_mask[current_layer] ) _UpperCAmelCase : Tuple = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , snake_case__ , ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : List[Any] , A : Tuple ): super().__init__(A ) _UpperCAmelCase : Optional[Any] = BertEncoderWithPabee(A ) self.init_weights() _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : Any = 0 _UpperCAmelCase : Optional[int] = 0 def _A ( self : Tuple , A : Tuple ): _UpperCAmelCase : Union[str, Any] = threshold def _A ( self : Optional[int] , A : Union[str, Any] ): _UpperCAmelCase : Any = patience def _A ( self : List[Any] ): _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : List[str] = 0 def _A ( self : int ): _UpperCAmelCase : List[Any] = self.inference_layers_num / self.inference_instances_num _UpperCAmelCase : str = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(A ) @add_start_docstrings_to_model_forward(A ) def _A ( self : Optional[int] , A : int=None , A : Union[str, Any]=None , A : int=None , A : List[Any]=None , A : Dict=None , A : Dict=None , A : Optional[int]=None , A : str=None , A : Union[str, Any]=None , A : Any=None , A : List[Any]=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: _UpperCAmelCase : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: _UpperCAmelCase : Tuple = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) _UpperCAmelCase : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _UpperCAmelCase : Optional[int] = torch.ones(A , device=A ) if token_type_ids is None: _UpperCAmelCase : Optional[int] = torch.zeros(A , dtype=torch.long , device=A ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(A , A , A ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = encoder_hidden_states.size() _UpperCAmelCase : Tuple = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _UpperCAmelCase : Tuple = torch.ones(A , device=A ) _UpperCAmelCase : Optional[int] = self.invert_attention_mask(A ) else: _UpperCAmelCase : Optional[int] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _UpperCAmelCase : List[str] = self.get_head_mask(A , self.config.num_hidden_layers ) _UpperCAmelCase : List[Any] = self.embeddings( input_ids=A , position_ids=A , token_type_ids=A , inputs_embeds=A ) _UpperCAmelCase : Optional[Any] = embedding_output if self.training: _UpperCAmelCase : Tuple = [] for i in range(self.config.num_hidden_layers ): _UpperCAmelCase : int = self.encoder.adaptive_forward( A , current_layer=A , attention_mask=A , head_mask=A ) _UpperCAmelCase : Dict = self.pooler(A ) _UpperCAmelCase : List[str] = output_layers[i](output_dropout(A ) ) res.append(A ) elif self.patience == 0: # Use all layers for inference _UpperCAmelCase : Tuple = self.encoder( A , attention_mask=A , head_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _UpperCAmelCase : List[str] = self.pooler(encoder_outputs[0] ) _UpperCAmelCase : str = [output_layers[self.config.num_hidden_layers - 1](A )] else: _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _UpperCAmelCase : Union[str, Any] = self.encoder.adaptive_forward( A , current_layer=A , attention_mask=A , head_mask=A ) _UpperCAmelCase : int = self.pooler(A ) _UpperCAmelCase : Optional[Any] = output_layers[i](A ) if regression: _UpperCAmelCase : Dict = logits.detach() if patient_result is not None: _UpperCAmelCase : Tuple = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _UpperCAmelCase : Dict = 0 else: _UpperCAmelCase : List[str] = logits.detach().argmax(dim=1 ) if patient_result is not None: _UpperCAmelCase : int = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(A ) ): patient_counter += 1 else: _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = logits if patient_counter == self.patience: break _UpperCAmelCase : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , snake_case__ , ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : List[str] , A : str ): super().__init__(A ) _UpperCAmelCase : Union[str, Any] = config.num_labels _UpperCAmelCase : int = BertModelWithPabee(A ) _UpperCAmelCase : List[str] = nn.Dropout(config.hidden_dropout_prob ) _UpperCAmelCase : Any = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(A ) def _A ( self : Union[str, Any] , A : Any=None , A : Optional[int]=None , A : str=None , A : str=None , A : Optional[Any]=None , A : int=None , A : str=None , ): _UpperCAmelCase : Any = self.bert( input_ids=A , attention_mask=A , token_type_ids=A , position_ids=A , head_mask=A , inputs_embeds=A , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _UpperCAmelCase : List[Any] = (logits[-1],) if labels is not None: _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Any = 0 for ix, logits_item in enumerate(A ): if self.num_labels == 1: # We are doing regression _UpperCAmelCase : List[Any] = MSELoss() _UpperCAmelCase : Optional[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _UpperCAmelCase : int = CrossEntropyLoss() _UpperCAmelCase : Any = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _UpperCAmelCase : Dict = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _UpperCAmelCase : List[Any] = (total_loss / total_weights,) + outputs return outputs
244
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : List[Any] = {'vocab_file': 'vocab.txt'} _lowercase : Dict = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } _lowercase : Union[str, Any] = { 'YituTech/conv-bert-base': 5_12, 'YituTech/conv-bert-medium-small': 5_12, 'YituTech/conv-bert-small': 5_12, } _lowercase : str = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class a_ ( __lowercase ): lowercase_ : Dict = VOCAB_FILES_NAMES lowercase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase_ : List[Any] = PRETRAINED_INIT_CONFIGURATION lowercase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Optional[int] = ConvBertTokenizer def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[Any]="[UNK]" , __lowerCAmelCase : Optional[Any]="[SEP]" , __lowerCAmelCase : Optional[Any]="[PAD]" , __lowerCAmelCase : int="[CLS]" , __lowerCAmelCase : str="[MASK]" , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : Any , ): super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) __snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __a ) != do_lower_case or normalizer_state.get('strip_accents' , __a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __a ) != tokenize_chinese_chars ): __snake_case = getattr(__a , normalizer_state.pop('type' ) ) __snake_case = do_lower_case __snake_case = strip_accents __snake_case = tokenize_chinese_chars __snake_case = normalizer_class(**__a ) __snake_case = do_lower_case def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any]=None ): __snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ): __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ): __snake_case = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
720
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class a_ ( UpperCAmelCase__ ): lowercase_ : Any = '''poolformer''' def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Tuple=1_6 , __lowerCAmelCase : Union[str, Any]=1_6 , __lowerCAmelCase : int=3 , __lowerCAmelCase : List[str]=4.0 , __lowerCAmelCase : int=[2, 2, 6, 2] , __lowerCAmelCase : Union[str, Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , __lowerCAmelCase : int=[7, 3, 3, 3] , __lowerCAmelCase : Any=[4, 2, 2, 2] , __lowerCAmelCase : List[str]=[2, 1, 1, 1] , __lowerCAmelCase : Optional[Any]=4 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Union[str, Any]=1E-5 , __lowerCAmelCase : Dict=0.02 , **__lowerCAmelCase : Dict , ): __snake_case = num_channels __snake_case = patch_size __snake_case = stride __snake_case = padding __snake_case = pool_size __snake_case = hidden_sizes __snake_case = mlp_ratio __snake_case = depths __snake_case = patch_sizes __snake_case = strides __snake_case = num_encoder_blocks __snake_case = drop_path_rate __snake_case = hidden_act __snake_case = use_layer_scale __snake_case = layer_scale_init_value __snake_case = initializer_range super().__init__(**__lowerCAmelCase ) class a_ ( UpperCAmelCase__ ): lowercase_ : Dict = version.parse('''1.11''' ) @property def lowercase__ ( self : str ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase__ ( self : Tuple ): return 2E-3
427
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a = { """configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoForCausalLM""", """GPTNeoForQuestionAnswering""", """GPTNeoForSequenceClassification""", """GPTNeoForTokenClassification""", """GPTNeoModel""", """GPTNeoPreTrainedModel""", """load_tf_weights_in_gpt_neo""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """FlaxGPTNeoForCausalLM""", """FlaxGPTNeoModel""", """FlaxGPTNeoPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
687
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction def __lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : int ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __lowerCamelCase ( _UpperCamelCase : int ): '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = 11 UpperCAmelCase_ = int('''1''' + '''0''' * digit_len ) for num in range(_UpperCamelCase , _UpperCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_UpperCamelCase , _UpperCamelCase ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 UpperCAmelCase_ = 10 return solutions def __lowerCamelCase ( _UpperCamelCase : int = 2 ): '''simple docstring''' UpperCAmelCase_ = 1.0 for fraction in fraction_list(_UpperCamelCase ): UpperCAmelCase_ = Fraction(_UpperCamelCase ) result *= frac.denominator / frac.numerator return int(_UpperCamelCase ) if __name__ == "__main__": print(solution())
43
'''simple docstring''' import re def __lowerCamelCase ( _UpperCamelCase : str ): '''simple docstring''' return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''' , str_ )] def __lowerCamelCase ( _UpperCamelCase : str ): '''simple docstring''' UpperCAmelCase_ = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : bool , _UpperCamelCase : str ): '''simple docstring''' try: UpperCAmelCase_ = split_input(_UpperCamelCase ) if upper: UpperCAmelCase_ = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCAmelCase_ = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __lowerCamelCase ( _UpperCamelCase : str ): '''simple docstring''' return to_simple_case(_UpperCamelCase ) def __lowerCamelCase ( _UpperCamelCase : str ): '''simple docstring''' try: UpperCAmelCase_ = to_simple_case(_UpperCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : bool ): '''simple docstring''' return to_complex_case(_UpperCamelCase , _UpperCamelCase , '''_''' ) def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : bool ): '''simple docstring''' return to_complex_case(_UpperCamelCase , _UpperCamelCase , '''-''' ) if __name__ == "__main__": __import__("doctest").testmod()
43
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): '''simple docstring''' __lowercase , __lowercase = coefficient_matrix.shape __lowercase , __lowercase = constant_matrix.shape if rowsa != colsa: __lowercase = F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(__lowerCamelCase ) if colsa != 1: __lowercase = F'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(__lowerCamelCase ) if rowsa != rowsa: __lowercase = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(__lowerCamelCase ) if len(__lowerCamelCase ) != rowsa: __lowercase = ( '''Number of initial values must be equal to number of rows in coefficient ''' F'matrix but received {len(__lowerCamelCase )} and {rowsa}' ) raise ValueError(__lowerCamelCase ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) __lowercase = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __lowercase , __lowercase = table.shape strictly_diagonally_dominant(__lowerCamelCase ) # Iterates the whole matrix for given number of times for _ in range(__lowerCamelCase ): __lowercase = [] for row in range(__lowerCamelCase ): __lowercase = 0 for col in range(__lowerCamelCase ): if col == row: __lowercase = table[row][col] elif col == cols - 1: __lowercase = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __lowercase = (temp + val) / denom new_val.append(__lowerCamelCase ) __lowercase = new_val return [float(__lowerCamelCase ) for i in new_val] def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase , __lowercase = table.shape __lowercase = True for i in range(0 , __lowerCamelCase ): __lowercase = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
639
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase_ = TypeVar("""T""") class a_ ( Generic[T] ): '''simple docstring''' def __init__( self , A , A ) -> None: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = len(A ) _SCREAMING_SNAKE_CASE = [any_type for _ in range(self.N )] + arr _SCREAMING_SNAKE_CASE = fnc self.build() def snake_case_( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): _SCREAMING_SNAKE_CASE = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def snake_case_( self , A , A ) -> None: p += self.N _SCREAMING_SNAKE_CASE = v while p > 1: _SCREAMING_SNAKE_CASE = p // 2 _SCREAMING_SNAKE_CASE = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def snake_case_( self , A , A ) -> T | None: # noqa: E741 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = l + self.N, r + self.N _SCREAMING_SNAKE_CASE = None while l <= r: if l % 2 == 1: _SCREAMING_SNAKE_CASE = self.st[l] if res is None else self.fn(A , self.st[l] ) if r % 2 == 0: _SCREAMING_SNAKE_CASE = self.st[r] if res is None else self.fn(A , self.st[r] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase_ = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowercase_ = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowercase_ = SegmentTree(test_array, min) lowercase_ = SegmentTree(test_array, max) lowercase_ = SegmentTree(test_array, lambda a, b: a + b) def lowerCamelCase ( ) ->None: for i in range(len(__lowerCamelCase ) ): for j in range(__lowerCamelCase , len(__lowerCamelCase ) ): _SCREAMING_SNAKE_CASE = reduce(__lowerCamelCase , test_array[i : j + 1] ) _SCREAMING_SNAKE_CASE = reduce(__lowerCamelCase , test_array[i : j + 1] ) _SCREAMING_SNAKE_CASE = reduce(lambda __lowerCamelCase , __lowerCamelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__lowerCamelCase , __lowerCamelCase ) assert max_range == max_segment_tree.query(__lowerCamelCase , __lowerCamelCase ) assert sum_range == sum_segment_tree.query(__lowerCamelCase , __lowerCamelCase ) test_all_segments() for index, value in test_updates.items(): lowercase_ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
314
0
"""simple docstring""" import os def _lowerCamelCase( ): __a = os.path.dirname(os.path.realpath(a ) ) __a = os.path.join(a , "triangle.txt" ) with open(a ) as f: __a = f.readlines() __a = [] for line in triangle: __a = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a ) ) a.append(a ) for i in range(1 , len(a ) ): for j in range(len(a[i] ) ): __a = a[i - 1][j] if j != len(a[i - 1] ) else 0 __a = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a , a ) return max(a[-1] ) if __name__ == "__main__": print(solution())
67
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class snake_case__ ( snake_case_ ): def a__ ( self , lowerCamelCase ): with open(lowerCamelCase , encoding="utf-8" ) as input_file: __a = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) __a = input_file.read() __a = regexp.search(lowerCamelCase ) return match def a__ ( self , lowerCamelCase ): with open(lowerCamelCase , encoding="utf-8" ) as input_file: __a = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) __a = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __a = regexp.finditer(lowerCamelCase ) __a = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def a__ ( self ): __a = Path("./datasets" ) __a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCamelCase ) ): raise AssertionError(F"open(...) must use utf-8 encoding in {dataset}" ) def a__ ( self ): __a = Path("./datasets" ) __a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCamelCase ) ): raise AssertionError(F"print statement found in {dataset}. Use datasets.logger/logging instead." )
67
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
62
'''simple docstring''' from math import isqrt, loga def __UpperCamelCase ( lowercase_ : int ): """simple docstring""" a_ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowercase_ , lowercase_ ): a_ = False return [i for i in range(2 , lowercase_ ) if is_prime[i]] def __UpperCamelCase ( lowercase_ : int = 800_800 , lowercase_ : int = 800_800 ): """simple docstring""" a_ = degree * loga(lowercase_ ) a_ = int(lowercase_ ) a_ = calculate_prime_numbers(lowercase_ ) a_ = 0 a_ = 0 a_ = len(lowercase_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
536
0
def lowerCamelCase( a__): if len(a__) <= 1: return [tuple(a__)] _SCREAMING_SNAKE_CASE =[] def generate(a__ ,a__): if k == 1: res.append(tuple(arr[:])) return generate(k - 1 ,a__) for i in range(k - 1): if k % 2 == 0: # k is even _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =arr[k - 1], arr[i] else: # k is odd _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =arr[k - 1], arr[0] generate(k - 1 ,a__) generate(len(a__) ,a__) return res if __name__ == "__main__": snake_case_ : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() snake_case_ : int = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
191
import string from math import logaa def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =document.translate( str.maketrans('''''' ,'''''' ,string.punctuation)).replace('''\n''' ,'''''') _SCREAMING_SNAKE_CASE =document_without_punctuation.split(''' ''') # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()]) def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =corpus.lower().translate( str.maketrans('''''' ,'''''' ,string.punctuation)) # strip all punctuation and replace it with '' _SCREAMING_SNAKE_CASE =corpus_without_punctuation.split('''\n''') _SCREAMING_SNAKE_CASE =term.lower() return (len([doc for doc in docs if term in doc]), len(a__)) def lowerCamelCase( a__ ,a__ ,a__=False): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''') return round(1 + logaa(n / (1 + df)) ,3) if df == 0: raise ZeroDivisionError('''df must be > 0''') elif n == 0: raise ValueError('''log10(0) is undefined.''') return round(logaa(n / df) ,3) def lowerCamelCase( a__ ,a__): return round(tf * idf ,3)
191
1
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_=0.01 , lowerCamelCase_=10_00 ) -> Union[str, Any]: lowerCAmelCase__ = p_stop lowerCAmelCase__ = max_length def __iter__( self ) -> Any: lowerCAmelCase__ = 0 lowerCAmelCase__ = False while not stop and count < self.max_length: yield count count += 1 lowerCAmelCase__ = random.random() < self.p_stop class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=True ) -> Optional[Any]: lowerCAmelCase__ = [ BatchSamplerShard(lowerCamelCase_ , 2 , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) for i in range(2 ) ] lowerCAmelCase__ = [list(lowerCamelCase_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowerCamelCase_ ) for shard in batch_sampler_shards] , [len(lowerCamelCase_ ) for e in expected] ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Check the shards when the dataset is a round multiple of total batch size. lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCAmelCase__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) # Check the shards when the dataset is very small. lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[], []] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: # Check the shards when the dataset is a round multiple of batch size. lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size. lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) # Check the shards when the dataset is very small. lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[], []] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: # Check the shards when the dataset is a round multiple of total batch size. lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowerCAmelCase__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is very small. lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[], []] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , even_batches=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: # Check the shards when the dataset is a round multiple of batch size. lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase_ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size. lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) # Check the shards when the dataset is very small. lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) lowerCAmelCase__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = [[], []] self.check_batch_sampler_shards(lowerCamelCase_ , lowerCamelCase_ , split_batches=lowerCamelCase_ , even_batches=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] lowerCAmelCase__ = [BatchSamplerShard(lowerCamelCase_ , 2 , lowerCamelCase_ , even_batches=lowerCamelCase_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=2 , lowerCamelCase_=False ) -> str: random.seed(lowerCamelCase_ ) lowerCAmelCase__ = list(lowerCamelCase_ ) lowerCAmelCase__ = [ IterableDatasetShard( lowerCamelCase_ , batch_size=lowerCamelCase_ , drop_last=lowerCamelCase_ , num_processes=lowerCamelCase_ , process_index=lowerCamelCase_ , split_batches=lowerCamelCase_ , ) for i in range(lowerCamelCase_ ) ] lowerCAmelCase__ = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowerCamelCase_ ) iterable_dataset_lists.append(list(lowerCamelCase_ ) ) lowerCAmelCase__ = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowerCAmelCase__ = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) self.assertTrue(len(lowerCamelCase_ ) % shard_batch_size == 0 ) lowerCAmelCase__ = [] for idx in range(0 , len(lowerCamelCase_ ) , lowerCamelCase_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowerCamelCase_ ) < len(lowerCamelCase_ ): reference += reference self.assertListEqual(lowerCamelCase_ , reference[: len(lowerCamelCase_ )] ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = 42 lowerCAmelCase__ = RandomIterableDataset() self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) # Edge case with a very small dataset lowerCAmelCase__ = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) self.check_iterable_dataset_shards(lowerCamelCase_ , lowerCamelCase_ , batch_size=4 , drop_last=lowerCamelCase_ , split_batches=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowerCamelCase_ ) lowerCAmelCase__ = SkipBatchSampler(lowerCamelCase_ , 2 ) self.assertListEqual(list(lowerCamelCase_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = DataLoader(list(range(16 ) ) , batch_size=4 ) lowerCAmelCase__ = skip_first_batches(lowerCamelCase_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(lowerCamelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCamelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __SCREAMING_SNAKE_CASE ( self ) -> str: Accelerator() lowerCAmelCase__ = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(lowerCamelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCamelCase_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
90
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowercase : Union[str, Any] = 50003 lowercase : Optional[int] = 50002 @require_sentencepiece @require_tokenizers class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : List[str]= PLBartTokenizer _a : List[str]= None _a : str= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase : Dict = PLBartTokenizer(snake_case ,language_codes="""base""" ,keep_accents=snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = PLBartTokenizer(snake_case ,language_codes="""base""" ,keep_accents=snake_case ) lowercase : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) lowercase : List[Any] = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual( snake_case ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) lowercase : Any = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) lowercase : List[Any] = tokenizer.vocab_size lowercase : Union[str, Any] = [tokenizer.convert_ids_to_tokens(snake_case ) for x in range(end - 4 ,snake_case )] self.assertListEqual(snake_case ,["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) lowercase : Optional[int] = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" lowercase : Tuple = tokenizer(snake_case ).input_ids self.assertEqual( tokenizer.decode(snake_case ,skip_special_tokens=snake_case ,clean_up_tokenization_spaces=snake_case ) ,snake_case ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Dict = PLBartTokenizer(snake_case ,language_codes="""multi""" ,keep_accents=snake_case ) lowercase : str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) lowercase : Tuple = tokenizer.convert_tokens_to_ids(snake_case ) self.assertListEqual( snake_case ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(snake_case ) self.assertListEqual( snake_case ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) lowercase : List[Any] = tokenizer.vocab_size lowercase : int = [tokenizer.convert_ids_to_tokens(snake_case ) for x in range(end - 7 ,snake_case )] self.assertListEqual( snake_case ,["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) lowercase : int = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" lowercase : Optional[Any] = tokenizer(snake_case ).input_ids self.assertEqual( tokenizer.decode(snake_case ,skip_special_tokens=snake_case ,clean_up_tokenization_spaces=snake_case ) ,snake_case ,) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): _a : str= "uclanlp/plbart-python-en_XX" _a : Union[str, Any]= [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] _a : List[Any]= [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] _a : Optional[Any]= [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' lowercase : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name ,language_codes="""base""" ,src_lang="""python""" ,tgt_lang="""en_XX""" ) lowercase : Union[str, Any] = 1 return cls def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] ,50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] ,50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] ,50003 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertIn(snake_case ,self.tokenizer.all_special_ids ) lowercase : List[str] = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] lowercase : int = self.tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) lowercase : Tuple = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=snake_case ) self.assertEqual(snake_case ,snake_case ) self.assertNotIn(self.tokenizer.eos_token ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = ["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] ,snake_case ) lowercase : Tuple = 10 lowercase : List[str] = self.tokenizer(snake_case ,max_length=snake_case ,truncation=snake_case ).input_ids[0] self.assertEqual(ids[-2] ,2 ) self.assertEqual(ids[-1] ,snake_case ) self.assertEqual(len(snake_case ) ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) ,[50004, 50001] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = tempfile.mkdtemp() lowercase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case ) lowercase : Optional[Any] = PLBartTokenizer.from_pretrained(snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,snake_case ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=snake_case ,return_tensors="""pt""" ) lowercase : List[str] = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() ,[2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] ,snake_case ) self.assertEqual(batch.decoder_input_ids[1][-1] ,2 ) self.assertEqual(batch.labels[1][-2:].tolist() ,[2, EN_CODE] ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=snake_case ,truncation=snake_case ,max_length=len(self.expected_src_tokens ) ,return_tensors="""pt""" ,) lowercase : str = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case ,snake_case ) self.assertEqual((2, 26) ,batch.input_ids.shape ) self.assertEqual((2, 26) ,batch.attention_mask.shape ) lowercase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,snake_case ) self.assertEqual(2 ,batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id, PYTHON_CODE] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.tokenizer(self.src_text ,padding=snake_case ,truncation=snake_case ,max_length=3 ,return_tensors="""pt""" ) lowercase : str = self.tokenizer( text_target=self.tgt_text ,padding=snake_case ,truncation=snake_case ,max_length=10 ,return_tensors="""pt""" ) lowercase : int = targets["""input_ids"""] lowercase : Tuple = shift_tokens_right(snake_case ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.tokenizer._build_translation_inputs( """A test""" ,return_tensors="""pt""" ,src_lang="""en_XX""" ,tgt_lang="""java""" ) self.assertEqual( nested_simplify(snake_case ) ,{ # A, test, EOS, en_XX """input_ids""": [[150, 242, 2, 50003]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 50001, } ,)
336
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig _lowerCamelCase : Tuple = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring _lowerCamelCase : Optional[int] = "UperNetConfig" class __snake_case (nn.Module ): def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Union[int, Tuple[int, int]] , _UpperCAmelCase : Union[int, Tuple[int, int], str] = 0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[int, Tuple[int, int]] = 1 , ) -> None: '''simple docstring''' super().__init__() _lowerCAmelCase : str = nn.Convad( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , kernel_size=_UpperCAmelCase , padding=_UpperCAmelCase , bias=_UpperCAmelCase , dilation=_UpperCAmelCase , ) _lowerCAmelCase : Union[str, Any] = nn.BatchNormad(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = nn.ReLU() def SCREAMING_SNAKE_CASE ( self : str , _UpperCAmelCase : torch.Tensor ) -> torch.Tensor: '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.conv(_UpperCAmelCase ) _lowerCAmelCase : int = self.batch_norm(_UpperCAmelCase ) _lowerCAmelCase : List[Any] = self.activation(_UpperCAmelCase ) return output class __snake_case (nn.Module ): def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: '''simple docstring''' super().__init__() _lowerCAmelCase : List[Any] = [ nn.AdaptiveAvgPoolad(_UpperCAmelCase ), UperNetConvModule(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_UpperCAmelCase ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : torch.Tensor ) -> torch.Tensor: '''simple docstring''' _lowerCAmelCase : Optional[int] = input for layer in self.layers: _lowerCAmelCase : Optional[Any] = layer(_UpperCAmelCase ) return hidden_state class __snake_case (nn.Module ): def __init__( self : List[Any] , _UpperCAmelCase : Tuple[int, ...] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : bool ) -> None: '''simple docstring''' super().__init__() _lowerCAmelCase : Any = pool_scales _lowerCAmelCase : int = align_corners _lowerCAmelCase : Optional[int] = in_channels _lowerCAmelCase : Any = channels _lowerCAmelCase : Optional[Any] = [] for i, pool_scale in enumerate(_UpperCAmelCase ): _lowerCAmelCase : Dict = UperNetPyramidPoolingBlock(pool_scale=_UpperCAmelCase , in_channels=_UpperCAmelCase , channels=_UpperCAmelCase ) self.blocks.append(_UpperCAmelCase ) self.add_module(str(_UpperCAmelCase ) , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : torch.Tensor ) -> List[torch.Tensor]: '''simple docstring''' _lowerCAmelCase : Any = [] for ppm in self.blocks: _lowerCAmelCase : Any = ppm(_UpperCAmelCase ) _lowerCAmelCase : Any = nn.functional.interpolate( _UpperCAmelCase , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(_UpperCAmelCase ) return ppm_outs class __snake_case (nn.Module ): def __init__( self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' super().__init__() _lowerCAmelCase : Tuple = config _lowerCAmelCase : str = config.pool_scales # e.g. (1, 2, 3, 6) _lowerCAmelCase : Optional[int] = in_channels _lowerCAmelCase : List[Any] = config.hidden_size _lowerCAmelCase : str = False _lowerCAmelCase : Any = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module _lowerCAmelCase : List[Any] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) _lowerCAmelCase : Tuple = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module _lowerCAmelCase : int = nn.ModuleList() _lowerCAmelCase : Tuple = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer _lowerCAmelCase : Any = UperNetConvModule(_UpperCAmelCase , self.channels , kernel_size=1 ) _lowerCAmelCase : str = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_UpperCAmelCase ) self.fpn_convs.append(_UpperCAmelCase ) _lowerCAmelCase : str = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: '''simple docstring''' self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' if isinstance(_UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : Tuple = inputs[-1] _lowerCAmelCase : Optional[int] = [x] psp_outs.extend(self.psp_modules(_UpperCAmelCase ) ) _lowerCAmelCase : int = torch.cat(_UpperCAmelCase , dim=1 ) _lowerCAmelCase : Optional[Any] = self.bottleneck(_UpperCAmelCase ) return output def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : torch.Tensor ) -> torch.Tensor: '''simple docstring''' _lowerCAmelCase : List[str] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_UpperCAmelCase ) ) # build top-down path _lowerCAmelCase : str = len(_UpperCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _lowerCAmelCase : Optional[Any] = laterals[i - 1].shape[2:] _lowerCAmelCase : Any = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_UpperCAmelCase , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs _lowerCAmelCase : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _lowerCAmelCase : Dict = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) _lowerCAmelCase : Any = torch.cat(_UpperCAmelCase , dim=1 ) _lowerCAmelCase : Dict = self.fpn_bottleneck(_UpperCAmelCase ) _lowerCAmelCase : int = self.classifier(_UpperCAmelCase ) return output class __snake_case (nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 3 , _UpperCAmelCase : Union[int, Tuple[int, int]] = 1 ) -> None: '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = config _lowerCAmelCase : Dict = config.auxiliary_in_channels _lowerCAmelCase : int = config.auxiliary_channels _lowerCAmelCase : str = config.auxiliary_num_convs _lowerCAmelCase : List[str] = config.auxiliary_concat_input _lowerCAmelCase : str = in_index _lowerCAmelCase : int = (kernel_size // 2) * dilation _lowerCAmelCase : List[str] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_UpperCAmelCase , padding=_UpperCAmelCase , dilation=_UpperCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_UpperCAmelCase , padding=_UpperCAmelCase , dilation=_UpperCAmelCase ) ) if self.num_convs == 0: _lowerCAmelCase : Optional[int] = nn.Identity() else: _lowerCAmelCase : str = nn.Sequential(*_UpperCAmelCase ) if self.concat_input: _lowerCAmelCase : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_UpperCAmelCase , padding=kernel_size // 2 ) _lowerCAmelCase : int = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: '''simple docstring''' self.apply(self._init_weights ) def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : Dict ) -> str: '''simple docstring''' if isinstance(_UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : torch.Tensor ) -> torch.Tensor: '''simple docstring''' _lowerCAmelCase : Optional[Any] = encoder_hidden_states[self.in_index] _lowerCAmelCase : Any = self.convs(_UpperCAmelCase ) if self.concat_input: _lowerCAmelCase : Dict = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) _lowerCAmelCase : Dict = self.classifier(_UpperCAmelCase ) return output class __snake_case (_a ): lowerCAmelCase__ = UperNetConfig lowerCAmelCase__ = "pixel_values" lowerCAmelCase__ = True def SCREAMING_SNAKE_CASE ( self : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> int: '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple=False ) -> Tuple: '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _lowerCAmelCase : Tuple = value _lowerCamelCase : int = R"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _lowerCamelCase : int = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , _a , ) class __snake_case (_a ): def __init__( self : Optional[Any] , _UpperCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' super().__init__(_UpperCAmelCase ) _lowerCAmelCase : List[Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) _lowerCAmelCase : Any = UperNetHead(_UpperCAmelCase , in_channels=self.backbone.channels ) _lowerCAmelCase : Any = UperNetFCNHead(_UpperCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: '''simple docstring''' _lowerCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Optional[Any] = output_attentions if output_attentions is not None else self.config.output_attentions _lowerCAmelCase : Union[str, Any] = self.backbone.forward_with_filtered_kwargs( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , output_attentions=_UpperCAmelCase ) _lowerCAmelCase : List[str] = outputs.feature_maps _lowerCAmelCase : Any = self.decode_head(_UpperCAmelCase ) _lowerCAmelCase : List[str] = nn.functional.interpolate(_UpperCAmelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=_UpperCAmelCase ) _lowerCAmelCase : int = None if self.auxiliary_head is not None: _lowerCAmelCase : Optional[int] = self.auxiliary_head(_UpperCAmelCase ) _lowerCAmelCase : Tuple = nn.functional.interpolate( _UpperCAmelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss _lowerCAmelCase : List[Any] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) _lowerCAmelCase : Union[str, Any] = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase : List[str] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: _lowerCAmelCase : Dict = (logits,) + outputs[1:] else: _lowerCAmelCase : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
701
def _UpperCAmelCase (UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : int = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
196
0
def _a ( __UpperCamelCase : int = 50 ): lowerCAmelCase__ : int = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 ,5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
233
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Dict = logging.get_logger(__name__) A__ : Optional[Any] = { """facebook/xmod-base""": """https://huggingface.co/facebook/xmod-base/resolve/main/config.json""", """facebook/xmod-large-prenorm""": """https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json""", """facebook/xmod-base-13-125k""": """https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json""", """facebook/xmod-base-30-125k""": """https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json""", """facebook/xmod-base-30-195k""": """https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json""", """facebook/xmod-base-60-125k""": """https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json""", """facebook/xmod-base-60-265k""": """https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json""", """facebook/xmod-base-75-125k""": """https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json""", """facebook/xmod-base-75-269k""": """https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json""", } class lowercase ( __UpperCamelCase ): __a = """xmod""" def __init__( self , SCREAMING_SNAKE_CASE__=30522 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=512 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1E-12 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__="absolute" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=("en_XX",) , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ): """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Optional[int] = vocab_size lowerCAmelCase__ : str = hidden_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : List[str] = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Tuple = max_position_embeddings lowerCAmelCase__ : Any = type_vocab_size lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : int = layer_norm_eps lowerCAmelCase__ : Tuple = position_embedding_type lowerCAmelCase__ : Any = use_cache lowerCAmelCase__ : Union[str, Any] = classifier_dropout lowerCAmelCase__ : List[str] = pre_norm lowerCAmelCase__ : str = adapter_reduction_factor lowerCAmelCase__ : Optional[int] = adapter_layer_norm lowerCAmelCase__ : List[Any] = adapter_reuse_layer_norm lowerCAmelCase__ : Optional[Any] = ln_before_adapter lowerCAmelCase__ : Optional[int] = list(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : List[str] = default_language class lowercase ( __UpperCamelCase ): @property def lowercase_ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase__ : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase__ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
233
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCAmelCase =["text", "image", "audio"] def __UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): inputs.append(create_inputs(_lowerCAmelCase ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def __UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = [] for output in outputs: if isinstance(_lowerCAmelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(_lowerCAmelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(_lowerCAmelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class __magic_name__ : def _UpperCAmelCase ( self : Tuple ): self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) UpperCAmelCase = self.tool.inputs for _input in inputs: if isinstance(_input ,__SCREAMING_SNAKE_CASE ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) UpperCAmelCase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _UpperCAmelCase ( self : Optional[Any] ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = self.tool(*__SCREAMING_SNAKE_CASE ) # There is a single output if len(self.tool.outputs ) == 1: UpperCAmelCase = [outputs] self.assertListEqual(output_types(__SCREAMING_SNAKE_CASE ) ,self.tool.outputs ) def _UpperCAmelCase ( self : Union[str, Any] ): self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def _UpperCAmelCase ( self : Union[str, Any] ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = self.tool(*__SCREAMING_SNAKE_CASE ) if not isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): UpperCAmelCase = [outputs] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,len(self.tool.outputs ) ) for output, output_type in zip(__SCREAMING_SNAKE_CASE ,self.tool.outputs ): UpperCAmelCase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) ) def _UpperCAmelCase ( self : int ): UpperCAmelCase = create_inputs(self.tool.inputs ) UpperCAmelCase = [] for _input, input_type in zip(__SCREAMING_SNAKE_CASE ,self.tool.inputs ): if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error UpperCAmelCase = self.tool(*__SCREAMING_SNAKE_CASE ) if not isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): UpperCAmelCase = [outputs] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,len(self.tool.outputs ) )
700
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __UpperCamelCase ( *_lowerCAmelCase ): """simple docstring""" with open(_lowerCAmelCase , "r" ) as fh: fcntl.flock(_lowerCAmelCase , fcntl.LOCK_EX ) try: print(*_lowerCAmelCase ) finally: fcntl.flock(_lowerCAmelCase , fcntl.LOCK_UN ) __lowerCAmelCase =int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __lowerCAmelCase =torch.device("cuda", local_rank) __lowerCAmelCase =socket.gethostname() __lowerCAmelCase =f"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __lowerCAmelCase =dist.get_rank() __lowerCAmelCase =dist.get_world_size() printflock(f"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(f"{gpu} is broken") raise
405
0
import re from filelock import FileLock try: import nltk __lowerCamelCase : List[str] = True except (ImportError, ModuleNotFoundError): __lowerCamelCase : int = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def lowerCamelCase_(lowerCamelCase_ ) -> str: re.sub("<n>" , "" , A_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A_ ) )
323
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A = logging.get_logger(__name__) @dataclass class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : Optional[int] = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : Any , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __UpperCAmelCase =deprecated_arg[3:] __UpperCAmelCase =not kwargs.pop(__SCREAMING_SNAKE_CASE ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) __UpperCAmelCase =kwargs.pop("""tpu_name""" , self.tpu_name ) __UpperCAmelCase =kwargs.pop("""device_idx""" , self.device_idx ) __UpperCAmelCase =kwargs.pop("""eager_mode""" , self.eager_mode ) __UpperCAmelCase =kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**__SCREAMING_SNAKE_CASE ) lowerCamelCase : str = field( default=UpperCamelCase , metadata={'help': 'Name of TPU'} , ) lowerCamelCase : int = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) lowerCamelCase : bool = field(default=UpperCamelCase , metadata={'help': 'Benchmark models in eager model.'} ) lowerCamelCase : bool = field( default=UpperCamelCase , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def _a ( self : List[str] ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["""tf"""] ) __UpperCAmelCase =None if self.tpu: try: if self.tpu_name: __UpperCAmelCase =tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __UpperCAmelCase =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __UpperCAmelCase =None return tpu @cached_property def _a ( self : Tuple ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __UpperCAmelCase =tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) __UpperCAmelCase =tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU __UpperCAmelCase =tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def _a ( self : Optional[Any] ) -> bool: requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self : str ) -> "tf.distribute.Strategy": requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self : Dict ) -> Optional[int]: requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self : List[str] ) -> int: requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self : List[str] ) -> bool: return self.n_gpu > 0
68
0
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path snake_case_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) snake_case_ = [ord(letter) for letter in string.ascii_lowercase] snake_case_ = {ord(char) for char in VALID_CHARS} snake_case_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def _lowerCamelCase( UpperCamelCase__ : list[int] , UpperCamelCase__ : tuple[int, ...] ) -> str | None: A : str = "" A : int A : int A : int for keychar, cipherchar in zip(cycle(UpperCamelCase__ ) , UpperCamelCase__ ): A : List[str] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCamelCase__ ) return decoded def _lowerCamelCase( UpperCamelCase__ : list[int] ) -> list[str]: A : list[str] = [] for key in product(UpperCamelCase__ , repeat=3 ): A : List[str] = try_key(UpperCamelCase__ , UpperCamelCase__ ) if encoded is not None: possibles.append(UpperCamelCase__ ) return possibles def _lowerCamelCase( UpperCamelCase__ : list[str] , UpperCamelCase__ : str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def _lowerCamelCase( UpperCamelCase__ : str = "p059_cipher.txt" ) -> int: A : list[int] A : list[str] A : str A : str A : str = Path(UpperCamelCase__ ).parent.joinpath(UpperCamelCase__ ).read_text(encoding='''utf-8''' ) A : List[Any] = [int(UpperCamelCase__ ) for number in data.strip().split(''',''' )] A : int = filter_valid_chars(UpperCamelCase__ ) for common_word in COMMON_WORDS: A : int = filter_common_word(UpperCamelCase__ , UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: break A : Union[str, Any] = possibles[0] return sum(ord(UpperCamelCase__ ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
537
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case_ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class _lowercase ( a , unittest.TestCase ): _UpperCamelCase = XLMProphetNetTokenizer _UpperCamelCase = False _UpperCamelCase = True def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing A : Dict = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): A : Union[str, Any] = '''[PAD]''' A : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def snake_case ( self ): A : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_UpperCAmelCase ) , 1_012 ) def snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def snake_case ( self ): A : Dict = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) A : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A : Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) A : int = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) A : Union[str, Any] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def snake_case ( self ): return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def snake_case ( self ): A : Union[str, Any] = '''Hello World!''' A : Any = [35_389, 6_672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def snake_case ( self ): # fmt: off A : List[Any] = {'''input_ids''': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
537
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _a : Tuple = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
598
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __snake_case = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
189
0
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): SCREAMING_SNAKE_CASE_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def A__ ( __lowerCamelCase, __lowerCamelCase=5_12, __lowerCamelCase=5_12 ): SCREAMING_SNAKE_CASE_ = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1 ) SCREAMING_SNAKE_CASE_ = np.array(pil_image.convert('''RGB''' ) ) SCREAMING_SNAKE_CASE_ = arr.astype(np.floataa ) / 1_27.5 - 1 SCREAMING_SNAKE_CASE_ = np.transpose(__lowerCamelCase, [2, 0, 1] ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(__lowerCamelCase ).unsqueeze(0 ) return image class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A , _A , ) -> List[Any]: super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) SCREAMING_SNAKE_CASE_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCamelCase ( self , _A , _A , _A ) -> List[str]: # get the original timestep using init_timestep SCREAMING_SNAKE_CASE_ = min(int(num_inference_steps * strength ) , _A ) SCREAMING_SNAKE_CASE_ = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A , _A=None ) -> List[Any]: if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}''' ) SCREAMING_SNAKE_CASE_ = image.to(device=_A , dtype=_A ) SCREAMING_SNAKE_CASE_ = batch_size * num_images_per_prompt if image.shape[1] == 4: SCREAMING_SNAKE_CASE_ = image else: if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_A ) ] SCREAMING_SNAKE_CASE_ = torch.cat(_A , dim=0 ) else: SCREAMING_SNAKE_CASE_ = self.movq.encode(_A ).latent_dist.sample(_A ) SCREAMING_SNAKE_CASE_ = self.movq.config.scaling_factor * init_latents SCREAMING_SNAKE_CASE_ = torch.cat([init_latents] , dim=0 ) SCREAMING_SNAKE_CASE_ = init_latents.shape SCREAMING_SNAKE_CASE_ = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents SCREAMING_SNAKE_CASE_ = self.scheduler.add_noise(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = init_latents return latents def _UpperCamelCase ( self , _A=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) SCREAMING_SNAKE_CASE_ = torch.device(F'''cuda:{gpu_id}''' ) SCREAMING_SNAKE_CASE_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def _UpperCamelCase ( self , _A=0 ) -> List[Any]: if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) SCREAMING_SNAKE_CASE_ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE_ = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCamelCase ( self ) -> Optional[Any]: if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self , _A , _A , _A , _A = 512 , _A = 512 , _A = 100 , _A = 4.0 , _A = 0.3 , _A = 1 , _A = None , _A = "pil" , _A = True , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self._execution_device SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = torch.cat(_A , dim=0 ) SCREAMING_SNAKE_CASE_ = image_embeds.shape[0] if isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = torch.cat(_A , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ = image_embeds.repeat_interleave(_A , dim=0 ) SCREAMING_SNAKE_CASE_ = negative_image_embeds.repeat_interleave(_A , dim=0 ) SCREAMING_SNAKE_CASE_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) if not isinstance(_A , _A ): SCREAMING_SNAKE_CASE_ = [image] if not all(isinstance(_A , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'''Input is in incorrect format: {[type(_A ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) SCREAMING_SNAKE_CASE_ = torch.cat([prepare_image(_A , _A , _A ) for i in image] , dim=0 ) SCREAMING_SNAKE_CASE_ = image.to(dtype=image_embeds.dtype , device=_A ) SCREAMING_SNAKE_CASE_ = self.movq.encode(_A )['''latents'''] SCREAMING_SNAKE_CASE_ = latents.repeat_interleave(_A , dim=0 ) self.scheduler.set_timesteps(_A , device=_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_timesteps(_A , _A , _A ) SCREAMING_SNAKE_CASE_ = timesteps[:1].repeat(batch_size * num_images_per_prompt ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = downscale_height_and_width(_A , _A , self.movq_scale_factor ) SCREAMING_SNAKE_CASE_ = self.prepare_latents( _A , _A , _A , _A , image_embeds.dtype , _A , _A ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE_ = {'''image_embeds''': image_embeds} SCREAMING_SNAKE_CASE_ = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing SCREAMING_SNAKE_CASE_ = self.movq.decode(_A , force_not_quantize=_A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE_ = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE_ = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
597
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy __UpperCAmelCase = logging.getLogger(__name__) __UpperCAmelCase = "pytorch_model.bin" @dataclasses.dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) UpperCAmelCase_ =dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the validation data."} ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "The name of the task to train on."} , ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class UpperCamelCase__ : """simple docstring""" UpperCAmelCase_ =dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) UpperCAmelCase_ =dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) UpperCAmelCase_ =dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) UpperCAmelCase_ =dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase_ =dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) UpperCAmelCase_ =dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) UpperCAmelCase_ =dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) UpperCAmelCase_ =dataclasses.field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Random seed for initialization."} , ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = datasets.concatenate_datasets([infer_input, infer_output], axis=1 ) if args.do_filter_by_confidence: SCREAMING_SNAKE_CASE_ = dataset.filter(lambda __lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 SCREAMING_SNAKE_CASE_ = int(eval_result * len(__lowerCamelCase ) ) print(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = dataset.sort('''probability''', reverse=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = dataset.select(range(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = dataset.remove_columns(['''label''', '''probability'''] ) SCREAMING_SNAKE_CASE_ = dataset.rename_column('''prediction''', '''label''' ) SCREAMING_SNAKE_CASE_ = dataset.map(lambda __lowerCamelCase : {"label": idalabel[example["label"]]} ) SCREAMING_SNAKE_CASE_ = dataset.shuffle(seed=args.seed ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(__lowerCamelCase, index=__lowerCamelCase ) else: dataset.to_json(__lowerCamelCase ) def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, **__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() SCREAMING_SNAKE_CASE_ = STModelArguments(model_name_or_path=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = STDataArguments(train_file=__lowerCamelCase, infer_file=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = STTrainingArguments(output_dir=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__lowerCamelCase ).items(): setattr(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) for key, value in kwargs.items(): if hasattr(__lowerCamelCase, __lowerCamelCase ): setattr(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Sanity checks SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None SCREAMING_SNAKE_CASE_ = args.train_file SCREAMING_SNAKE_CASE_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None SCREAMING_SNAKE_CASE_ = args.eval_file for key in data_files: SCREAMING_SNAKE_CASE_ = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: SCREAMING_SNAKE_CASE_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) SCREAMING_SNAKE_CASE_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format SCREAMING_SNAKE_CASE_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=__lowerCamelCase ) os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = False # Show the progress bar SCREAMING_SNAKE_CASE_ = tqdm(range(args.max_selftrain_iterations ), disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0, int(args.max_selftrain_iterations ) ): SCREAMING_SNAKE_CASE_ = data_dir_format(__lowerCamelCase ) assert os.path.exists(__lowerCamelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''stage-1''' ) SCREAMING_SNAKE_CASE_ = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__lowerCamelCase, __lowerCamelCase ): arguments_dict.update({key: value} ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''best-checkpoint''', __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''', __lowerCamelCase, __lowerCamelCase, ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''', __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''', __lowerCamelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''best-checkpoint''' ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''stage-2''' ) # Update arguments_dict SCREAMING_SNAKE_CASE_ = model_path SCREAMING_SNAKE_CASE_ = data_files['''train'''] SCREAMING_SNAKE_CASE_ = current_output_dir SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''best-checkpoint''', __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''', __lowerCamelCase, __lowerCamelCase, ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''', __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''', __lowerCamelCase ) SCREAMING_SNAKE_CASE_ = iteration SCREAMING_SNAKE_CASE_ = data_dir_format(iteration + 1 ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(os.path.join(__lowerCamelCase, '''best-checkpoint''' ) ) SCREAMING_SNAKE_CASE_ = config.idalabel SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''eval_results_best-checkpoint.json''' ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''test_results_best-checkpoint.json''' ) assert os.path.exists(__lowerCamelCase ) with open(__lowerCamelCase, '''r''' ) as f: SCREAMING_SNAKE_CASE_ = float(json.load(__lowerCamelCase )[args.eval_metric] ) SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(__lowerCamelCase ) # Loading the dataset from local csv or json files. SCREAMING_SNAKE_CASE_ = load_dataset(args.data_file_extension, data_files={'''data''': data_files['''infer''']} )['''data'''] SCREAMING_SNAKE_CASE_ = load_dataset('''csv''', data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(__lowerCamelCase, exist_ok=__lowerCamelCase ) shutil.copy(__lowerCamelCase, os.path.join(__lowerCamelCase, F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(__lowerCamelCase ): shutil.copy(__lowerCamelCase, os.path.join(__lowerCamelCase, F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE_ = os.path.join(__lowerCamelCase, F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: SCREAMING_SNAKE_CASE_ = eval_result if best_iteration is None: SCREAMING_SNAKE_CASE_ = new_iteration SCREAMING_SNAKE_CASE_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: SCREAMING_SNAKE_CASE_ = new_iteration SCREAMING_SNAKE_CASE_ = new_eval_result SCREAMING_SNAKE_CASE_ = 0 else: if new_eval_result == best_eval_result: SCREAMING_SNAKE_CASE_ = new_iteration SCREAMING_SNAKE_CASE_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: SCREAMING_SNAKE_CASE_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''', __lowerCamelCase ) logger.info('''Best evaluation result: %s = %f''', args.eval_metric, __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase, F'''eval_results_iter-{iteration}.json''' ), os.path.join(__lowerCamelCase, '''eval_results_best-iteration.json''' ), ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''', args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''', args.eval_metric, __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase, F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ), os.path.join(__lowerCamelCase, '''eval_results_best-iteration.json''' ), )
597
1
def A__ ( lowercase: str, lowercase: str ) -> bool: A : Optional[Any] =len(lowercase ) A : str =len(lowercase ) A : Any =[[False for _ in range(m + 1 )] for _ in range(n + 1 )] A : List[Any] =True for i in range(lowercase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: A : List[str] =True if a[i].islower(): A : Dict =True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
305
def A__ ( lowercase: str ) -> str: if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) A : int ='' while len(lowercase ) % 3 != 0: A : str ='0' + bin_string A : int =[ bin_string[index : index + 3] for index in range(len(lowercase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: A : Optional[Any] =0 for index, val in enumerate(lowercase ): oct_val += int(2 ** (2 - index) * int(lowercase ) ) oct_string += str(lowercase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
305
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' a__ : Optional[int] = DebertaTokenizer a__ : List[str] = True a__ : int = DebertaTokenizerFast def UpperCamelCase__ ( self) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase :Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __UpperCamelCase :Optional[int] = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_)))) __UpperCamelCase :str = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCamelCase :Any = {'''unk_token''': '''[UNK]'''} __UpperCamelCase :List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(lowerCAmelCase_) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(lowerCAmelCase_)) def UpperCamelCase__ ( self , **__lowercase) -> List[str]: kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_) def UpperCamelCase__ ( self , __lowercase) -> Any: __UpperCamelCase :Dict = '''lower newer''' __UpperCamelCase :str = '''lower newer''' return input_text, output_text def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :int = self.get_tokenizer() __UpperCamelCase :Union[str, Any] = '''lower newer''' __UpperCamelCase :Optional[Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __UpperCamelCase :str = tokenizer.tokenize(lowerCAmelCase_) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_) __UpperCamelCase :Tuple = tokens + [tokenizer.unk_token] __UpperCamelCase :Optional[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_) , lowerCAmelCase_) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :List[Any] = self.get_tokenizer() __UpperCamelCase :List[str] = tokenizer('''Hello''' , '''World''') __UpperCamelCase :List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , lowerCAmelCase_) @slow def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Tuple = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''') __UpperCamelCase :str = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase_) __UpperCamelCase :Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase_) __UpperCamelCase :List[str] = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_) __UpperCamelCase :Dict = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_) __UpperCamelCase :Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_) __UpperCamelCase :int = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Dict = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: __UpperCamelCase :Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''') __UpperCamelCase :str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __UpperCamelCase :Any = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_) __UpperCamelCase :Union[str, Any] = [tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) for seq in encoding['''input_ids''']] # fmt: off __UpperCamelCase :Union[str, Any] = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __UpperCamelCase :Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , lowerCAmelCase_) for expected, decoded in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_)
717
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : List[str] = StableUnCLIPImgaImgPipeline a__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS a__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a__ : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a__ : List[Any] = frozenset([] ) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[Any] = 32 __UpperCamelCase :int = embedder_hidden_size # image encoding components __UpperCamelCase :Dict = CLIPImageProcessor(crop_size=32 , size=32) torch.manual_seed(0) __UpperCamelCase :Tuple = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__lowercase , projection_dim=__lowercase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , )) # regular denoising components torch.manual_seed(0) __UpperCamelCase :Union[str, Any] = StableUnCLIPImageNormalizer(embedding_dim=__lowercase) __UpperCamelCase :Any = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''') torch.manual_seed(0) __UpperCamelCase :List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') torch.manual_seed(0) __UpperCamelCase :str = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )) torch.manual_seed(0) __UpperCamelCase :Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowercase , layers_per_block=1 , upcast_attention=__lowercase , use_linear_projection=__lowercase , ) torch.manual_seed(0) __UpperCamelCase :Dict = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='''v_prediction''' , set_alpha_to_one=__lowercase , steps_offset=1 , ) torch.manual_seed(0) __UpperCamelCase :Any = AutoencoderKL() __UpperCamelCase :Dict = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def UpperCamelCase__ ( self , __lowercase , __lowercase=0 , __lowercase=True) -> Tuple: if str(__lowercase).startswith('''mps'''): __UpperCamelCase :int = torch.manual_seed(__lowercase) else: __UpperCamelCase :int = torch.Generator(device=__lowercase).manual_seed(__lowercase) __UpperCamelCase :Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase)).to(__lowercase) if pil_image: __UpperCamelCase :Tuple = input_image * 0.5 + 0.5 __UpperCamelCase :Any = input_image.clamp(0 , 1) __UpperCamelCase :Any = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() __UpperCamelCase :int = DiffusionPipeline.numpy_to_pil(__lowercase)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :int = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase :Dict = self.get_dummy_components() __UpperCamelCase :Dict = StableUnCLIPImgaImgPipeline(**__lowercase) __UpperCamelCase :int = sd_pipe.to(__lowercase) sd_pipe.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :Optional[int] = self.get_dummy_inputs(__lowercase) inputs.update({'''image_embeds''': None}) __UpperCamelCase :Any = sd_pipe(**__lowercase).images __UpperCamelCase :int = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase :Union[str, Any] = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Union[str, Any] = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=__lowercase) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :List[Any] = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=__lowercase) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase__ ( self) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__lowercase) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') __UpperCamelCase :str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''') __UpperCamelCase :Optional[int] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa) pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCamelCase :Union[str, Any] = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :str = pipe(__lowercase , '''anime turle''' , generator=__lowercase , output_type='''np''') __UpperCamelCase :List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') __UpperCamelCase :str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''') __UpperCamelCase :Tuple = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa) pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCamelCase :int = torch.Generator(device='''cpu''').manual_seed(0) __UpperCamelCase :int = pipe(__lowercase , '''anime turle''' , generator=__lowercase , output_type='''np''') __UpperCamelCase :List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCamelCase :Any = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa) __UpperCamelCase :Any = pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCamelCase :Tuple = pipe( __lowercase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) __UpperCamelCase :str = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
452
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib snake_case_ = threading.Lock() snake_case_ = None snake_case_ = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } snake_case_ = logging.WARNING snake_case_ = True def snake_case__ ( ): '''simple docstring''' lowercase__ : Union[str, Any] = os.getenv('TRANSFORMERS_VERBOSITY' , SCREAMING_SNAKE_CASE_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def snake_case__ ( ): '''simple docstring''' return __name__.split('.' )[0] def snake_case__ ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def snake_case__ ( ): '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return lowercase__ : str = logging.StreamHandler() # Set sys.stderr as stream. lowercase__ : Any = sys.stderr.flush # Apply our default configuration to the library root logger. lowercase__ : str = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) lowercase__ : Union[str, Any] = False def snake_case__ ( ): '''simple docstring''' global _default_handler with _lock: if not _default_handler: return lowercase__ : Dict = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) lowercase__ : str = None def snake_case__ ( ): '''simple docstring''' return log_levels def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[str] = None ): '''simple docstring''' if name is None: lowercase__ : Optional[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( ): '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def snake_case__ ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( ): '''simple docstring''' _configure_library_root_logger() lowercase__ : Optional[Any] = False def snake_case__ ( ): '''simple docstring''' _configure_library_root_logger() lowercase__ : Optional[Any] = True def snake_case__ ( ): '''simple docstring''' lowercase__ : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: lowercase__ : Union[str, Any] = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( ): '''simple docstring''' lowercase__ : str = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( self : List[str] , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' lowercase__ : List[Any] = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , SCREAMING_SNAKE_CASE_ ) if no_advisory_warnings: return self.warning(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) snake_case_ = warning_advice @functools.lru_cache(SCREAMING_SNAKE_CASE_ ) def snake_case__ ( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' self.warning(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) snake_case_ = warning_once class SCREAMING_SNAKE_CASE__ : def __init__( self , *a , **a): # pylint: disable=unused-argument lowercase__ : Tuple = args[0] if args else None def __iter__( self): return iter(self._iterator) def __getattr__( self , a): def empty_fn(*a , **a): # pylint: disable=unused-argument return return empty_fn def __enter__( self): return self def __exit__( self , a , a , a): return class SCREAMING_SNAKE_CASE__ : def __call__( self , *a , **a): if _tqdm_active: return tqdm_lib.tqdm(*a , **a) else: return EmptyTqdm(*a , **a) def snake_case_ ( self , *a , **a): lowercase__ : Tuple = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*a , **a) def snake_case_ ( self): if _tqdm_active: return tqdm_lib.tqdm.get_lock() snake_case_ = _tqdm_cls() def snake_case__ ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def snake_case__ ( ): '''simple docstring''' global _tqdm_active lowercase__ : Tuple = True hf_hub_utils.enable_progress_bars() def snake_case__ ( ): '''simple docstring''' global _tqdm_active lowercase__ : List[Any] = False hf_hub_utils.disable_progress_bars()
164
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : str = """umt5""" __lowerCamelCase : List[str] = ["""past_key_values"""] def __init__( self , a=25_0112 , a=512 , a=64 , a=1024 , a=8 , a=None , a=6 , a=32 , a=128 , a=0.1 , a=1e-6 , a=1.0 , a="gated-gelu" , a=True , a=True , a="T5Tokenizer" , a=True , a=0 , a=1 , a=0 , **a , ): super().__init__( is_encoder_decoder=a , tokenizer_class=a , tie_word_embeddings=a , pad_token_id=a , eos_token_id=a , decoder_start_token_id=a , **a , ) lowercase__ : List[Any] = vocab_size lowercase__ : Union[str, Any] = d_model lowercase__ : List[str] = d_kv lowercase__ : Union[str, Any] = d_ff lowercase__ : Tuple = num_layers lowercase__ : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ : Dict = num_heads lowercase__ : List[str] = relative_attention_num_buckets lowercase__ : str = relative_attention_max_distance lowercase__ : Any = dropout_rate lowercase__ : Union[str, Any] = layer_norm_epsilon lowercase__ : Dict = initializer_factor lowercase__ : Union[str, Any] = feed_forward_proj lowercase__ : int = use_cache lowercase__ : List[str] = self.feed_forward_proj.split('-') lowercase__ : Any = act_info[-1] lowercase__ : str = act_info[0] == 'gated' if len(a) > 1 and act_info[0] != "gated" or len(a) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ : List[Any] = 'gelu_new' @property def snake_case_ ( self): return self.d_model @property def snake_case_ ( self): return self.num_heads @property def snake_case_ ( self): return self.num_layers class SCREAMING_SNAKE_CASE__ (__snake_case ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def snake_case_ ( self): lowercase__ : Union[str, Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ : List[str] = 'past_encoder_sequence + sequence' lowercase__ : Dict = {0: 'batch'} lowercase__ : Tuple = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} lowercase__ : Any = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(a , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def snake_case_ ( self): return 13 @property def snake_case_ ( self): return 5e-4
164
1
"""simple docstring""" from __future__ import annotations def A ( snake_case__ , snake_case__ = None , snake_case__ = None ): '''simple docstring''' if start is None: SCREAMING_SNAKE_CASE__ = 0 if end is None: SCREAMING_SNAKE_CASE__ = len(snake_case__ ) - 1 if start >= end: return SCREAMING_SNAKE_CASE__ = (start + end) // 2 slowsort(snake_case__ , snake_case__ , snake_case__ ) slowsort(snake_case__ , mid + 1 , snake_case__ ) if sequence[end] < sequence[mid]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = sequence[mid], sequence[end] slowsort(snake_case__ , snake_case__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
616
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Optional[int] = logging.get_logger(__name__) A_ : Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model"} A_ : str = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } A_ : Tuple = { "camembert-base": 512, } A_ : int = "▁" class lowerCamelCase (A__ ): lowerCamelCase__ : int = VOCAB_FILES_NAMES lowerCamelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int="<s>" , __UpperCAmelCase : Union[str, Any]="</s>" , __UpperCAmelCase : List[str]="</s>" , __UpperCAmelCase : List[Any]="<s>" , __UpperCAmelCase : int="<unk>" , __UpperCAmelCase : Dict="<pad>" , __UpperCAmelCase : int="<mask>" , __UpperCAmelCase : List[Any]=["<s>NOTUSED", "</s>NOTUSED"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Optional[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> SCREAMING_SNAKE_CASE__ = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} SCREAMING_SNAKE_CASE__ = len(self.fairseq_tokens_to_ids ) SCREAMING_SNAKE_CASE__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : str ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : Tuple ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(__UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : int ) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = """""" SCREAMING_SNAKE_CASE__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = [] else: current_sub_tokens.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def __getstate__( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self : int , __UpperCAmelCase : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
616
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' lowercase__ : Union[str, Any] = 384 lowercase__ : Tuple = 7 if "tiny" in model_name: lowercase__ : Tuple = 96 lowercase__ : Union[str, Any] = (2, 2, 6, 2) lowercase__ : Optional[int] = (3, 6, 12, 24) elif "small" in model_name: lowercase__ : List[str] = 96 lowercase__ : Dict = (2, 2, 18, 2) lowercase__ : Dict = (3, 6, 12, 24) elif "base" in model_name: lowercase__ : List[str] = 128 lowercase__ : Dict = (2, 2, 18, 2) lowercase__ : str = (4, 8, 16, 32) lowercase__ : List[str] = 12 lowercase__ : int = 512 elif "large" in model_name: lowercase__ : Union[str, Any] = 192 lowercase__ : Tuple = (2, 2, 18, 2) lowercase__ : List[str] = (6, 12, 24, 48) lowercase__ : Optional[int] = 12 lowercase__ : int = 768 # set label information lowercase__ : int = 150 lowercase__ : int = 'huggingface/label-files' lowercase__ : Any = 'ade20k-id2label.json' lowercase__ : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) lowercase__ : str = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowercase__ : List[str] = {v: k for k, v in idalabel.items()} lowercase__ : List[Any] = SwinConfig( embed_dim=SCREAMING_SNAKE_CASE_ , depths=SCREAMING_SNAKE_CASE_ , num_heads=SCREAMING_SNAKE_CASE_ , window_size=SCREAMING_SNAKE_CASE_ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) lowercase__ : Optional[int] = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE_ , auxiliary_in_channels=SCREAMING_SNAKE_CASE_ , num_labels=SCREAMING_SNAKE_CASE_ , idalabel=SCREAMING_SNAKE_CASE_ , labelaid=SCREAMING_SNAKE_CASE_ , ) return config def snake_case__ ( SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' lowercase__ : int = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def snake_case__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' lowercase__ : Tuple = dct.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = val def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' lowercase__ : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase__ : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase__ : Tuple = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) lowercase__ : Any = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[:dim, :] lowercase__ : Union[str, Any] = in_proj_bias[: dim] lowercase__ : str = in_proj_weight[ dim : dim * 2, : ] lowercase__ : List[str] = in_proj_bias[ dim : dim * 2 ] lowercase__ : int = in_proj_weight[ -dim :, : ] lowercase__ : Optional[Any] = in_proj_bias[-dim :] # fmt: on def snake_case__ ( SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' lowercase__ , lowercase__ : List[str] = x.shape lowercase__ : List[str] = x.reshape(SCREAMING_SNAKE_CASE_ , 4 , in_channel // 4 ) lowercase__ : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return x def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ : List[str] = x.shape lowercase__ : List[str] = x.reshape(SCREAMING_SNAKE_CASE_ , in_channel // 4 , 4 ) lowercase__ : Optional[int] = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return x def snake_case__ ( SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' lowercase__ : int = x.shape[0] lowercase__ : List[str] = x.reshape(4 , in_channel // 4 ) lowercase__ : Optional[Any] = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE_ ) return x def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' lowercase__ : str = x.shape[0] lowercase__ : Optional[int] = x.reshape(in_channel // 4 , 4 ) lowercase__ : Tuple = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(SCREAMING_SNAKE_CASE_ ) return x def snake_case__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' lowercase__ : Optional[Any] = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } lowercase__ : Tuple = model_name_to_url[model_name] lowercase__ : Optional[int] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' , file_name=SCREAMING_SNAKE_CASE_ )[ 'state_dict' ] for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE_ , param.shape ) lowercase__ : str = get_upernet_config(SCREAMING_SNAKE_CASE_ ) lowercase__ : Union[str, Any] = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase__ : Optional[Any] = state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "bn" in key: lowercase__ : str = key.replace('bn' , 'batch_norm' ) lowercase__ : Tuple = val # rename keys lowercase__ : Optional[Any] = create_rename_keys(SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase__ : int = reverse_correct_unfold_reduction_order(SCREAMING_SNAKE_CASE_ ) if "norm" in key: lowercase__ : Optional[int] = reverse_correct_unfold_norm_order(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify on image lowercase__ : Any = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' lowercase__ : Union[str, Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ).convert('RGB' ) lowercase__ : List[Any] = SegformerImageProcessor() lowercase__ : List[str] = processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values with torch.no_grad(): lowercase__ : List[str] = model(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowercase__ : str = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": lowercase__ : Any = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": lowercase__ : Optional[Any] = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": lowercase__ : List[Any] = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[F'''upernet-swin-{size}''' for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
164
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self , a = 6): lowercase__ : Node | None = None lowercase__ : Node | None = None self.create_linked_list(a) def snake_case_ ( self , a): lowercase__ : str = Node() lowercase__ : str = current_node lowercase__ : str = current_node lowercase__ : Any = current_node for _ in range(1 , a): lowercase__ : List[str] = Node() lowercase__ : Optional[Any] = current_node lowercase__ : Union[str, Any] = previous_node lowercase__ : List[str] = current_node lowercase__ : Optional[int] = self.front lowercase__ : str = previous_node def snake_case_ ( self): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def snake_case_ ( self): self.check_can_perform_operation() return self.front.data if self.front else None def snake_case_ ( self , a): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase__ : Dict = self.rear.next if self.rear: lowercase__ : Any = data def snake_case_ ( self): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase__ : Any = self.front.data lowercase__ : Optional[Any] = None return data lowercase__ : Optional[Any] = self.front lowercase__ : str = old_front.next lowercase__ : Union[str, Any] = old_front.data lowercase__ : List[str] = None return data def snake_case_ ( self): if self.is_empty(): raise Exception('Empty Queue') def snake_case_ ( self): if self.rear and self.rear.next == self.front: raise Exception('Full Queue') class SCREAMING_SNAKE_CASE__ : def __init__( self): lowercase__ : Any | None = None lowercase__ : Node | None = None lowercase__ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
164
1
from cva import destroyAllWindows, imread, imshow, waitKey def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase , UpperCamelCase = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowercase ): for j in range(lowercase ): UpperCamelCase = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image _UpperCAmelCase : Tuple = imread("image_data/lena.jpg", 1) # convert to its negative _UpperCAmelCase : Tuple = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
3
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _UpperCAmelCase : Any = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" _UpperCAmelCase : str = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" _UpperCAmelCase : List[str] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def A ( lowercase , lowercase ) -> List[str]: '''simple docstring''' return float((preds == labels).mean() ) def A ( lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = simple_accuracy(lowercase , lowercase ) UpperCamelCase = float(fa_score(y_true=lowercase , y_pred=lowercase ) ) return { "accuracy": acc, "f1": fa, } def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = float(pearsonr(lowercase , lowercase )[0] ) UpperCamelCase = float(spearmanr(lowercase , lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def __UpperCamelCase ( self , A_ , A_ ) -> Any: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(A_ , A_ )} elif self.config_name == "stsb": return pearson_and_spearman(A_ , A_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(A_ , A_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(A_ , A_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
3
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A__ : Union[str, Any] = 2 class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any], *, # begin keyword-only arguments lowerCamelCase : Optional[int]="<s>", lowerCamelCase : Any="<pad>", lowerCamelCase : Union[str, Any]="</s>", lowerCamelCase : Optional[int]="<unk>", lowerCamelCase : Dict=None, ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = bos, unk, pad, eos lowercase__ = [] lowercase__ = [] lowercase__ = {} lowercase__ = self.add_symbol(lowerCamelCase ) lowercase__ = self.add_symbol(lowerCamelCase ) lowercase__ = self.add_symbol(lowerCamelCase ) lowercase__ = self.add_symbol(lowerCamelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCamelCase ) lowercase__ = len(self.symbols ) def __eq__( self : Tuple, lowerCamelCase : str ): '''simple docstring''' return self.indices == other.indices def __getitem__( self : str, lowerCamelCase : Any ): '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[Any] ): '''simple docstring''' return len(self.symbols ) def __contains__( self : Union[str, Any], lowerCamelCase : Optional[int] ): '''simple docstring''' return sym in self.indices @classmethod def lowercase__ ( cls : Union[str, Any], lowerCamelCase : Any ): '''simple docstring''' lowercase__ = cls() d.add_from_file(lowerCamelCase ) return d def lowercase__ ( self : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : str=1, lowerCamelCase : str=False ): '''simple docstring''' if word in self.indices and not overwrite: lowercase__ = self.indices[word] lowercase__ = self.count[idx] + n return idx else: lowercase__ = len(self.symbols ) lowercase__ = idx self.symbols.append(lowerCamelCase ) self.count.append(lowerCamelCase ) return idx def lowercase__ ( self : Tuple, lowerCamelCase : List[str] ): '''simple docstring''' return 0 def lowercase__ ( self : Union[str, Any], lowerCamelCase : Dict ): '''simple docstring''' if isinstance(lowerCamelCase, lowerCamelCase ): try: with open(lowerCamelCase, '''r''', encoding='''utf-8''' ) as fd: self.add_from_file(lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(lowerCamelCase ) ) return lowercase__ = f.readlines() lowercase__ = self._load_meta(lowerCamelCase ) for line in lines[indices_start_line:]: try: lowercase__ , lowercase__ = line.rstrip().rsplit(''' ''', 1 ) if field == "#fairseq:overwrite": lowercase__ = True lowercase__ , lowercase__ = line.rsplit(''' ''', 1 ) else: lowercase__ = False lowercase__ = int(lowerCamelCase ) lowercase__ = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(lowerCamelCase ) ) self.add_symbol(lowerCamelCase, n=lowerCamelCase, overwrite=lowerCamelCase ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def a ( lowerCamelCase_ ): '''simple docstring''' # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowercase__ = dict((re.sub(r'''@@$''' , '''''' , lowerCamelCase_ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , lowerCamelCase_ ), v) for k, v in d.items() ) lowercase__ = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] lowercase__ = d[k] # restore return da def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' # prep if not os.path.exists(lowerCamelCase_ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models lowercase__ = os.path.join(lowerCamelCase_ , '''checkpoint.pt''' ) if not os.path.isfile(lowerCamelCase_ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) lowercase__ = torch.load(lowerCamelCase_ , map_location='''cpu''' ) lowercase__ = chkpt['''cfg''']['''model'''] # dicts lowercase__ = os.path.join(lowerCamelCase_ , '''dict.txt''' ) if not os.path.isfile(lowerCamelCase_ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) lowercase__ = Dictionary.load(lowerCamelCase_ ) lowercase__ = rewrite_dict_keys(src_dict.indices ) lowercase__ = len(lowerCamelCase_ ) lowercase__ = os.path.join(lowerCamelCase_ , VOCAB_FILES_NAMES['''vocab_file'''] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCamelCase_ , ensure_ascii=lowerCamelCase_ , indent=lowerCamelCase_ ) ) # merges_file (bpecodes) lowercase__ = os.path.join(lowerCamelCase_ , '''bpecodes''' ) if not os.path.isfile(lowerCamelCase_ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) lowercase__ = os.path.join(lowerCamelCase_ , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(lowerCamelCase_ , lowerCamelCase_ ) # model config lowercase__ = os.path.join(lowerCamelCase_ , '''config.json''' ) lowercase__ = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.02, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCamelCase_ , ensure_ascii=lowerCamelCase_ , indent=lowerCamelCase_ ) ) # tokenizer config lowercase__ = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCamelCase_ , ensure_ascii=lowerCamelCase_ , indent=lowerCamelCase_ ) ) # model lowercase__ = chkpt['''model'''] # remove unneeded keys lowercase__ = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): lowercase__ = model_state_dict.pop(lowerCamelCase_ ) else: lowercase__ = model_state_dict.pop(lowerCamelCase_ ) lowercase__ = BioGptConfig.from_pretrained(lowerCamelCase_ ) lowercase__ = BioGptForCausalLM(lowerCamelCase_ ) # check that it loads ok model_new.load_state_dict(lowerCamelCase_ ) # save lowercase__ = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) print('''Conversion is done!''' ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A__ : Tuple = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
183
import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : """simple docstring""" def __init__( self : str, lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = str(id_ ) lowercase__ = None lowercase__ = None lowercase__ = [] lowercase__ = {} # {vertex:distance} def __lt__( self : Dict, lowerCamelCase : Tuple ): '''simple docstring''' return self.key < other.key def __repr__( self : Dict ): '''simple docstring''' return self.id def lowercase__ ( self : str, lowerCamelCase : List[str] ): '''simple docstring''' self.neighbors.append(lowerCamelCase ) def lowercase__ ( self : Any, lowerCamelCase : Dict, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = weight def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCamelCase_ ) graph[b - 1].add_edge(graph[a - 1] , lowerCamelCase_ ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] for u in graph: lowercase__ = math.inf lowercase__ = None lowercase__ = 0 lowercase__ = graph[:] while q: lowercase__ = min(lowerCamelCase_ ) q.remove(lowerCamelCase_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowercase__ = u lowercase__ = u.edges[v.id] for i in range(1 , len(lowerCamelCase_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' for u in graph: lowercase__ = math.inf lowercase__ = None lowercase__ = 0 lowercase__ = list(lowerCamelCase_ ) hq.heapify(lowerCamelCase_ ) while h: lowercase__ = hq.heappop(lowerCamelCase_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowercase__ = u lowercase__ = u.edges[v.id] hq.heapify(lowerCamelCase_ ) for i in range(1 , len(lowerCamelCase_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def a ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
183
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase : def __init__( self : List[str] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[int]=100 , _UpperCamelCase : Any=13 , _UpperCamelCase : Optional[Any]=30 , _UpperCamelCase : Tuple=2 , _UpperCamelCase : List[str]=3 , _UpperCamelCase : List[Any]=True , _UpperCamelCase : str=True , _UpperCamelCase : Any=32 , _UpperCamelCase : List[str]=4 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : Tuple=37 , _UpperCamelCase : List[Any]="gelu" , _UpperCamelCase : str=0.1 , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : Any=10 , _UpperCamelCase : Optional[Any]=0.0_2 , _UpperCamelCase : int=3 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Union[str, Any]=[0, 1, 2, 3] , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = 100 SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = out_indices SCREAMING_SNAKE_CASE = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def __snake_case( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels, pixel_labels def __snake_case( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __snake_case( self : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case( self : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitForMaskedImageModeling(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __snake_case( self : Tuple , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = BeitForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = BeitForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case( self : int , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = BeitForSemanticSegmentation(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __snake_case( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : Dict = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase__ : List[Any] = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ : str = False lowercase__ : int = False lowercase__ : Any = False def __snake_case( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def __snake_case( self : List[str] ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __snake_case( self : List[str] ) -> str: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __snake_case( self : List[str] ) -> Optional[int]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __snake_case( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : List[str] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def __snake_case( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def __snake_case( self : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCamelCase ) def __snake_case( self : str ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_UpperCamelCase ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ).loss loss.backward() def __snake_case( self : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_UpperCamelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) model.gradient_checkpointing_enable() model.to(_UpperCamelCase ) model.train() SCREAMING_SNAKE_CASE = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ).loss loss.backward() def __snake_case( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=_UpperCamelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def __snake_case( self : List[str] ) -> str: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = BeitModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __snake_case( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).pixel_values.to(_UpperCamelCase ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE = torch.ones((1, 196) , dtype=torch.bool ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(pixel_values=_UpperCamelCase , bool_masked_pos=_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _UpperCamelCase , atol=1e-2 ) ) @slow def __snake_case( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) SCREAMING_SNAKE_CASE = 281 self.assertEqual(logits.argmax(-1 ).item() , _UpperCamelCase ) @slow def __snake_case( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) SCREAMING_SNAKE_CASE = 2_396 self.assertEqual(logits.argmax(-1 ).item() , _UpperCamelCase ) @slow def __snake_case( self : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE = model.to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = BeitImageProcessor(do_resize=_UpperCamelCase , size=640 , do_center_crop=_UpperCamelCase ) SCREAMING_SNAKE_CASE = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=_UpperCamelCase , ) else: SCREAMING_SNAKE_CASE = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=_UpperCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def __snake_case( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE = model.to(_UpperCamelCase ) SCREAMING_SNAKE_CASE = BeitImageProcessor(do_resize=_UpperCamelCase , size=640 , do_center_crop=_UpperCamelCase ) SCREAMING_SNAKE_CASE = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=_UpperCamelCase , target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = image_processor.post_process_semantic_segmentation(outputs=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _UpperCamelCase )
647
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _lowerCamelCase : Optional[Any] = TypeVar('''T''') class lowercase ( Generic[T] ): def __init__( self : Any , _UpperCamelCase : T ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = data SCREAMING_SNAKE_CASE = None def __str__( self : Union[str, Any] ) -> str: '''simple docstring''' return F"{self.data}" class lowercase ( Generic[T] ): def __init__( self : Optional[int] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = None def __iter__( self : str ) -> Iterator[T]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.top while node: yield node.data SCREAMING_SNAKE_CASE = node.next def __str__( self : int ) -> str: '''simple docstring''' return "->".join([str(_UpperCamelCase ) for item in self] ) def __len__( self : Tuple ) -> int: '''simple docstring''' return len(tuple(iter(self ) ) ) def __snake_case( self : Union[str, Any] ) -> bool: '''simple docstring''' return self.top is None def __snake_case( self : str , _UpperCamelCase : T ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = Node(_UpperCamelCase ) if not self.is_empty(): SCREAMING_SNAKE_CASE = self.top SCREAMING_SNAKE_CASE = node def __snake_case( self : Union[str, Any] ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.top SCREAMING_SNAKE_CASE = self.top.next return pop_node.data def __snake_case( self : Union[str, Any] ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def __snake_case( self : Dict ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = None if __name__ == "__main__": from doctest import testmod testmod()
647
1
from sklearn.metrics import fa_score import datasets A : Dict = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' A : Tuple = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' A : int = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def UpperCamelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def UpperCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=1 , __UpperCamelCase="binary" , __UpperCamelCase=None ): _lowercase = fa_score( __UpperCamelCase , __UpperCamelCase , labels=__UpperCamelCase , pos_label=__UpperCamelCase , average=__UpperCamelCase , sample_weight=__UpperCamelCase ) return {"f1": float(__UpperCamelCase ) if score.size == 1 else score}
287
from sklearn.metrics import mean_squared_error import datasets A : List[Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' A : str = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' A : Any = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def UpperCamelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def UpperCamelCase_ ( self ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def UpperCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase="uniform_average" , __UpperCamelCase=True ): _lowercase = mean_squared_error( __UpperCamelCase , __UpperCamelCase , sample_weight=__UpperCamelCase , multioutput=__UpperCamelCase , squared=__UpperCamelCase ) return {"mse": mse}
287
1
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase_ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase_ = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCamelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCamelCase_ = re.compile(R'\[(.+?)\]\((https://huggingface\.co/.+?)\)') UpperCamelCase_ = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def UpperCamelCase ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" a_ = None # source code of `config_class` a_ = inspect.getsource(__a ) a_ = _re_checkpoint.findall(__a ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): a_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link a_ = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: a_ = ckpt_name break return checkpoint def UpperCamelCase ( ) ->Any: """simple docstring""" a_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue a_ = get_checkpoint_from_config_class(__a ) a_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: a_ = "\n".join(sorted(__a ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
720
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class snake_case : a_ : List[str] a_ : Optional[str] = None # Automatically constructed a_ : ClassVar[str] = "dict" a_ : ClassVar[Any] = None a_ : str = field(default="""Translation""" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def __call__( self) ->Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) def UpperCAmelCase__ ( self) ->Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value("string") for k in sorted(self.languages)} @dataclass class snake_case : a_ : Optional[List] = None a_ : Optional[int] = None a_ : Optional[str] = None # Automatically constructed a_ : ClassVar[str] = "dict" a_ : ClassVar[Any] = None a_ : str = field(default="""TranslationVariableLanguages""" , init=SCREAMING_SNAKE_CASE_ , repr=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase__ ( self) ->Optional[int]: a_ = sorted(set(self.languages)) if self.languages else None a_ = len(self.languages) if self.languages else None def __call__( self) ->Any: return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())}) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->int: a_ = set(self.languages) if self.languages and set(__UpperCAmelCase) - lang_set: raise ValueError( F'''Some languages in example ({", ".join(sorted(set(__UpperCAmelCase) - lang_set))}) are not in valid set ({", ".join(__UpperCAmelCase)}).''') # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. a_ = [] for lang, text in translation_dict.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase): translation_tuples.append((lang, text)) else: translation_tuples.extend([(lang, el) for el in text]) # Ensure translations are in ascending order by language code. a_ , a_ = zip(*sorted(__UpperCAmelCase)) return {"language": languages, "translation": translations} def UpperCAmelCase__ ( self) ->Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value("string")), "translation": Sequence(Value("string")), }
210
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "funnel" UpperCAmelCase__ : Tuple = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self , _a=3_0_5_2_2 , _a=[4, 4, 4] , _a=None , _a=2 , _a=7_6_8 , _a=1_2 , _a=6_4 , _a=3_0_7_2 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=None , _a=1e-9 , _a="mean" , _a="relative_shift" , _a=True , _a=True , _a=True , **_a , ) -> List[Any]: _a : Optional[int] = vocab_size _a : Dict = block_sizes _a : Optional[int] = [1] * len(_a ) if block_repeats is None else block_repeats assert len(_a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a : int = num_decoder_layers _a : List[str] = d_model _a : Optional[Any] = n_head _a : Tuple = d_head _a : Dict = d_inner _a : List[str] = hidden_act _a : int = hidden_dropout _a : Union[str, Any] = attention_dropout _a : Tuple = activation_dropout _a : Optional[Any] = initializer_range _a : Dict = initializer_std _a : Union[str, Any] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _a : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _a : Optional[Any] = attention_type _a : int = separate_cls _a : Tuple = truncate_seq _a : List[Any] = pool_q_only super().__init__(**_a ) @property def __lowercase ( self ) -> Tuple: return sum(self.block_sizes ) @num_hidden_layers.setter def __lowercase ( self , _a ) -> List[str]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def __lowercase ( self ) -> Optional[int]: return len(self.block_sizes ) @num_blocks.setter def __lowercase ( self , _a ) -> Dict: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
14
'''simple docstring''' import socket def __snake_case ( ): snake_case_ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) snake_case_ = socket.gethostname() snake_case_ = 12_312 sock.connect((host, port) ) sock.send(b"Hello server!" ) with open("Received_file" , "wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: snake_case_ = sock.recv(1_024 ) if not data: break out_file.write(lowercase ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
508
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = (DPMSolverSDEScheduler,) UpperCamelCase_ = 1_0 def UpperCAmelCase_ ( self : List[Any] ,**lowerCAmelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = { "num_train_timesteps": 11_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**lowerCAmelCase__ ) return config def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] ,[0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ ,beta_end=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Dict = self.scheduler_classes[0] lowerCAmelCase_ : Union[str, Any] = self.get_scheduler_config() lowerCAmelCase_ : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ : Any = self.dummy_model() lowerCAmelCase_ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : int = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Optional[int] = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = output.prev_sample lowerCAmelCase_ : Union[str, Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1e-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase_ : Optional[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) lowerCAmelCase_ : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ : int = self.dummy_model() lowerCAmelCase_ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : Any = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Optional[int] = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = output.prev_sample lowerCAmelCase_ : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1e-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1e-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1e-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1e-3 def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : str = self.scheduler_classes[0] lowerCAmelCase_ : Optional[int] = self.get_scheduler_config() lowerCAmelCase_ : Dict = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ,device=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.dummy_model() lowerCAmelCase_ : List[Any] = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase_ : Optional[int] = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = output.prev_sample lowerCAmelCase_ : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1e-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1e-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3 def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase_ : int = self.get_scheduler_config() lowerCAmelCase_ : List[str] = scheduler_class(**lowerCAmelCase__ ,use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ,device=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = self.dummy_model() lowerCAmelCase_ : int = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma lowerCAmelCase_ : List[str] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: lowerCAmelCase_ : Any = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = output.prev_sample lowerCAmelCase_ : Dict = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : List[str] = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1e-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2
683
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class snake_case_ : '''simple docstring''' def __init__( self : str , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any]=9_9 , _UpperCamelCase : Tuple=1_3 , _UpperCamelCase : str=7 , _UpperCamelCase : int=9 , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : List[Any]=False , _UpperCamelCase : int=3_2 , _UpperCamelCase : List[Any]=5 , _UpperCamelCase : str=4 , _UpperCamelCase : str=3_7 , _UpperCamelCase : Optional[Any]=8 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Dict=0.002 , _UpperCamelCase : Tuple=1 , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=None , _UpperCamelCase : Dict=None , ) ->Union[str, Any]: snake_case_ = parent snake_case_ = batch_size snake_case_ = encoder_seq_length snake_case_ = decoder_seq_length # For common tests snake_case_ = self.decoder_seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = d_ff snake_case_ = relative_attention_num_buckets snake_case_ = dropout_rate snake_case_ = initializer_factor snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = decoder_start_token_id snake_case_ = None snake_case_ = decoder_layers def snake_case__( self : Tuple ) ->int: return TaConfig.from_pretrained('''google/umt5-base''' ) def snake_case__( self : List[str] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any , _UpperCamelCase : int=None , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : Optional[Any]=None , ) ->Optional[Any]: if attention_mask is None: snake_case_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: snake_case_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: snake_case_ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_UpperCamelCase ) if decoder_head_mask is None: snake_case_ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_UpperCamelCase ) if cross_attn_head_mask is None: snake_case_ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def snake_case__( self : Optional[Any] ) ->Optional[int]: snake_case_ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input snake_case_ = input_ids.clamp(self.pad_token_id + 1 ) snake_case_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) snake_case_ = self.get_config() snake_case_ = config.num_attention_heads snake_case_ = self.prepare_inputs_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return config, input_dict def snake_case__( self : str ) ->Optional[int]: snake_case_, snake_case_ = self.prepare_config_and_inputs() return config, inputs_dict def snake_case__( self : Optional[int] ) ->int: return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def snake_case__( self : Union[str, Any] ) ->Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def snake_case__( self : str , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Tuple , ) ->Union[str, Any]: snake_case_ = UMTaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model( input_ids=_UpperCamelCase , decoder_input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , decoder_attention_mask=_UpperCamelCase , ) snake_case_ = model(input_ids=_UpperCamelCase , decoder_input_ids=_UpperCamelCase ) snake_case_ = result.last_hidden_state snake_case_ = result.past_key_values snake_case_ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def snake_case__( self : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : List[str] , _UpperCamelCase : Any , ) ->str: snake_case_ = UMTaModel(config=_UpperCamelCase ).get_decoder().to(_UpperCamelCase ).eval() # first forward pass snake_case_ = model(_UpperCamelCase , use_cache=_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) snake_case_ = model(_UpperCamelCase , use_cache=_UpperCamelCase ) self.parent.assertTrue(len(_UpperCamelCase ) == len(_UpperCamelCase ) ) self.parent.assertTrue(len(_UpperCamelCase ) == len(_UpperCamelCase ) + 1 ) snake_case_, snake_case_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and snake_case_ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ = model(_UpperCamelCase )['''last_hidden_state'''] snake_case_ = model(_UpperCamelCase , past_key_values=_UpperCamelCase )['''last_hidden_state'''] # select random slice snake_case_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ = output_from_no_past[:, -1, random_slice_idx].detach() snake_case_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] , ) ->Dict: snake_case_ = UMTaModel(config=_UpperCamelCase ).to(_UpperCamelCase ).half().eval() snake_case_ = model(**_UpperCamelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(_UpperCamelCase ).any().item() ) @require_torch class snake_case_ ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : int = (UMTaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE : List[Any] = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[Any] = True # The small UMT5 model needs higher percentages for CPU/MP tests SCREAMING_SNAKE_CASE : Optional[Any] = [0.8, 0.9] def snake_case__( self : Union[str, Any] ) ->List[str]: snake_case_ = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def snake_case__( self : Dict ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = UMTaModel(config_and_inputs[0] ).to(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_UpperCamelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def snake_case__( self : Tuple ) ->List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_UpperCamelCase ) def snake_case__( self : int ) ->str: snake_case_ = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] snake_case_ = self.model_tester.prepare_config_and_inputs() snake_case_ = config_and_inputs[0] snake_case_ = UMTaForConditionalGeneration(_UpperCamelCase ).eval() model.to(_UpperCamelCase ) snake_case_ = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=_UpperCamelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=_UpperCamelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=_UpperCamelCase ), } for attn_name, (name, mask) in zip(_UpperCamelCase , head_masking.items() ): snake_case_ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": snake_case_ = torch.ones( config.num_decoder_layers , config.num_heads , device=_UpperCamelCase ) snake_case_ = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , **_UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step snake_case_ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def snake_case__( self : List[str] ) ->Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def snake_case__( self : List[str] ) ->Optional[int]: snake_case_ = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=_UpperCamelCase ).to(_UpperCamelCase ) snake_case_ = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=_UpperCamelCase , legacy=_UpperCamelCase ) snake_case_ = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''pt''' , padding=_UpperCamelCase ).input_ids # fmt: off snake_case_ = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(_UpperCamelCase , _UpperCamelCase ) snake_case_ = model.generate(input_ids.to(_UpperCamelCase ) ) snake_case_ = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] snake_case_ = tokenizer.batch_decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase )
39
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->Any: snake_case_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(_UpperCamelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('''inf''' )] snake_case_ = tf.cast( tf.where(tf.not_equal(_UpperCamelCase , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_UpperCamelCase , _UpperCamelCase , rtol=1e-12 ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase , __A ): '''simple docstring''' if is_tf_available(): SCREAMING_SNAKE_CASE : Optional[int] = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case__( self : List[Any] ) ->Optional[int]: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 2 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCamelCase : Optional[int] ) ->List[Any]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) ->List[Any]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_0_2, 1_0_3]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for batch_size in range(1 , len(_UpperCamelCase ) + 1 ): snake_case_ = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow def snake_case__( self : List[str] ) ->int: # TF-only test: tf.saved_model export snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 1 snake_case_ = 2 class snake_case_ ( tf.Module ): '''simple docstring''' def __init__( self : str , _UpperCamelCase : Any ) ->List[str]: super(_UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=_UpperCamelCase , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ) ->Optional[int]: snake_case_ = self.model.generate( input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase , max_new_tokens=_UpperCamelCase , return_dict_in_generate=_UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_0_2, 1_0_3]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_UpperCamelCase , _UpperCamelCase , signatures={'''serving_default''': dummy_model.serving} ) snake_case_ = tf.saved_model.load(_UpperCamelCase ).signatures['''serving_default'''] for input_row in range(len(_UpperCamelCase ) ): snake_case_ = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**_UpperCamelCase )['''sequences'''] snake_case_ = test_model.generate(**_UpperCamelCase , max_new_tokens=_UpperCamelCase ) tf.debugging.assert_equal(_UpperCamelCase , _UpperCamelCase ) @slow @require_tensorflow_text def snake_case__( self : Optional[Any] ) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=_UpperCamelCase ) class snake_case_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple ) ->List[Any]: super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_UpperCamelCase , '''spiece.model''' ) , '''rb''' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , *_UpperCamelCase : Optional[int] , **_UpperCamelCase : str ) ->List[Any]: snake_case_ = self.tokenizer.tokenize(_UpperCamelCase ) snake_case_, snake_case_ = text.pad_model_inputs( _UpperCamelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=_UpperCamelCase , attention_mask=_UpperCamelCase ) return self.tokenizer.detokenize(_UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) snake_case_ = complete_model(_UpperCamelCase ) snake_case_ = tf.keras.Model(_UpperCamelCase , _UpperCamelCase ) keras_model.save(_UpperCamelCase ) def snake_case__( self : Any ) ->List[Any]: # Has PT equivalent: this test relies on random sampling snake_case_ = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 1_0, '''temperature''': 0.7, } snake_case_ = 1_4 snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = '''Hello, my dog is cute and''' snake_case_ = tokenizer(_UpperCamelCase , return_tensors='''tf''' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_3_8, 1_9_8] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case__( self : str ) ->Dict: # Has PT equivalent: ample use of framework-specific code snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = '''Hugging Face is a technology company based in New York and Paris.''' snake_case_ = bart_tokenizer(_UpperCamelCase , return_tensors='''tf''' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : str , _UpperCamelCase : Any , _UpperCamelCase : Tuple=None , **_UpperCamelCase : Optional[int] ) ->List[str]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) snake_case_ = bart_model.generate(_UpperCamelCase , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(_UpperCamelCase , _UpperCamelCase ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , **_UpperCamelCase : Tuple ) ->Optional[Any]: return super().call(_UpperCamelCase , **_UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(_UpperCamelCase ).numpy() with self.assertRaises(_UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_UpperCamelCase , foo='''bar''' )
39
1
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple ) -> int: super().__init__() SCREAMING_SNAKE_CASE = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE = nn.Linear(4 , 5 ) def _UpperCAmelCase ( self : Any , a : Optional[Any] ) -> Dict: return self.lineara(self.batchnorm(self.lineara(a ) ) ) class UpperCAmelCase_ ( A ): '''simple docstring''' def _UpperCAmelCase ( self : str , a : Union[str, Any] , *a : List[str] , **a : Optional[int] ) -> int: return (args[0] + 1,) + args[1:], kwargs class UpperCAmelCase_ ( A ): '''simple docstring''' def _UpperCAmelCase ( self : str , a : Optional[Any] , a : Optional[int] ) -> Any: return output + 1 class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE = ModelForTest() SCREAMING_SNAKE_CASE = ModelHook() add_hook_to_module(a , a ) self.assertEqual(test_model._hf_hook , a ) self.assertTrue(hasattr(a , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(a ) self.assertFalse(hasattr(a , """_hf_hook""" ) ) self.assertFalse(hasattr(a , """_old_forward""" ) ) def _UpperCAmelCase ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE = ModelForTest() SCREAMING_SNAKE_CASE = ModelHook() add_hook_to_module(a , a ) add_hook_to_module(a , a , append=a ) self.assertEqual(isinstance(test_model._hf_hook , a ) , a ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(a , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(a ) self.assertFalse(hasattr(a , """_hf_hook""" ) ) self.assertFalse(hasattr(a , """_old_forward""" ) ) def _UpperCAmelCase ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE = ModelForTest() SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE = test_model(x + 1 ) SCREAMING_SNAKE_CASE = test_model(x + 2 ) SCREAMING_SNAKE_CASE = PreForwardHook() add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE = test_model(a ) self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain SCREAMING_SNAKE_CASE = PreForwardHook() add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE = test_model(a ) self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks SCREAMING_SNAKE_CASE = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE = test_model(a ) assert torch.allclose(a , a , atol=1E-5 ) def _UpperCAmelCase ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE = ModelForTest() SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE = test_model(a ) SCREAMING_SNAKE_CASE = PostForwardHook() add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE = test_model(a ) self.assertTrue(torch.allclose(a , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain SCREAMING_SNAKE_CASE = PostForwardHook() add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE = test_model(a ) self.assertTrue(torch.allclose(a , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks SCREAMING_SNAKE_CASE = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE = test_model(a ) assert torch.allclose(a , output + 2 , atol=1E-5 ) def _UpperCAmelCase ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE = ModelForTest() SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE = test_model(a ) SCREAMING_SNAKE_CASE = PostForwardHook() add_hook_to_module(a , a ) SCREAMING_SNAKE_CASE = test_model(a ) self.assertTrue(torch.allclose(a , output + 1 ) ) self.assertTrue(outputa.requires_grad ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = test_model(a ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def _UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE = model(a ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(a , AlignDevicesHook(io_same_device=a ) ) SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ).to(0 ) SCREAMING_SNAKE_CASE = model(a ) self.assertEqual(output.device , torch.device(0 ) ) def _UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices SCREAMING_SNAKE_CASE = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**a ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**a ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**a ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device SCREAMING_SNAKE_CASE = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , a ) SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE = model(a ) self.assertEqual(output.device , a ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload SCREAMING_SNAKE_CASE = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**a ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**a ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**a ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE = model(a ) self.assertEqual(output.device , a ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def _UpperCAmelCase ( self : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices SCREAMING_SNAKE_CASE = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(a , execution_device=a , offload=a ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device SCREAMING_SNAKE_CASE = torch.device(a ) self.assertEqual(model.batchnorm.running_mean.device , a ) SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE = model(a ) self.assertEqual(output.device , a ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(a , execution_device=a , offload=a , offload_buffers=a ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE = model(a ) self.assertEqual(output.device , a ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def _UpperCAmelCase ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices SCREAMING_SNAKE_CASE = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( a , execution_device=a , offload=a , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device SCREAMING_SNAKE_CASE = torch.device(a ) self.assertEqual(model.batchnorm.running_mean.device , a ) SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE = model(a ) self.assertEqual(output.device , a ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( a , execution_device=a , offload=a , weights_map=model.state_dict() , offload_buffers=a , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) SCREAMING_SNAKE_CASE = model(a ) self.assertEqual(output.device , a ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
450
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( A ): '''simple docstring''' a__ = ['''image_processor''', '''tokenizer'''] a__ = '''ViTImageProcessor''' a__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : List[str] , a : Dict=None , a : List[str]=None , **a : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , a , ) SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(a , a ) def __call__( self : List[Any] , a : int=None , a : Dict=None , a : int=None , a : Tuple=None , **a : Any ) -> Any: if text is None and visual_prompt is None and images is None: raise ValueError("""You have to specify either text, visual prompt or images.""" ) if text is not None and visual_prompt is not None: raise ValueError("""You have to specify exactly one type of prompt. Either text or visual prompt.""" ) if text is not None: SCREAMING_SNAKE_CASE = self.tokenizer(a , return_tensors=a , **a ) if visual_prompt is not None: SCREAMING_SNAKE_CASE = self.image_processor(a , return_tensors=a , **a ) if images is not None: SCREAMING_SNAKE_CASE = self.image_processor(a , return_tensors=a , **a ) if visual_prompt is not None and images is not None: SCREAMING_SNAKE_CASE = { """pixel_values""": image_features.pixel_values, """conditional_pixel_values""": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: SCREAMING_SNAKE_CASE = { """conditional_pixel_values""": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def _UpperCAmelCase ( self : Dict , *a : Dict , **a : Union[str, Any] ) -> Any: return self.tokenizer.batch_decode(*a , **a ) def _UpperCAmelCase ( self : Tuple , *a : List[Any] , **a : Union[str, Any] ) -> Dict: return self.tokenizer.decode(*a , **a ) @property def _UpperCAmelCase ( self : Any ) -> Optional[Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , a , ) return self.image_processor_class @property def _UpperCAmelCase ( self : Optional[int] ) -> str: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , a , ) return self.image_processor
450
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE :Optional[Any] = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) class __magic_name__ ( snake_case ): UpperCamelCase_ :Optional[int] = """mask2former""" UpperCamelCase_ :Dict = ["""swin"""] UpperCamelCase_ :List[Any] = {"""hidden_size""": """hidden_dim"""} def __init__( self , _lowercase = None , _lowercase = 256 , _lowercase = 256 , _lowercase = 256 , _lowercase = 1_024 , _lowercase = "relu" , _lowercase = 6 , _lowercase = 10 , _lowercase = 8 , _lowercase = 0.0 , _lowercase = 2_048 , _lowercase = False , _lowercase = False , _lowercase = 4 , _lowercase = 255 , _lowercase = 100 , _lowercase = 0.1 , _lowercase = 2.0 , _lowercase = 5.0 , _lowercase = 5.0 , _lowercase = 12_544 , _lowercase = 3.0 , _lowercase = 0.75 , _lowercase = 0.02 , _lowercase = 1.0 , _lowercase = True , _lowercase = [4, 8, 16, 32] , _lowercase = None , **_lowercase , )-> Union[str, Any]: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) UpperCamelCase_ = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowercase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(_lowercase , _lowercase ): UpperCamelCase_ = backbone_config.pop("model_type" ) UpperCamelCase_ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase_ = config_class.from_dict(_lowercase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " F"Supported model types: {','.join(self.backbones_supported )}" ) UpperCamelCase_ = backbone_config UpperCamelCase_ = feature_size UpperCamelCase_ = mask_feature_size UpperCamelCase_ = hidden_dim UpperCamelCase_ = encoder_feedforward_dim UpperCamelCase_ = activation_function UpperCamelCase_ = encoder_layers UpperCamelCase_ = decoder_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = dropout UpperCamelCase_ = dim_feedforward UpperCamelCase_ = pre_norm UpperCamelCase_ = enforce_input_projection UpperCamelCase_ = common_stride UpperCamelCase_ = ignore_value UpperCamelCase_ = num_queries UpperCamelCase_ = no_object_weight UpperCamelCase_ = class_weight UpperCamelCase_ = mask_weight UpperCamelCase_ = dice_weight UpperCamelCase_ = train_num_points UpperCamelCase_ = oversample_ratio UpperCamelCase_ = importance_sample_ratio UpperCamelCase_ = init_std UpperCamelCase_ = init_xavier_std UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = feature_strides UpperCamelCase_ = output_auxiliary_logits UpperCamelCase_ = decoder_layers super().__init__(**_lowercase ) @classmethod def UpperCAmelCase_ ( cls , _lowercase , **_lowercase )-> Optional[int]: return cls( backbone_config=_lowercase , **_lowercase , ) def UpperCAmelCase_ ( self )-> Dict[str, any]: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.backbone_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
628
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :Optional[int] = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :str = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
628
1
import os def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' with open(os.path.dirname(UpperCamelCase__ ) + '/p022_names.txt' ) as file: _snake_case = str(file.readlines()[0] ) _snake_case = names.replace('"' , '' ).split(',' ) names.sort() _snake_case = 0 _snake_case = 0 for i, name in enumerate(UpperCamelCase__ ): for letter in name: name_score += ord(UpperCamelCase__ ) - 64 total_score += (i + 1) * name_score _snake_case = 0 return total_score if __name__ == "__main__": print(solution())
541
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase_ ( unittest.TestCase ): def lowerCAmelCase ( self ) -> List[str]: _snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } _snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } _snake_case = tempfile.mkdtemp() _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) # load decoder from hub _snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[Any]: _snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(lowerCAmelCase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> Optional[int]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_tokenizer() _snake_case = self.get_feature_extractor() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) _snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(lowerCAmelCase_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=lowerCAmelCase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self ) -> str: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = floats_list((3, 1000) ) _snake_case = feature_extractor(lowerCAmelCase_ , return_tensors='np' ) _snake_case = processor(lowerCAmelCase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self ) -> int: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = 'This is a test string' _snake_case = processor(text=lowerCAmelCase_ ) _snake_case = tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self , lowerCAmelCase_=(2, 10, 16) , lowerCAmelCase_=77 ) -> int: np.random.seed(lowerCAmelCase_ ) return np.random.rand(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _snake_case = processor.decode(lowerCAmelCase_ ) _snake_case = decoder.decode_beams(lowerCAmelCase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _snake_case = processor.batch_decode(lowerCAmelCase_ ) else: with get_context(lowerCAmelCase_ ).Pool() as pool: _snake_case = processor.batch_decode(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = list(lowerCAmelCase_ ) with get_context('fork' ).Pool() as p: _snake_case = decoder.decode_beams_batch(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case , _snake_case , _snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.logit_score ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.lm_score ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = self._get_dummy_logits() _snake_case = 15 _snake_case = -20.0 _snake_case = -4.0 _snake_case = processor.batch_decode( lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _snake_case = decoded_processor_out.text _snake_case = list(lowerCAmelCase_ ) with get_context('fork' ).Pool() as pool: _snake_case = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _snake_case = [d[0][0] for d in decoded_decoder_out] _snake_case = [d[0][2] for d in decoded_decoder_out] _snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , lowerCAmelCase_ ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , lowerCAmelCase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , lowerCAmelCase_ , atol=1E-3 ) ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = self._get_dummy_logits() _snake_case = 2.0 _snake_case = 5.0 _snake_case = -20.0 _snake_case = True _snake_case = processor.batch_decode( lowerCAmelCase_ , alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) _snake_case = decoded_processor_out.text _snake_case = list(lowerCAmelCase_ ) decoder.reset_params( alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) with get_context('fork' ).Pool() as pool: _snake_case = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , ) _snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , lowerCAmelCase_ ) _snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> str: _snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = processor.decoder.model_container[processor.decoder._model_key] _snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() _snake_case = os.listdir(lowerCAmelCase_ ) _snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) _snake_case = WavaVecaProcessorWithLM.from_pretrained(lowerCAmelCase_ ) _snake_case = processor.decoder.model_container[processor.decoder._model_key] _snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() _snake_case = os.listdir(lowerCAmelCase_ ) _snake_case = os.listdir(lowerCAmelCase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = floats_list((3, 1000) ) _snake_case = processor_wavaveca(lowerCAmelCase_ , return_tensors='np' ) _snake_case = processor_auto(lowerCAmelCase_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _snake_case = self._get_dummy_logits() _snake_case = processor_wavaveca.batch_decode(lowerCAmelCase_ ) _snake_case = processor_auto.batch_decode(lowerCAmelCase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self ) -> Dict: _snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = self._get_dummy_logits()[0] _snake_case = processor.decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def lowerCAmelCase ( self ) -> str: _snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = self._get_dummy_logits() _snake_case = processor.batch_decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(lowerCAmelCase_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self ) -> Union[str, Any]: import torch _snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=lowerCAmelCase_ ) _snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) _snake_case = iter(lowerCAmelCase_ ) _snake_case = next(lowerCAmelCase_ ) _snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) _snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): _snake_case = model(lowerCAmelCase_ ).logits.cpu().numpy() _snake_case = processor.decode(logits[0] , output_word_offsets=lowerCAmelCase_ ) _snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] _snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(lowerCAmelCase_ , 'word' ) ) , lowerCAmelCase_ ) self.assertEqual(' '.join(self.get_from_offsets(lowerCAmelCase_ , 'word' ) ) , output.text ) # output times _snake_case = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , 'start_time' ) ) _snake_case = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , 'end_time' ) ) # fmt: off _snake_case = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) _snake_case = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) )
541
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : List[str]=1_0 ): __a : Optional[Any] = [] for _ in range(lowerCamelCase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def UpperCAmelCase__ ( lowerCamelCase_ : Any , lowerCamelCase_ : Tuple=1_0 ): __a : Union[str, Any] = [] for step in range(lowerCamelCase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __a : List[Any] = os.path.join(lowerCamelCase_ , 'schedule.bin' ) torch.save(scheduler.state_dict() , lowerCamelCase_ ) __a : Tuple = torch.load(lowerCamelCase_ ) scheduler.load_state_dict(lowerCamelCase_ ) return lrs @require_torch class _UpperCamelCase( unittest.TestCase ): def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' __a : Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=SCREAMING_SNAKE_CASE__ ) __a : List[str] = torch.tensor([0.4, 0.2, -0.5] ) __a : List[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __a : List[Any] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): __a : int = criterion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' __a : List[str] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=SCREAMING_SNAKE_CASE__ ) __a : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] ) __a : Union[str, Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __a : int = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=SCREAMING_SNAKE_CASE__ , weight_decay=0.0 , relative_step=SCREAMING_SNAKE_CASE__ , scale_parameter=SCREAMING_SNAKE_CASE__ , warmup_init=SCREAMING_SNAKE_CASE__ , ) for _ in range(1_0_0_0 ): __a : str = criterion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class _UpperCamelCase( unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None __SCREAMING_SNAKE_CASE : str = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __SCREAMING_SNAKE_CASE : str = 10 def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict=None ): '''simple docstring''' self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ , msg=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' __a : str = {'num_warmup_steps': 2, 'num_training_steps': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __a : Any = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): __a , __a : str = data __a : Tuple = scheduler_func(self.optimizer , **SCREAMING_SNAKE_CASE__ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __a : List[Any] = unwrap_schedule(SCREAMING_SNAKE_CASE__ , self.num_steps ) self.assertListAlmostEqual( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) __a : Dict = scheduler_func(self.optimizer , **SCREAMING_SNAKE_CASE__ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(SCREAMING_SNAKE_CASE__ ) # wrap to test picklability of the schedule __a : Optional[int] = unwrap_and_save_reload_schedule(SCREAMING_SNAKE_CASE__ , self.num_steps ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , msg=f'''failed for {scheduler_func} in save and reload''' ) class _UpperCamelCase: def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : str = fn def __call__( self : int , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' return self.fn(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @classmethod def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : List[Any] = list(map(self , scheduler.lr_lambdas ) )
47
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str ): __a : List[Any] = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1_0_2_4, 'hidden_size': 7_6_8, 'max_length': 5_1_2, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1_0_2_4, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } __a : Optional[int] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __a : List[str] = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowerCamelCase_ , output_all_encodings=lowerCamelCase_ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowerCamelCase_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __a : int = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __a : Optional[Any] = os.path.join(get_home_dir() , 'models' ) __a : Optional[Any] = _load_vocab(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , cls=lowerCamelCase_ ) __a : Any = nlp.model.BERTModel( lowerCamelCase_ , len(lowerCamelCase_ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowerCamelCase_ , use_token_type_embed=lowerCamelCase_ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowerCamelCase_ , use_decoder=lowerCamelCase_ , ) original_bort.load_parameters(lowerCamelCase_ , cast_dtype=lowerCamelCase_ , ignore_extra=lowerCamelCase_ ) __a : Dict = original_bort._collect_params_with_prefix() # Build our config 🤗 __a : Optional[Any] = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(lowerCamelCase_ ), } __a : str = BertConfig.from_dict(lowerCamelCase_ ) __a : Optional[int] = BertForMaskedLM(lowerCamelCase_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase_ : Optional[Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] ): __a : Optional[int] = hf_param.shape __a : int = to_torch(params[gluon_param] ) __a : int = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __a : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __a : str = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __a : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __a : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __a : Union[str, Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __a : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __a : BertSelfAttention = layer.attention.self __a : Optional[int] = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __a : str = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __a : List[str] = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __a : str = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __a : Dict = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __a : str = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __a : BertSelfOutput = layer.attention.output __a : Tuple = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) __a : Dict = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) __a : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __a : Optional[Any] = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __a : BertIntermediate = layer.intermediate __a : List[str] = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __a : Optional[Any] = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __a : BertOutput = layer.output __a : str = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __a : List[Any] = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __a : str = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __a : List[str] = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __a : Union[str, Any] = RobertaTokenizer.from_pretrained('roberta-base' ) __a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ )['input_ids'] # Get gluon output __a : Optional[int] = mx.nd.array([input_ids] ) __a : Tuple = original_bort(inputs=lowerCamelCase_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase_ ) __a : Optional[Any] = BertModel.from_pretrained(lowerCamelCase_ ) hf_bort_model.eval() __a : Union[str, Any] = tokenizer.encode_plus(lowerCamelCase_ , return_tensors='pt' ) __a : int = hf_bort_model(**lowerCamelCase_ )[0] __a : Dict = output_gluon[0].asnumpy() __a : str = output_hf[0].detach().numpy() __a : List[Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() __a : str = np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
47
1
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys snake_case = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') snake_case = ( subprocess.check_output(F"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode('''utf-8''').split() ) snake_case = '''|'''.join(sys.argv[1:]) snake_case = re.compile(rF"^({joined_dirs}).*?\.py$") snake_case = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
404
"""simple docstring""" def snake_case ( lowerCAmelCase_ ) -> None: _snake_case = generate_pascal_triangle(lowerCAmelCase_ ) for row_idx in range(lowerCAmelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def snake_case ( lowerCAmelCase_ ) -> list[list[int]]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) _snake_case = [] for current_row_idx in range(lowerCAmelCase_ ): _snake_case = populate_current_row(lowerCAmelCase_ , lowerCAmelCase_ ) triangle.append(lowerCAmelCase_ ) return triangle def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[int]: _snake_case = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _snake_case , _snake_case = 1, 1 for current_col_idx in range(1 , lowerCAmelCase_ ): calculate_current_element( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return current_row def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> None: _snake_case = triangle[current_row_idx - 1][current_col_idx - 1] _snake_case = triangle[current_row_idx - 1][current_col_idx] _snake_case = above_to_left_elt + above_to_right_elt def snake_case ( lowerCAmelCase_ ) -> list[list[int]]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) _snake_case = [[1]] for row_index in range(1 , lowerCAmelCase_ ): _snake_case = [0] + result[-1] + [0] _snake_case = row_index + 1 # Calculate the number of distinct elements in a row _snake_case = sum(divmod(lowerCAmelCase_ , 2 ) ) _snake_case = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _snake_case = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _snake_case = row_first_half + row_second_half result.append(lowerCAmelCase_ ) return result def snake_case ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _snake_case = f"""{func.__name__}({value})""" _snake_case = timeit(f"""__main__.{call}""" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase_ , lowerCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
404
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _UpperCamelCase : Optional[int] ='.' if __name__ == "__main__": _UpperCamelCase : List[str] =os.path.join(REPO_PATH, 'utils/documentation_tests.txt') _UpperCamelCase : str =[] _UpperCamelCase : str =[] with open(doctest_file_path) as fp: for line in fp: _UpperCamelCase : Tuple =line.strip() _UpperCamelCase : str =os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _UpperCamelCase : Optional[int] ='\n'.join(non_existent_paths) raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
206
import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
206
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Optional[Any] = { """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'swin2sr' lowercase = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , A=64 , A=1 , A=3 , A=180 , A=[6, 6, 6, 6, 6, 6] , A=[6, 6, 6, 6, 6, 6] , A=8 , A=2.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=0.0_2 , A=1e-5 , A=2 , A=1.0 , A="1conv" , A="pixelshuffle" , **A , ) -> List[str]: super().__init__(**A ) UpperCAmelCase : List[str] = image_size UpperCAmelCase : Dict = patch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Union[str, Any] = embed_dim UpperCAmelCase : Dict = depths UpperCAmelCase : Dict = len(A ) UpperCAmelCase : Dict = num_heads UpperCAmelCase : str = window_size UpperCAmelCase : Tuple = mlp_ratio UpperCAmelCase : List[str] = qkv_bias UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : List[str] = drop_path_rate UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : List[str] = use_absolute_embeddings UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Any = upscale UpperCAmelCase : Tuple = img_range UpperCAmelCase : Tuple = resi_connection UpperCAmelCase : Tuple = upsampler
672
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
1
def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Tuple =[[float("""inf""" ) for _ in range(lowerCamelCase )] for _ in range(lowerCamelCase )] for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __magic_name__ : Dict =graph[i][j] # check vertex k against all other vertices (i, j) for k in range(lowerCamelCase ): # looping through rows of graph array for i in range(lowerCamelCase ): # looping through columns of graph array for j in range(lowerCamelCase ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): __magic_name__ : List[str] =dist[i][k] + dist[k][j] _print_dist(lowerCamelCase , lowerCamelCase ) return dist, v if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = int(input("Enter number of vertices: ")) UpperCAmelCase_ : str = int(input("Enter number of edges: ")) UpperCAmelCase_ : Optional[Any] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): UpperCAmelCase_ : str = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) UpperCAmelCase_ : Optional[Any] = int(input("Enter source:")) UpperCAmelCase_ : Union[str, Any] = int(input("Enter destination:")) UpperCAmelCase_ : Dict = float(input("Enter weight:")) UpperCAmelCase_ : Union[str, Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
21
'''simple docstring''' import os def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str = "matrix.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE__ ), SCREAMING_SNAKE_CASE__ ) ) as in_file: __a = in_file.read() __a = [[int(SCREAMING_SNAKE_CASE__ ) for cell in row.split(',' )] for row in data.strip().splitlines()] __a = [[0 for cell in row] for row in grid] __a = len(grid[0] ) __a = [[0 for i in range(SCREAMING_SNAKE_CASE__ )] for j in range(SCREAMING_SNAKE_CASE__ )] __a = grid[0][0] for i in range(1, SCREAMING_SNAKE_CASE__ ): __a = grid[0][i] + dp[0][i - 1] for i in range(1, SCREAMING_SNAKE_CASE__ ): __a = grid[i][0] + dp[i - 1][0] for i in range(1, SCREAMING_SNAKE_CASE__ ): for j in range(1, SCREAMING_SNAKE_CASE__ ): __a = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f"""{solution() = }""")
448
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : List[str] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> Tuple: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : List[Any] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : Dict = self.unet.config.sample_size UpperCAmelCase : str = (batch_size, 3, img_size, img_size) UpperCAmelCase : Optional[int] = self.unet UpperCAmelCase : int = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma UpperCAmelCase : int = sample.to(self.device ) self.scheduler.set_timesteps(__snake_case ) self.scheduler.set_sigmas(__snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase : Optional[int] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase : Dict = self.unet(__snake_case , __snake_case ).sample UpperCAmelCase : int = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample # prediction step UpperCAmelCase : List[str] = model(__snake_case , __snake_case ).sample UpperCAmelCase : Optional[Any] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case ) UpperCAmelCase : Dict = output.prev_sample, output.prev_sample_mean UpperCAmelCase : Optional[Any] = sample_mean.clamp(0 , 1 ) UpperCAmelCase : List[str] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : List[str] = self.numpy_to_pil(__snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__snake_case )
703
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCamelCase__ = Features({"""text""": Value("""string""" )} ) lowerCamelCase__ = Features({} ) lowerCamelCase__ = "text" @property def A ( self : Optional[Any] ) -> Dict[str, str]: return {self.text_column: "text"}
528
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( __a , unittest.TestCase): __a : Optional[int] = KandinskyInpaintPipeline __a : Optional[int] = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] __a : str = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] __a : int = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __a : int = False @property def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def __snake_case ( self ) -> Tuple: '''simple docstring''' return 32 @property def __snake_case ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def __snake_case ( self ) -> Optional[int]: '''simple docstring''' return self.time_input_dim * 4 @property def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' return 1_00 @property def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def __snake_case ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : Dict = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) _UpperCAmelCase : Optional[Any] = MultilingualCLIP(_A ) _UpperCAmelCase : Optional[Any] = text_encoder.eval() return text_encoder @property def __snake_case ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _UpperCAmelCase : List[Any] = UNetaDConditionModel(**_A ) return model @property def __snake_case ( self ) -> Optional[Any]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __snake_case ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : List[str] = self.dummy_tokenizer _UpperCAmelCase : Dict = self.dummy_unet _UpperCAmelCase : List[str] = self.dummy_movq _UpperCAmelCase : Any = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=_A , set_alpha_to_one=_A , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_A , ) _UpperCAmelCase : int = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __snake_case ( self , _A , _A=0 ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_A ) ).to(_A ) _UpperCAmelCase : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_A ) # create init_image _UpperCAmelCase : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) _UpperCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : int = Image.fromarray(np.uinta(_A ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask _UpperCAmelCase : Optional[Any] = np.ones((64, 64) , dtype=np.floataa ) _UpperCAmelCase : List[str] = 0 if str(_A ).startswith("""mps""" ): _UpperCAmelCase : int = torch.manual_seed(_A ) else: _UpperCAmelCase : Optional[int] = torch.Generator(device=_A ).manual_seed(_A ) _UpperCAmelCase : Optional[int] = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = """cpu""" _UpperCAmelCase : Dict = self.get_dummy_components() _UpperCAmelCase : Optional[int] = self.pipeline_class(**_A ) _UpperCAmelCase : List[str] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _UpperCAmelCase : Optional[Any] = pipe(**self.get_dummy_inputs(_A ) ) _UpperCAmelCase : List[Any] = output.images _UpperCAmelCase : int = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : List[str] = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def __snake_case ( self ) -> Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase): def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ) -> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) _UpperCAmelCase : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _UpperCAmelCase : Any = np.ones((7_68, 7_68) , dtype=np.floataa ) _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Tuple = """a hat""" _UpperCAmelCase : int = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_A ) _UpperCAmelCase : Optional[Any] = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) _UpperCAmelCase : Optional[int] = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) _UpperCAmelCase : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase , _UpperCAmelCase : Tuple = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _UpperCAmelCase : List[Any] = pipeline( _A , image=_A , mask_image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) _UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_A , _A )
238
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowerCamelCase__ : List[str] = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def UpperCamelCase ( _lowerCAmelCase : str = "dhaka", _lowerCAmelCase : int = 5 ) -> int: _UpperCAmelCase : str = min(_lowerCAmelCase, 50 ) # Prevent abuse! _UpperCAmelCase : List[str] = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } _UpperCAmelCase : Optional[int] = requests.get("""https://www.google.com/search""", params=_lowerCAmelCase, headers=_lowerCAmelCase ) _UpperCAmelCase : int = BeautifulSoup(html.text, """html.parser""" ) _UpperCAmelCase : Any = """""".join( re.findall(R"""AF_initDataCallback\(([^<]+)\);""", str(soup.select("""script""" ) ) ) ) _UpperCAmelCase : Optional[int] = json.dumps(_lowerCAmelCase ) _UpperCAmelCase : str = json.loads(_lowerCAmelCase ) _UpperCAmelCase : Any = re.findall( R"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""", _lowerCAmelCase, ) if not matched_google_image_data: return 0 _UpperCAmelCase : Any = re.sub( R"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""", """""", str(_lowerCAmelCase ), ) _UpperCAmelCase : Union[str, Any] = re.findall( R"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""", _lowerCAmelCase, ) for index, fixed_full_res_image in enumerate(_lowerCAmelCase ): if index >= max_images: return index _UpperCAmelCase : Tuple = bytes(_lowerCAmelCase, """ascii""" ).decode( """unicode-escape""" ) _UpperCAmelCase : Optional[Any] = bytes(_lowerCAmelCase, """ascii""" ).decode( """unicode-escape""" ) _UpperCAmelCase : List[str] = urllib.request.build_opener() _UpperCAmelCase : Optional[int] = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = f'''query_{query.replace(" ", "_" )}''' if not os.path.exists(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) urllib.request.urlretrieve( # noqa: S310 _lowerCAmelCase, f'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: lowerCamelCase__ : List[str] = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print('''Please provide a search term.''') raise
238
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
404
"""simple docstring""" def snake_case ( ) -> Tuple: _snake_case = 0 for i in range(1 , 1001 ): total += i**i return str(lowerCAmelCase_ )[-10:] if __name__ == "__main__": print(solution())
404
1
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'width_multiplier' ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_="swish" , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0.25 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , ) -> int: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) lowerCamelCase_ = hidden_act lowerCamelCase_ = conv_kernel_size lowerCamelCase_ = output_stride lowerCamelCase_ = classifier_dropout_prob lowerCamelCase_ = use_labels lowerCamelCase_ = is_training lowerCamelCase_ = num_labels lowerCamelCase_ = initializer_range lowerCamelCase_ = scope lowerCamelCase_ = width_multiplier lowerCamelCase_ = ffn_dropout lowerCamelCase_ = attn_dropout def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase( self ) -> Dict: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = MobileViTVaModelTester(self ) lowerCamelCase_ = MobileViTVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def UpperCamelCase( self ) -> int: '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' pass def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCamelCase_ = 2 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _UpperCamelCase ( ) -> Any: lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase( self ) -> List[str]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) lowerCamelCase_ = model.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = outputs.logits # verify the logits lowerCamelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=SCREAMING_SNAKE_CASE_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) lowerCamelCase_ = model.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = outputs.logits.detach().cpu() lowerCamelCase_ = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ , target_sizes=[(50, 60)] ) lowerCamelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ )
42
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _A ( __lowercase , __lowercase=None ): """simple docstring""" lowerCamelCase__ = None if token is not None: lowerCamelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} lowerCamelCase__ = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" lowerCamelCase__ = requests.get(__lowercase , headers=__lowercase ).json() lowerCamelCase__ = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCamelCase__ = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(__lowercase ): lowerCamelCase__ = requests.get(url + f"""&page={i + 2}""" , headers=__lowercase ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _A ( __lowercase , __lowercase=None ): """simple docstring""" lowerCamelCase__ = None if token is not None: lowerCamelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} lowerCamelCase__ = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" lowerCamelCase__ = requests.get(__lowercase , headers=__lowercase ).json() lowerCamelCase__ = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) lowerCamelCase__ = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(__lowercase ): lowerCamelCase__ = requests.get(url + f"""&page={i + 2}""" , headers=__lowercase ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _A ( __lowercase , __lowercase , __lowercase , __lowercase ): """simple docstring""" lowerCamelCase__ = None if token is not None: lowerCamelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} lowerCamelCase__ = requests.get(__lowercase , headers=__lowercase , allow_redirects=__lowercase ) lowerCamelCase__ = result.headers["""Location"""] lowerCamelCase__ = requests.get(__lowercase , allow_redirects=__lowercase ) lowerCamelCase__ = os.path.join(__lowercase , f"""{artifact_name}.zip""" ) with open(__lowercase , """wb""" ) as fp: fp.write(response.content ) def _A ( __lowercase , __lowercase=None ): """simple docstring""" lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = None with zipfile.ZipFile(__lowercase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowercase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__lowercase ) as f: for line in f: lowerCamelCase__ = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCamelCase__ = line[: line.index(""": """ )] lowerCamelCase__ = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed lowerCamelCase__ = line[len("""FAILED """ ) :] failed_tests.append(__lowercase ) elif filename == "job_name.txt": lowerCamelCase__ = line if len(__lowercase ) != len(__lowercase ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(__lowercase )} for `errors` """ f"""and {len(__lowercase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) lowerCamelCase__ = None if job_name and job_links: lowerCamelCase__ = job_links.get(__lowercase , __lowercase ) # A list with elements of the form (line of error, error, failed test) lowerCamelCase__ = [x + [y] + [job_link] for x, y in zip(__lowercase , __lowercase )] return result def _A ( __lowercase , __lowercase=None ): """simple docstring""" lowerCamelCase__ = [] lowerCamelCase__ = [os.path.join(__lowercase , __lowercase ) for p in os.listdir(__lowercase ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__lowercase , job_links=__lowercase ) ) return errors def _A ( __lowercase , __lowercase=None ): """simple docstring""" lowerCamelCase__ = Counter() counter.update([x[1] for x in logs] ) lowerCamelCase__ = counter.most_common() lowerCamelCase__ = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCamelCase__ = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCamelCase__ = dict(sorted(r.items() , key=lambda __lowercase : item[1]["count"] , reverse=__lowercase ) ) return r def _A ( __lowercase ): """simple docstring""" lowerCamelCase__ = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): lowerCamelCase__ = test.split("""/""" )[2] else: lowerCamelCase__ = None return test def _A ( __lowercase , __lowercase=None ): """simple docstring""" lowerCamelCase__ = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCamelCase__ = [x for x in logs if x[2] is not None] lowerCamelCase__ = {x[2] for x in logs} lowerCamelCase__ = {} for test in tests: lowerCamelCase__ = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCamelCase__ = counter.most_common() lowerCamelCase__ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCamelCase__ = sum(error_counts.values() ) if n_errors > 0: lowerCamelCase__ = {"""count""": n_errors, """errors""": error_counts} lowerCamelCase__ = dict(sorted(r.items() , key=lambda __lowercase : item[1]["count"] , reverse=__lowercase ) ) return r def _A ( __lowercase ): """simple docstring""" lowerCamelCase__ = """| no. | error | status |""" lowerCamelCase__ = """|-:|:-|:-|""" lowerCamelCase__ = [header, sep] for error in reduced_by_error: lowerCamelCase__ = reduced_by_error[error]["""count"""] lowerCamelCase__ = f"""| {count} | {error[:100]} | |""" lines.append(__lowercase ) return "\n".join(__lowercase ) def _A ( __lowercase ): """simple docstring""" lowerCamelCase__ = """| model | no. of errors | major error | count |""" lowerCamelCase__ = """|-:|-:|-:|-:|""" lowerCamelCase__ = [header, sep] for model in reduced_by_model: lowerCamelCase__ = reduced_by_model[model]["""count"""] lowerCamelCase__ , lowerCamelCase__ = list(reduced_by_model[model]["""errors"""].items() )[0] lowerCamelCase__ = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(__lowercase ) return "\n".join(__lowercase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") __magic_name__ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __magic_name__ = get_job_links(args.workflow_run_id, token=args.token) __magic_name__ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __magic_name__ = k.find(""" / """) __magic_name__ = k[index + len(""" / """) :] __magic_name__ = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __magic_name__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __magic_name__ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __magic_name__ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __magic_name__ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __magic_name__ = reduce_by_error(errors) __magic_name__ = reduce_by_model(errors) __magic_name__ = make_github_table(reduced_by_error) __magic_name__ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
129
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['PerceiverFeatureExtractor'] snake_case = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
406
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case = '▁' snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class UpperCamelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : int = BertGenerationTokenizer UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : str = True def A ( self ) -> int: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE = BertGenerationTokenizer(lowercase__ , keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = '<s>' SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(lowercase__ ) , 1002 ) def A ( self ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = BertGenerationTokenizer(lowercase__ , keep_accents=lowercase__ ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [285, 46, 10, 170, 382] , ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A ( self ) -> Any: """simple docstring""" return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = 'Hello World!' SCREAMING_SNAKE_CASE = [18536, 2260, 101] self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @slow def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) SCREAMING_SNAKE_CASE = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @require_torch @slow def A ( self ) -> int: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence SCREAMING_SNAKE_CASE = list(self.big_tokenizer.get_vocab().keys() )[:10] SCREAMING_SNAKE_CASE = ' '.join(lowercase__ ) SCREAMING_SNAKE_CASE = self.big_tokenizer.encode_plus(lowercase__ , return_tensors='pt' , return_token_type_ids=lowercase__ ) SCREAMING_SNAKE_CASE = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=lowercase__ ) SCREAMING_SNAKE_CASE = BertGenerationConfig() SCREAMING_SNAKE_CASE = BertGenerationEncoder(lowercase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase__ ) model(**lowercase__ ) @slow def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
406
1
"""simple docstring""" import requests from bsa import BeautifulSoup def __magic_name__ ( __snake_case : str = "https://www.worldometers.info/coronavirus" ) -> dict: lowercase : str = BeautifulSoup(requests.get(__snake_case ).text , "html.parser" ) lowercase : List[str] = soup.findAll("h1" ) lowercase : Any = soup.findAll("div" , {"class": "maincounter-number"} ) keys += soup.findAll("span" , {"class": "panel-title"} ) values += soup.findAll("div" , {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(F"{key}\n{value}\n")
361
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _A : str = False try: _A : Dict = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class a__ : def __init__( self , _a = None , _a = [] ): lowercase : Union[str, Any] = 0 lowercase : str = choices lowercase : List[Any] = prompt if sys.platform == "win32": lowercase : Union[str, Any] = "*" else: lowercase : int = "➔ " def __magic_name__ ( self , _a , _a = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , _a ) else: forceWrite(self.choices[index] , _a ) def __magic_name__ ( self , _a ): if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(_a ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def __magic_name__ ( self , _a , _a = 1 ): lowercase : Optional[int] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_a ) move_cursor(_a , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def __magic_name__ ( self ): self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def __magic_name__ ( self ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def __magic_name__ ( self ): move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def __magic_name__ ( self ): move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_a )] for number in range(10 )] ) def __magic_name__ ( self ): lowercase : List[str] = int(chr(self.current_selection ) ) lowercase : Union[str, Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _a ) else: return else: return def __magic_name__ ( self , _a = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) lowercase : Tuple = default_choice for i in range(len(self.choices ) ): self.print_choice(_a ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: lowercase : Tuple = int(builtins.input() ) except ValueError: lowercase : Optional[int] = default_choice else: lowercase : int = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(_a , "\n" ) return choice
361
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : int a_ : TreeNode | None =None a_ : TreeNode | None =None lowerCAmelCase_ = namedtuple("""CoinsDistribResult""", """moves excess""") def lowerCamelCase_ ( lowerCAmelCase: TreeNode | None )-> int: if root is None: return 0 # Validation def count_nodes(lowerCAmelCase: TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowerCAmelCase: TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCAmelCase ) != count_coins(lowerCAmelCase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowerCAmelCase: TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _snake_case , _snake_case : Optional[Any] = get_distrib(node.left ) _snake_case , _snake_case : int = get_distrib(node.right ) _snake_case : Optional[int] = 1 - left_distrib_excess _snake_case : List[str] = 1 - right_distrib_excess _snake_case : List[str] = ( left_distrib_moves + right_distrib_moves + abs(lowerCAmelCase ) + abs(lowerCAmelCase ) ) _snake_case : str = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCAmelCase , lowerCAmelCase ) return get_distrib(lowerCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
669
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @slow def a__ ( self :List[str] ): snake_case_ : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) snake_case_ : Any = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" snake_case_ : List[Any] = model(_UpperCamelCase )["""last_hidden_state"""] snake_case_ : Any = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape ,_UpperCamelCase ) # compare the actual values for a slice. snake_case_ : List[str] = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
334
'''simple docstring''' __A : List[Any] = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def UpperCAmelCase ( lowerCamelCase_ :float ): '''simple docstring''' assert type(lowerCamelCase_ ) in (int, float) and decimal == int(lowerCamelCase_ ) snake_case_ : int = int(lowerCamelCase_ ) snake_case_ : int = """""" snake_case_ : List[str] = False if decimal < 0: snake_case_ : Any = True decimal *= -1 while decimal > 0: snake_case_ , snake_case_ : List[str] = divmod(lowerCamelCase_ , 16 ) snake_case_ : Tuple = values[remainder] + hexadecimal snake_case_ : Dict = """0x""" + hexadecimal if negative: snake_case_ : Optional[int] = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
334
1
def __UpperCamelCase ( _A : Any ) ->Any: """simple docstring""" assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), f'The input value of [n={number}] is not an integer' if number == 1: return 2 elif number < 1: lowerCamelCase_ =f'The input value of [n={number}] has to be > 0' raise ValueError(UpperCamelCase__ ) else: lowerCamelCase_ =sylvester(number - 1 ) lowerCamelCase_ =num - 1 lowerCamelCase_ =num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester\'s sequence: {sylvester(8)}""")
719
from collections import namedtuple import requests from lxml import html # type: ignore __A : Dict = namedtuple('covid_data', 'cases deaths recovered') def __UpperCamelCase ( _A : str = "https://www.worldometers.info/coronavirus/" ) ->covid_data: """simple docstring""" lowerCamelCase_ ="""//div[@class = \"maincounter-number\"]/span/text()""" return covid_data(*html.fromstring(requests.get(_A ).content ).xpath(_A ) ) __A : Union[str, Any] = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
75
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal UpperCamelCase_ = datasets.utils.logging.get_logger(__name__) UpperCamelCase_ = ["names", "prefix"] UpperCamelCase_ = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"] UpperCamelCase_ = ["encoding_errors", "on_bad_lines"] UpperCamelCase_ = ["date_format"] @dataclass class _a ( datasets.BuilderConfig ): '''simple docstring''' A : str = "," A : Optional[str] = None A : Optional[Union[int, List[int], str]] = "infer" A : Optional[List[str]] = None A : Optional[List[str]] = None A : Optional[Union[int, str, List[int], List[str]]] = None A : Optional[Union[List[int], List[str]]] = None A : Optional[str] = None A : bool = True A : Optional[Literal["c", "python", "pyarrow"]] = None A : Dict[Union[int, str], Callable[[Any], Any]] = None A : Optional[list] = None A : Optional[list] = None A : bool = False A : Optional[Union[int, List[int]]] = None A : Optional[int] = None A : Optional[Union[str, List[str]]] = None A : bool = True A : bool = True A : bool = False A : bool = True A : Optional[str] = None A : str = "." A : Optional[str] = None A : str = '"' A : int = 0 A : Optional[str] = None A : Optional[str] = None A : Optional[str] = None A : Optional[str] = None A : bool = True A : bool = True A : int = 0 A : bool = True A : bool = False A : Optional[str] = None A : int = 10_000 A : Optional[datasets.Features] = None A : Optional[str] = "strict" A : Literal["error", "warn", "skip"] = "error" A : Optional[str] = None def UpperCamelCase_ ( self ): '''simple docstring''' if self.delimiter is not None: SCREAMING_SNAKE_CASE : List[str] = self.delimiter if self.column_names is not None: SCREAMING_SNAKE_CASE : Tuple = self.column_names @property def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), A ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _a ( datasets.ArrowBasedBuilder ): '''simple docstring''' A : Tuple = CsvConfig def UpperCamelCase_ ( self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A, (str, list, tuple) ): SCREAMING_SNAKE_CASE : List[Any] = data_files if isinstance(A, A ): SCREAMING_SNAKE_CASE : Dict = [files] SCREAMING_SNAKE_CASE : int = [dl_manager.iter_files(A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'files': files} )] SCREAMING_SNAKE_CASE : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(A, A ): SCREAMING_SNAKE_CASE : List[Any] = [files] SCREAMING_SNAKE_CASE : List[str] = [dl_manager.iter_files(A ) for file in files] splits.append(datasets.SplitGenerator(name=A, gen_kwargs={'files': files} ) ) return splits def UpperCamelCase_ ( self, A ): '''simple docstring''' if self.config.features is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.config.features.arrow_schema if all(not require_storage_cast(A ) for feature in self.config.features.values() ): # cheaper cast SCREAMING_SNAKE_CASE : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=A ) else: # more expensive cast; allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE : Union[str, Any] = table_cast(A, A ) return pa_table def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str SCREAMING_SNAKE_CASE : List[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(A ) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(A ) ): SCREAMING_SNAKE_CASE : Any = pd.read_csv(A, iterator=A, dtype=A, **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(A ): SCREAMING_SNAKE_CASE : Dict = pa.Table.from_pandas(A ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(A )}: {e}" ) raise
28
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ): '''simple docstring''' if tokenize_kwargs is None: SCREAMING_SNAKE_CASE : Optional[int] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) SCREAMING_SNAKE_CASE : Tuple = truncation SCREAMING_SNAKE_CASE : int = tokenize_kwargs SCREAMING_SNAKE_CASE : Optional[Any] = {} if return_tensors is not None: SCREAMING_SNAKE_CASE : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def UpperCamelCase_ ( self, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.framework SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A ) return model_inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model(**A ) return model_outputs def UpperCamelCase_ ( self, A, A=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self, *A, **A ): '''simple docstring''' return super().__call__(*A, **A )
28
1
def lowerCAmelCase__ ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str )-> int: if height >= 1: move_tower(height - 1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) move_disk(UpperCamelCase_ , UpperCamelCase_ ) move_tower(height - 1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] )-> str: print('''moving disk from''' , UpperCamelCase_ , '''to''' , UpperCamelCase_ ) def lowerCAmelCase__ ( )-> Tuple: A__ = int(input('''Height of hanoi: ''' ).strip() ) move_tower(UpperCamelCase_ , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
526
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase = 16 _lowercase = 32 def lowerCAmelCase__ ( UpperCamelCase_ : Accelerator , UpperCamelCase_ : int = 1_6 )-> List[str]: A__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCamelCase_ : Any ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCamelCase_ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 1_6 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( UpperCamelCase_ , padding='''longest''' , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) A__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple )-> Union[str, Any]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , UpperCamelCase_ ) == "1": A__ = 2 # Initialize accelerator A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['''lr'''] A__ = int(config['''num_epochs'''] ) A__ = int(config['''seed'''] ) A__ = int(config['''batch_size'''] ) A__ = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=UpperCamelCase_ ) def inner_training_loop(UpperCamelCase_ : Optional[int] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(UpperCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=UpperCamelCase_ ) A__ , A__ = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**UpperCamelCase_ ) A__ = outputs.loss accelerator.backward(UpperCamelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**UpperCamelCase_ ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , UpperCamelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowerCAmelCase__ ( )-> Optional[Any]: A__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ = parser.parse_args() A__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
526
1
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig a_ = [ """openmmlab/upernet-convnext-tiny""", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring a_ = """UperNetConfig""" class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = False , __UpperCAmelCase = 1 , ): '''simple docstring''' super().__init__() __lowerCamelCase = nn.Convad( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , bias=__UpperCAmelCase , dilation=__UpperCAmelCase , ) __lowerCamelCase = nn.BatchNormad(__UpperCAmelCase ) __lowerCamelCase = nn.ReLU() def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.conv(__UpperCAmelCase ) __lowerCamelCase = self.batch_norm(__UpperCAmelCase ) __lowerCamelCase = self.activation(__UpperCAmelCase ) return output class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = [ nn.AdaptiveAvgPoolad(__UpperCAmelCase ), UperNetConvModule(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__UpperCAmelCase ) , __UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = input for layer in self.layers: __lowerCamelCase = layer(__UpperCAmelCase ) return hidden_state class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = pool_scales __lowerCamelCase = align_corners __lowerCamelCase = in_channels __lowerCamelCase = channels __lowerCamelCase = [] for i, pool_scale in enumerate(__UpperCAmelCase ): __lowerCamelCase = UperNetPyramidPoolingBlock(pool_scale=__UpperCAmelCase , in_channels=__UpperCAmelCase , channels=__UpperCAmelCase ) self.blocks.append(__UpperCAmelCase ) self.add_module(str(__UpperCAmelCase ) , __UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = [] for ppm in self.blocks: __lowerCamelCase = ppm(__UpperCAmelCase ) __lowerCamelCase = nn.functional.interpolate( __UpperCAmelCase , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__UpperCAmelCase ) return ppm_outs class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() __lowerCamelCase = config __lowerCamelCase = config.pool_scales # e.g. (1, 2, 3, 6) __lowerCamelCase = in_channels __lowerCamelCase = config.hidden_size __lowerCamelCase = False __lowerCamelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module __lowerCamelCase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) __lowerCamelCase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module __lowerCamelCase = nn.ModuleList() __lowerCamelCase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer __lowerCamelCase = UperNetConvModule(__UpperCAmelCase , self.channels , kernel_size=1 ) __lowerCamelCase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__UpperCAmelCase ) self.fpn_convs.append(__UpperCAmelCase ) __lowerCamelCase = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowerCamelCase ( self ): '''simple docstring''' self.apply(self._init_weights ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = inputs[-1] __lowerCamelCase = [x] psp_outs.extend(self.psp_modules(__UpperCAmelCase ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=1 ) __lowerCamelCase = self.bottleneck(__UpperCAmelCase ) return output def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # build laterals __lowerCamelCase = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__UpperCAmelCase ) ) # build top-down path __lowerCamelCase = len(__UpperCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __lowerCamelCase = laterals[i - 1].shape[2:] __lowerCamelCase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__UpperCAmelCase , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs __lowerCamelCase = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): __lowerCamelCase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=1 ) __lowerCamelCase = self.fpn_bottleneck(__UpperCAmelCase ) __lowerCamelCase = self.classifier(__UpperCAmelCase ) return output class __lowerCAmelCase ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = 2 , __UpperCAmelCase = 3 , __UpperCAmelCase = 1 ): '''simple docstring''' super().__init__() __lowerCamelCase = config __lowerCamelCase = config.auxiliary_in_channels __lowerCamelCase = config.auxiliary_channels __lowerCamelCase = config.auxiliary_num_convs __lowerCamelCase = config.auxiliary_concat_input __lowerCamelCase = in_index __lowerCamelCase = (kernel_size // 2) * dilation __lowerCamelCase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , dilation=__UpperCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , dilation=__UpperCAmelCase ) ) if self.num_convs == 0: __lowerCamelCase = nn.Identity() else: __lowerCamelCase = nn.Sequential(*__UpperCAmelCase ) if self.concat_input: __lowerCamelCase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__UpperCAmelCase , padding=kernel_size // 2 ) __lowerCamelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowerCamelCase ( self ): '''simple docstring''' self.apply(self._init_weights ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' # just take the relevant feature maps __lowerCamelCase = encoder_hidden_states[self.in_index] __lowerCamelCase = self.convs(__UpperCAmelCase ) if self.concat_input: __lowerCamelCase = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) __lowerCamelCase = self.classifier(__UpperCAmelCase ) return output class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = UperNetConfig lowerCAmelCase__ = """pixel_values""" lowerCAmelCase__ = True def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowerCamelCase ( self ): '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = value a_ = R""" Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a_ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , lowerCAmelCase__ , ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) __lowerCamelCase = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) __lowerCamelCase = UperNetHead(__UpperCAmelCase , in_channels=self.backbone.channels ) __lowerCamelCase = UperNetFCNHead(__UpperCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def lowerCamelCase ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ): '''simple docstring''' __lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase = output_attentions if output_attentions is not None else self.config.output_attentions __lowerCamelCase = self.backbone.forward_with_filtered_kwargs( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , output_attentions=__UpperCAmelCase ) __lowerCamelCase = outputs.feature_maps __lowerCamelCase = self.decode_head(__UpperCAmelCase ) __lowerCamelCase = nn.functional.interpolate(__UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__UpperCAmelCase ) __lowerCamelCase = None if self.auxiliary_head is not None: __lowerCamelCase = self.auxiliary_head(__UpperCAmelCase ) __lowerCamelCase = nn.functional.interpolate( __UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__UpperCAmelCase ) __lowerCamelCase = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss __lowerCamelCase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) __lowerCamelCase = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: __lowerCamelCase = (logits,) + outputs[1:] else: __lowerCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
175
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = encoder_seq_length __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = d_ff __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = dropout_rate __lowerCamelCase = initializer_factor __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = None __lowerCamelCase = decoder_layers def lowerCamelCase ( self ): '''simple docstring''' return TaConfig.from_pretrained('''google/umt5-base''' ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ): '''simple docstring''' if attention_mask is None: __lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: __lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = self.get_config() __lowerCamelCase = config.num_attention_heads __lowerCamelCase = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase ( self ): '''simple docstring''' return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCamelCase ( self ): '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowerCamelCase = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) __lowerCamelCase = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) __lowerCamelCase = result.last_hidden_state __lowerCamelCase = result.past_key_values __lowerCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass __lowerCamelCase = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) __lowerCamelCase ,__lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(__UpperCAmelCase )['''last_hidden_state'''] __lowerCamelCase = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() __lowerCamelCase = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowerCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () lowerCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests lowerCAmelCase__ = [0.8, 0.9] def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = config_and_inputs[0] __lowerCamelCase = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) __lowerCamelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): __lowerCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) __lowerCamelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) __lowerCamelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] __lowerCamelCase = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off __lowerCamelCase = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = model.generate(input_ids.to(__UpperCAmelCase ) ) __lowerCamelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
175
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def A(__a: str ): lowerCAmelCase_ = VideoMAEConfig() set_architecture_configs(__a , __a ) if "finetuned" not in model_name: lowerCAmelCase_ = False if "finetuned" in model_name: lowerCAmelCase_ = "huggingface/label-files" if "kinetics" in model_name: lowerCAmelCase_ = 400 lowerCAmelCase_ = "kinetics400-id2label.json" elif "ssv2" in model_name: lowerCAmelCase_ = 174 lowerCAmelCase_ = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) lowerCAmelCase_ = json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCAmelCase_ = {int(__a ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} return config def A(__a: int , __a: Dict ): if "small" in model_name: lowerCAmelCase_ = 384 lowerCAmelCase_ = 1536 lowerCAmelCase_ = 12 lowerCAmelCase_ = 16 lowerCAmelCase_ = 12 lowerCAmelCase_ = 3 lowerCAmelCase_ = 192 lowerCAmelCase_ = 768 elif "large" in model_name: lowerCAmelCase_ = 1024 lowerCAmelCase_ = 4096 lowerCAmelCase_ = 24 lowerCAmelCase_ = 16 lowerCAmelCase_ = 12 lowerCAmelCase_ = 8 lowerCAmelCase_ = 512 lowerCAmelCase_ = 2048 elif "huge" in model_name: lowerCAmelCase_ = 1280 lowerCAmelCase_ = 5120 lowerCAmelCase_ = 32 lowerCAmelCase_ = 16 lowerCAmelCase_ = 12 lowerCAmelCase_ = 8 lowerCAmelCase_ = 640 lowerCAmelCase_ = 2560 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def A(__a: List[Any] ): if "encoder." in name: lowerCAmelCase_ = name.replace("encoder." , "" ) if "cls_token" in name: lowerCAmelCase_ = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: lowerCAmelCase_ = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase_ = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCAmelCase_ = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCAmelCase_ = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: lowerCAmelCase_ = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: lowerCAmelCase_ = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: lowerCAmelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: lowerCAmelCase_ = name.replace("attn" , "attention.self" ) if "attn" in name: lowerCAmelCase_ = name.replace("attn" , "attention.attention" ) if "norm1" in name: lowerCAmelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCAmelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCAmelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCAmelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: lowerCAmelCase_ = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: lowerCAmelCase_ = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: lowerCAmelCase_ = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase_ = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase_ = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: lowerCAmelCase_ = name.replace("head" , "classifier" ) return name def A(__a: Optional[Any] , __a: Optional[Any] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(__a ) if key.startswith("encoder." ): lowerCAmelCase_ = key.replace("encoder." , "" ) if "qkv" in key: lowerCAmelCase_ = key.split("." ) if key.startswith("decoder.blocks" ): lowerCAmelCase_ = config.decoder_hidden_size lowerCAmelCase_ = int(key_split[2] ) lowerCAmelCase_ = "decoder.decoder_layers." if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = config.hidden_size lowerCAmelCase_ = int(key_split[1] ) lowerCAmelCase_ = "videomae.encoder.layer." if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val return orig_state_dict def A(): lowerCAmelCase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) lowerCAmelCase_ = np.load(__a ) return list(__a ) def A(__a: Optional[Any] , __a: Tuple , __a: Any , __a: Optional[Any] ): lowerCAmelCase_ = get_videomae_config(__a ) if "finetuned" in model_name: lowerCAmelCase_ = VideoMAEForVideoClassification(__a ) else: lowerCAmelCase_ = VideoMAEForPreTraining(__a ) # download original checkpoint, hosted on Google Drive lowerCAmelCase_ = "pytorch_model.bin" gdown.cached_download(__a , __a , quiet=__a ) lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) if "model" in files: lowerCAmelCase_ = files["model"] else: lowerCAmelCase_ = files["module"] lowerCAmelCase_ = convert_state_dict(__a , __a ) model.load_state_dict(__a ) model.eval() # verify model on basic input lowerCAmelCase_ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) lowerCAmelCase_ = prepare_video() lowerCAmelCase_ = image_processor(__a , return_tensors="pt" ) if "finetuned" not in model_name: lowerCAmelCase_ = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) lowerCAmelCase_ = torch.load(__a ) lowerCAmelCase_ = model(**__a ) lowerCAmelCase_ = outputs.logits lowerCAmelCase_ = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowerCAmelCase_ = torch.Size([1, 400] ) lowerCAmelCase_ = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": lowerCAmelCase_ = torch.Size([1, 174] ) lowerCAmelCase_ = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": lowerCAmelCase_ = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": lowerCAmelCase_ = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one lowerCAmelCase_ = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": lowerCAmelCase_ = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": lowerCAmelCase_ = torch.Size([1, 400] ) lowerCAmelCase_ = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": lowerCAmelCase_ = torch.Size([1, 400] ) lowerCAmelCase_ = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowerCAmelCase_ = torch.Size([1, 400] ) lowerCAmelCase_ = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": lowerCAmelCase_ = torch.Size([1, 400] ) lowerCAmelCase_ = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": lowerCAmelCase_ = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowerCAmelCase_ = torch.Size([1, 174] ) lowerCAmelCase_ = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": lowerCAmelCase_ = torch.Size([1, 1408, 1536] ) lowerCAmelCase_ = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": lowerCAmelCase_ = torch.Size([1, 174] ) lowerCAmelCase_ = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F"Model name not supported. Should be one of {model_names}" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __a , atol=1E-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1E-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": lowerCAmelCase_ = outputs.loss assert torch.allclose(__a , __a , atol=1E-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__a ) model.save_pretrained(__a ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(__a , organization="nielsr" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''', type=str, help=( '''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct''' ''' download link.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''/Users/nielsrogge/Documents/VideoMAE/Test''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase__ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
701
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __magic_name__ (__lowercase ): lowerCamelCase__ = '''''' lowerCamelCase__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCamelCase__ = None # compression type in fsspec. ex: "gzip" lowerCamelCase__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _a = "" , _a = None , _a = None , **_a ) -> Any: super().__init__(self , **_a ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCAmelCase_ = fsspec.open( _a , mode="rb" , protocol=_a , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCAmelCase_ = os.path.basename(self.file.path.split("::" )[0] ) lowerCAmelCase_ = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) lowerCAmelCase_ = None @classmethod def __a ( cls , _a ) -> List[Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(_a ).lstrip("/" ) def __a ( self ) -> Union[str, Any]: if self.dir_cache is None: lowerCAmelCase_ = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} lowerCAmelCase_ = {f["name"]: f} def __a ( self , _a ) -> Dict: return self.file.open().read() def __a ( self , _a , _a = "rb" , _a=None , _a=True , _a=None , **_a , ) -> Optional[Any]: lowerCAmelCase_ = self._strip_protocol(_a ) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bz2''' lowerCamelCase__ = '''bz2''' lowerCamelCase__ = '''.bz2''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''gzip''' lowerCamelCase__ = '''gzip''' lowerCamelCase__ = '''.gz''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''lz4''' lowerCamelCase__ = '''lz4''' lowerCamelCase__ = '''.lz4''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''xz''' lowerCamelCase__ = '''xz''' lowerCamelCase__ = '''.xz''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''zstd''' lowerCamelCase__ = '''zstd''' lowerCamelCase__ = '''.zst''' def __init__( self , _a , _a = "rb" , _a = None , _a = None , _a = DEFAULT_BLOCK_SIZE , **_a , ) -> Tuple: super().__init__( fo=_a , mode=_a , target_protocol=_a , target_options=_a , block_size=_a , **_a , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCAmelCase_ = self.file.__enter__ class __magic_name__ : def __init__( self , _a ) -> List[str]: lowerCAmelCase_ = file_ def __enter__( self ) -> int: self._file.__enter__() return self def __exit__( self , *_a , **_a ) -> Dict: self._file.__exit__(*_a , **_a ) def __iter__( self ) -> List[Any]: return iter(self._file ) def __a ( self ) -> List[Any]: return next(self._file ) def __getattr__( self , _a ) -> Tuple: return getattr(self._file , _a ) def fixed_enter(*_a , **_a ): return WrappedFile(_enter(*_a , **_a ) ) lowerCAmelCase_ = fixed_enter
226
0
"""simple docstring""" from torch import nn def UpperCAmelCase ( _lowercase : List[Any] ) -> str: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
552
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def UpperCAmelCase ( _lowercase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase_ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowerCAmelCase_ = json.loads(open(_lowercase ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('''.pt''' ): lowerCAmelCase_ = args.output + '''.pt''' lowerCAmelCase_ = OrderedDict() with tf.device('''/CPU:0''' ): lowerCAmelCase_ = tf.train.load_checkpoint(args.tf_model_dir ) lowerCAmelCase_ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowerCAmelCase_ = reader.get_tensor(_lowercase ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowerCAmelCase_ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowerCAmelCase_ = 8 lowerCAmelCase_ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.startswith('''model/moe''' ): lowerCAmelCase_ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.endswith('''/softmlp/kernel''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowerCAmelCase_ = key_name[-9:-7] for i in range(1_6 ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowerCAmelCase_ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.startswith('''model/mlp''' ): lowerCAmelCase_ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.endswith('''/p1/bias''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.endswith('''/p2/kernel''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.endswith('''/p2/bias''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.startswith('''model/ln''' ): lowerCAmelCase_ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.endswith('''/g''' ): lowerCAmelCase_ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.startswith('''model/att''' ): lowerCAmelCase_ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowerCAmelCase_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowerCAmelCase_ = state[:, 0, :, :] lowerCAmelCase_ = state[:, 1, :, :] lowerCAmelCase_ = state[:, 2, :, :] lowerCAmelCase_ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowerCAmelCase_ = torch.tensor(_lowercase ) lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowerCAmelCase_ = torch.tensor(_lowercase ) lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.endswith('''/o/kernel''' ): lowerCAmelCase_ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowerCAmelCase_ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.startswith('''model/an''' ): lowerCAmelCase_ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowerCAmelCase_ = '''model.blocks.%d.self_attn.norm.bias''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.endswith('''/g''' ): lowerCAmelCase_ = '''model.blocks.%d.self_attn.norm.weight''' % player lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(_lowercase ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowerCAmelCase_ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowerCAmelCase_ = '''model.%s.weight''' % nlayer lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(_lowercase ) if key_name.startswith('''model/wte''' ): lowerCAmelCase_ = '''lm_head.weight''' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name.startswith('''model/wob''' ): lowerCAmelCase_ = '''final_logits_bias''' lowerCAmelCase_ = vnp.copy() # same in embedded lowerCAmelCase_ = state.reshape((1, -1) ) lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name == "model/dense/kernel": lowerCAmelCase_ = '''model.last_project.weight''' lowerCAmelCase_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowerCAmelCase_ = torch.tensor(_lowercase ) elif key_name == "model/dense_1/bias": lowerCAmelCase_ = '''model.last_project.bias''' lowerCAmelCase_ = vnp.copy() # same because it is one dimensional lowerCAmelCase_ = torch.tensor(_lowercase ) torch.save(_lowercase , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
552
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self , _lowerCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): _lowerCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sgugger/tiny-distilbert-classification''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , only_pretrain_model=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , torchscript=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , fpaa=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) # set architectures equal to `None` _lowerCAmelCase = None _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowerCAmelCase , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tinier_bart''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tinier_bart''' _lowerCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase , configs=[config] ) _lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , save_to_csv=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowerCAmelCase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowerCAmelCase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowerCAmelCase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowerCAmelCase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowerCAmelCase , '''env.csv''' ) , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''env.csv''' ) ).exists() ) def __lowerCAmelCase ( self ): _lowerCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowerCAmelCase ): self.assertTrue(hasattr(_lowerCAmelCase , '''sequential''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''current''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCAmelCase , inference=_lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowerCAmelCase , '''log.txt''' ) , log_print=_lowerCAmelCase , trace_memory_line_by_line=_lowerCAmelCase , multi_process=_lowerCAmelCase , ) _lowerCAmelCase = PyTorchBenchmark(_lowerCAmelCase ) _lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCAmelCase , '''log.txt''' ) ).exists() )
664
from __future__ import annotations def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : list )->list: if len(_SCREAMING_SNAKE_CASE ) == 0: return [] _lowerCAmelCase , _lowerCAmelCase = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = int(max_value - min_value ) + 1 _lowerCAmelCase = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in my_list: buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE ) return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
664
1
"""simple docstring""" from math import isqrt, loga def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->list[int]: _lowerCamelCase : Dict = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCamelCase : List[Any] = False return [i for i in range(2 , SCREAMING_SNAKE_CASE_ ) if is_prime[i]] def UpperCamelCase ( SCREAMING_SNAKE_CASE_ = 80_0800 , SCREAMING_SNAKE_CASE_ = 80_0800 ) ->int: _lowerCamelCase : Tuple = degree * loga(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Tuple = int(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Optional[Any] = calculate_prime_numbers(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : List[str] = 0 _lowerCamelCase : Dict = 0 _lowerCamelCase : List[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
434
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ : Dict ={ 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Tuple =['PerceiverFeatureExtractor'] SCREAMING_SNAKE_CASE__ : int =['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =[ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : List[str] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
434
1
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowercase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCAmelCase ( A : Dict ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _UpperCAmelCase = k.replace(A , A ) return k def UpperCAmelCase ( A : dict , A : dict ): '''simple docstring''' _UpperCAmelCase = DEFAULTS.copy() cfg_kwargs.update(A ) _UpperCAmelCase = PegasusConfig(**A ) _UpperCAmelCase = PegasusForConditionalGeneration(A ) _UpperCAmelCase = torch_model.model.state_dict() _UpperCAmelCase = {} for k, v in tf_weights.items(): _UpperCAmelCase = rename_state_dict_key(A ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: _UpperCAmelCase = v.T _UpperCAmelCase = torch.tensor(A , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected _UpperCAmelCase = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) _UpperCAmelCase = mapping['shared.weight'] _UpperCAmelCase = mapping['shared.weight'] _UpperCAmelCase = {k: torch.zeros_like(A ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**A ) _UpperCAmelCase , _UpperCAmelCase = torch_model.model.load_state_dict(A , strict=A ) _UpperCAmelCase = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def UpperCAmelCase ( A : Optional[Any]="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _UpperCAmelCase = tf.train.list_variables(A ) _UpperCAmelCase = {} _UpperCAmelCase = ['Adafactor', 'global_step'] for name, shape in tqdm(A , desc='converting tf checkpoint to dict' ): _UpperCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase = tf.train.load_variable(A , A ) _UpperCAmelCase = array return tf_weights def UpperCAmelCase ( A : str , A : str ): '''simple docstring''' _UpperCAmelCase = Path(A ).parent.name _UpperCAmelCase = task_specific_params[f'summarization_{dataset}']['max_position_embeddings'] _UpperCAmelCase = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=A ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(A ) # convert model _UpperCAmelCase = get_tf_weights_as_numpy(A ) _UpperCAmelCase = task_specific_params[f'summarization_{dataset}'] if dataset == "large": _UpperCAmelCase = task_specific_params _UpperCAmelCase = convert_pegasus(A , A ) torch_model.save_pretrained(A ) _UpperCAmelCase = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(A , Path(A ) / 'pytorch_model.bin' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase = parser.parse_args() if args.save_dir is None: lowercase = Path(args.tf_ckpt_path).parent.name lowercase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
24
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
1
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class _UpperCAmelCase ( _lowerCAmelCase ): # to overwrite at feature extractactor specific tests a__ : Union[str, Any] = None a__ : Optional[int] = None @property def a ( self : Dict ): return self.feat_extract_tester.prepare_feat_extract_dict() def a ( self : Union[str, Any] ): __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_lowercase , '''feature_size''' ) ) self.assertTrue(hasattr(_lowercase , '''sampling_rate''' ) ) self.assertTrue(hasattr(_lowercase , '''padding_value''' ) ) def a ( self : Optional[int] ): __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowercase ) == len(_lowercase ) for x, y in zip(_lowercase , processed_features[input_name] ) ) ) __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowercase ) __UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) __UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def a ( self : Optional[Any] ): __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowercase ) __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) __UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def a ( self : int ): __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowercase ) __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) __UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def a ( self : Tuple , _lowercase : Dict=False ): def _inputs_have_equal_length(_lowercase : List[str] ): __UpperCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_lowercase ) != length: return False return True def _inputs_are_equal(_lowercase : Any , _lowercase : int ): if len(_lowercase ) != len(_lowercase ): return False for input_slice_a, input_slice_a in zip(_lowercase , _lowercase ): if not np.allclose(np.asarray(_lowercase ) , np.asarray(_lowercase ) , atol=1E-3 ): return False return True __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowercase ) __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) __UpperCAmelCase = self.feat_extract_tester.seq_length_diff __UpperCAmelCase = self.feat_extract_tester.max_seq_length + pad_diff __UpperCAmelCase = self.feat_extract_tester.min_seq_length __UpperCAmelCase = self.feat_extract_tester.batch_size __UpperCAmelCase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __UpperCAmelCase = feat_extract.pad(_lowercase , padding=_lowercase ) __UpperCAmelCase = input_a[input_name] __UpperCAmelCase = feat_extract.pad(_lowercase , padding='''longest''' ) __UpperCAmelCase = input_a[input_name] __UpperCAmelCase = feat_extract.pad(_lowercase , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) __UpperCAmelCase = input_a[input_name] __UpperCAmelCase = feat_extract.pad(_lowercase , padding='''longest''' , return_tensors='''np''' ) __UpperCAmelCase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_lowercase ): feat_extract.pad(_lowercase , padding='''max_length''' )[input_name] __UpperCAmelCase = feat_extract.pad( _lowercase , padding='''max_length''' , max_length=_lowercase , return_tensors='''np''' ) __UpperCAmelCase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(_inputs_are_equal(_lowercase , _lowercase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy __UpperCAmelCase = feat_extract.pad(_lowercase , pad_to_multiple_of=10 ) __UpperCAmelCase = input_a[input_name] __UpperCAmelCase = feat_extract.pad(_lowercase , padding='''longest''' , pad_to_multiple_of=10 ) __UpperCAmelCase = input_a[input_name] __UpperCAmelCase = feat_extract.pad( _lowercase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_lowercase ) __UpperCAmelCase = input_a[input_name] __UpperCAmelCase = feat_extract.pad( _lowercase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_lowercase , return_tensors='''np''' , ) __UpperCAmelCase = input_a[input_name] self.assertTrue(all(len(_lowercase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_lowercase , _lowercase ) ) __UpperCAmelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_lowercase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct __UpperCAmelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def a ( self : Optional[int] , _lowercase : List[str]=False ): def _inputs_have_equal_length(_lowercase : Dict ): __UpperCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_lowercase ) != length: return False return True def _inputs_are_equal(_lowercase : Any , _lowercase : Any ): if len(_lowercase ) != len(_lowercase ): return False for input_slice_a, input_slice_a in zip(_lowercase , _lowercase ): if not np.allclose(np.asarray(_lowercase ) , np.asarray(_lowercase ) , atol=1E-3 ): return False return True __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowercase ) __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) # truncate to smallest __UpperCAmelCase = feat_extract.pad( _lowercase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=_lowercase ) __UpperCAmelCase = input_a[input_name] __UpperCAmelCase = feat_extract.pad(_lowercase , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) __UpperCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertFalse(_inputs_have_equal_length(_lowercase ) ) # truncate to smallest with np __UpperCAmelCase = feat_extract.pad( _lowercase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=_lowercase , ) __UpperCAmelCase = input_a[input_name] __UpperCAmelCase = feat_extract.pad( _lowercase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) __UpperCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowercase ) ) # truncate to middle __UpperCAmelCase = feat_extract.pad( _lowercase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_lowercase , return_tensors='''np''' , ) __UpperCAmelCase = input_a[input_name] __UpperCAmelCase = feat_extract.pad( _lowercase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_lowercase ) __UpperCAmelCase = input_a[input_name] __UpperCAmelCase = feat_extract.pad( _lowercase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) __UpperCAmelCase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(_inputs_are_equal(_lowercase , _lowercase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowercase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowercase ): feat_extract.pad(_lowercase , truncation=_lowercase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowercase ): feat_extract.pad(_lowercase , padding='''longest''' , truncation=_lowercase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowercase ): feat_extract.pad(_lowercase , padding='''longest''' , truncation=_lowercase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_lowercase ): feat_extract.pad(_lowercase , padding='''max_length''' , truncation=_lowercase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __UpperCAmelCase = 12 __UpperCAmelCase = feat_extract.pad( _lowercase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowercase , truncation=_lowercase , ) __UpperCAmelCase = input_a[input_name] __UpperCAmelCase = feat_extract.pad( _lowercase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowercase , ) __UpperCAmelCase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __UpperCAmelCase = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: __UpperCAmelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_lowercase ) ) self.assertFalse(_inputs_have_equal_length(_lowercase ) ) def a ( self : str ): self._check_padding(numpify=_lowercase ) def a ( self : Optional[int] ): self._check_padding(numpify=_lowercase ) def a ( self : List[Any] ): self._check_truncation(numpify=_lowercase ) def a ( self : Dict ): self._check_truncation(numpify=_lowercase ) @require_torch def a ( self : Tuple ): __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) __UpperCAmelCase = feat_extract.pad(_lowercase , padding='''longest''' , return_tensors='''np''' )[input_name] __UpperCAmelCase = feat_extract.pad(_lowercase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def a ( self : str ): __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) __UpperCAmelCase = feat_extract.pad(_lowercase , padding='''longest''' , return_tensors='''np''' )[input_name] __UpperCAmelCase = feat_extract.pad(_lowercase , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.feat_extract_dict __UpperCAmelCase = True __UpperCAmelCase = self.feature_extraction_class(**_lowercase ) __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __UpperCAmelCase = [len(_lowercase ) for x in speech_inputs] __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) __UpperCAmelCase = feat_extract.pad(_lowercase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _lowercase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowercase ) def a ( self : Any ): __UpperCAmelCase = self.feat_extract_dict __UpperCAmelCase = True __UpperCAmelCase = self.feature_extraction_class(**_lowercase ) __UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() __UpperCAmelCase = [len(_lowercase ) for x in speech_inputs] __UpperCAmelCase = feat_extract.model_input_names[0] __UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) __UpperCAmelCase = min(_lowercase ) __UpperCAmelCase = feat_extract.pad( _lowercase , padding='''max_length''' , max_length=_lowercase , truncation=_lowercase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _lowercase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
49
"""simple docstring""" class lowerCAmelCase__ : '''simple docstring''' def __init__( self : int , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = name SCREAMING_SNAKE_CASE_ : List[Any] = value SCREAMING_SNAKE_CASE_ : Optional[Any] = weight def __repr__( self : str): '''simple docstring''' return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return self.value def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return self.name def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' return self.weight def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' return self.value / self.weight def _A (__a , __a , __a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [] for i in range(len(__a ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _A (__a , __a , __a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = sorted(__a , key=__a , reverse=__a ) SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _A () -> Optional[Any]: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
512
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __magic_name__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=None): if not conversation_id: __SCREAMING_SNAKE_CASE = uuid.uuida() if past_user_inputs is None: __SCREAMING_SNAKE_CASE = [] if generated_responses is None: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = conversation_id __SCREAMING_SNAKE_CASE = past_user_inputs __SCREAMING_SNAKE_CASE = generated_responses __SCREAMING_SNAKE_CASE = text def __eq__( self , lowerCAmelCase__): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False): if self.new_user_input: if overwrite: logger.warning( f"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " f"with: \"{text}\".") __SCREAMING_SNAKE_CASE = text else: logger.warning( f"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " f"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input") else: __SCREAMING_SNAKE_CASE = text def snake_case_ ( self): if self.new_user_input: self.past_user_inputs.append(self.new_user_input) __SCREAMING_SNAKE_CASE = None def snake_case_ ( self , lowerCAmelCase__): self.generated_responses.append(lowerCAmelCase__) def snake_case_ ( self): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self): __SCREAMING_SNAKE_CASE = f"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): __SCREAMING_SNAKE_CASE = """user""" if is_user else """bot""" output += f"{name} >> {text} \n" return output @add_end_docstrings( UpperCAmelCase__ , R'''\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ''' , ) class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__): super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__) if self.tokenizer.pad_token_id is None: __SCREAMING_SNAKE_CASE = self.tokenizer.eos_token def snake_case_ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = {} if min_length_for_response is not None: __SCREAMING_SNAKE_CASE = min_length_for_response if minimum_tokens is not None: __SCREAMING_SNAKE_CASE = minimum_tokens if "max_length" in generate_kwargs: __SCREAMING_SNAKE_CASE = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __SCREAMING_SNAKE_CASE = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCAmelCase__) return preprocess_params, forward_params, postprocess_params def __call__( self , lowerCAmelCase__ , lowerCAmelCase__=0 , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = super().__call__(lowerCAmelCase__ , num_workers=lowerCAmelCase__ , **lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) and len(lowerCAmelCase__) == 1: return outputs[0] return outputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=3_2): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""") if conversation.new_user_input is None: raise ValueError( f"Conversation with UUID {type(conversation.uuid)} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""") if hasattr(self.tokenizer , """_build_conversation_input_ids"""): __SCREAMING_SNAKE_CASE = self.tokenizer._build_conversation_input_ids(lowerCAmelCase__) else: # If the tokenizer cannot handle conversations, we default to only the old version __SCREAMING_SNAKE_CASE = self._legacy_parse_and_tokenize(lowerCAmelCase__) if self.framework == "pt": __SCREAMING_SNAKE_CASE = torch.LongTensor([input_ids]) elif self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.constant([input_ids]) return {"input_ids": input_ids, "conversation": conversation} def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=1_0 , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = generate_kwargs.get("""max_length""" , self.model.config.max_length) __SCREAMING_SNAKE_CASE = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})") __SCREAMING_SNAKE_CASE = max_length - minimum_tokens __SCREAMING_SNAKE_CASE = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: __SCREAMING_SNAKE_CASE = model_inputs["""attention_mask"""][:, -trim:] __SCREAMING_SNAKE_CASE = model_inputs.pop("""conversation""") __SCREAMING_SNAKE_CASE = max_length __SCREAMING_SNAKE_CASE = self.model.generate(**lowerCAmelCase__ , **lowerCAmelCase__) if self.model.config.is_encoder_decoder: __SCREAMING_SNAKE_CASE = 1 else: __SCREAMING_SNAKE_CASE = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=True): __SCREAMING_SNAKE_CASE = model_outputs["""output_ids"""] __SCREAMING_SNAKE_CASE = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(lowerCAmelCase__) return conversation def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.tokenizer.eos_token_id __SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) + [eos_token_id]) else: input_ids.extend(self.tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__)) if len(lowerCAmelCase__) > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE = input_ids[-self.tokenizer.model_max_length :] return input_ids
714
"""simple docstring""" __magic_name__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __magic_name__ = [{"type": "code", "content": INSTALL_CONTENT}] __magic_name__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
248
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = KandinskyVaaImgaImgPipeline lowercase_ = ['image_embeds', 'negative_image_embeds', 'image'] lowercase_ = [ 'image_embeds', 'negative_image_embeds', 'image', ] lowercase_ = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase_ = False @property def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" return 32 @property def __lowercase( self : str )-> Any: """simple docstring""" return 32 @property def __lowercase( self : List[str] )-> List[str]: """simple docstring""" return self.time_input_dim @property def __lowercase( self : Optional[Any] )-> str: """simple docstring""" return self.time_input_dim * 4 @property def __lowercase( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" return 100 @property def __lowercase( self : Optional[Any] )-> Tuple: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : str = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } SCREAMING_SNAKE_CASE__ : Dict = UNetaDConditionModel(**a_ ) return model @property def __lowercase( self : Any )-> int: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase( self : Any )-> Dict: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase( self : str )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.dummy_unet SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_movq SCREAMING_SNAKE_CASE__ : List[str] = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = DDIMScheduler(**a_ ) SCREAMING_SNAKE_CASE__ : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __lowercase( self : Dict , a_ : Any , a_ : Dict=0 )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(a_ ) ).to(a_ ) SCREAMING_SNAKE_CASE__ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( a_ ) # create init_image SCREAMING_SNAKE_CASE__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(a_ ) ).to(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = Image.fromarray(np.uinta(a_ ) ).convert('RGB' ).resize((256, 256) ) if str(a_ ).startswith('mps' ): SCREAMING_SNAKE_CASE__ : int = torch.manual_seed(a_ ) else: SCREAMING_SNAKE_CASE__ : Any = torch.Generator(device=a_ ).manual_seed(a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __lowercase( self : Optional[Any] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = 'cpu' SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.pipeline_class(**a_ ) SCREAMING_SNAKE_CASE__ : Any = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = pipe(**self.get_dummy_inputs(a_ ) ) SCREAMING_SNAKE_CASE__ : str = output.images SCREAMING_SNAKE_CASE__ : Dict = pipe( **self.get_dummy_inputs(a_ ) , return_dict=a_ , )[0] SCREAMING_SNAKE_CASE__ : Dict = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ : Dict = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def __lowercase( self : Dict )-> Any: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase( self : Optional[int] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) SCREAMING_SNAKE_CASE__ : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) SCREAMING_SNAKE_CASE__ : Tuple = 'A red cartoon frog, 4k' SCREAMING_SNAKE_CASE__ : Optional[int] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(a_ ) SCREAMING_SNAKE_CASE__ : Any = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Any = pipeline.to(a_ ) pipeline.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = pipe_prior( a_ , generator=a_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() SCREAMING_SNAKE_CASE__ : Any = pipeline( image=a_ , image_embeds=a_ , negative_image_embeds=a_ , generator=a_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a_ , a_ )
85
def _a ( lowercase__ : int = 60_08_51_47_51_43 ): '''simple docstring''' try: SCREAMING_SNAKE_CASE__ : Dict = int(lowercase__ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) SCREAMING_SNAKE_CASE__ : int = 2 SCREAMING_SNAKE_CASE__ : int = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 SCREAMING_SNAKE_CASE__ : str = i while n % i == 0: SCREAMING_SNAKE_CASE__ : List[Any] = n // i i += 1 return int(lowercase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
85
1
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def _lowerCAmelCase ( __snake_case : int , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : int , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : Union[str, Any] , ) -> Tuple: __A : str = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } __A ,__A : Optional[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: __A : Dict = f'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__snake_case ) assert base_extractor.is_extractable(__snake_case ) __A : str = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(__snake_case , __snake_case ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __A : Dict = file_path.read_text(encoding='utf-8' ) else: __A : Dict = output_path.read_text(encoding='utf-8' ) __A : Dict = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def _lowerCAmelCase ( __snake_case : int , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : List[str] , ) -> str: __A : Dict = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } __A : Optional[Any] = input_paths[compression_format] if input_path is None: __A : List[str] = f'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__snake_case ) __A : Union[str, Any] = Extractor.infer_extractor_format(__snake_case ) assert extractor_format is not None __A : Tuple = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(__snake_case , __snake_case , __snake_case ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name __A : Tuple = file_path.read_text(encoding='utf-8' ) else: __A : Dict = output_path.read_text(encoding='utf-8' ) __A : Union[str, Any] = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : str ) -> Union[str, Any]: import tarfile __A : List[Any] = tmp_path / 'data_dot_dot' directory.mkdir() __A : Tuple = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(__snake_case , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def _lowerCAmelCase ( __snake_case : str ) -> Optional[int]: import tarfile __A : int = tmp_path / 'data_sym_link' directory.mkdir() __A : Any = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=__snake_case ) with tarfile.TarFile(__snake_case , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def _lowerCAmelCase ( __snake_case : int , __snake_case : Dict , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Tuple ) -> int: __A : Optional[int] = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } __A : Any = insecure_tar_files[insecure_tar_file] __A : Tuple = tmp_path / 'extracted' TarExtractor.extract(__snake_case , __snake_case ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _lowerCAmelCase ( __snake_case : str ) -> Optional[int]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number __A : Any = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 __A : Tuple = ( B'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' B'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' B'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' B'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(__snake_case ) assert zipfile.is_zipfile(str(__snake_case ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__snake_case ) # but we're right
338
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : Tuple ) -> Union[str, Any]: __A : Tuple = [0 for i in range(r + 1 )] # nc0 = 1 __A : Dict = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __A : Union[str, Any] = min(__snake_case , __snake_case ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
338
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCamelCase = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""BeitFeatureExtractor"""] lowerCamelCase = ["""BeitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BeitForImageClassification""", """BeitForMaskedImageModeling""", """BeitForSemanticSegmentation""", """BeitModel""", """BeitPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """FlaxBeitForImageClassification""", """FlaxBeitForMaskedImageModeling""", """FlaxBeitModel""", """FlaxBeitPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
474
'''simple docstring''' from collections.abc import Sequence def _A ( _lowerCAmelCase = None ): """simple docstring""" if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) __lowercase =nums[0] for i in range(1 , len(_lowerCAmelCase ) ): __lowercase =nums[i] __lowercase =max(_lowerCAmelCase , ans + num , _lowerCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase = int(input("""Enter number of elements : """).strip()) lowerCamelCase = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
474
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _lowercase : int = logging.getLogger(__name__) _lowercase : Union[str, Any] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _lowercase : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCamelCase : """simple docstring""" lowerCAmelCase = field( default=__snake_case , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) lowerCAmelCase = field( default=__snake_case , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__snake_case )} , ) lowerCAmelCase = field( default=__snake_case , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowerCAmelCase = field( default=__snake_case , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase = field( default=__snake_case , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase = field( default=__snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase = field( default=__snake_case , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCAmelCase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase = field( default=__snake_case , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def _UpperCAmelCase ( self ) -> Union[str, Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class _UpperCamelCase : """simple docstring""" lowerCAmelCase = field( default=__snake_case , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) lowerCAmelCase = field( default=__snake_case , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCAmelCase = field(default=__snake_case , metadata={'help': 'The input training data file (a text file).'} ) lowerCAmelCase = field( default=__snake_case , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) lowerCAmelCase = field( default=__snake_case , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) lowerCAmelCase = field( default=__snake_case , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) lowerCAmelCase = field( default=__snake_case , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCAmelCase = field( default=__snake_case , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) lowerCAmelCase = field( default=__snake_case , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCAmelCase = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) lowerCAmelCase = field( default=__snake_case , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def _UpperCAmelCase ( self ) -> Optional[int]: if self.train_file is not None: A = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: A = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _lowerCAmelCase ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Optional[Any] ) -> Any: """simple docstring""" with open(UpperCamelCase__ , """r""" , encoding="""utf-8""" ) as f: A = [json.loads(UpperCamelCase__ ) for line in f.read().splitlines() if (len(UpperCamelCase__ ) > 0 and not line.isspace())] assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) A = {c: dataset[c] for c in dataset.column_names} A = refs return Dataset.from_dict(UpperCamelCase__ ) def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , UpperCamelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. A = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'train[:{data_args.validation_split_percentage}%]' , ) A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'train[{data_args.validation_split_percentage}%:]' , ) else: A = {} if data_args.train_file is not None: A = data_args.train_file if data_args.validation_file is not None: A = data_args.validation_file A = data_args.train_file.split(""".""" )[-1] if extension == "txt": A = """text""" A = load_dataset(UpperCamelCase__ , data_files=UpperCamelCase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: A = AutoConfig.from_pretrained(model_args.config_name , **UpperCamelCase__ ) elif model_args.model_name_or_path: A = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: A = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) A = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: A = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **UpperCamelCase__ ) elif model_args.model_name_or_path: A = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: A = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) A = AutoModelForMaskedLM.from_config(UpperCamelCase__ ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: A = datasets["""train"""].column_names else: A = datasets["""validation"""].column_names A = """text""" if """text""" in column_names else column_names[0] A = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(UpperCamelCase__: Union[str, Any] ): # Remove empty lines A = [line for line in examples["""text"""] if len(UpperCamelCase__ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=data_args.max_seq_length ) A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: A = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: A = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer A = data_args.train_ref_file or data_args.validation_ref_file if has_ref: A = False # Data collator # This one will take care of randomly masking the tokens. A = DataCollatorForWholeWordMask(tokenizer=UpperCamelCase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: A = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): A = model_args.model_name_or_path else: A = None A = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() # Saves the tokenizer too for easy upload A = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation A = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) A = trainer.evaluate() A = math.exp(eval_output["""eval_loss"""] ) A = perplexity A = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(UpperCamelCase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) return results def _lowerCAmelCase ( UpperCamelCase__: Any ) -> List[str]: """simple docstring""" main() if __name__ == "__main__": main()
546
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class _UpperCamelCase : """simple docstring""" @property def _UpperCAmelCase ( self ) -> Any: return self.get_dummy_input() @property def _UpperCAmelCase ( self ) -> Union[str, Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def _UpperCAmelCase ( self , a__=True , a__=False , a__=False , a__=False , ) -> Optional[Any]: A = 4 A = 32 A = (32, 32) A = torch.manual_seed(0 ) A = torch.device(a__ ) A = (batch_size, num_channels) + sizes A = randn_tensor(a__ , generator=a__ , device=a__ ) A = {"""hidden_states""": hidden_states} if include_temb: A = 128 A = randn_tensor((batch_size, temb_channels) , generator=a__ , device=a__ ) if include_res_hidden_states_tuple: A = torch.manual_seed(1 ) A = (randn_tensor(a__ , generator=a__ , device=a__ ),) if include_encoder_hidden_states: A = floats_tensor((batch_size, 32, 32) ).to(a__ ) if include_skip_sample: A = randn_tensor(((batch_size, 3) + sizes) , generator=a__ , device=a__ ) return dummy_input def _UpperCAmelCase ( self ) -> int: A = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": A = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) A = self.dummy_input return init_dict, inputs_dict def _UpperCAmelCase ( self , a__ ) -> Optional[int]: A , A = self.prepare_init_args_and_inputs_for_common() A = self.block_class(**a__ ) unet_block.to(a__ ) unet_block.eval() with torch.no_grad(): A = unet_block(**a__ ) if isinstance(a__ , a__ ): A = output[0] self.assertEqual(output.shape , self.output_shape ) A = output[0, -1, -3:, -3:] A = torch.tensor(a__ ).to(a__ ) assert torch_all_close(output_slice.flatten() , a__ , atol=5e-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def _UpperCAmelCase ( self ) -> str: A , A = self.prepare_init_args_and_inputs_for_common() A = self.block_class(**a__ ) model.to(a__ ) model.train() A = model(**a__ ) if isinstance(a__ , a__ ): A = output[0] A = torch.device(a__ ) A = randn_tensor(output.shape , device=a__ ) A = torch.nn.functional.mse_loss(a__ , a__ ) loss.backward()
546
1
"""simple docstring""" def __lowerCAmelCase ( lowercase : dict ) -> set: """simple docstring""" snake_case : int = set() # edges = list of graph's edges snake_case : Optional[Any] = get_edges(a_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: snake_case : int = edges.pop() chosen_vertices.add(a_ ) chosen_vertices.add(a_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(a_ ) return chosen_vertices def __lowerCAmelCase ( lowercase : dict ) -> set: """simple docstring""" snake_case : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
178
'''simple docstring''' def snake_case ( a_ : list[int] , a_ : list[int] ) -> tuple[float, float]: """simple docstring""" if not len(a_ ) == len(a_ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Optional[int] = equationa UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : List[str] = equationa # Calculate the determinants of the matrices UpperCamelCase_ : Union[str, Any] = aa * ba - aa * ba UpperCamelCase_ : Dict = ca * ba - ca * ba UpperCamelCase_ : Dict = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: UpperCamelCase_ : List[Any] = determinant_x / determinant UpperCamelCase_ : List[str] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
208
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _lowercase: Dict = logging.getLogger() def _lowerCamelCase ( ): _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('-f' ) _lowerCAmelCase = parser.parse_args() return args.f def _lowerCamelCase ( snake_case ): _lowerCAmelCase = {} _lowerCAmelCase = os.path.join(lowercase__ , 'all_results.json' ) if os.path.exists(lowercase__ ): with open(lowercase__ , 'r' ) as f: _lowerCAmelCase = json.load(lowercase__ ) else: raise ValueError(F'can\'t find {path}' ) return results def _lowerCamelCase ( ): _lowerCAmelCase = torch.cuda.is_available() and torch_device == 'cuda' return is_using_cuda and is_apex_available() _lowercase: Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCamelCase__ ( __snake_case ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict ): _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = os.path.join(cls.tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) _lowerCAmelCase = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def SCREAMING_SNAKE_CASE__ ( cls : str ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'glue_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertLess(result['perplexity'] , 1_00 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'clm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertLess(result['perplexity'] , 42 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'mlm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = 7 if get_gpu_count() > 1 else 2 _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) self.assertLess(result['train_loss'] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'ner_no_trainer' ) ) ) @unittest.skip(reason='Fix me @muellerzr' ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _lowerCAmelCase = get_results(__UpperCamelCase ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['eval_f1'] , 28 ) self.assertGreaterEqual(result['eval_exact'] , 28 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'qa_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'swag_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['eval_rouge1'] , 10 ) self.assertGreaterEqual(result['eval_rouge2'] , 2 ) self.assertGreaterEqual(result['eval_rougeL'] , 7 ) self.assertGreaterEqual(result['eval_rougeLsum'] , 7 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'summarization_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def SCREAMING_SNAKE_CASE__ ( self : Any ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['eval_bleu'] , 30 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'translation_no_trainer' ) ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(__UpperCamelCase ) _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) _lowerCAmelCase = get_results(__UpperCamelCase ) self.assertGreaterEqual(result['eval_overall_accuracy'] , 0.1_0 ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.get_auto_remove_tmp_dir() _lowerCAmelCase = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) _lowerCAmelCase = get_results(__UpperCamelCase ) # The base model scores a 25% self.assertGreaterEqual(result['eval_accuracy'] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'step_1' ) ) ) self.assertTrue(os.path.exists(os.path.join(__UpperCamelCase , 'image_classification_no_trainer' ) ) )
702
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCamelCase__ ( UpperCAmelCase ): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE__ ( lowercase__ : ArgumentParser ): raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict ): raise NotImplementedError()
225
0
"""simple docstring""" UpperCamelCase_ : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' UpperCamelCase_ : Tuple = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] UpperCamelCase_ : Any = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
115
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __lowerCAmelCase : Tuple = '''scheduler_config.json''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 1 _lowerCamelCase = 2 _lowerCamelCase = 3 _lowerCamelCase = 4 _lowerCamelCase = 5 @dataclass class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = SCHEDULER_CONFIG_NAME _lowerCamelCase = ['''dtype'''] _lowerCamelCase = [] _lowerCamelCase = True @classmethod def UpperCAmelCase__ ( cls , _lowercase = None , _lowercase = None , _lowercase=False , **_lowercase , ) -> Any: '''simple docstring''' snake_case_ , snake_case_ : int = cls.load_config( pretrained_model_name_or_path=_lowercase , subfolder=_lowercase , return_unused_kwargs=_lowercase , **_lowercase , ) snake_case_ , snake_case_ : Dict = cls.from_config(_lowercase , return_unused_kwargs=_lowercase , **_lowercase ) if hasattr(_lowercase , """create_state""" ) and getattr(_lowercase , """has_state""" , _lowercase ): snake_case_ : Any = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase__ ( self , _lowercase , _lowercase = False , **_lowercase ) -> Optional[Any]: '''simple docstring''' self.save_config(save_directory=_lowercase , push_to_hub=_lowercase , **_lowercase ) @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return self._get_compatibles() @classmethod def UpperCAmelCase__ ( cls ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = list(set([cls.__name__] + cls._compatibles ) ) snake_case_ : str = importlib.import_module(__name__.split(""".""" )[0] ) snake_case_ : Optional[int] = [ getattr(_lowercase , _lowercase ) for c in compatible_classes_str if hasattr(_lowercase , _lowercase ) ] return compatible_classes def __lowerCAmelCase ( __UpperCamelCase : jnp.ndarray , __UpperCamelCase : Tuple[int] ): '''simple docstring''' assert len(__UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__UpperCamelCase ) - x.ndim) ) , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Any=0.999 , __UpperCamelCase : Optional[int]=jnp.floataa ): '''simple docstring''' def alpha_bar(__UpperCamelCase : Optional[int] ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 snake_case_ : Optional[Any] = [] for i in range(__UpperCamelCase ): snake_case_ : Dict = i / num_diffusion_timesteps snake_case_ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__UpperCamelCase ) / alpha_bar(__UpperCamelCase ) , __UpperCamelCase ) ) return jnp.array(__UpperCamelCase , dtype=__UpperCamelCase ) @flax.struct.dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 @classmethod def UpperCAmelCase__ ( cls , _lowercase ) -> int: '''simple docstring''' snake_case_ : Any = scheduler.config if config.trained_betas is not None: snake_case_ : Optional[Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": snake_case_ : int = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case_ : str = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case_ : int = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) snake_case_ : Optional[Any] = 1.0 - betas snake_case_ : Any = jnp.cumprod(_lowercase , axis=0 ) return cls( alphas=_lowercase , betas=_lowercase , alphas_cumprod=_lowercase , ) def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ : Tuple = state.alphas_cumprod snake_case_ : Optional[int] = alphas_cumprod[timesteps] ** 0.5 snake_case_ : Dict = sqrt_alpha_prod.flatten() snake_case_ : int = broadcast_to_shape_from_left(__UpperCamelCase , original_samples.shape ) snake_case_ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 snake_case_ : Dict = sqrt_one_minus_alpha_prod.flatten() snake_case_ : Tuple = broadcast_to_shape_from_left(__UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ , snake_case_ : str = get_sqrt_alpha_prod(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = get_sqrt_alpha_prod(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Any = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
58
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : int=[10, 20, 30, 40] , UpperCAmelCase_ : str=[1, 1, 2, 1] , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str="relu" , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Any=None , ): """simple docstring""" __UpperCAmelCase : int = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : Tuple = image_size __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : int = embeddings_size __UpperCAmelCase : Any = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : int = use_labels __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : str = num_labels __UpperCAmelCase : Optional[Any] = scope __UpperCAmelCase : Dict = len(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ): """simple docstring""" __UpperCAmelCase : Any = RegNetModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : Optional[Any] = model(UpperCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple ): """simple docstring""" __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : Optional[Any] = RegNetForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __UpperCAmelCase : List[str] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Any = self.prepare_config_and_inputs() __UpperCAmelCase : int = config_and_inputs __UpperCAmelCase : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( {'''feature-extraction''': RegNetModel, '''image-classification''': RegNetForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = RegNetModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : List[str] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Dict = model_class(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(config=UpperCAmelCase_ ) for name, module in model.named_modules(): if isinstance(UpperCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" def check_hidden_states_output(UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ): __UpperCAmelCase : List[str] = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) __UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCAmelCase : Optional[int] = layer_type __UpperCAmelCase : List[str] = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[Any] = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = RegNetModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def __UpperCamelCase ( ): __UpperCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : List[Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase_ ) __UpperCAmelCase : Optional[int] = self.default_image_processor __UpperCAmelCase : int = prepare_img() __UpperCAmelCase : Dict = image_processor(images=UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**UpperCAmelCase_ ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) )
720
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : List[str] = logging.get_logger(__name__) lowerCAmelCase__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowerCAmelCase__ : Tuple = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } lowerCAmelCase__ : str = {"facebook/blenderbot_small-90M": 5_12} def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : List[str] = set() __UpperCAmelCase : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : str = char __UpperCAmelCase : Optional[int] = set(_UpperCAmelCase ) return pairs class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str="__start__" , UpperCAmelCase_ : List[Any]="__end__" , UpperCAmelCase_ : str="__unk__" , UpperCAmelCase_ : int="__null__" , **UpperCAmelCase_ : int , ): """simple docstring""" super().__init__(unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , **UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : int = json.load(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : Any = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Dict = [tuple(merge.split() ) for merge in merges] __UpperCAmelCase : str = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) __UpperCAmelCase : Dict = {} @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self : Any ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : str ): """simple docstring""" if token in self.cache: return self.cache[token] __UpperCAmelCase : List[str] = re.sub("([.,!?()])" , R" \1" , UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = re.sub("(')" , R" \1 " , UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = re.sub(R"\s{2,}" , " " , UpperCAmelCase_ ) if "\n" in token: __UpperCAmelCase : List[Any] = token.replace("\n" , " __newln__" ) __UpperCAmelCase : str = token.split(" " ) __UpperCAmelCase : int = [] for token in tokens: if not len(UpperCAmelCase_ ): continue __UpperCAmelCase : Any = token.lower() __UpperCAmelCase : Optional[Any] = tuple(UpperCAmelCase_ ) __UpperCAmelCase : int = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) __UpperCAmelCase : Union[str, Any] = get_pairs(UpperCAmelCase_ ) if not pairs: words.append(UpperCAmelCase_ ) continue while True: __UpperCAmelCase : Union[str, Any] = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : self.bpe_ranks.get(UpperCAmelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : int = bigram __UpperCAmelCase : Any = [] __UpperCAmelCase : List[str] = 0 while i < len(UpperCAmelCase_ ): try: __UpperCAmelCase : str = word.index(UpperCAmelCase_ , UpperCAmelCase_ ) new_word.extend(word[i:j] ) __UpperCAmelCase : Dict = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Dict = tuple(UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = new_word if len(UpperCAmelCase_ ) == 1: break else: __UpperCAmelCase : Union[str, Any] = get_pairs(UpperCAmelCase_ ) __UpperCAmelCase : int = "@@ ".join(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = word[:-4] __UpperCAmelCase : Any = word words.append(UpperCAmelCase_ ) return " ".join(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : str ): """simple docstring""" __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Dict = re.findall(R"\S+\n?" , UpperCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase_ ).split(" " ) ) ) return split_tokens def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : str ): """simple docstring""" __UpperCAmelCase : str = token.lower() return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Any , UpperCAmelCase_ : int ): """simple docstring""" return self.decoder.get(UpperCAmelCase_ , self.unk_token ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase_ : List[str] ): """simple docstring""" __UpperCAmelCase : Any = " ".join(UpperCAmelCase_ ).replace("@@ " , "" ).strip() return out_string def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __UpperCAmelCase : List[str] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : List[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) + "\n" ) __UpperCAmelCase : Dict = 0 with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Union[str, Any] = token_index writer.write(" ".join(UpperCAmelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file
329
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) a_ : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowercase_ ( self : Optional[int] ): '''simple docstring''' a_ : Optional[Any] = self.dummy_uncond_unet a_ : Optional[int] = PNDMScheduler() a_ : Dict = PNDMPipeline(unet=lowercase__ , scheduler=lowercase__ ) pndm.to(lowercase__ ) pndm.set_progress_bar_config(disable=lowercase__ ) a_ : int = torch.manual_seed(0 ) a_ : Optional[Any] = pndm(generator=lowercase__ , num_inference_steps=20 , output_type="""numpy""" ).images a_ : List[str] = torch.manual_seed(0 ) a_ : Tuple = pndm(generator=lowercase__ , num_inference_steps=20 , output_type="""numpy""" , return_dict=lowercase__ )[0] a_ : Optional[int] = image[0, -3:, -3:, -1] a_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : Dict = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' a_ : Tuple = """google/ddpm-cifar10-32""" a_ : str = UNetaDModel.from_pretrained(lowercase__ ) a_ : str = PNDMScheduler() a_ : Tuple = PNDMPipeline(unet=lowercase__ , scheduler=lowercase__ ) pndm.to(lowercase__ ) pndm.set_progress_bar_config(disable=lowercase__ ) a_ : int = torch.manual_seed(0 ) a_ : List[Any] = pndm(generator=lowercase__ , output_type="""numpy""" ).images a_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a_ : Optional[Any] = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
442
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') lowerCAmelCase_ : int = {'target_lang': 'fi', 'source_lang': 'en'} lowerCAmelCase_ : str = '>>zh<<' lowerCAmelCase_ : List[str] = 'Helsinki-NLP/' if is_torch_available(): lowerCAmelCase_ : Dict = 'pt' elif is_tf_available(): lowerCAmelCase_ : Union[str, Any] = 'tf' else: lowerCAmelCase_ : int = 'jax' @require_sentencepiece class SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): __magic_name__ : Dict = MarianTokenizer __magic_name__ : Any = False __magic_name__ : str = True def lowercase_ ( self : Any ): '''simple docstring''' super().setUp() a_ : Optional[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] a_ : Optional[int] = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) a_ : List[str] = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) a_ : Dict = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Tuple , **lowercase__ : int ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def lowercase_ ( self : int , lowercase__ : int ): '''simple docstring''' return ( "This is a test", "This is a test", ) def lowercase_ ( self : List[str] ): '''simple docstring''' a_ : Optional[int] = """</s>""" a_ : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def lowercase_ ( self : Tuple ): '''simple docstring''' a_ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowercase__ ) , 9 ) def lowercase_ ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowercase_ ( self : str ): '''simple docstring''' a_ : str = MarianTokenizer.from_pretrained(F"{ORG_NAME}opus-mt-en-de" ) a_ : Any = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) a_ : str = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(lowercase__ , batch.input_ids[0] ) a_ : Union[str, Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowercase__ ) a_ : Union[str, Any] = [x.name for x in Path(lowercase__ ).glob("""*""" )] self.assertIn("""source.spm""" , lowercase__ ) MarianTokenizer.from_pretrained(lowercase__ ) def lowercase_ ( self : str ): '''simple docstring''' a_ : int = self.get_tokenizer() a_ : Dict = tok( ["""I am a small frog""" * 1000, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' a_ : List[str] = self.get_tokenizer() a_ : Dict = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' a_ : Optional[int] = {"""input_ids""": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowercase_ ( self : int ): '''simple docstring''' a_ : Tuple = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) a_ : Tuple = """Tämä on testi""" a_ : Union[str, Any] = """This is a test""" a_ : Union[str, Any] = [76, 7, 2047, 2] a_ : Optional[int] = [69, 12, 11, 940, 2] a_ : Optional[Any] = tokenizer(lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) a_ : Optional[int] = tokenizer(text_target=lowercase__ ).input_ids self.assertListEqual(lowercase__ , lowercase__ ) a_ : str = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ )
442
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor UpperCAmelCase__ : Dict = logging.get_logger(__name__) class __lowercase ( lowerCamelCase__ ): def __init__( self , *lowercase_ , **lowercase_) -> None: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_)
711
import numpy as np def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( snake_case__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
676
0
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _UpperCamelCase (_lowerCamelCase : int = 3 )-> qiskit.result.counts.Counts: '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError('''number of qubits must be a integer.''' ) if number_of_qubits <= 0: raise ValueError('''number of qubits must be > 0.''' ) if math.floor(_lowerCamelCase ) != number_of_qubits: raise ValueError('''number of qubits must be exact integer.''' ) if number_of_qubits > 10: raise ValueError('''number of qubits too large to simulate(>10).''' ) __snake_case = QuantumRegister(_lowerCamelCase , '''qr''' ) __snake_case = ClassicalRegister(_lowerCamelCase , '''cr''' ) __snake_case = QuantumCircuit(_lowerCamelCase , _lowerCamelCase ) __snake_case = number_of_qubits for i in range(_lowerCamelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_lowerCamelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _lowerCamelCase , _lowerCamelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_lowerCamelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_lowerCamelCase , _lowerCamelCase ) # simulate with 10000 shots __snake_case = Aer.get_backend('''qasm_simulator''' ) __snake_case = execute(_lowerCamelCase , _lowerCamelCase , shots=1_00_00 ) return job.result().get_counts(_lowerCamelCase ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
24
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCAmelCase ( unittest.TestCase): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=4 , ) -> Any: '''simple docstring''' __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_attention_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_choices def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_attention_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : Tuple = True __lowercase : Optional[int] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = FlaxRoFormerModelTester(self ) @slow def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' , from_pt=__SCREAMING_SNAKE_CASE ) __snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_flax class lowerCAmelCase ( unittest.TestCase): @slow def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) __snake_case = jnp.array([[0, 1, 2, 3, 4, 5]] ) __snake_case = model(__SCREAMING_SNAKE_CASE )[0] __snake_case = 5_0000 __snake_case = (1, 6, vocab_size) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __snake_case = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
24
1
"""simple docstring""" def __lowercase ( _a , _a ): if digit_amount > 0: return round(number - int(_a ) , _a ) return number - int(_a ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
711
"""simple docstring""" from statistics import mean, stdev def __lowercase ( _a , _a = 3 ): snake_case_ : Optional[int] = min(_a ) snake_case_ : str = max(_a ) # normalize data return [round((x - x_min) / (x_max - x_min) , _a ) for x in data] def __lowercase ( _a , _a = 3 ): snake_case_ : Any = mean(_a ) snake_case_ : str = stdev(_a ) # standardize data return [round((x - mu) / (sigma) , _a ) for x in data]
485
0
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" print('''Loading config file...''' ) def flatten_yaml_as_dict(lowercase_ , lowercase_="" , lowercase_="." ): A__ = [] for k, v in d.items(): A__ = parent_key + sep + k if parent_key else k if isinstance(lowercase_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowercase_ , lowercase_ , sep=lowercase_ ).items() ) else: items.append((new_key, v) ) return dict(lowercase_ ) A__ = argparse.Namespace() with open(lowercase_ , '''r''' ) as yaml_file: try: A__ = yaml.load(lowercase_ , Loader=yaml.FullLoader ) A__ = flatten_yaml_as_dict(lowercase_ ) for k, v in flat_cfg.items(): setattr(lowercase_ , lowercase_ , lowercase_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(lowercase_ , str(lowercase_ ) ) ) return config def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = MobileViTVaConfig() A__ = False # dataset if task_name.startswith('''imagenet1k_''' ): A__ = 1_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): A__ = 21_000 if int(task_name.strip().split('''_''' )[-1] ) == 384: A__ = 384 else: A__ = 256 A__ = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): A__ = 151 A__ = 512 A__ = '''ade20k-id2label.json''' A__ = True elif task_name.startswith('''voc_''' ): A__ = 21 A__ = 512 A__ = '''pascal-voc-id2label.json''' A__ = True # orig_config A__ = load_orig_config_file(lowercase_ ) assert getattr(lowercase_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" A__ = getattr(lowercase_ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(lowercase_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" A__ = getattr(lowercase_ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: A__ = getattr(lowercase_ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: A__ = getattr(lowercase_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) A__ = getattr(lowercase_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) A__ = getattr(lowercase_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label A__ = '''huggingface/label-files''' A__ = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type='''dataset''' ) , '''r''' ) ) A__ = {int(lowercase_ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" A__ = dct.pop(lowercase_ ) A__ = val def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False ) -> Union[str, Any]: """simple docstring""" if base_model: A__ = '''''' else: A__ = '''mobilevitv2.''' A__ = [] for k in state_dict.keys(): if k[:8] == "encoder.": A__ = k[8:] else: A__ = k if ".block." in k: A__ = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: A__ = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: A__ = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: A__ = k_new.replace('''conv_1.''' , f"""{model_prefix}conv_stem.""" ) for i in [1, 2]: if f"""layer_{i}.""" in k: A__ = k_new.replace(f"""layer_{i}.""" , f"""{model_prefix}encoder.layer.{i-1}.layer.""" ) if ".exp_1x1." in k: A__ = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: A__ = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"""layer_{i}.0.""" in k: A__ = k_new.replace(f"""layer_{i}.0.""" , f"""{model_prefix}encoder.layer.{i-1}.downsampling_layer.""" ) if f"""layer_{i}.1.local_rep.0.""" in k: A__ = k_new.replace(f"""layer_{i}.1.local_rep.0.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_kxk.""" ) if f"""layer_{i}.1.local_rep.1.""" in k: A__ = k_new.replace(f"""layer_{i}.1.local_rep.1.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_1x1.""" ) for i in [3, 4, 5]: if i == 3: A__ = [0, 1] elif i == 4: A__ = [0, 1, 2, 3] elif i == 5: A__ = [0, 1, 2] for j in j_in: if f"""layer_{i}.1.global_rep.{j}.""" in k: A__ = k_new.replace( f"""layer_{i}.1.global_rep.{j}.""" , f"""{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.""" ) if f"""layer_{i}.1.global_rep.{j+1}.""" in k: A__ = k_new.replace( f"""layer_{i}.1.global_rep.{j+1}.""" , f"""{model_prefix}encoder.layer.{i-1}.layernorm.""" ) if f"""layer_{i}.1.conv_proj.""" in k: A__ = k_new.replace(f"""layer_{i}.1.conv_proj.""" , f"""{model_prefix}encoder.layer.{i-1}.conv_projection.""" ) if "pre_norm_attn.0." in k: A__ = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: A__ = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: A__ = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: A__ = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: A__ = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: A__ = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: A__ = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: A__ = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: A__ = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: """simple docstring""" A__ = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(lowercase_ ) for k in keys_to_ignore: state_dict.pop(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" A__ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = get_mobilevitva_config(lowercase_ , lowercase_ ) # load original state_dict A__ = torch.load(lowercase_ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): A__ = MobileViTVaForSemanticSegmentation(lowercase_ ).eval() A__ = False else: A__ = MobileViTVaForImageClassification(lowercase_ ).eval() A__ = False # remove and rename some keys of load the original model A__ = checkpoint remove_unused_keys(lowercase_ ) A__ = create_rename_keys(lowercase_ , base_model=lowercase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) # load modified state_dict model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor A__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) A__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) A__ = model(**lowercase_ ) # verify classification model if task_name.startswith('''imagenet''' ): A__ = outputs.logits A__ = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant A__ = torch.tensor([-1.6_3_3_6E0_0, -7.3_2_0_4E-0_2, -5.1_8_8_3E-0_1] ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(f"""Saving model {task_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""imagenet1k_256""", type=str, help=( """Name of the task for which the MobileViTV2 model you'd like to convert is trained on . """ """ Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 """ ), choices=[ """imagenet1k_256""", """imagenet1k_384""", """imagenet21k_to_1k_256""", """imagenet21k_to_1k_384""", """ade20k_deeplabv3""", """voc_deeplabv3""", ], ) parser.add_argument( """--orig_checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument("""--orig_config_path""", required=True, type=str, help="""Path to the original config file.""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) _lowerCamelCase : int = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
87
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )-> List[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = input_paths_and_base_extractors[compression_format] if input_path is None: _SCREAMING_SNAKE_CASE : List[Any] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _SCREAMING_SNAKE_CASE : Optional[int] = file_path.read_text(encoding="""utf-8""" ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) _SCREAMING_SNAKE_CASE : List[str] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )-> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } _SCREAMING_SNAKE_CASE : Tuple = input_paths[compression_format] if input_path is None: _SCREAMING_SNAKE_CASE : List[Any] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Optional[int] = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE ) assert extractor_format is not None _SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _SCREAMING_SNAKE_CASE : Tuple = file_path.read_text(encoding="""utf-8""" ) else: _SCREAMING_SNAKE_CASE : str = output_path.read_text(encoding="""utf-8""" ) _SCREAMING_SNAKE_CASE : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Any: import tarfile _SCREAMING_SNAKE_CASE : Any = tmp_path / """data_dot_dot""" directory.mkdir() _SCREAMING_SNAKE_CASE : Optional[int] = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> Dict: import tarfile _SCREAMING_SNAKE_CASE : List[str] = tmp_path / """data_sym_link""" directory.mkdir() _SCREAMING_SNAKE_CASE : Optional[int] = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE ) with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Tuple: _SCREAMING_SNAKE_CASE : List[Any] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } _SCREAMING_SNAKE_CASE : int = insecure_tar_files[insecure_tar_file] _SCREAMING_SNAKE_CASE : str = tmp_path / """extracted""" TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> str: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number _SCREAMING_SNAKE_CASE : List[str] = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 _SCREAMING_SNAKE_CASE : Any = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__SCREAMING_SNAKE_CASE ) assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
338
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Any = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
121
"""simple docstring""" from __future__ import annotations import math def __a ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(_lowercase ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) return min( minimax(depth + 1 , node_index * 2 , _lowercase , _lowercase , _lowercase ) , minimax(depth + 1 , node_index * 2 + 1 , _lowercase , _lowercase , _lowercase ) , ) def __a ( ): """simple docstring""" lowerCamelCase__ : str = [90, 23, 6, 33, 21, 65, 123, 34423] lowerCamelCase__ : List[str] = math.log(len(_lowercase ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , _lowercase , _lowercase , _lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
121
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
556
def lowerCAmelCase_ (lowerCAmelCase__: list ): """simple docstring""" if len(lowerCAmelCase__ ) <= 1: return [tuple(lowerCAmelCase__ )] UpperCAmelCase_: List[Any] = [] def generate(lowerCAmelCase__: int , lowerCAmelCase__: list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = arr[k - 1], arr[i] else: # k is odd UpperCAmelCase_ , UpperCAmelCase_: Optional[int] = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase__ ) generate(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) return res if __name__ == "__main__": a : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() a : str = [int(item) for item in user_input.split(',')] print(heaps(arr))
556
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A__ ( nn.Module ): '''simple docstring''' snake_case__ = 42 snake_case__ = 42 snake_case__ = 0.0 snake_case__ = 1 snake_case__ = 1 snake_case__ = True snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] for i in range(self.num_layers ): UpperCamelCase = self.in_channels if i == 0 else self.out_channels UpperCamelCase = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = resnets UpperCamelCase = attentions if self.add_downsample: UpperCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=True ): """simple docstring""" UpperCamelCase = () for resnet, attn in zip(self.resnets , self.attentions ): UpperCamelCase = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) UpperCamelCase = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: UpperCamelCase = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class A__ ( nn.Module ): '''simple docstring''' snake_case__ = 42 snake_case__ = 42 snake_case__ = 0.0 snake_case__ = 1 snake_case__ = True snake_case__ = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" UpperCamelCase = [] for i in range(self.num_layers ): UpperCamelCase = self.in_channels if i == 0 else self.out_channels UpperCamelCase = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = resnets if self.add_downsample: UpperCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any]=True ): """simple docstring""" UpperCamelCase = () for resnet in self.resnets: UpperCamelCase = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: UpperCamelCase = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class A__ ( nn.Module ): '''simple docstring''' snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 0.0 snake_case__ = 1 snake_case__ = 1 snake_case__ = True snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] for i in range(self.num_layers ): UpperCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCamelCase = self.prev_output_channel if i == 0 else self.out_channels UpperCamelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = resnets UpperCamelCase = attentions if self.add_upsample: UpperCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any]=True ): """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states UpperCamelCase = res_hidden_states_tuple[-1] UpperCamelCase = res_hidden_states_tuple[:-1] UpperCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCamelCase = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) UpperCamelCase = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: UpperCamelCase = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class A__ ( nn.Module ): '''simple docstring''' snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 0.0 snake_case__ = 1 snake_case__ = True snake_case__ = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" UpperCamelCase = [] for i in range(self.num_layers ): UpperCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCamelCase = self.prev_output_channel if i == 0 else self.out_channels UpperCamelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = resnets if self.add_upsample: UpperCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict=True ): """simple docstring""" for resnet in self.resnets: # pop res hidden states UpperCamelCase = res_hidden_states_tuple[-1] UpperCamelCase = res_hidden_states_tuple[:-1] UpperCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCamelCase = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: UpperCamelCase = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class A__ ( nn.Module ): '''simple docstring''' snake_case__ = 42 snake_case__ = 0.0 snake_case__ = 1 snake_case__ = 1 snake_case__ = False snake_case__ = False snake_case__ = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" UpperCamelCase = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] UpperCamelCase = [] for _ in range(self.num_layers ): UpperCamelCase = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = resnets UpperCamelCase = attentions def __call__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str=True ): """simple docstring""" UpperCamelCase = self.resnets[0](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): UpperCamelCase = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) UpperCamelCase = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) return hidden_states
410
from __future__ import annotations __magic_name__ : str = [] def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> bool: """simple docstring""" for i in range(len(_UpperCamelCase)): if board[row][i] == 1: return False for i in range(len(_UpperCamelCase)): if board[i][column] == 1: return False for i, j in zip(range(_UpperCamelCase , -1 , -1) , range(_UpperCamelCase , -1 , -1)): if board[i][j] == 1: return False for i, j in zip(range(_UpperCamelCase , -1 , -1) , range(_UpperCamelCase , len(_UpperCamelCase))): if board[i][j] == 1: return False return True def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> bool: """simple docstring""" if row >= len(_UpperCamelCase): solution.append(_UpperCamelCase) printboard(_UpperCamelCase) print() return True for i in range(len(_UpperCamelCase)): if is_safe(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase): UpperCamelCase = 1 solve(_UpperCamelCase , row + 1) UpperCamelCase = 0 return False def lowercase__ ( _UpperCamelCase) -> None: """simple docstring""" for i in range(len(_UpperCamelCase)): for j in range(len(_UpperCamelCase)): if board[i][j] == 1: print('Q' , end=' ') else: print('.' , end=' ') print() # n=int(input("The no. of queens")) __magic_name__ : List[Any] = 8 __magic_name__ : str = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
410
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class snake_case ( unittest.TestCase ): def __lowercase( self : Dict , a_ : Optional[int] )-> Dict: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): SCREAMING_SNAKE_CASE__ : Optional[int] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(a_ ) def __lowercase( self : Optional[int] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE__ : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) SCREAMING_SNAKE_CASE__ : List[Any] = PyTorchBenchmark(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase( self : Optional[int] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = 'sgugger/tiny-distilbert-classification' SCREAMING_SNAKE_CASE__ : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , ) SCREAMING_SNAKE_CASE__ : Tuple = PyTorchBenchmark(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase( self : Optional[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , torchscript=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) SCREAMING_SNAKE_CASE__ : List[Any] = PyTorchBenchmark(a_ ) SCREAMING_SNAKE_CASE__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def __lowercase( self : List[Any] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE__ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , fpaa=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) SCREAMING_SNAKE_CASE__ : Tuple = PyTorchBenchmark(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase( self : Any )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE__ : Tuple = AutoConfig.from_pretrained(a_ ) # set architectures equal to `None` SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) SCREAMING_SNAKE_CASE__ : List[Any] = PyTorchBenchmark(a_ , configs=[config] ) SCREAMING_SNAKE_CASE__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase( self : int )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE__ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) SCREAMING_SNAKE_CASE__ : Optional[int] = PyTorchBenchmark(a_ ) SCREAMING_SNAKE_CASE__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def __lowercase( self : Any )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE__ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=a_ , multi_process=a_ , ) SCREAMING_SNAKE_CASE__ : List[Any] = PyTorchBenchmark(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowercase( self : str )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE__ : List[str] = AutoConfig.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) SCREAMING_SNAKE_CASE__ : Tuple = PyTorchBenchmark(a_ , configs=[config] ) SCREAMING_SNAKE_CASE__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase( self : List[Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = 'sshleifer/tinier_bart' SCREAMING_SNAKE_CASE__ : Tuple = AutoConfig.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = PyTorchBenchmark(a_ , configs=[config] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowercase( self : Dict )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = 'sshleifer/tiny-gpt2' SCREAMING_SNAKE_CASE__ : Optional[int] = AutoConfig.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) SCREAMING_SNAKE_CASE__ : List[str] = PyTorchBenchmark(a_ , configs=[config] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowercase( self : Union[str, Any] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = 'sshleifer/tinier_bart' SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoConfig.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) SCREAMING_SNAKE_CASE__ : Tuple = PyTorchBenchmark(a_ , configs=[config] ) SCREAMING_SNAKE_CASE__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowercase( self : Any )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(a_ , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(a_ , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(a_ , 'train_time.csv' ) , env_info_csv_file=os.path.join(a_ , 'env.csv' ) , multi_process=a_ , ) SCREAMING_SNAKE_CASE__ : str = PyTorchBenchmark(a_ ) benchmark.run() self.assertTrue(Path(os.path.join(a_ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , 'env.csv' ) ).exists() ) def __lowercase( self : List[str] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(a_ : Tuple ): self.assertTrue(hasattr(a_ , 'sequential' ) ) self.assertTrue(hasattr(a_ , 'cumulative' ) ) self.assertTrue(hasattr(a_ , 'current' ) ) self.assertTrue(hasattr(a_ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , 'log.txt' ) , log_print=a_ , trace_memory_line_by_line=a_ , multi_process=a_ , ) SCREAMING_SNAKE_CASE__ : int = PyTorchBenchmark(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(a_ , 'log.txt' ) ).exists() )
85
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) class snake_case ( UpperCamelCase_ ): lowercase_ = ['pixel_values'] def __init__( self : List[Any] , a_ : bool = True , a_ : Union[int, float] = 1 / 255 , a_ : bool = True , a_ : int = 8 , **a_ : Union[str, Any] , )-> None: """simple docstring""" super().__init__(**a_ ) SCREAMING_SNAKE_CASE__ : List[str] = do_rescale SCREAMING_SNAKE_CASE__ : Union[str, Any] = rescale_factor SCREAMING_SNAKE_CASE__ : Dict = do_pad SCREAMING_SNAKE_CASE__ : Any = pad_size def __lowercase( self : str , a_ : np.ndarray , a_ : float , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : str )-> np.ndarray: """simple docstring""" return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def __lowercase( self : Any , a_ : np.ndarray , a_ : int , a_ : Optional[Union[str, ChannelDimension]] = None )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = get_image_size(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = (old_height // size + 1) * size - old_height SCREAMING_SNAKE_CASE__ : List[Any] = (old_width // size + 1) * size - old_width return pad(a_ , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=a_ ) def __lowercase( self : Tuple , a_ : ImageInput , a_ : Optional[bool] = None , a_ : Optional[float] = None , a_ : Optional[bool] = None , a_ : Optional[int] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **a_ : Dict , )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ : List[str] = do_pad if do_pad is not None else self.do_pad SCREAMING_SNAKE_CASE__ : List[str] = pad_size if pad_size is not None else self.pad_size SCREAMING_SNAKE_CASE__ : Tuple = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ : List[str] = [to_numpy_array(a_ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_pad: SCREAMING_SNAKE_CASE__ : str = [self.pad(a_ , size=a_ ) for image in images] SCREAMING_SNAKE_CASE__ : List[str] = [to_channel_dimension_format(a_ , a_ ) for image in images] SCREAMING_SNAKE_CASE__ : Tuple = {'pixel_values': images} return BatchFeature(data=a_ , tensor_type=a_ )
85
1
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ : def __init__( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : int=2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Any=4 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : str=7 , __UpperCamelCase : List[str]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : List[str]=99 , __UpperCamelCase : Tuple=36 , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : List[Any]=37 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Optional[int]=512 , __UpperCamelCase : Optional[int]=16 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : Optional[Any]=6 , __UpperCamelCase : Optional[int]=6 , __UpperCamelCase : Any=3 , __UpperCamelCase : Union[str, Any]=4 , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Dict=1_000 , ) -> Dict: A = parent A = batch_size A = num_channels A = image_size A = patch_size A = text_seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = coordinate_size A = shape_size A = num_labels A = num_choices A = scope A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A = text_seq_length A = (image_size // patch_size) ** 2 + 1 A = self.text_seq_length + self.image_seq_length def __UpperCamelCase ( self : Tuple ) -> Tuple: A = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) A = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A = bbox[i, j, 3] A = bbox[i, j, 1] A = t if bbox[i, j, 2] < bbox[i, j, 0]: A = bbox[i, j, 2] A = bbox[i, j, 0] A = t A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_input_mask: A = random_attention_mask([self.batch_size, self.text_seq_length] ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) A = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCamelCase ( self : Any , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Any ) -> Any: A = LayoutLMvaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # text + image A = model(UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) A = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) A = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) A = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only A = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A = model(pixel_values=UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __UpperCamelCase ( self : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] ) -> Optional[Any]: A = self.num_labels A = LayoutLMvaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ) -> Tuple: A = self.num_labels A = LayoutLMvaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __UpperCamelCase ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple ) -> Union[str, Any]: A = LayoutLMvaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() A = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: A = self.prepare_config_and_inputs() ( A ) = config_and_inputs A = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): A_ : Dict = False A_ : str = False A_ : List[str] = False A_ : int = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) A_ : Optional[int] = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def __UpperCamelCase ( self : str , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple ) -> Any: return True def __UpperCamelCase ( self : Tuple ) -> str: A = LayoutLMvaModelTester(self ) A = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def __UpperCamelCase ( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict=False ) -> Any: A = copy.deepcopy(UpperCAmelCase__ ) if model_class in get_values(UpperCAmelCase__ ): A = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCAmelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase__ ): A = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in get_values(UpperCAmelCase__ ): A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: A = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase__ , ) return inputs_dict def __UpperCamelCase ( self : Tuple ) -> List[str]: self.config_tester.run_common_tests() def __UpperCamelCase ( self : List[Any] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def __UpperCamelCase ( self : Optional[int] ) -> Any: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) @slow def __UpperCamelCase ( self : Any ) -> str: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = LayoutLMvaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def lowerCamelCase_ ( ) -> List[str]: '''simple docstring''' A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) if is_vision_available() else None @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: A = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(UpperCAmelCase__ ) A = self.default_image_processor A = prepare_img() A = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase__ ) A = torch.tensor([[1, 2]] ) A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass A = model( input_ids=input_ids.to(UpperCAmelCase__ ) , bbox=bbox.to(UpperCAmelCase__ ) , pixel_values=pixel_values.to(UpperCAmelCase__ ) , ) # verify the logits A = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase__ ) A = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1e-4 ) )
700
def lowerCamelCase_ ( lowerCAmelCase__ : list ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] A = grid[0] for row_n in range(1 , len(lowerCAmelCase__ ) ): A = grid[row_n] A = fill_row(lowerCAmelCase__ , lowerCAmelCase__ ) A = grid[row_n] return grid[-1][-1] def lowerCamelCase_ ( lowerCAmelCase__ : list , lowerCAmelCase__ : list ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(lowerCAmelCase__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
224
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowerCAmelCase : List[Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowerCAmelCase : int = typing.Union[np.floataa, int, float] # noqa: UP007 def A_ ( _UpperCAmelCase , _UpperCAmelCase ): return np.sqrt(np.sum((np.asarray(_lowerCAmelCase ) - np.asarray(_lowerCAmelCase )) ** 2 ) ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): return sum((va - va) ** 2 for va, va in zip(_lowerCAmelCase , _lowerCAmelCase ) ) ** (1 / 2) if __name__ == "__main__": def A_ ( ): from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_00_00 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_00_00 , globals=globals() , ) ) benchmark()
671
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE_:Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : str = ["pixel_values"] def __init__( self, lowerCamelCase__ = True, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = PILImageResampling.BILINEAR, lowerCamelCase__ = True, lowerCamelCase__ = 1 / 255, lowerCamelCase__ = True, lowerCamelCase__ = None, lowerCamelCase__ = None, **lowerCamelCase__, ): super().__init__(**lowerCamelCase__ ) A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 384} A : Optional[Any] = get_size_dict(lowerCamelCase__, default_to_square=lowerCamelCase__ ) A : Optional[Any] = do_resize A : Dict = size # Default value set here for backwards compatibility where the value in config is None A : Dict = crop_pct if crop_pct is not None else 224 / 256 A : Optional[int] = resample A : List[str] = do_rescale A : Tuple = rescale_factor A : Optional[int] = do_normalize A : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = PILImageResampling.BICUBIC, lowerCamelCase__ = None, **lowerCamelCase__, ): A : Tuple = get_size_dict(lowerCamelCase__, default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) A : List[str] = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct A : int = int(shortest_edge / crop_pct ) A : List[Any] = get_resize_output_image_size(lowerCamelCase__, size=lowerCamelCase__, default_to_square=lowerCamelCase__ ) A : Any = resize(image=lowerCamelCase__, size=lowerCamelCase__, resample=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase__, size=(shortest_edge, shortest_edge), data_format=lowerCamelCase__, **lowerCamelCase__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase__, size=(shortest_edge, shortest_edge), resample=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, **lowerCamelCase__, ): return rescale(lowerCamelCase__, scale=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, **lowerCamelCase__, ): return normalize(lowerCamelCase__, mean=lowerCamelCase__, std=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = ChannelDimension.FIRST, **lowerCamelCase__, ): A : Dict = do_resize if do_resize is not None else self.do_resize A : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct A : str = resample if resample is not None else self.resample A : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale A : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor A : Dict = do_normalize if do_normalize is not None else self.do_normalize A : List[str] = image_mean if image_mean is not None else self.image_mean A : Optional[Any] = image_std if image_std is not None else self.image_std A : Optional[Any] = size if size is not None else self.size A : str = get_size_dict(lowerCamelCase__, default_to_square=lowerCamelCase__ ) A : Any = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A : List[Any] = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: A : Any = [self.resize(image=lowerCamelCase__, size=lowerCamelCase__, crop_pct=lowerCamelCase__, resample=lowerCamelCase__ ) for image in images] if do_rescale: A : str = [self.rescale(image=lowerCamelCase__, scale=lowerCamelCase__ ) for image in images] if do_normalize: A : Union[str, Any] = [self.normalize(image=lowerCamelCase__, mean=lowerCamelCase__, std=lowerCamelCase__ ) for image in images] A : Tuple = [to_channel_dimension_format(lowerCamelCase__, lowerCamelCase__ ) for image in images] A : Dict = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase__, tensor_type=lowerCamelCase__ )
662
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' UpperCamelCase__ =None UpperCamelCase__ =None UpperCamelCase__ =None UpperCamelCase__ =None class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase_ : Optional[Any]=1 , lowerCamelCase_ : Any=0 , lowerCamelCase_ : Dict=2 , lowerCamelCase_ : Dict=512 , lowerCamelCase_ : int="cls" , lowerCamelCase_ : Dict=False , lowerCamelCase_ : List[Any]=True , **lowerCamelCase_ : Optional[Any] , ) -> Optional[int]: super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) __magic_name__ : Dict = project_dim __magic_name__ : int = pooler_fn __magic_name__ : str = learn_encoder __magic_name__ : Optional[int] = use_attention_mask class lowerCamelCase ( _lowerCamelCase ): '''simple docstring''' UpperCamelCase__ =[R'''pooler''', R'''logit_scale'''] UpperCamelCase__ =[R'''position_ids''', R'''predictions.decoder.bias'''] UpperCamelCase__ ='''roberta''' UpperCamelCase__ =RobertaSeriesConfig def __init__( self : str , lowerCamelCase_ : Optional[Any] ) -> Optional[Any]: super().__init__(lowerCamelCase_ ) __magic_name__ : Tuple = XLMRobertaModel(lowerCamelCase_ ) __magic_name__ : Any = nn.Linear(config.hidden_size , config.project_dim ) __magic_name__ : Optional[int] = getattr(lowerCamelCase_ , '''has_pre_transformation''' , lowerCamelCase_ ) if self.has_pre_transformation: __magic_name__ : List[Any] = nn.Linear(config.hidden_size , config.project_dim ) __magic_name__ : Union[str, Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , ) -> List[Any]: __magic_name__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __magic_name__ : Any = self.base_model( input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , position_ids=lowerCamelCase_ , head_mask=lowerCamelCase_ , inputs_embeds=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_attentions=lowerCamelCase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCamelCase_ , ) if self.has_pre_transformation: __magic_name__ : Any = outputs['''hidden_states'''][-2] __magic_name__ : Dict = self.pre_LN(lowerCamelCase_ ) __magic_name__ : int = self.transformation_pre(lowerCamelCase_ ) return TransformationModelOutput( projection_state=lowerCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __magic_name__ : Union[str, Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCamelCase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
501
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' UpperCamelCase__ =inspect.getfile(accelerate.test_utils ) UpperCamelCase__ =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) UpperCamelCase__ =['''accelerate''', '''launch'''] UpperCamelCase__ =Path.home() / '''.cache/huggingface/accelerate''' UpperCamelCase__ ='''default_config.yaml''' UpperCamelCase__ =config_folder / config_file UpperCamelCase__ =config_folder / '''_default_config.yaml''' UpperCamelCase__ =Path('''tests/test_configs''' ) @classmethod def UpperCAmelCase__ ( cls : Optional[int] ) -> int: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCAmelCase__ ( cls : Dict ) -> List[str]: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCAmelCase__ ( self : str ) -> Optional[Any]: __magic_name__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=lowerCamelCase_ ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(lowerCamelCase_ ), self.test_file_path] , env=os.environ.copy() ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' UpperCamelCase__ ='''test-tpu''' UpperCamelCase__ ='''us-central1-a''' UpperCamelCase__ ='''ls''' UpperCamelCase__ =['''accelerate''', '''tpu-config'''] UpperCamelCase__ ='''cd /usr/share''' UpperCamelCase__ ='''tests/test_samples/test_command_file.sh''' UpperCamelCase__ ='''Running gcloud compute tpus tpu-vm ssh''' def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : str = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: __magic_name__ : int = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: __magic_name__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=lowerCamelCase_ ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: __magic_name__ : Tuple = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : List[Any] ) -> Dict: __magic_name__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: __magic_name__ : Union[str, Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : int ) -> List[Any]: __magic_name__ : List[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : str ) -> Dict: __magic_name__ : Tuple = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , ) def UpperCAmelCase__ ( self : Any ) -> Tuple: __magic_name__ : Tuple = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=lowerCamelCase_ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , lowerCamelCase_ , )
501
1
"""simple docstring""" from jiwer import compute_measures import datasets A_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ A_ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ A_ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def UpperCAmelCase__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=False ): if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: lowerCamelCase_ = 0 lowerCamelCase_ = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
29
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __snake_case = get_tests_dir('''fixtures''') class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = mock.Mock() __UpperCamelCase = 500 __UpperCamelCase = {} __UpperCamelCase = HTTPError __UpperCamelCase = {} # Download this model to make sure it's in the cache. __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request',return_value=A_ ) as mock_head: __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class __lowerCamelCase (unittest.TestCase ): @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' __UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def snake_case_ ( cls: Tuple ): '''simple docstring''' try: delete_repo(token=cls._token,repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token,repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='test-feature-extractor',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor',use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) # Reset repo delete_repo(token=self._token,repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( A_,repo_id='valid_org/test-feature-extractor-org',push_to_hub=A_,use_auth_token=self._token ) __UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(A_,getattr(A_,A_ ) ) def snake_case_ ( self: int ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() __UpperCamelCase = CustomFeatureExtractor.from_pretrained(A_ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor',use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map,{'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'},) __UpperCamelCase = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''',trust_remote_code=A_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__,'CustomFeatureExtractor' )
1
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : Union[str, Any] = 1_6 _lowercase : List[Any] = 3_2 def snake_case__ ( __lowerCamelCase : Accelerator , __lowerCamelCase : int = 16 , __lowerCamelCase : str = "bert-base-cased" ): """simple docstring""" lowerCamelCase__ : List[Any] =AutoTokenizer.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] =load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCamelCase : str ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ : Union[str, Any] =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase__ : Optional[Any] =datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase__ : List[str] =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCamelCase : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCamelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__lowerCamelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowerCamelCase__ : Optional[Any] =DataLoader( tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) lowerCamelCase__ : Dict =DataLoader( tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple ): """simple docstring""" # Initialize accelerator lowerCamelCase__ : int =Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ : Optional[int] =config['''lr'''] lowerCamelCase__ : Optional[Any] =int(config['''num_epochs'''] ) lowerCamelCase__ : str =int(config['''seed'''] ) lowerCamelCase__ : Dict =int(config['''batch_size'''] ) lowerCamelCase__ : Optional[Any] =args.model_name_or_path set_seed(__lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] =get_dataloaders(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ : Optional[int] =AutoModelForSequenceClassification.from_pretrained(__lowerCamelCase , return_dict=__lowerCamelCase ) # Instantiate optimizer lowerCamelCase__ : int =( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase__ : List[str] =optimizer_cls(params=model.parameters() , lr=__lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase__ : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowerCamelCase__ : Dict =1 lowerCamelCase__ : str =(len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase__ : Dict =get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=0 , num_training_steps=__lowerCamelCase , ) else: lowerCamelCase__ : Dict =DummyScheduler(__lowerCamelCase , total_num_steps=__lowerCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int =accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # We need to keep track of how many total steps we have iterated over lowerCamelCase__ : Optional[int] =0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase__ : Union[str, Any] =0 # Now we train the model lowerCamelCase__ : str =evaluate.load('''glue''' , '''mrpc''' ) lowerCamelCase__ : Any =0 lowerCamelCase__ : str ={} for epoch in range(__lowerCamelCase , __lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): lowerCamelCase__ : Tuple =model(**__lowerCamelCase ) lowerCamelCase__ : Any =outputs.loss lowerCamelCase__ : Union[str, Any] =loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowerCamelCase__ : Optional[Any] =0 for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ : List[Any] =model(**__lowerCamelCase ) lowerCamelCase__ : Dict =outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__lowerCamelCase ) - 1: lowerCamelCase__ : str =predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCamelCase__ : Dict =references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) lowerCamelCase__ : Tuple =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __lowerCamelCase ) lowerCamelCase__ : Any =eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: lowerCamelCase__ : Any =eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : str =argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__lowerCamelCase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__lowerCamelCase , ) parser.add_argument( '''--output_dir''' , type=__lowerCamelCase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=__lowerCamelCase , default=__lowerCamelCase , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=__lowerCamelCase , default=3 , help='''Number of train epochs.''' , ) lowerCamelCase__ : int =parser.parse_args() lowerCamelCase__ : Union[str, Any] ={'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
625
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["CLIPFeatureExtractor"] _lowercase : int = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
625
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): UpperCamelCase_ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCamelCase_ = 128022 UpperCamelCase_ = 128028 @require_sentencepiece class __SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): lowerCamelCase_ = MaMaaaTokenizer lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True def lowerCamelCase_ ( self : Dict ): '''simple docstring''' super().setUp() lowercase : Dict =['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] lowercase : List[Any] =dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) lowercase : List[Any] =Path(self.tmpdirname ) save_json(UpperCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCAmelCase__ , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) lowercase : Tuple =MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : Any , **UpperCAmelCase__ : int ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase__ : Dict ): '''simple docstring''' return ( "This is a test", "This is a test", ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Tuple ='''</s>''' lowercase : Union[str, Any] =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : List[Any] =self.get_tokenizer() lowercase : Optional[Any] =list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<s>''' ) self.assertEqual(len(UpperCAmelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Union[str, Any] =self.get_tokenizer() lowercase : str =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [2, 3, 4, 5, 6] , ) lowercase : Optional[int] =tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(UpperCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) lowercase : Tuple =tokenizer.convert_tokens_to_string(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , '''This is a test''' ) @slow def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' # fmt: off lowercase : int ={'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): lowerCamelCase_ = 'facebook/m2m100_418M' lowerCamelCase_ = [ 'In my opinion, there are two levels of response from the French government.', 'NSA Affair Emphasizes Complete Lack of Debate on Intelligence', ] lowerCamelCase_ = [ 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', ] # fmt: off lowerCamelCase_ = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def lowerCamelCase_ ( cls : Optional[Any] ): '''simple docstring''' lowercase : MaMaaaTokenizer =MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''' ) lowercase : Optional[int] =1 return cls def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) , 128006 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) , 128022 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) , 128076 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) , 128063 ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : List[str] =self.tokenizer.get_vocab() self.assertEqual(len(UpperCAmelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] , 3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : List[Any] ='''en''' lowercase : Optional[Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase__ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' self.assertIn(UpperCAmelCase__ , self.tokenizer.all_special_ids ) # fmt: off lowercase : str =[FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on lowercase : Optional[Any] =self.tokenizer.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) lowercase : Optional[Any] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase__ ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Any =tempfile.mkdtemp() lowercase : Tuple =self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(UpperCAmelCase__ ) lowercase : Union[str, Any] =MaMaaaTokenizer.from_pretrained(UpperCAmelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , UpperCAmelCase__ ) @require_torch def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : List[str] ='''en''' lowercase : int ='''fr''' lowercase : Union[str, Any] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase__ , return_tensors='''pt''' ) lowercase : str =shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: lowercase : int =batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase_ ( self : int ): '''simple docstring''' lowercase : Optional[int] ='''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) lowercase : Union[str, Any] ='''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : int ='''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) lowercase : Optional[Any] ='''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Optional[Any] =self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''' ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
92
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase = logging.getLogger(__name__) @dataclass class lowercase__ : '''simple docstring''' _UpperCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCAmelCase = field( default='''NER''', metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCAmelCase = field(default=A, metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCAmelCase = field( default=A, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) @dataclass class lowercase__ : '''simple docstring''' _UpperCAmelCase = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''}, ) _UpperCAmelCase = field( default=1_28, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) _UpperCAmelCase = field( default=A, metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) _UpperCAmelCase = import_module('tasks' ) try: _UpperCAmelCase = getattr(A , model_args.task_type ) _UpperCAmelCase = token_classification_task_clazz() except AttributeError: raise ValueError( f'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' f'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , A ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _UpperCAmelCase = token_classification_task.get_labels(data_args.labels ) _UpperCAmelCase = dict(enumerate(A ) ) _UpperCAmelCase = len(A ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A , idalabel=A , labelaid={label: i for i, label in enumerate(A )} , cache_dir=model_args.cache_dir , ) _UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _UpperCAmelCase = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCAmelCase = ( TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCAmelCase = ( TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(A : np.ndarray , A : np.ndarray ) -> Tuple[List[int], List[int]]: _UpperCAmelCase = np.argmax(A , axis=2 ) _UpperCAmelCase , _UpperCAmelCase = preds.shape _UpperCAmelCase = [[] for _ in range(A )] _UpperCAmelCase = [[] for _ in range(A )] for i in range(A ): for j in range(A ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(A : EvalPrediction ) -> Dict: _UpperCAmelCase , _UpperCAmelCase = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(A , A ), "precision": precision_score(A , A ), "recall": recall_score(A , A ), "f1": fa_score(A , A ), } # Data collator _UpperCAmelCase = DataCollatorWithPadding(A , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCAmelCase = Trainer( model=A , args=A , train_dataset=A , eval_dataset=A , compute_metrics=A , data_collator=A , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , A , A ) writer.write('%s = %s\n' % (key, value) ) results.update(A ) # Predict if training_args.do_predict: _UpperCAmelCase = TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = trainer.predict(A ) _UpperCAmelCase , _UpperCAmelCase = align_predictions(A , A ) _UpperCAmelCase = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(A , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , A , A ) writer.write('%s = %s\n' % (key, value) ) # Save predictions _UpperCAmelCase = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(A , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(A , A , A ) return results def UpperCAmelCase ( A : str ): '''simple docstring''' main() if __name__ == "__main__": main()
24
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ ( A ): '''simple docstring''' def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'embed_dim' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_heads' ) ) class lowercase__ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=3 , snake_case=[16, 48, 96] , snake_case=[1, 3, 6] , snake_case=[1, 2, 10] , snake_case=[7, 3, 3] , snake_case=[4, 2, 2] , snake_case=[2, 1, 1] , snake_case=[2, 2, 2] , snake_case=[False, False, True] , snake_case=[0.0, 0.0, 0.0] , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=True , snake_case=2 , ) -> Tuple: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = CvtModel(config=snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = CvtForImageClassification(snake_case ) model.to(snake_case ) model.eval() _UpperCAmelCase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( A, A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () _UpperCAmelCase = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = CvtModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def lowerCamelCase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self ) -> Union[str, Any]: return @unittest.skip(reason='Cvt does not output attentions' ) def lowerCamelCase_ ( self ) -> str: pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def lowerCamelCase_ ( self ) -> int: pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def lowerCamelCase_ ( self ) -> Union[str, Any]: pass def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: def check_hidden_states_output(snake_case , snake_case , snake_case ): _UpperCAmelCase = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case , snake_case ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(snake_case ) , snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self ) -> Dict: pass @slow def lowerCamelCase_ ( self ) -> Dict: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = CvtModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase_ ( self ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) _UpperCAmelCase = torch.tensor([0.9285, 0.9015, -0.3150] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) )
24
1
def lowercase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int = 0 ) -> list: _snake_case : Optional[Any] = length or len(SCREAMING_SNAKE_CASE__ ) _snake_case : Any = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _snake_case , _snake_case : List[str] = list_data[i + 1], list_data[i] _snake_case : Optional[int] = True return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE__ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
477
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand a__ = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(SCREAMING_SNAKE_CASE__ ): return ext raise Exception( F'''Unable to determine file format from file extension {path}. ''' F'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> int: _snake_case : str = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) _snake_case : Optional[Any] = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format _snake_case : Any = PipelineDataFormat.from_str( format=SCREAMING_SNAKE_CASE__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Pipeline , lowerCAmelCase : PipelineDataFormat) -> Dict: """simple docstring""" _snake_case : int = nlp _snake_case : Dict = reader @staticmethod def UpperCamelCase_ ( lowerCAmelCase : ArgumentParser) -> Any: """simple docstring""" _snake_case : Any = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""") run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""") run_parser.add_argument("""--input""" , type=lowerCAmelCase , help="""Path to the file to use for inference""") run_parser.add_argument("""--output""" , type=lowerCAmelCase , help="""Path to the file that will be used post to write results.""") run_parser.add_argument("""--model""" , type=lowerCAmelCase , help="""Name or path to the model to instantiate.""") run_parser.add_argument("""--config""" , type=lowerCAmelCase , help="""Name or path to the model's config to instantiate.""") run_parser.add_argument( """--tokenizer""" , type=lowerCAmelCase , help="""Name of the tokenizer to use. (default: same as the model name)""") run_parser.add_argument( """--column""" , type=lowerCAmelCase , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=lowerCAmelCase , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=lowerCAmelCase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""") run_parser.set_defaults(func=lowerCAmelCase) def UpperCamelCase_ ( self : Optional[int]) -> Tuple: """simple docstring""" _snake_case , _snake_case : int = self._nlp, [] for entry in self._reader: _snake_case : List[Any] = nlp(**lowerCAmelCase) if self._reader.is_multi_columns else nlp(lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase): outputs.append(lowerCAmelCase) else: outputs += output # Saving data if self._nlp.binary_output: _snake_case : Any = self._reader.save_binary(lowerCAmelCase) logger.warning(F'''Current pipeline requires output to be in binary format, saving at {binary_path}''') else: self._reader.save(lowerCAmelCase)
477
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME _lowerCamelCase =["small", "medium", "large"] _lowerCamelCase ="lm_head.decoder.weight" _lowerCamelCase ="lm_head.weight" def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =torch.load(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE =d.pop(lowerCAmelCase_ ) os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) torch.save(lowerCAmelCase_, os.path.join(lowerCAmelCase_, lowerCAmelCase_ ) ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) _lowerCamelCase =parser.parse_args() for MODEL in DIALOGPT_MODELS: _lowerCamelCase =os.path.join(args.dialogpt_path, f'{MODEL}_ft.pkl') _lowerCamelCase =f'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
252
from ...processing_utils import ProcessorMixin class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = ['image_processor', 'feature_extractor'] __UpperCAmelCase = 'TvltImageProcessor' __UpperCAmelCase = 'TvltFeatureExtractor' def __init__( self : Optional[int] ,snake_case : List[str] ,snake_case : Dict ): super().__init__(image_processor=snake_case ,feature_extractor=snake_case ) SCREAMING_SNAKE_CASE =image_processor SCREAMING_SNAKE_CASE =feature_extractor def __call__( self : Dict ,snake_case : Union[str, Any]=None ,snake_case : Optional[int]=None ,snake_case : List[Any]=None ,snake_case : int=None ,snake_case : List[Any]=False ,snake_case : Optional[int]=False ,*snake_case : int ,**snake_case : str ,): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) SCREAMING_SNAKE_CASE =None if images is not None: SCREAMING_SNAKE_CASE =self.image_processor(snake_case ,mask_pixel=snake_case ,*snake_case ,**snake_case ) if images_mixed is not None: SCREAMING_SNAKE_CASE =self.image_processor(snake_case ,is_mixed=snake_case ,*snake_case ,**snake_case ) if audio is not None: SCREAMING_SNAKE_CASE =self.feature_extractor( snake_case ,*snake_case ,sampling_rate=snake_case ,mask_audio=snake_case ,**snake_case ) SCREAMING_SNAKE_CASE ={} if audio is not None: output_dict.update(snake_case ) if images is not None: output_dict.update(snake_case ) if images_mixed_dict is not None: output_dict.update(snake_case ) return output_dict @property def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.image_processor.model_input_names SCREAMING_SNAKE_CASE =self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
252
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase :List[str] = logging.get_logger(__name__) def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=False ): _UpperCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : int=False ): for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase : Union[str, Any] = "" else: _UpperCAmelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _UpperCAmelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : List[Any] = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ (UpperCamelCase__ : int ): _UpperCAmelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__a , __a ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ): _UpperCAmelCase : Optional[int] = dct.pop(__a ) _UpperCAmelCase : str = val def lowerCamelCase_ (): _UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Dict = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=True ): _UpperCAmelCase : Tuple = ViTConfig() # patch_size if model_name[-1] == "8": _UpperCAmelCase : Any = 8 # set labels if required if not base_model: _UpperCAmelCase : str = 1000 _UpperCAmelCase : Tuple = "huggingface/label-files" _UpperCAmelCase : int = "imagenet-1k-id2label.json" _UpperCAmelCase : Dict = json.load(open(hf_hub_download(__a , __a , repo_type='''dataset''' ) , '''r''' ) ) _UpperCAmelCase : List[Any] = {int(__a ): v for k, v in idalabel.items()} _UpperCAmelCase : Tuple = idalabel _UpperCAmelCase : Any = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _UpperCAmelCase : Dict = 384 _UpperCAmelCase : Tuple = 1536 _UpperCAmelCase : str = 12 _UpperCAmelCase : Union[str, Any] = 6 # load original model from torch hub _UpperCAmelCase : List[Any] = torch.hub.load('''facebookresearch/dino:main''' , __a ) original_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase : Dict = original_model.state_dict() if base_model: remove_classification_head_(__a ) _UpperCAmelCase : Any = create_rename_keys(__a , base_model=__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , __a ) # load HuggingFace model if base_model: _UpperCAmelCase : List[str] = ViTModel(__a , add_pooling_layer=__a ).eval() else: _UpperCAmelCase : List[str] = ViTForImageClassification(__a ).eval() model.load_state_dict(__a ) # Check outputs on an image, prepared by ViTImageProcessor _UpperCAmelCase : Optional[int] = ViTImageProcessor() _UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) _UpperCAmelCase : List[str] = encoding["pixel_values"] _UpperCAmelCase : List[Any] = model(__a ) if base_model: _UpperCAmelCase : List[Any] = original_model(__a ) assert torch.allclose(__a , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _UpperCAmelCase : List[str] = original_model(__a ) assert logits.shape == outputs.logits.shape assert torch.allclose(__a , outputs.logits , atol=1E-3 ) Path(__a ).mkdir(exist_ok=__a ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__a ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _lowerCAmelCase :int = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
506
import math from datetime import datetime, timedelta def UpperCamelCase_ ( __a ) -> datetime: a__ : Union[str, Any] = year % 19 a__ : List[str] = year % 4 a__ : str = year % 7 a__ : Any = math.floor(year / 100 ) a__ : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) a__ : Optional[int] = leap_day_inhibits / 4 a__ : Union[str, Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 a__ : Dict = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 a__ : Any = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon a__ : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 18 ) else: return datetime(__a , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): UpperCamelCase : Tuple = """will be""" if year > datetime.now().year else """was""" print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
37
0
from __future__ import annotations import math _lowerCamelCase : int = '2020.9.26' _lowerCamelCase : int = 'xcodz-dot, cclaus, dhruvmanila' def _lowerCAmelCase ( __magic_name__ :float , __magic_name__ :float , __magic_name__ :float , __magic_name__ :float , __magic_name__ :float ): if not all(isinstance(__magic_name__ , (float, int) ) for val in locals().values() ): UpperCAmelCase_ = F'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(__magic_name__ ) UpperCAmelCase_ = ((x * distance) / (z + distance)) * scale UpperCAmelCase_ = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _lowerCAmelCase ( __magic_name__ :float , __magic_name__ :float , __magic_name__ :float , __magic_name__ :str , __magic_name__ :float ): if not isinstance(__magic_name__ , __magic_name__ ): raise TypeError('''Axis must be a str''' ) UpperCAmelCase_ = locals() del input_variables["axis"] if not all(isinstance(__magic_name__ , (float, int) ) for val in input_variables.values() ): UpperCAmelCase_ = ( '''Input values except axis must either be float or int: ''' F'''{list(input_variables.values() )}''' ) raise TypeError(__magic_name__ ) UpperCAmelCase_ = (angle % 3_6_0) / 4_5_0 * 1_8_0 / math.pi if axis == "z": UpperCAmelCase_ = x * math.cos(__magic_name__ ) - y * math.sin(__magic_name__ ) UpperCAmelCase_ = y * math.cos(__magic_name__ ) + x * math.sin(__magic_name__ ) UpperCAmelCase_ = z elif axis == "x": UpperCAmelCase_ = y * math.cos(__magic_name__ ) - z * math.sin(__magic_name__ ) UpperCAmelCase_ = z * math.cos(__magic_name__ ) + y * math.sin(__magic_name__ ) UpperCAmelCase_ = x elif axis == "y": UpperCAmelCase_ = x * math.cos(__magic_name__ ) - z * math.sin(__magic_name__ ) UpperCAmelCase_ = z * math.cos(__magic_name__ ) + x * math.sin(__magic_name__ ) UpperCAmelCase_ = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }") print(f"{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }")
407
def _lowerCAmelCase ( __magic_name__ :int = 1_0_0 ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
407
1
from __future__ import annotations from collections.abc import Iterator from typing import Any class _lowerCamelCase : def __init__( self , lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__: Any= data SCREAMING_SNAKE_CASE__: Node | None= None class _lowerCamelCase : def __init__( self ) -> Any: SCREAMING_SNAKE_CASE__: Any= None SCREAMING_SNAKE_CASE__: Any= None def __iter__( self ) -> Iterator[Any]: SCREAMING_SNAKE_CASE__: List[Any]= self.head while self.head: yield node.data SCREAMING_SNAKE_CASE__: Optional[int]= node.next if node == self.head: break def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> List[Any]: return "->".join(str(lowerCAmelCase ) for item in iter(self ) ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> None: self.insert_nth(len(self ) , lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> None: self.insert_nth(0 , lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> None: if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) SCREAMING_SNAKE_CASE__: Optional[int]= Node(lowerCAmelCase ) if self.head is None: SCREAMING_SNAKE_CASE__: Optional[Any]= new_node # first node points itself SCREAMING_SNAKE_CASE__: Optional[int]= new_node elif index == 0: # insert at head SCREAMING_SNAKE_CASE__: Union[str, Any]= self.head SCREAMING_SNAKE_CASE__: Any= new_node else: SCREAMING_SNAKE_CASE__: Dict= self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE__: Union[str, Any]= temp.next SCREAMING_SNAKE_CASE__: Optional[Any]= temp.next SCREAMING_SNAKE_CASE__: List[Any]= new_node if index == len(self ) - 1: # insert at tail SCREAMING_SNAKE_CASE__: Tuple= new_node def UpperCamelCase_ ( self ) -> Optional[Any]: return self.delete_nth(0 ) def UpperCamelCase_ ( self ) -> Any: return self.delete_nth(len(self ) - 1 ) def UpperCamelCase_ ( self , lowerCAmelCase = 0 ) -> Any: if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) SCREAMING_SNAKE_CASE__: Any= self.head if self.head == self.tail: # just one node SCREAMING_SNAKE_CASE__: str= None elif index == 0: # delete head node SCREAMING_SNAKE_CASE__: int= self.tail.next.next SCREAMING_SNAKE_CASE__: Dict= self.head.next else: SCREAMING_SNAKE_CASE__: Dict= self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE__: Any= temp.next SCREAMING_SNAKE_CASE__: List[str]= temp.next SCREAMING_SNAKE_CASE__: int= temp.next.next if index == len(self ) - 1: # delete at tail SCREAMING_SNAKE_CASE__: List[str]= temp return delete_node.data def UpperCamelCase_ ( self ) -> bool: return len(self ) == 0 def A__ ( ): SCREAMING_SNAKE_CASE__: Union[str, Any]= CircularLinkedList() assert len(snake_case_ ) == 0 assert circular_linked_list.is_empty() is True assert str(snake_case_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(snake_case_ ) == i circular_linked_list.insert_nth(snake_case_ , i + 1 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
64
from math import factorial def A__ ( snake_case_ : int , snake_case_ : int ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(snake_case_ ) // (factorial(snake_case_ ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f'''fifty-two card deck is: {combinations(5_2, 5)}\n''', ) print( 'If a class of 40 students must be arranged into groups of', f'''4 for group projects, there are {combinations(4_0, 4)} ways''', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f'''are {combinations(1_0, 3)} ways that first, second and''', 'third place can be awarded.', )
64
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration lowercase__ :List[Any] = pytest.mark.integration lowercase__ :Optional[Any] = {"comet"} lowercase__ :Any = importlib.util.find_spec("fairseq") is not None lowercase__ :Optional[Any] = {"code_eval"} lowercase__ :List[str] = os.name == "nt" lowercase__ :Union[str, Any] = {"bertscore", "frugalscore", "perplexity"} lowercase__ :int = importlib.util.find_spec("transformers") is not None def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @wraps(SCREAMING_SNAKE_CASE_ ) def wrapper(self , lowerCAmelCase__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''\"test requires Fairseq\"''' ) else: test_case(self , SCREAMING_SNAKE_CASE_ ) return wrapper def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @wraps(SCREAMING_SNAKE_CASE_ ) def wrapper(self , lowerCAmelCase__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''\"test requires transformers\"''' ) else: test_case(self , SCREAMING_SNAKE_CASE_ ) return wrapper def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @wraps(SCREAMING_SNAKE_CASE_ ) def wrapper(self , lowerCAmelCase__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''\"test not supported on Windows\"''' ) else: test_case(self , SCREAMING_SNAKE_CASE_ ) return wrapper def UpperCamelCase ( ): '''simple docstring''' lowercase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @local class lowercase ( parameterized.TestCase ): lowercase_ : Tuple ={} lowercase_ : Optional[int] =None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''') @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''') def A__ ( self ,A__): lowercase = '''[...]''' lowercase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' ,A__)).module_path) lowercase = datasets.load.import_main_class(metric_module.__name__ ,dataset=A__) # check parameters lowercase = inspect.signature(metric._compute).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values())) # no **kwargs # run doctest with self.patch_intensive_calls(A__ ,metric_module.__name__): with self.use_local_metrics(): try: lowercase = doctest.testmod(A__ ,verbose=A__ ,raise_on_error=A__) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed ,0) self.assertGreater(results.attempted ,1) @slow def A__ ( self ,A__): lowercase = '''[...]''' lowercase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' ,A__)).module_path) # run doctest with self.use_local_metrics(): lowercase = doctest.testmod(A__ ,verbose=A__ ,raise_on_error=A__) self.assertEqual(results.failed ,0) self.assertGreater(results.attempted ,1) @contextmanager def A__ ( self ,A__ ,A__): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](A__): yield else: yield @contextmanager def A__ ( self): def load_local_metric(A__ ,*A__ ,**A__): return load_metric(os.path.join('''metrics''' ,A__) ,*A__ ,**A__) with patch('''datasets.load_metric''') as mock_load_metric: lowercase = load_local_metric yield @classmethod def A__ ( cls ,A__): def wrapper(A__): lowercase = contextmanager(A__) lowercase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class lowercase ( _lowerCamelCase ): def A__ ( self ,A__): assert len(input_dict['''input_ids''']) == 2 return np.array([1.03, 1.04]) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: lowercase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' import torch def bert_cos_score_idf(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(SCREAMING_SNAKE_CASE_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: lowercase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def load_from_checkpoint(lowerCAmelCase__ ): class lowercase : def A__ ( self ,A__ ,*A__ ,**A__): assert len(A__) == 2 lowercase = [0.19, 0.92] return scores, sum(A__) / len(A__) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: lowercase = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: lowercase = load_from_checkpoint yield def UpperCamelCase ( ): '''simple docstring''' lowercase = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) lowercase = '''ERROR''' lowercase = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(SCREAMING_SNAKE_CASE_ , match=re.escape(SCREAMING_SNAKE_CASE_ ) ): metric.compute(predictions=[] , references=[] , scheme=SCREAMING_SNAKE_CASE_ )
700
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def UpperCamelCase ( ): '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
633
0
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def __lowerCAmelCase ( UpperCamelCase__ = 1_00_00_00 , UpperCamelCase__ = 10 ) -> int: __lowerCamelCase = defaultdict(UpperCamelCase__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __lowerCamelCase = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __lowerCamelCase = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(UpperCamelCase__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f'{solution() = }')
546
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase ={ "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
546
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ = 16 A_ = 32 def A_ ( snake_case , snake_case = 16 , snake_case = "bert-base-cased" ): SCREAMING_SNAKE_CASE:str = AutoTokenizer.from_pretrained(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(snake_case ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE:str = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=snake_case , max_length=snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE:int = datasets.map( snake_case , batched=snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE:Optional[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(snake_case ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE:Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) SCREAMING_SNAKE_CASE:List[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=snake_case , collate_fn=snake_case , batch_size=snake_case ) return train_dataloader, eval_dataloader def A_ ( snake_case , snake_case ): # Initialize accelerator SCREAMING_SNAKE_CASE:int = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE:Union[str, Any] = config["lr"] SCREAMING_SNAKE_CASE:Union[str, Any] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE:Dict = int(config["seed"] ) SCREAMING_SNAKE_CASE:Union[str, Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE:Dict = args.model_name_or_path set_seed(snake_case ) SCREAMING_SNAKE_CASE:str = get_dataloaders(snake_case , snake_case , snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE:Any = AutoModelForSequenceClassification.from_pretrained(snake_case , return_dict=snake_case ) # Instantiate optimizer SCREAMING_SNAKE_CASE:int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE:Tuple = optimizer_cls(params=model.parameters() , lr=snake_case ) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE:Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: SCREAMING_SNAKE_CASE:Union[str, Any] = 1 SCREAMING_SNAKE_CASE:List[Any] = (len(snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE:Optional[Any] = get_linear_schedule_with_warmup( optimizer=snake_case , num_warmup_steps=0 , num_training_steps=snake_case , ) else: SCREAMING_SNAKE_CASE:Any = DummyScheduler(snake_case , total_num_steps=snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE:Dict = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE:Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE:str = 0 # Now we train the model SCREAMING_SNAKE_CASE:Optional[int] = evaluate.load("glue" , "mrpc" ) SCREAMING_SNAKE_CASE:Any = 0 SCREAMING_SNAKE_CASE:Any = {} for epoch in range(snake_case , snake_case ): model.train() for step, batch in enumerate(snake_case ): SCREAMING_SNAKE_CASE:Optional[Any] = model(**snake_case ) SCREAMING_SNAKE_CASE:str = outputs.loss SCREAMING_SNAKE_CASE:Optional[int] = loss / gradient_accumulation_steps accelerator.backward(snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() SCREAMING_SNAKE_CASE:Tuple = 0 for step, batch in enumerate(snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE:str = model(**snake_case ) SCREAMING_SNAKE_CASE:Optional[int] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times SCREAMING_SNAKE_CASE:int = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(snake_case ) - 1: SCREAMING_SNAKE_CASE:int = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE:Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=snake_case , references=snake_case , ) SCREAMING_SNAKE_CASE:List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , snake_case ) SCREAMING_SNAKE_CASE:int = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: SCREAMING_SNAKE_CASE:List[Any] = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(snake_case , snake_case ) def A_ ( ): SCREAMING_SNAKE_CASE:Optional[int] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case , ) parser.add_argument( "--output_dir" , type=snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=snake_case , default=snake_case , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=snake_case , default=3 , help="Number of train epochs." , ) SCREAMING_SNAKE_CASE:List[Any] = parser.parse_args() SCREAMING_SNAKE_CASE:List[str] = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(snake_case , snake_case ) if __name__ == "__main__": main()
720
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): A_ = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: A_ = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Any = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE:Optional[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE:str = numpy_to_pil(snake_case ) return images def A_ ( snake_case ): if images.ndim == 3: SCREAMING_SNAKE_CASE:List[str] = images[None, ...] SCREAMING_SNAKE_CASE:List[Any] = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images SCREAMING_SNAKE_CASE:Any = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: SCREAMING_SNAKE_CASE:int = [Image.fromarray(snake_case ) for image in images] return pil_images
465
0
import os import pytest from attr import dataclass lowercase_ : Optional[Any] = 'us-east-1' # defaults region @dataclass class _lowerCamelCase : __a = 42 __a = "arn:aws:iam::558105141721:role/sagemaker_execution_role" __a = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } __a = {**hyperparameters, "max_steps": 1000} @property def UpperCamelCase_ ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def UpperCamelCase_ ( self ) -> str: return f'{self.framework}-transfromers-test' @property def UpperCamelCase_ ( self ) -> str: return f'./tests/sagemaker/scripts/{self.framework}' @property def UpperCamelCase_ ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='''class''' ) def A__ ( snake_case_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__: Dict= SageMakerTestEnvironment(framework=request.cls.framework )
64
def A__ ( snake_case_ : float , snake_case_ : float ): if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
64
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def lowerCAmelCase( a__ : str , a__ : Dict , a__ : List[Any] ): '''simple docstring''' lowerCamelCase__ = state_dict.pop(a__ ) lowerCamelCase__ = val def lowerCAmelCase( a__ : Optional[Any] ): '''simple docstring''' lowerCamelCase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCamelCase__ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) lowerCamelCase__ = value else: lowerCamelCase__ = value return new_state_dict def lowerCAmelCase( a__ : Dict , a__ : List[Any]=False ): '''simple docstring''' lowerCamelCase__ = "" if is_panoptic: lowerCamelCase__ = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCamelCase__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[:256, :] lowerCamelCase__ = in_proj_bias[:256] lowerCamelCase__ = in_proj_weight[256:512, :] lowerCamelCase__ = in_proj_bias[256:512] lowerCamelCase__ = in_proj_weight[-256:, :] lowerCamelCase__ = in_proj_bias[-256:] def lowerCAmelCase( ): '''simple docstring''' lowerCamelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__ = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def lowerCAmelCase( a__ : List[Any] , a__ : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowerCamelCase__ = "resnet101" if "dc5" in model_name: lowerCamelCase__ = True lowerCamelCase__ = "panoptic" in model_name if is_panoptic: lowerCamelCase__ = 250 else: lowerCamelCase__ = 91 lowerCamelCase__ = "huggingface/label-files" lowerCamelCase__ = "coco-detection-id2label.json" lowerCamelCase__ = json.load(open(hf_hub_download(a__ , a__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase__ = {int(a__ ): v for k, v in idalabel.items()} lowerCamelCase__ = idalabel lowerCamelCase__ = {v: k for k, v in idalabel.items()} # load image processor lowerCamelCase__ = "coco_panoptic" if is_panoptic else "coco_detection" lowerCamelCase__ = ConditionalDetrImageProcessor(format=a__ ) # prepare image lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=a__ , return_tensors="pt" ) lowerCamelCase__ = encoding["pixel_values"] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub lowerCamelCase__ = torch.hub.load("DeppMeng/ConditionalDETR" , a__ , pretrained=a__ ).eval() lowerCamelCase__ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowerCamelCase__ = "conditional_detr." + src rename_key(a__ , a__ , a__ ) lowerCamelCase__ = rename_backbone_keys(a__ ) # query, key and value matrices need special treatment read_in_q_k_v(a__ , is_panoptic=a__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCamelCase__ = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): lowerCamelCase__ = state_dict.pop(a__ ) lowerCamelCase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCamelCase__ = state_dict.pop(a__ ) lowerCamelCase__ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: lowerCamelCase__ = state_dict.pop(a__ ) lowerCamelCase__ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): lowerCamelCase__ = state_dict.pop(a__ ) lowerCamelCase__ = val # finally, create HuggingFace model and load state dict lowerCamelCase__ = ConditionalDetrForSegmentation(a__ ) if is_panoptic else ConditionalDetrForObjectDetection(a__ ) model.load_state_dict(a__ ) model.eval() model.push_to_hub(repo_id=a__ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion lowerCamelCase__ = conditional_detr(a__ ) lowerCamelCase__ = model(a__ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
426
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class snake_case_ ( A__ ): """simple docstring""" __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype =jnp.floataa __lowerCAmelCase : bool =True def __UpperCAmelCase ( self): super().setup() lowerCamelCase__ = nn.Dense(5 , dtype=self.dtype) def __call__( self , *UpperCamelCase , **UpperCamelCase): lowerCamelCase__ = super().__call__(*UpperCamelCase , **UpperCamelCase) lowerCamelCase__ = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class snake_case_ ( A__ ): """simple docstring""" __lowerCAmelCase : Optional[int] =FlaxBigBirdForNaturalQuestionsModule def lowerCAmelCase( a__ : List[str] , a__ : Dict , a__ : Optional[Any] , a__ : List[str] , a__ : str , a__ : Optional[int] ): '''simple docstring''' def cross_entropy(a__ : Union[str, Any] , a__ : Any , a__ : List[Any]=None ): lowerCamelCase__ = logits.shape[-1] lowerCamelCase__ = (labels[..., None] == jnp.arange(a__ )[None]).astype("f4" ) lowerCamelCase__ = jax.nn.log_softmax(a__ , axis=-1 ) lowerCamelCase__ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCamelCase__ = reduction(a__ ) return loss lowerCamelCase__ = partial(a__ , reduction=jnp.mean ) lowerCamelCase__ = cross_entropy(a__ , a__ ) lowerCamelCase__ = cross_entropy(a__ , a__ ) lowerCamelCase__ = cross_entropy(a__ , a__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class snake_case_ : """simple docstring""" __lowerCAmelCase : str ="google/bigbird-roberta-base" __lowerCAmelCase : int =3_0_0_0 __lowerCAmelCase : int =1_0_5_0_0 __lowerCAmelCase : int =1_2_8 __lowerCAmelCase : int =3 __lowerCAmelCase : int =1 __lowerCAmelCase : int =5 # tx_args __lowerCAmelCase : float =3e-5 __lowerCAmelCase : float =0.0 __lowerCAmelCase : int =2_0_0_0_0 __lowerCAmelCase : float =0.0095 __lowerCAmelCase : str ="bigbird-roberta-natural-questions" __lowerCAmelCase : str ="training-expt" __lowerCAmelCase : str ="data/nq-training.jsonl" __lowerCAmelCase : str ="data/nq-validation.jsonl" def __UpperCAmelCase ( self): os.makedirs(self.base_dir , exist_ok=UpperCamelCase) lowerCamelCase__ = os.path.join(self.base_dir , self.save_dir) lowerCamelCase__ = self.batch_size_per_device * jax.device_count() @dataclass class snake_case_ : """simple docstring""" __lowerCAmelCase : int __lowerCAmelCase : int =4_0_9_6 # no dynamic padding on TPUs def __call__( self , UpperCamelCase): lowerCamelCase__ = self.collate_fn(UpperCamelCase) lowerCamelCase__ = jax.tree_util.tree_map(UpperCamelCase , UpperCamelCase) return batch def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ , lowerCamelCase__ = self.fetch_inputs(features["input_ids"]) lowerCamelCase__ = { "input_ids": jnp.array(UpperCamelCase , dtype=jnp.intaa), "attention_mask": jnp.array(UpperCamelCase , dtype=jnp.intaa), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa), } return batch def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ = [self._fetch_inputs(UpperCamelCase) for ids in input_ids] return zip(*UpperCamelCase) def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ = [1 for _ in range(len(UpperCamelCase))] while len(UpperCamelCase) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def lowerCAmelCase( a__ : List[Any] , a__ : Tuple , a__ : Any=None ): '''simple docstring''' if seed is not None: lowerCamelCase__ = dataset.shuffle(seed=a__ ) for i in range(len(a__ ) // batch_size ): lowerCamelCase__ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(a__ ) @partial(jax.pmap , axis_name="batch" ) def lowerCAmelCase( a__ : List[Any] , a__ : Tuple , **a__ : Union[str, Any] ): '''simple docstring''' def loss_fn(a__ : str ): lowerCamelCase__ = model_inputs.pop("start_labels" ) lowerCamelCase__ = model_inputs.pop("end_labels" ) lowerCamelCase__ = model_inputs.pop("pooled_labels" ) lowerCamelCase__ = state.apply_fn(**a__ , params=a__ , dropout_rng=a__ , train=a__ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = outputs return state.loss_fn( a__ , a__ , a__ , a__ , a__ , a__ , ) lowerCamelCase__ , lowerCamelCase__ = jax.random.split(a__ ) lowerCamelCase__ = jax.value_and_grad(a__ ) lowerCamelCase__ , lowerCamelCase__ = grad_fn(state.params ) lowerCamelCase__ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) lowerCamelCase__ = jax.lax.pmean(a__ , "batch" ) lowerCamelCase__ = state.apply_gradients(grads=a__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def lowerCAmelCase( a__ : int , **a__ : Tuple ): '''simple docstring''' lowerCamelCase__ = model_inputs.pop("start_labels" ) lowerCamelCase__ = model_inputs.pop("end_labels" ) lowerCamelCase__ = model_inputs.pop("pooled_labels" ) lowerCamelCase__ = state.apply_fn(**a__ , params=state.params , train=a__ ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = outputs lowerCamelCase__ = state.loss_fn(a__ , a__ , a__ , a__ , a__ , a__ ) lowerCamelCase__ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class snake_case_ ( train_state.TrainState ): """simple docstring""" __lowerCAmelCase : Callable =struct.field(pytree_node=A__ ) @dataclass class snake_case_ : """simple docstring""" __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable =None def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None): lowerCamelCase__ = model.params lowerCamelCase__ = TrainState.create( apply_fn=model.__call__ , params=UpperCamelCase , tx=UpperCamelCase , loss_fn=UpperCamelCase , ) if ckpt_dir is not None: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = restore_checkpoint(UpperCamelCase , UpperCamelCase) lowerCamelCase__ = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } lowerCamelCase__ , lowerCamelCase__ = build_tx(**UpperCamelCase) lowerCamelCase__ = train_state.TrainState( step=UpperCamelCase , apply_fn=model.__call__ , params=UpperCamelCase , tx=UpperCamelCase , opt_state=UpperCamelCase , ) lowerCamelCase__ = args lowerCamelCase__ = data_collator lowerCamelCase__ = lr lowerCamelCase__ = params lowerCamelCase__ = jax_utils.replicate(UpperCamelCase) return state def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = self.args lowerCamelCase__ = len(UpperCamelCase) // args.batch_size lowerCamelCase__ = jax.random.PRNGKey(0) lowerCamelCase__ = jax.random.split(UpperCamelCase , jax.device_count()) for epoch in range(args.max_epochs): lowerCamelCase__ = jnp.array(0 , dtype=jnp.floataa) lowerCamelCase__ = get_batched_dataset(UpperCamelCase , args.batch_size , seed=UpperCamelCase) lowerCamelCase__ = 0 for batch in tqdm(UpperCamelCase , total=UpperCamelCase , desc=f"""Running EPOCH-{epoch}"""): lowerCamelCase__ = self.data_collator(UpperCamelCase) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = self.train_step_fn(UpperCamelCase , UpperCamelCase , **UpperCamelCase) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 if i % args.logging_steps == 0: lowerCamelCase__ = jax_utils.unreplicate(state.step) lowerCamelCase__ = running_loss.item() / i lowerCamelCase__ = self.scheduler_fn(state_step - 1) lowerCamelCase__ = self.evaluate(UpperCamelCase , UpperCamelCase) lowerCamelCase__ = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(UpperCamelCase)) self.logger.log(UpperCamelCase , commit=UpperCamelCase) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f"""-e{epoch}-s{i}""" , state=UpperCamelCase) def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = get_batched_dataset(UpperCamelCase , self.args.batch_size) lowerCamelCase__ = len(UpperCamelCase) // self.args.batch_size lowerCamelCase__ = jnp.array(0 , dtype=jnp.floataa) lowerCamelCase__ = 0 for batch in tqdm(UpperCamelCase , total=UpperCamelCase , desc="Evaluating ... "): lowerCamelCase__ = self.data_collator(UpperCamelCase) lowerCamelCase__ = self.val_step_fn(UpperCamelCase , **UpperCamelCase) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 return running_loss / i def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = jax_utils.unreplicate(UpperCamelCase) print(f"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... ") self.model_save_fn(UpperCamelCase , params=state.params) with open(os.path.join(UpperCamelCase , "opt_state.msgpack") , "wb") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(UpperCamelCase , "args.joblib")) joblib.dump(self.data_collator , os.path.join(UpperCamelCase , "data_collator.joblib")) with open(os.path.join(UpperCamelCase , "training_state.json") , "w") as f: json.dump({"step": state.step.item()} , UpperCamelCase) print("DONE") def lowerCAmelCase( a__ : str , a__ : Optional[int] ): '''simple docstring''' print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(a__ , "flax_model.msgpack" ) , "rb" ) as f: lowerCamelCase__ = from_bytes(state.params , f.read() ) with open(os.path.join(a__ , "opt_state.msgpack" ) , "rb" ) as f: lowerCamelCase__ = from_bytes(state.opt_state , f.read() ) lowerCamelCase__ = joblib.load(os.path.join(a__ , "args.joblib" ) ) lowerCamelCase__ = joblib.load(os.path.join(a__ , "data_collator.joblib" ) ) with open(os.path.join(a__ , "training_state.json" ) , "r" ) as f: lowerCamelCase__ = json.load(a__ ) lowerCamelCase__ = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def lowerCAmelCase( a__ : Union[str, Any] , a__ : List[str] , a__ : Tuple , a__ : Optional[int] ): '''simple docstring''' lowerCamelCase__ = num_train_steps - warmup_steps lowerCamelCase__ = optax.linear_schedule(init_value=a__ , end_value=a__ , transition_steps=a__ ) lowerCamelCase__ = optax.linear_schedule(init_value=a__ , end_value=1E-7 , transition_steps=a__ ) lowerCamelCase__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def lowerCAmelCase( a__ : Any , a__ : Union[str, Any] , a__ : Optional[int] , a__ : List[str] , a__ : Union[str, Any] ): '''simple docstring''' def weight_decay_mask(a__ : str ): lowerCamelCase__ = traverse_util.flatten_dict(a__ ) lowerCamelCase__ = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(a__ ) lowerCamelCase__ = scheduler_fn(a__ , a__ , a__ , a__ ) lowerCamelCase__ = optax.adamw(learning_rate=a__ , weight_decay=a__ , mask=a__ ) return tx, lr
426
1
"""simple docstring""" import qiskit def UpperCAmelCase ( _lowercase : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" lowerCAmelCase_ = qubits # Using Aer's simulator lowerCAmelCase_ = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register lowerCAmelCase_ = qiskit.QuantumCircuit(_lowercase , _lowercase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , _lowercase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , _lowercase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(_lowercase ) ) , list(range(_lowercase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowerCAmelCase_ = qiskit.execute(_lowercase , _lowercase , shots=1_0_0_0 ) return job.result().get_counts(_lowercase ) if __name__ == "__main__": print(f"""Total count for various states are: {quantum_entanglement(3)}""")
552
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowercase_ = _symbol_database.Default() lowercase_ = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowercase_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowercase_ = None lowercase_ = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowercase_ = 45 lowercase_ = 15_81 lowercase_ = 15_17 lowercase_ = 15_70 lowercase_ = 15_84 lowercase_ = 17_93 lowercase_ = 17_95 lowercase_ = 19_16 lowercase_ = 18_64 lowercase_ = 19_05 lowercase_ = 19_19 lowercase_ = 24_29 lowercase_ = 22_08 lowercase_ = 24_18 lowercase_ = 23_23 lowercase_ = 24_07 # @@protoc_insertion_point(module_scope)
552
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__:List[Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__:int = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__:Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
708
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class snake_case__ ( snake_case_ ): def a__ ( self , lowerCamelCase ): with open(lowerCamelCase , encoding="utf-8" ) as input_file: __a = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) __a = input_file.read() __a = regexp.search(lowerCamelCase ) return match def a__ ( self , lowerCamelCase ): with open(lowerCamelCase , encoding="utf-8" ) as input_file: __a = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) __a = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __a = regexp.finditer(lowerCamelCase ) __a = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def a__ ( self ): __a = Path("./datasets" ) __a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCamelCase ) ): raise AssertionError(F"open(...) must use utf-8 encoding in {dataset}" ) def a__ ( self ): __a = Path("./datasets" ) __a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCamelCase ) ): raise AssertionError(F"print statement found in {dataset}. Use datasets.logger/logging instead." )
67
0
"""simple docstring""" UpperCAmelCase__ = {str(digit): digit**5 for digit in range(1_0)} def __UpperCAmelCase ( lowercase ): """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowercase ) ) def __UpperCAmelCase ( ): """simple docstring""" return sum( number for number in range(10_00 ,1_00_00_00 ) if number == digits_fifth_powers_sum(lowercase ) ) if __name__ == "__main__": print(solution())
277
"""simple docstring""" from __future__ import annotations import pandas as pd def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [0] * no_of_processes _UpperCAmelCase = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(lowercase ): _UpperCAmelCase = burst_time[i] _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 9_99_99_99_99 _UpperCAmelCase = 0 _UpperCAmelCase = False # Process until all processes are completed while complete != no_of_processes: for j in range(lowercase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: _UpperCAmelCase = remaining_time[j] _UpperCAmelCase = j _UpperCAmelCase = True if not check: increment_time += 1 continue remaining_time[short] -= 1 _UpperCAmelCase = remaining_time[short] if minm == 0: _UpperCAmelCase = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 _UpperCAmelCase = False # Find finish time of current process _UpperCAmelCase = increment_time + 1 # Calculate waiting time _UpperCAmelCase = finish_time - arrival_time[short] _UpperCAmelCase = finar - burst_time[short] if waiting_time[short] < 0: _UpperCAmelCase = 0 # Increment time increment_time += 1 return waiting_time def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [0] * no_of_processes for i in range(lowercase ): _UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = 0 for i in range(lowercase ): _UpperCAmelCase = total_waiting_time + waiting_time[i] _UpperCAmelCase = total_turn_around_time + turn_around_time[i] print(f'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("""Average turn around time =""" ,total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") UpperCAmelCase__ = int(input()) UpperCAmelCase__ = [0] * no_of_processes UpperCAmelCase__ = [0] * no_of_processes UpperCAmelCase__ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) UpperCAmelCase__ , UpperCAmelCase__ = map(int, input().split()) UpperCAmelCase__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCAmelCase__ = burst_time UpperCAmelCase__ = no_of_processes UpperCAmelCase__ = waiting_time UpperCAmelCase__ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) UpperCAmelCase__ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
277
1
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def _snake_case ( lowercase__ = 2000000 ): _lowerCamelCase : list[int] = [0] _lowerCamelCase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowerCamelCase : int = 0 # the area corresponding to the grid that gives the product closest to target _lowerCamelCase : int = 0 # an estimate of b, using the quadratic formula _lowerCamelCase : float # the largest integer less than b_estimate _lowerCamelCase : int # the largest integer less than b_estimate _lowerCamelCase : int # the triangle number corresponding to b_floor _lowerCamelCase : int # the triangle number corresponding to b_ceil _lowerCamelCase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowerCamelCase : int = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowerCamelCase : int = floor(lowercase__ ) _lowerCamelCase : List[Any] = ceil(lowercase__ ) _lowerCamelCase : int = triangle_numbers[b_floor] _lowerCamelCase : Tuple = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowerCamelCase : str = triangle_b_first_guess * triangle_a _lowerCamelCase : int = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowerCamelCase : Optional[Any] = triangle_b_second_guess * triangle_a _lowerCamelCase : Optional[int] = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
492
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
492
1